51
|
Kerr N, de Rivero Vaccari JP, Dietrich WD, Keane RW. Neural-respiratory inflammasome axis in traumatic brain injury. Exp Neurol 2019; 323:113080. [PMID: 31626746 DOI: 10.1016/j.expneurol.2019.113080] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/11/2019] [Accepted: 10/04/2019] [Indexed: 12/26/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality. Approximately 20-25% of TBI subjects develop Acute Lung Injury (ALI), but the pathomechanisms of TBI-induced ALI remain poorly defined. Currently, mechanical ventilation is the only therapeutic intervention for TBI-induced lung injury. Our recent studies have shown that the inflammasome plays an important role in the systemic inflammatory response leading to lung injury-post TBI. Here, we outline the role of the extracellular vesicle (EV)-mediated inflammasome signaling in the etiology of TBI-induced ALI. Furthermore, we evaluate the efficacy of a low molecular weight heparin (Enoxaparin, a blocker of EV uptake) and a monoclonal antibody against apoptosis speck-like staining protein containing a caspase recruitment domain (anti-ASC) as therapeutics for TBI-induced lung injury. We demonstate that activation of an EV-mediated Neural-Respiratory Inflammasome Axis plays an essential role in TBI-induced lung injury and disruption of this axis has therapeutic potential as a treatment strategy.
Collapse
Affiliation(s)
- Nadine Kerr
- Department of Neurological Surgery, University of Miami Miller School of Medicine, United States of America; Miami Project to Cure Paralysis, United States of America
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, University of Miami Miller School of Medicine, United States of America; Miami Project to Cure Paralysis, United States of America
| | - W Dalton Dietrich
- Department of Neurological Surgery, University of Miami Miller School of Medicine, United States of America; Miami Project to Cure Paralysis, United States of America
| | - Robert W Keane
- Department of Neurological Surgery, University of Miami Miller School of Medicine, United States of America; Miami Project to Cure Paralysis, United States of America; Department of Physiology and Biophysics, University of Miami Miller School fo Medicine, 1600 NW10th Avenue, Miami, FL 33136, United States of America.
| |
Collapse
|
52
|
Sun L, Chen Y, Shen X, Xu T, Yin Y, Zhang H, Ding S, Zhao Y, Zhang Y, Guan Y, Li W. Inhibition of NOX2-NLRP1 signaling pathway protects against chronic glucocorticoids exposure-induced hippocampal neuronal damage. Int Immunopharmacol 2019; 74:105721. [DOI: 10.1016/j.intimp.2019.105721] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/17/2019] [Accepted: 06/23/2019] [Indexed: 12/15/2022]
|
53
|
Rapamycin improves the neuroprotection effect of inhibition of NLRP3 inflammasome activation after TBI. Brain Res 2019; 1710:163-172. [DOI: 10.1016/j.brainres.2019.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/26/2018] [Accepted: 01/03/2019] [Indexed: 01/02/2023]
|
54
|
Zheng G, Zhan Y, Wang H, Luo Z, Zheng F, Zhou Y, Wu Y, Wang S, Wu Y, Xiang G, Xu C, Xu H, Tian N, Zhang X. Carbon monoxide releasing molecule-3 alleviates neuron death after spinal cord injury via inflammasome regulation. EBioMedicine 2019; 40:643-654. [PMID: 30612943 PMCID: PMC6412161 DOI: 10.1016/j.ebiom.2018.12.059] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/29/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Background Genetic overexpression or pharmacological activation of heme oxygenase (HO) are identified as potential therapeutic target for spinal cord injury (SCI); however, the role of carbon monoxide (CO), which is a major product of haem degenerated by HO, in SCI remains unknown. Applying hemin or chemicals which may regulate HO expression or activity to increase CO production are inadequate to elaborate the direct role of CO. Here, we assessed the effect of CO releasing molecule-3 (CORM-3), the classical donor of CO, in SCI and explained its possible protective mechanism. Methods Rat SCI model was performed with a vascular clip (30 g) compressing at T9 vertebral level for 1 min and CO was delivered immediately after SCI by CORM-3. The neurological deficits and neuron survival were assessed. Inflammasome and inositol-requiring enzyme 1 (IRE1) pathway were measured by western blot and immunofluorescence. For in vitro study, oxygen glucose deprivation (OGD) simulated the SCI-inflammasome change in cultured the primary neurons. Findings CORM-3 suppressed inflammasome signaling and pyroptosis occurrence, which consequently alleviated neuron death and improved motor functional recovery following SCI. As a pivotal sensor involving in endoplasmic reticulum stress-medicated inflammasome signaling, IRE1 and its downstream X-box binding protein 1 (XBP1) were activated in SCI tissues as well as in OGD neurons; while inhibition of IRE1 by STF-083010 in SCI rats or by si-RNA in OGD neurons suppressed inflammasome signaling and pyroptosis. Interestingly, the SCI/OGD-stimulated IRE1 activation was attenuated by CORM-3 treatment. Interpretations CO may alleviate neuron death and improve motor functional recovery in SCI through IRE1 regulation, and administration of CO could be a promising therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China
| | - Yu Zhan
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Haoli Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China
| | - Zucheng Luo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China
| | - Fanghong Zheng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Sheng Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yan Wu
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 310058 Zhejiang Province, China
| | - Guangheng Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China
| | - Cong Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Chinese Orthopaedic Regenerative Medicine Society, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
55
|
Wang SN, Guo XY, Tang J, Ding SQ, Shen L, Wang R, Ma SF, Hu JG, Lü HZ. Expression and localization of absent in melanoma 2 in the injured spinal cord. Neural Regen Res 2019; 14:542-552. [PMID: 30539825 PMCID: PMC6334600 DOI: 10.4103/1673-5374.245481] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In traumatic brain injury, absent in melanoma 2 (AIM2) has been demonstrated to be involved in pyroptotic neuronal cell death. Although the pathophysiological mechanism of spinal cord injury is similar to that of brain injury, the expression and cellular localization of AIM2 after spinal cord injury is still not very clear. In the present study, we used a rat model of T9 spinal cord contusive injury, produced using the weight drop method. The rats were randomly divided into 1-hour, 6-hour, 1-day, 3-day and 6-day (post-injury time points) groups. Sham-operated rats only received laminectomy at T9 without contusive injury. Western blot assay revealed that the expression levels of AIM2 were not significantly different among the 1-hour, 6-hour and 1-day groups. The expression levels of AIM2 were markedly higher in the 1-hour, 6-hour and 1-day groups compared with the sham, 3-day and 7-day groups. Double immunofluorescence staining demonstrated that AIM2 was expressed by NeuN+ (neurons), GFAP+ (astrocytes), CNPase+ (oligodendrocytes) and CD11b+ (microglia) cells in the sham-operated spinal cord. In rats with spinal cord injury, AIM2 was also found in CD45+ (leukocytes) and CD68+ (activated microglia/macrophages) cells in the spinal cord at all time points. These findings indicate that AIM2 is mainly expressed in neurons, astrocytes, microglia and oligodendrocytes in the normal spinal cord, and that after spinal cord injury, its expression increases because of the infiltration of leukocytes and the activation of astrocytes and microglia/macrophages.
Collapse
Affiliation(s)
- Sai-Nan Wang
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui Province, China
| | - Xue-Yan Guo
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Jie Tang
- Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui Province, China
| | - Shu-Qin Ding
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Shan-Feng Ma
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Jian-Guo Hu
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui Province, China
| |
Collapse
|
56
|
Kerr N, Lee SW, Perez-Barcena J, Crespi C, Ibañez J, Bullock MR, Dietrich WD, Keane RW, de Rivero Vaccari JP. Inflammasome proteins as biomarkers of traumatic brain injury. PLoS One 2018; 13:e0210128. [PMID: 30596792 PMCID: PMC6312377 DOI: 10.1371/journal.pone.0210128] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The inflammasome plays an important role in the inflammatory innate immune response after central nervous system (CNS) injury. Inhibition of the inflammasome after traumatic brain injury (TBI) results in improved outcomes by lowering the levels of caspase-1 and interleukin (IL)-1b. We have previously shown that inflammasome proteins are elevated in the cerebrospinal fluid (CSF) of patients with TBI and that higher levels of these proteins were consistent with poorer outcomes after TBI when compared to patients that presented these inflammasome proteins at lower levels. METHODS AND FINDINGS Here we extend our work by analyzing serum from 21 TBI patients and CSF from 18 TBI patients compared to 120 serum samples and 30 CSF samples from no-TBI donor controls for the expression of caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), interleukin(IL)-1b and IL-18. Analysis was carried out using the Ella Simple Plex system (Protein Simple) to determine the sensitivity and specificity of inflammasome proteins as biomarkers of TBI. Receiver operator characteristic (ROC) curves, confidence intervals and likelihood ratios for each biomarker was determined. ROC curves, confidence intervals, sensitivity and specificity for each biomarker examined revealed that caspase-1 (0.93 area under the curve (AUC)) and ASC (0.90 AUC) in serum and ASC (1.0 AUC) and IL-18 (0.84 AUC) in CSF are promising biomarkers of TBI pathology. Importantly, higher protein levels (above 547.6 pg/ml) of ASC (0.91 AUC) were consistent with poorer outcomes after TBI as determined by the Glasgow Outcome Scale-Extended (GOSE). CONCLUSION These findings indicate that inflammasome proteins are excellent diagnostic and predictive biomarkers of TBI.
Collapse
Affiliation(s)
- Nadine Kerr
- Department of Neurological Surgery, Neuroscience Program, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami FL, United States of America
| | - Stephanie W Lee
- Department of Neurological Surgery, Neuroscience Program, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami FL, United States of America
| | - Jon Perez-Barcena
- Intensive Care Department, Son Espases Hospital, Palma de Mallorca, Spain
| | - Catalina Crespi
- Fundacio Institut d'Investigacio Sanitaria Illes Balears (IdISBa), Son Espases Hospital, Palma de Mallorca, Spain
| | - Javier Ibañez
- Department of Neurological Surgery, Son Espases Hospital, Palma de Mallorca, Spain
| | - M Ross Bullock
- Department of Neurological Surgery, Neuroscience Program, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America.,Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - W Dalton Dietrich
- Department of Neurological Surgery, Neuroscience Program, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America.,Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Robert W Keane
- Department of Neurological Surgery, Neuroscience Program, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami FL, United States of America
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, Neuroscience Program, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America.,Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America
| |
Collapse
|
57
|
Chen TC, Lin MJ, Chen HL, Yu HI, Nosaka K. Contralateral Repeated Bout Effect of the Knee Flexors. Med Sci Sports Exerc 2018; 50:542-550. [PMID: 29077637 DOI: 10.1249/mss.0000000000001470] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Eccentric exercise of the elbow flexors (EF) confers protective effect against muscle damage of the same exercise performed by the opposite arm at 1, 7, or 28 d later. This is known as the contralateral repeated bout effect (CL-RBE), but it is not known whether CL-RBE is evident for the knee flexors (KF). The present study tested the hypothesis that KF CL-RBE would be observed at 1, 7, and 28 d after the initial bout. METHODS Young untrained men were assigned to a control or one of three experimental groups (n = 13 per group). The experimental groups performed 60 maximal KF eccentric contractions (60MaxEC) using one leg followed by the same exercise using the opposite leg at 1, 7, or 28 d later. The control group used the nondominant leg to repeat 60MaxEC separated by 14 d. Changes in several indirect muscle damage markers after 60MaxEC were compared between bouts and among the groups by using a mixed-design, two-way ANOVA. RESULTS Changes in maximal voluntary isokinetic concentric contraction torque, range of motion, muscle soreness, and plasma creatine kinase activity after the first 60MaxEC were similar among the groups. These changes were smaller after the second than the first 60MaxEC for the control, 1-d, and 7-d groups, and the changes after the second 60MaxEC were smaller for the control than for both the 1- and 7-d groups (P < 0.05). When the KF CL-RBE was compared with the EF CL-RBE of the previous study, the magnitude was not significantly different. CONCLUSIONS These results showed that CL-RBE was evident for KF in a similar manner to that for EF, but did not last for 28 d, and the CL-RBE was smaller than the ipsilateral RBE.
Collapse
Affiliation(s)
- Trevor C Chen
- Department of Physical Education, National Taiwan Normal University, Taipei City, TAIWAN
| | - Ming-Ju Lin
- Department of Physical Education, National Taiwan Normal University, Taipei City, TAIWAN
| | - Hsin-Lian Chen
- Department of Physical Education, National Taiwan Normal University, Taipei City, TAIWAN
| | - Hui-I Yu
- Department of Physical Education, National Taiwan Normal University, Taipei City, TAIWAN
| | - Kazunori Nosaka
- Department of Physical Education, National Taiwan Normal University, Taipei City, TAIWAN
| |
Collapse
|
58
|
Zeng Y, Wang N, Guo T, Zheng Q, Wang S, Wu S, Li X, Wu J, Chen Z, Xu H, Wang X, Lin B. Snx27 Deletion Promotes Recovery From Spinal Cord Injury by Neuroprotection and Reduces Macrophage/Microglia Proliferation. Front Neurol 2018; 9:1059. [PMID: 30619032 PMCID: PMC6300502 DOI: 10.3389/fneur.2018.01059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/21/2018] [Indexed: 12/16/2022] Open
Abstract
Sorting nexin 27 (SNX27) is an endosome-associated cargo adaptor that is involved in various pathologies and development of neurological diseases. However, the role of SNX27 in spinal cord injury (SCI) remains unclear. In this study, we found that SNX27 was up-regulated in injured mice spinal cords by western blot and immunofluorescence. A comparative analysis of Basso mouse scale (BMS), footprint test and corticospinal tract (CST) tracing in Snx27 +/+ and Snx27 +/- mice revealed that haploinsufficiency of SNX27 ameliorated the clinical symptoms of SCI. Based on the results of western blot and immunofluorescence, mechanistically, we found that SNX27 deficiency suppresses apoptotic caspase-3 induced neuronal death. In addition, SNX27 haploinsufficiency lowers the infiltration and activation of macrophage/microglia by suppressing their proliferation at the SCI lesion site. Together, these results suggest that down-regulation of SNX27 is a potential therapy targeting both acute neuronal death and chronic neuroinflammation, and promoting nerve repair after SCI.
Collapse
Affiliation(s)
- Yuzhe Zeng
- Department of Orthopaedics, The Affiliated Southeast Hospital of Xiamen University, Orthopaedic Center of People's Liberation Army, Zhangzhou, China
| | - Nawen Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University, Xiamen, China
| | - Tiantian Guo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University, Xiamen, China
| | - Qiuyang Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University, Xiamen, China
| | - Shuang Wang
- Department of Orthopaedics, The Affiliated Southeast Hospital of Xiamen University, Orthopaedic Center of People's Liberation Army, Zhangzhou, China
| | - Songsong Wu
- Department of Orthopaedics, The Affiliated Southeast Hospital of Xiamen University, Orthopaedic Center of People's Liberation Army, Zhangzhou, China
| | - Xi Li
- Department of Orthopaedics, The Affiliated Southeast Hospital of Xiamen University, Orthopaedic Center of People's Liberation Army, Zhangzhou, China
| | - Jin Wu
- Department of Orthopaedics, The Affiliated Southeast Hospital of Xiamen University, Orthopaedic Center of People's Liberation Army, Zhangzhou, China
| | - Zhida Chen
- Department of Orthopaedics, The Affiliated Southeast Hospital of Xiamen University, Orthopaedic Center of People's Liberation Army, Zhangzhou, China
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Xin Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Bin Lin
- Department of Orthopaedics, The Affiliated Southeast Hospital of Xiamen University, Orthopaedic Center of People's Liberation Army, Zhangzhou, China
| |
Collapse
|
59
|
Raval AP, Martinez CC, Mejias NH, de Rivero Vaccari JP. Sexual dimorphism in inflammasome-containing extracellular vesicles and the regulation of innate immunity in the brain of reproductive senescent females. Neurochem Int 2018; 127:29-37. [PMID: 30500463 DOI: 10.1016/j.neuint.2018.11.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
A woman's risk for stroke increases exponentially following the onset of menopause; however, the underlying mechanisms responsible for the increased risk remain unknown. The depletion of endogenous estrogen at menopause is known to activate the inflammatory response. Therefore, in this study we have used reproductively senescent (RS) rats to test the hypotheses that (1) inflammasome activation is significantly higher in the brain of RS females (RSF) as compared to their younger counterparts and age-matched senescent male rats, and that (2) RS triggers an innate immune response mediated in part by inflammasome-containing extracellular vesicles (EV) that originate in the female reproductive organs and then spreads to the brain. We tested these hypotheses using male and female Sprague-Dawley rats (Young: 6-7 months and RS: 9-13 months). Hippocampus, gonads and serum were collected. Additionally, cerebrospinal fluid (CSF) of pre- and post-menopausal women (ages 23 to 37 and 52 to 68) was purchased and extracellular vesicles (EV) were isolated from serum and CSF. The Inflammasome proteins caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and IL-1β were then resolved by immunoblotting. We found that inflammasome protein expression increased significantly in the analyzed tissues in RSF as compared to young females (YF), such difference was not present in age-matched male rat brains. Interestingly, we found that Nik-related kinase (NRK), which is present in female reproductive organs was present in the CSF and serum-derived EV, suggesting that the source of the EV seen in the brain during RS/menopause originate, in part, in the female reproductive organs. Thus, this study shows for the first time an involvement of the inflammasome originating in the female reproductive system as a contributor to inflammation in the brain that makes the peri-menopausal women's brain more susceptible to neurodegenerative diseases such as stroke.
Collapse
Affiliation(s)
- Ami P Raval
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| | - Camila C Martinez
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Nancy H Mejias
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
60
|
Kerr N, García-Contreras M, Abbassi S, Mejias NH, Desousa BR, Ricordi C, Dietrich WD, Keane RW, de Rivero Vaccari JP. Inflammasome Proteins in Serum and Serum-Derived Extracellular Vesicles as Biomarkers of Stroke. Front Mol Neurosci 2018; 11:309. [PMID: 30233311 PMCID: PMC6131639 DOI: 10.3389/fnmol.2018.00309] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022] Open
Abstract
The inflammasome is a key contributor to the inflammatory innate immune response after stroke. We have previously shown that inflammasome proteins are released in extracellular vesicles (EV) after brain and spinal cord injury. In addition, we have shown that inflammasome proteins offer great promise as biomarkers of central nervous system (CNS) injury following brain trauma. In the present study, we used a Simple Plex Assay (Protein Simple), a novel multi-analyte automated microfluidic immunoassay platform, to analyze serum and serum-derived EV samples from stroke patients and control subjects for inflammasome protein levels of caspase-1, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), Interleukins (IL)-1β, and (IL)-18. Receiver operator characteristic (ROC) curves with associated confidence intervals obtained from the analysis of serum samples revealed that the area under the curve (AUC) for ASC was 0.99 with a confidence interval between 0.9914 and 1.004, whereas the AUC for caspase-1, IL-1β, and IL-18 were 0.75, 0.61, and 0.67, respectively. Thus, these data indicate that ASC is a potential biomarker of stroke and highlight the role of the inflammasome in the inflammatory response after brain ischemia.
Collapse
Affiliation(s)
- Nadine Kerr
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | - Marta García-Contreras
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sam Abbassi
- Department of Physiology and Biophysics, University of Miami, Miami, FL, United States
| | - Nancy H Mejias
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | - Brandon R Desousa
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | - Camillo Ricordi
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States.,InflamaCORE, LLC, Miami, FL, United States
| | - Robert W Keane
- Department of Physiology and Biophysics, University of Miami, Miami, FL, United States.,InflamaCORE, LLC, Miami, FL, United States
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States.,InflamaCORE, LLC, Miami, FL, United States
| |
Collapse
|
61
|
Bortolotti P, Faure E, Kipnis E. Inflammasomes in Tissue Damages and Immune Disorders After Trauma. Front Immunol 2018; 9:1900. [PMID: 30166988 PMCID: PMC6105702 DOI: 10.3389/fimmu.2018.01900] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/31/2018] [Indexed: 01/15/2023] Open
Abstract
Trauma remains a leading cause of death worldwide. Hemorrhagic shock and direct injury to vital organs are responsible for early mortality whereas most delayed deaths are secondary to complex pathophysiological processes. These processes result from imbalanced systemic reactions to the multiple aggressions associated with trauma. Trauma results in the uncontrolled local and systemic release of endogenous mediators acting as danger signals [damage-associated molecular patterns (DAMPs)]. Their recognition by the innate immune system triggers a pro-inflammatory immune response paradoxically associated with concomitant immunosuppression. These responses, ranging in intensity from inappropriate to overwhelming, promote the propagation of injuries to remote organs, leading to multiple organ failure and death. Some of the numerous DAMPs released after trauma trigger the assembly of intracellular multiprotein complexes named inflammasomes. Once activated by a ligand, inflammasomes lead to the activation of a caspase. Activated caspases allow the release of mature forms of interleukin-1β and interleukin-18 and trigger a specific pro-inflammatory cell death termed pyroptosis. Accumulating data suggest that inflammasomes, mainly NLRP3, NLRP1, and AIM2, are involved in the generation of tissue damage and immune dysfunction after trauma. Following trauma-induced DAMP(s) recognition, inflammasomes participate in multiple ways in the development of exaggerated systemic and organ-specific inflammatory response, contributing to organ damage. Inflammasomes are involved in the innate responses to traumatic brain injury and contribute to the development of acute respiratory distress syndrome. Inflammasomes may also play a role in post-trauma immunosuppression mediated by dysregulated monocyte functions. Characterizing the involvement of inflammasomes in the pathogenesis of post-trauma syndrome is a key issue as they may be potential therapeutic targets. This review summarizes the current knowledge on the roles of inflammasomes in trauma.
Collapse
Affiliation(s)
- Perrine Bortolotti
- Meakins-Christie Laboratories, Department of Medicine, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Emmanuel Faure
- Meakins-Christie Laboratories, Department of Medicine, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Eric Kipnis
- Surgical Critical Care Unit, Department of Anesthesiology and Critical Care, Centre Hospitalier Regional et Universitaire de Lille, Lille, France.,Host-Pathogen Translational Research, Faculté de Médecine, Université Lille 2 Droit et Santé, Lille, France
| |
Collapse
|
62
|
Turtle JD, Strain MM, Reynolds JA, Huang YJ, Lee KH, Henwood MK, Garraway SM, Grau JW. Pain Input After Spinal Cord Injury (SCI) Undermines Long-Term Recovery and Engages Signal Pathways That Promote Cell Death. Front Syst Neurosci 2018; 12:27. [PMID: 29977195 PMCID: PMC6021528 DOI: 10.3389/fnsys.2018.00027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/17/2018] [Indexed: 12/19/2022] Open
Abstract
Pain (nociceptive) input caudal to a spinal contusion injury increases tissue loss and impairs long-term recovery. It was hypothesized that noxious stimulation has this effect because it engages unmyelinated pain (C) fibers that produce a state of over-excitation in central pathways. The present article explored this issue by assessing the effect of capsaicin, which activates C-fibers that express the transient receptor potential vanilloid receptor-1 (TRPV1). Rats received a lower thoracic (T11) contusion injury and capsaicin was applied to one hind paw the next day. For comparison, other animals received noxious electrical stimulation at an intensity that engages C fibers. Both forms of stimulation elicited similar levels of c-fos mRNA expression, a cellular marker of nociceptive activation, and impaired long-term behavioral recovery. Cellular assays were then performed to compare the acute effect of shock and capsaicin treatment. Both forms of noxious stimulation increased expression of tumor necrosis factor (TNF) and caspase-3, which promotes apoptotic cell death. Shock, but not capsaicin, enhanced expression of signals related to pyroptotic cell death [caspase-1, inteleukin-1 beta (IL-1ß)]. Pyroptosis has been linked to the activation of the P2X7 receptor and the outward flow of adenosine triphosphate (ATP) through the pannexin-1 channel. Blocking the P2X7 receptor with Brilliant Blue G (BBG) reduced the expression of signals related to pyroptotic cell death in contused rats that had received shock. Blocking the pannexin-1 channel with probenecid paradoxically had the opposite effect. BBG enhanced long-term recovery and lowered reactivity to mechanical stimulation applied to the girdle region (an index of chronic pain), but did not block the adverse effect of nociceptive stimulation. The results suggest that C-fiber input after injury impairs long-term recovery and that this effect may arise because it induces apoptotic cell death.
Collapse
Affiliation(s)
- Joel D Turtle
- Lab of Dr. James Grau, Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | - Misty M Strain
- United States Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, TX, United States
| | - Joshua A Reynolds
- Lab of Dr. James Grau, Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | - Yung-Jen Huang
- Lab of Dr. James Grau, Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | - Kuan H Lee
- Lab of Dr. James Grau, Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | - Melissa K Henwood
- Lab of Dr. James Grau, Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | - Sandra M Garraway
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - James W Grau
- Lab of Dr. James Grau, Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
63
|
Vats K, Sarmah D, Kaur H, Wanve M, Kalia K, Borah A, Dave KR, Yavagal DR, Bhattacharya P. Inflammasomes in stroke: a triggering role for acid-sensing ion channels. Ann N Y Acad Sci 2018; 1431:14-24. [DOI: 10.1111/nyas.13852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Kanchan Vats
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad; Gandhinagar Gujarat India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad; Gandhinagar Gujarat India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad; Gandhinagar Gujarat India
| | - Madhuri Wanve
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad; Gandhinagar Gujarat India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad; Gandhinagar Gujarat India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory; Department of Life Science and Bioinformatics; Assam University; Silchar Assam India
| | - Kunjan R. Dave
- Department of Neurology; University of Miami Miller School of Medicine; Miami Florida
| | - Dileep R. Yavagal
- Department of Neurology; University of Miami Miller School of Medicine; Miami Florida
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad; Gandhinagar Gujarat India
| |
Collapse
|
64
|
Li G, Che MT, Zeng X, Qiu XC, Feng B, Lai BQ, Shen HY, Ling EA, Zeng YS. Neurotrophin-3 released from implant of tissue-engineered fibroin scaffolds inhibits inflammation, enhances nerve fiber regeneration, and improves motor function in canine spinal cord injury. J Biomed Mater Res A 2018; 106:2158-2170. [PMID: 29577604 PMCID: PMC6055812 DOI: 10.1002/jbm.a.36414] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/03/2018] [Accepted: 03/21/2018] [Indexed: 01/12/2023]
Abstract
Spinal cord injury (SCI) normally results in cell death, scarring, cavitation, inhibitory molecules release, etc., which are regarded as a huge obstacle to reconnect the injured neuronal circuits because of the lack of effective stimulus. In this study, a functional gelatin sponge scaffold was used to inhibit local inflammation, enhance nerve fiber regeneration, and improve neural conduction in the canine. This scaffold had good porosity and modified with neurotrophin‐3 (NT‐3)/fibroin complex, which showed sustained release in vitro. After the scaffold was transplanted into canine spinal cord hemisection model, hindlimb movement, and neural conduction were improved evidently. Migrating host cells, newly formed neurons with associated synaptic structures together with functional blood vessels with intact endothelium in the regenerating tissue were identified. Taken together, the results demonstrated that using bioactive scaffold could establish effective microenvironment stimuli for endogenous regeneration, providing a potential and practical strategy for treatment of spinal cord injury. © 2018 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2158‐2170, 2018.
Collapse
Affiliation(s)
- Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ming-Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Xue-Cheng Qiu
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Bo Feng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Hui-Yong Shen
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117594, Singapore
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
65
|
Keane RW, Dietrich WD, de Rivero Vaccari JP. Inflammasome Proteins As Biomarkers of Multiple Sclerosis. Front Neurol 2018; 9:135. [PMID: 29615953 PMCID: PMC5868457 DOI: 10.3389/fneur.2018.00135] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/23/2018] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease that affects the brain and spinal cord. The inflammasome is a multiprotein complex that contributes to the innate immune response in animal models of MS as well as in patients with the disease. Important to the care of patients with MS is the need for biomarkers that can predict disease onset, disease exacerbation, as well as response to treatment. In this study, we analyzed serum samples from 32 patients with MS and 120 age-matched controls, and provide receiver operator characteristic (ROC) curves with associated confidence intervals following analyses of serum samples from patients with MS, most of which had the relapsing-remitting form of the disease, and from healthy unaffected donors, and determine the sensitivity and specificity of inflammasome proteins as biomarkers of MS. We report that caspase-1 (1.662 ± 0.6024 difference between means), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) (407.5 ± 35.79), and interleukin (IL)-18 (78.53 + 17.86) were elevated in the serum of MS patients when compared to controls. Interestingly, the levels of IL-1β (−0.5961 ± 0.265) were lower in the MS cohort. Importantly, the area under the curve (AUC) for ASC and caspase-1 were 0.9448 and 0.848, respectively. Taken together, these data suggest that ASC and caspase-1 could be potential candidate biomarkers for MS onset.
Collapse
Affiliation(s)
- Robert W Keane
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, United States.,InflamaCORE, LLC, Miami, FL, United States
| | - W Dalton Dietrich
- InflamaCORE, LLC, Miami, FL, United States.,Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Juan Pablo de Rivero Vaccari
- InflamaCORE, LLC, Miami, FL, United States.,Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
66
|
Mortezaee K, Khanlarkhani N, Beyer C, Zendedel A. Inflammasome: Its role in traumatic brain and spinal cord injury. J Cell Physiol 2018; 233:5160-5169. [PMID: 29150951 DOI: 10.1002/jcp.26287] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/05/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022]
Abstract
Traumatic brain injury (TBI) and spinal cord injury (SCI) are pathological events that lead to neuropathological conditions which have in consequence the initiation of pro-inflammatory cytokine production. Neuroinflammation plays a key role in the secondary phase of both TBI and SCI after initial cell death. Activation of cytoplasmic inflammasome complexes is regarded as the essential step of neuroinflammation and a key trigger for neuronal death called pyroptosis. Inflammasome complexes are involved in activation of caspase-1 which catalyzes the cleavage of pro-interleukins into their active forms (including interleukin-18 [IL-18] and IL-1β). The focus of this article is to discuss the time-course and regulation of inflammasome assembly and activation during TBI and SCI and their targeting in designing therapeutic approaches. We particularly focus on the inflammasomes NLRP1 and NLRP3 which play a pivotal function during TBI and SCI in the central nervous system (CNS).
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Neda Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Cordian Beyer
- Instituteof Neuroanatomy, School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Adib Zendedel
- Instituteof Neuroanatomy, School of Medicine, RWTH Aachen University, Aachen, Germany.,Giulan Neuroscience Research Center, Department of Anatomical Sciences, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
67
|
3-(Naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride attenuates NLRP3 inflammasome-mediated signaling pathway in lipopolysaccharide-stimulated BV2 microglial cells. Biochem Biophys Res Commun 2018; 495:151-156. [DOI: 10.1016/j.bbrc.2017.10.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
|
68
|
Goodall S, Thomas K, Barwood M, Keane K, Gonzalez JT, St Clair Gibson A, Howatson G. Neuromuscular changes and the rapid adaptation following a bout of damaging eccentric exercise. Acta Physiol (Oxf) 2017; 220:486-500. [PMID: 27981782 DOI: 10.1111/apha.12844] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/15/2016] [Accepted: 12/07/2016] [Indexed: 12/16/2022]
Abstract
INTRODUCTION An initial bout of eccentric exercise is known to protect against muscle damage following a repeated bout of the same exercise; however, the neuromuscular adaptations owing to this phenomenon are unknown. AIM To determine whether neuromuscular disturbances are modulated following a repeated bout of eccentric exercise. METHODS Following eccentric exercise performed with the elbow flexors, we measured maximal voluntary force, resting twitch force, muscle soreness, creatine kinase (CK) and voluntary activation (VA) using motor point and motor cortex stimulation at baseline, immediately post-exercise and at 1, 2, 3, 4 and 7 days post-exercise on two occasions, separated by 3 weeks. RESULTS Significant muscle damage and fatigue were evident following the first exercise bout; maximal voluntary contraction (MVC) was reduced immediately by 35% and remained depressed at 7 days post-exercise. Soreness and CK release peaked at 3 and 4 days post-exercise respectively. Resting twitch force remained significantly reduced at 7 days (-48%), whilst VA measured with motor point and motor cortex stimulation was reduced until 2 and 3 days respectively. A repeated bout effect (RBE) was observed with attenuated soreness and CK release and a quicker recovery of MVC and resting twitch force. A similar decrement in VA was observed following both bouts; however, following the repeated bout there was a significantly smaller reduction in, and a faster recovery of, VA measured using motor cortical stimulation. CONCLUSION Our data suggest that the RBE may be explained, partly, by a modification in motor corticospinal drive.
Collapse
Affiliation(s)
- S. Goodall
- Department of Sport, Exercise & Rehabilitation; Faculty of Health and Life Sciences; Northumbria University; Newcatsle upon Tyne UK
| | - K. Thomas
- Department of Sport, Exercise & Rehabilitation; Faculty of Health and Life Sciences; Northumbria University; Newcatsle upon Tyne UK
| | - M. Barwood
- Department of Sport, Health and Nutrition; Leeds Trinity University; Leeds UK
| | - K. Keane
- Department of Sport, Exercise & Rehabilitation; Faculty of Health and Life Sciences; Northumbria University; Newcatsle upon Tyne UK
| | | | - A. St Clair Gibson
- Faculty of Health, Sport and Human Performances; University of Waikato; Hamilton New Zealand
| | - G. Howatson
- Department of Sport, Exercise & Rehabilitation; Faculty of Health and Life Sciences; Northumbria University; Newcatsle upon Tyne UK
- Water Research Group; School of Environmental Sciences and Development; Northwest University; Potchefstroom South Africa
| |
Collapse
|
69
|
Qian H, Li Q, Shi W. Hyperbaric oxygen alleviates the activation of NLRP‑3‑inflammasomes in traumatic brain injury. Mol Med Rep 2017; 16:3922-3928. [PMID: 29067455 PMCID: PMC5646971 DOI: 10.3892/mmr.2017.7079] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 03/07/2017] [Indexed: 11/16/2022] Open
Abstract
Growing evidence has demonstrated that the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP-3) inflammasome-mediated inflammatory pathways have been involved in the secondary injury of traumatic brain injury (TBI). In the present study, the authors investigated the effects of hyperbaric oxygen (HBO) therapy on the NLRP-3 inflammasome pathway following TBI. Following the evaluation of motor deficits and brain edema, the therapeutic effects of HBO on interleukin (IL)-1β and IL-18 expression were assessed, as well as NLRP-3 inflammasome activation following TBI. HBO may improve motor score and reduce brain edema, accompanied with the reduction of IL-1β and IL-18 during the 7-day observation period. Furthermore, HBO suppressed mRNA and protein expression of NLRP-3-inflammasome components, especially reducing NLRP-3 expression in microglia. Thus, these results suggested that HBO alleviates the inflammatory response in experimental TBI via modulating microglial NLRP-3-inflammasome signaling.
Collapse
Affiliation(s)
- Huihui Qian
- Department of Geriatrics, The Affiliated Yancheng Hospital, Southeast University Medical College, Yancheng, Jiangsu 224001, P.R. China
| | - Qinghe Li
- Department of Nursing, The Affiliated Yancheng Hospital, Southeast University Medical College, Yancheng, Jiangsu 224001, P.R. China
| | - Woda Shi
- Department of Cardiothoracic Surgery, The Affiliated Yancheng Hospital, Southeast University Medical College, Yancheng, Jiangsu 224001, P.R. China
| |
Collapse
|
70
|
Zhang B, Zhang Y, Wu W, Xu T, Yin Y, Zhang J, Huang D, Li W. Chronic glucocorticoid exposure activates BK-NLRP1 signal involving in hippocampal neuron damage. J Neuroinflammation 2017; 14:139. [PMID: 28732502 PMCID: PMC5521122 DOI: 10.1186/s12974-017-0911-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/07/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Neuroinflammation mediated by NLRP1 (nucleotide-binding oligomerization domain (NOD)-like receptor protein 1) inflammasome plays an important role in many neurological diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). Our previous studies showed that chronic glucocorticoid (GC) exposure increased brain inflammation via NLRP1 inflammasome and induce neurodegeneration. However, little is known about the mechanism of chronic GC exposure on NLRP1 inflammasome activation in hippocampal neurons. METHODS Hippocampal neurons damage was assessed by LDH kit and Hoechst 33258 staining. The expression of microtubule-associated protein 2 (MAP2), inflammasome complex protein (NLRP1, ASC and caspase-1), inflammatory cytokines (IL-1β), and large-conductance Ca2+ and voltage-activated K+ channel (BK channels) protein was detected by Western blot. The inflammatory cytokines (IL-1β and IL-18) were examined by ELISA kit. The mRNA levels of NLRP1, IL-1β, and BK were detected by real-time PCR. BK channel currents were recorded by whole-cell patch-clamp technology. Measurement of [K+]i was performed by ion-selective electrode (ISE) technology. RESULTS Chronic dexamethasone (DEX) treatment significantly increased LDH release and neuronal apoptosis and decreased expression of MAP2. The mechanistic studies revealed that chronic DEX exposure significantly increased the expression of NLRP1, ASC, caspase-1, IL-1β, L-18, and BK protein and NLRP1, IL-1β and BK mRNA levels in hippocampal neurons. Further studies showed that DEX exposure results in the increase of BK channel currents, with the subsequent K+ efflux and a low concentration of intracellular K+, which involved in activation of NLRP1 inflammasome. Moreover, these effects of chronic DEX exposure could be blocked by specific BK channel inhibitor iberiotoxin (IbTx). CONCLUSION Our findings suggest that chronic GC exposure may increase neuroinflammation via activation of BK-NLRP1 signal pathway and promote hippocampal neurons damage, which may be involved in the development and progression of AD.
Collapse
Affiliation(s)
- Biqiong Zhang
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yaodong Zhang
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Wenning Wu
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Tanzhen Xu
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yanyan Yin
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Junyan Zhang
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Dake Huang
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Weizu Li
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
71
|
Wang W, Huang X, Li J, Sun A, Yu J, Xie N, Xi Y, Ye X. Methane Suppresses Microglial Activation Related to Oxidative, Inflammatory, and Apoptotic Injury during Spinal Cord Injury in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2190897. [PMID: 28740568 PMCID: PMC5504966 DOI: 10.1155/2017/2190897] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/18/2017] [Accepted: 03/29/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVE We investigated the hypothesis that methane-rich saline (MS) can be used to repair spinal cord injury (SCI) in a rat model through suppressing microglial activation related to oxidative, inflammatory, and apoptotic injury. METHODS MS was injected intraperitoneally in rats after SCI. Hematoxylin-eosin (HE) staining, oxidative stress, inflammatory parameters, and cell apoptosis were detected 72 h after SCI to determine the optimal dose. Then, we investigated the protective mechanisms and the long-term effects of MS on SCI. HE and microglial activation were observed. Neurological function was evaluated by the Basso, Beattie, and Bresnahan (BBB) scale. RESULTS MS can significantly decrease infarct area and inhibit oxidative stress, inflammation, and cell apoptosis 72 h following SCI. The MS protective effect at a dose of 20 ml/kg was better. Moreover, MS can significantly suppress microglial activation related to oxidative and inflammatory injury after SCI and improve hind limb neurological function. CONCLUSION MS could repair SCI and reduce the release of oxidative stress, inflammatory cytokines, and cell apoptosis produced by activated microglia. MS provides a novel and promising strategy for the treatment of SCI.
Collapse
Affiliation(s)
- WeiHeng Wang
- Department of Orthopaedics, Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai 200003, China
| | - Xiaodong Huang
- Department of Orthopaedics, Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai 200003, China
| | - Jian Li
- Department of Anesthesiology, Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai 200003, China
| | - Aijun Sun
- Institute of Biomedical Engineering, Second Military Medical University, Shanghai 200433, China
| | - Jiangming Yu
- Department of Orthopaedics, Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai 200003, China
| | - Ning Xie
- Department of Orthopaedics, Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai 200003, China
| | - YanHai Xi
- Department of Orthopaedics, Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai 200003, China
| | - Xiaojian Ye
- Department of Orthopaedics, Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
72
|
Sheehy S, Annabi B. A Transcriptional Regulatory Role for the Membrane Type-1 Matrix Metalloproteinase in Carcinogen-Induced Inflammasome Gene Expression. GENE REGULATION AND SYSTEMS BIOLOGY 2017; 11:1177625017713996. [PMID: 28634425 PMCID: PMC5467917 DOI: 10.1177/1177625017713996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023]
Abstract
Signal-transducing functions driven by the cytoplasmic domain of membrane type-1 matrix metalloproteinase (MT1-MMP) are believed to regulate many inflammation-associated cancer cell functions including migration, proliferation, and survival. Aside from upregulation of the inflammation biomarker cyclooxygenase-2 (COX-2) expression, MT1-MMP's role in relaying intracellular signals triggered by extracellular pro-inflammatory cues remains poorly understood. Here, we triggered inflammation in HT1080 fibrosarcoma cells with phorbol-12-myristate-13-acetate (PMA), an inducer of COX-2 and of MT1-MMP. To assess the global transcriptional regulatory role that MT1-MMP may exert on inflammation biomarkers, we combined gene array screens with a transient MT1-MMP gene silencing strategy. Expression of MT1-MMP was found to exert both stimulatory and repressive transcriptional control of several inflammasome-related biomarkers such as interleukin (IL)-1B, IL-6, IL-12A, and IL-33, as well as of transcription factors such as EGR1, ELK1, and ETS1/2 in PMA-treated cells. Among the signal-transducing pathways explored, the silencing of MT1-MMP prevented PMA from phosphorylating extracellular signal-regulated kinase, inhibitor of κB, and p105 nuclear factor κB (NF-κB) intermediates. We also found a signaling axis linking MT1-MMP to MMP-9 transcriptional regulation. Altogether, our data indicate a significant involvement of MT1-MMP in the transcriptional regulation of inflammatory biomarkers consolidating its contribution to signal transduction functions in addition to its classical hydrolytic activity.
Collapse
Affiliation(s)
- Samuel Sheehy
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Montréal, QC, Canada
| | - Borhane Annabi
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
73
|
Grau JW, Huang YJ, Turtle JD, Strain MM, Miranda RC, Garraway SM, Hook MA. When Pain Hurts: Nociceptive Stimulation Induces a State of Maladaptive Plasticity and Impairs Recovery after Spinal Cord Injury. J Neurotrauma 2017; 34:1873-1890. [PMID: 27788626 PMCID: PMC5444485 DOI: 10.1089/neu.2016.4626] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is often accompanied by other tissue damage (polytrauma) that provides a source of pain (nociceptive) input. Recent findings are reviewed that show SCI places the caudal tissue in a vulnerable state that exaggerates the effects nociceptive stimuli and promotes the development of nociceptive sensitization. Stimulation that is both unpredictable and uncontrollable induces a form of maladaptive plasticity that enhances nociceptive sensitization and impairs spinally mediated learning. In contrast, relational learning induces a form of adaptive plasticity that counters these adverse effects. SCI sets the stage for nociceptive sensitization by disrupting serotonergic (5HT) fibers that quell overexcitation. The loss of 5HT can enhance neural excitability by reducing membrane-bound K+-Cl- cotransporter 2, a cotransporter that regulates the outward flow of Cl-. This increases the intracellular concentration of Cl-, which reduces the hyperpolarizing (inhibitory) effect of gamma-aminobutyric acid. Uncontrollable noxious stimulation also undermines the recovery of locomotor function, and increases behavioral signs of chronic pain, after a contusion injury. Nociceptive stimulation has a greater effect if experienced soon after SCI. This adverse effect has been linked to a downregulation in brain-derived neurotrophic factor and an upregulation in the cytokine, tumor necrosis factor. Noxious input enhances tissue loss at the site of injury by increasing the extent of hemorrhage and apoptotic/pyroptotic cell death. Intrathecal lidocaine blocks nociception-induced hemorrhage, cellular indices of cell death, and its adverse effect on behavioral recovery. Clinical implications are discussed.
Collapse
Affiliation(s)
- James W. Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas
| | - Yung-Jen Huang
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas
| | - Joel D. Turtle
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas
| | - Misty M. Strain
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, Texas
| | - Rajesh C. Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas
| | - Sandra M. Garraway
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Michelle A. Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas
| |
Collapse
|
74
|
Fleshner M, Frank M, Maier SF. Danger Signals and Inflammasomes: Stress-Evoked Sterile Inflammation in Mood Disorders. Neuropsychopharmacology 2017; 42:36-45. [PMID: 27412959 PMCID: PMC5143484 DOI: 10.1038/npp.2016.125] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/23/2016] [Accepted: 07/06/2016] [Indexed: 02/08/2023]
Abstract
Major depressive disorder (MDD) and other mood disorders remain difficult to effectively treat, and innovative interventions and therapeutic targets are needed. Psychological stressors and inappropriate inflammation increase the risk and severity of mood disorders; however, only recently have the importance of sterile inflammatory processes in this effect been revealed. This review will introduce the reader to pathogen vs sterile inflammation, inflammatory receptor-ligand interactions, microbial-associated molecular patterns (MAMPs), pathogen-associated molecular patterns (PAMPs), danger-associated molecular patterns (DAMPs), and the more recent discovery of the role of the inflammasome in peripheral and central nervous system cytokine/chemokine inflammatory responses. The review will focus on current preclinical and clinical evidence that sterile inflammation and inflammasome-dependent signaling may contribute to mood disorders. By understanding these inflammatory signaling processes, new approaches for quieting chronic or inappropriate inflammatory states may be revealed and this could serve as novel pharmacological targets for the treatment of mood disorders.
Collapse
Affiliation(s)
- Monika Fleshner
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA
- Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Matthew Frank
- Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Steven F Maier
- Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| |
Collapse
|
75
|
Haroon E, Miller AH, Sanacora G. Inflammation, Glutamate, and Glia: A Trio of Trouble in Mood Disorders. Neuropsychopharmacology 2017; 42:193-215. [PMID: 27629368 PMCID: PMC5143501 DOI: 10.1038/npp.2016.199] [Citation(s) in RCA: 369] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023]
Abstract
Increasing data indicate that inflammation and alterations in glutamate neurotransmission are two novel pathways to pathophysiology in mood disorders. The primary goal of this review is to illustrate how these two pathways may converge at the level of the glia to contribute to neuropsychiatric disease. We propose that a combination of failed clearance and exaggerated release of glutamate by glial cells during immune activation leads to glutamate increases and promotes aberrant extrasynaptic signaling through ionotropic and metabotropic glutamate receptors, ultimately resulting in synaptic dysfunction and loss. Furthermore, glutamate diffusion outside the synapse can lead to the loss of synaptic fidelity and specificity of neurotransmission, contributing to circuit dysfunction and behavioral pathology. This review examines the fundamental role of glia in the regulation of glutamate, followed by a description of the impact of inflammation on glial glutamate regulation at the cellular, molecular, and metabolic level. In addition, the role of these effects of inflammation on glia and glutamate in mood disorders will be discussed along with their translational implications.
Collapse
Affiliation(s)
- Ebrahim Haroon
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
76
|
Cao G, Jiang N, Hu Y, Zhang Y, Wang G, Yin M, Ma X, Zhou K, Qi J, Yu B, Kou J. Ruscogenin Attenuates Cerebral Ischemia-Induced Blood-Brain Barrier Dysfunction by Suppressing TXNIP/NLRP3 Inflammasome Activation and the MAPK Pathway. Int J Mol Sci 2016; 17:ijms17091418. [PMID: 27589720 PMCID: PMC5037697 DOI: 10.3390/ijms17091418] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022] Open
Abstract
Ruscogenin, an important steroid sapogenin derived from Ophiopogon japonicus, has been shown to inhibit cerebral ischemic injury. However, its potential molecular action on blood-brain barrier (BBB) dysfunction after stroke remains unclear. This study aimed to investigate the effects of ruscogenin on BBB dysfunction and the underlying mechanisms in middle cerebral artery occlusion/reperfusion (MCAO/R)-injured mice and oxygen–glucose deprivation/reoxygenation (OGD/R)-injured mouse brain microvascular endothelial cells (bEnd.3). The results demonstrated that administration of ruscogenin (10 mg/kg) decreased the brain infarction and edema, improved neurological deficits, increased cerebral brain flow (CBF), ameliorated histopathological damage, reduced evans blue (EB) leakage and upregulated the expression of tight junctions (TJs) in MCAO/R-injured mice. Meanwhile, ruscogenin (0.1–10 µM) treatment increased cell viability and trans-endothelial electrical resistance (TEER) value, decreased sodium fluorescein leakage, and modulated the TJs expression in OGD/R-induced bEnd.3 cells. Moreover, ruscogenin also inhibited the expression of interleukin-1β (IL-1β) and caspase-1, and markedly suppressed the expression of Nucleotide-binding domain (NOD)-like receptor family, pyrin domain containing 3 (NLRP3) and thiredoxin-interactive protein (TXNIP) in vivo and in vitro. Furthermore, ruscogenin decreased reactive oxygen species (ROS) generation and inhibited the mitogen-activated protein kinase (MAPK) pathway in OGD/R-induced bEnd.3 cells. Our findings provide some new insights into its potential application for the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Guosheng Cao
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Nan Jiang
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Yang Hu
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Yuanyuan Zhang
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Guangyun Wang
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Mingzhu Yin
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiaonan Ma
- Cellular and Molecular Biology Center, China Pharmaceutical University, Nanjing 211198, China.
| | - Kecheng Zhou
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Jin Qi
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Boyang Yu
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Junping Kou
- Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
77
|
Brand FJ, Forouzandeh M, Kaur H, Travascio F, de Rivero Vaccari JP. Acidification changes affect the inflammasome in human nucleus pulposus cells. JOURNAL OF INFLAMMATION-LONDON 2016; 13:29. [PMID: 27563282 PMCID: PMC4997758 DOI: 10.1186/s12950-016-0137-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/17/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Interleukin (IL)-1β is involved in the pathology of intervertebral disc degeneration. Under normal conditions, IL-1β is present in cells in an inactive form (pro-IL-1β). However, under pathological conditions, pro-IL-1β is turned into its active form (IL-1β) by the inflammasome, a multi-protein complex of the innate immune response that activates caspase-1. Under conditions of degeneration, the disc experiences an environment of increased acidification. However, the implications of acidification on the innate immune response remain poorly explored. METHODS Here we have studied how pH changes in human nucleus pulposus cells affect inflammasome activation by immunoblot analysis of protein lysates obtained from nucleus pulposus cells that were exposed to different pH levels in culture. RESULTS In this study, we have found that in nucleus pulposus cells, with increased acidification, there was a decrease in inflammasome activation consistent with lower levels of active IL-1β. However, this effect at a pH of 6.5, the lowest pH level tested, was abrogated when cells were treated with IL-1β. CONCLUSIONS Taken together, these findings suggest that the inflammatory response through IL-1β experienced by the human disc is not initiated in nucleus pulposus cells when the stimulus is acidification.
Collapse
Affiliation(s)
- Frank J Brand
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| | - Mahtab Forouzandeh
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| | - Harmanpreet Kaur
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| | - Francesco Travascio
- Biomechanics Research Laboratory, Department of Industrial Engineering, University of Miami, Coral Gables, FL 33146 USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136 USA ; Department of Neurological Surgery, Lois Pope LIFE Center, 1095 NW 14th Terrace, 3-25JJ, Miami, FL 33136-1060 USA
| |
Collapse
|
78
|
Activation of Alpha 7 Cholinergic Nicotinic Receptors Reduce Blood-Brain Barrier Permeability following Experimental Traumatic Brain Injury. J Neurosci 2016; 36:2809-18. [PMID: 26937017 DOI: 10.1523/jneurosci.3197-15.2016] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Traumatic brain injury (TBI) is a major human health concern that has the greatest impact on young men and women. The breakdown of the blood-brain barrier (BBB) is an important pathological consequence of TBI that initiates secondary processes, including infiltration of inflammatory cells, which can exacerbate brain inflammation and contribute to poor outcome. While the role of inflammation within the injured brain has been examined in some detail, the contribution of peripheral/systemic inflammation to TBI pathophysiology is largely unknown. Recent studies have implicated vagus nerve regulation of splenic cholinergic nicotinic acetylcholine receptor α7 (nAChRa7) signaling in the regulation of systemic inflammation. However, it is not known whether this mechanism plays a role in TBI-triggered inflammation and BBB breakdown. Following TBI, we observed that plasma TNF-α and IL-1β levels, as well as BBB permeability, were significantly increased in nAChRa7 null mice (Chrna7(-/-)) relative to wild-type mice. The administration of exogenous IL-1β and TNF-α to brain-injured animals worsened Evans Blue dye extravasation, suggesting that systemic inflammation contributes to TBI-triggered BBB permeability. Systemic administration of the nAChRa7 agonist PNU-282987 or the positive allosteric modulator PNU-120596 significantly attenuated TBI-triggered BBB compromise. Supporting a role for splenic nAChRa7 receptors, we demonstrate that splenic injection of the nicotinic receptor blocker α-bungarotoxin increased BBB permeability in brain-injured rats, while PNU-282987 injection decreased such permeability. These effects were not seen when α-bungarotoxin or PNU-282987 were administered to splenectomized, brain-injured rats. Together, these findings support the short-term use of nAChRa7-activating agents as a strategy to reduce TBI-triggered BBB permeability. SIGNIFICANCE STATEMENT Breakdown of the blood-brain barrier (BBB) in response to traumatic brain injury (TBI) allows for the accumulation of circulating fluids and proinflammatory cells in the injured brain. These processes can exacerbate TBI pathology and outcome. While the role of inflammation in the injured tissue has been examined in some detail, the contribution of peripheral inflammation in BBB breakdown and ensuing pathology has not been well defined. We present experimental evidence to indicate that the stimulation of nicotinic acetylcholine α7 receptors (nAChRa7s) can reduce peripheral inflammation and BBB breakdown after TBI. These results suggest that activators of nAChRa7 may have therapeutic utility for the treatment of TBI.
Collapse
|
79
|
Lee CM, Lee DS, Jung WK, Yoo JS, Yim MJ, Choi YH, Park S, Seo SK, Choi JS, Lee YM, Park WS, Choi IW. Benzyl isothiocyanate inhibits inflammasome activation in E. coli LPS-stimulated BV2 cells. Int J Mol Med 2016; 38:912-8. [PMID: 27430883 DOI: 10.3892/ijmm.2016.2667] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/28/2016] [Indexed: 11/05/2022] Open
Abstract
Inflammasomes are multi-protein complexes that play a crucial role in innate immune responses. Benzyl isothiocyanate (BITC) is a naturally occurring compound found in cruciferous vegetables, and BITC exhibits potential as a chemopreventive agent. However, whether BITC exerts inflammasome-mediated regulatory effects on neuroinflammation is unknown. In this study, we examined the effects of BITC on inflammasome-mediated interleukin-1β (IL-1β) production in E. coli lipopolysaccharide (LPS)-stimulated BV2 microglial cells. IL-1β production is tightly regulated at the post-translational level through the inflammasoume. We measured the levels of IL-1β produced from the LPS-exposed BV2 microglial cells using enzyme-linked immunosorbent assays (ELISAs). The BITC regulatory mechanisms in inflammasome-mediated cellular signaling pathways were examined by RT-PCR, western blot analysis and electrophoretic mobility shift assays. BITC inhibited the secretion of IL-1β induced by LPS in the BV2 microglial cells. BITC inhibited inflammasome activation and NLR family, pyrin domain containing 3 (NLRP3)-mediated caspase-1 activation, and decreased the levels of inflammasome activation pro-inflammatory mediators, including mitochondrial reactive oxygen species (ROS) and adenosine triphosphate (ATP) secretion in the LPS-stimulated BV2 microglial cells. Furthermore, we demonstrated that nuclear factor-κB (NF-κB) activation induced by LPS was inhibited by BITC, which may contribute to the attenuated secretion of IL-1β. These BITC-mediated inhibitory effects on IL-1β expression may thus regulate neuroinflammation through the inflammasome-mediated signaling pathway.
Collapse
Affiliation(s)
- Chang-Min Lee
- Department of Molecular Microbiology and Immunology, Warren Alpert School of Medicine, Providence, RI 02912, USA
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Jong Su Yoo
- National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Mi-Jin Yim
- National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, Republic of Korea
| | - Saegwang Park
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, Republic of Korea
| | - Jung Sik Choi
- Department of Internal Medicine, Busan Paik Hospital, College of Medicine, Inje University, Busan, Republic of Korea
| | - Young-Min Lee
- Department of Internal Medicine, Busan Paik Hospital, College of Medicine, Inje University, Busan, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, Republic of Korea
| |
Collapse
|
80
|
Qiao C, Yin N, Gu HY, Zhu JL, Ding JH, Lu M, Hu G. Atp13a2 Deficiency Aggravates Astrocyte-Mediated Neuroinflammation via NLRP3 Inflammasome Activation. CNS Neurosci Ther 2016; 22:451-60. [PMID: 26848562 DOI: 10.1111/cns.12514] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 12/24/2022] Open
Abstract
AIM Atp13a2 (Park9) gene encodes a transmembrane lysosomal P5-type ATPase (ATP13A2), and its missense or truncation mutations leads to lysosomal dysfunction and consequently results in neuronal death in the pathogenesis of Parkinson's disease (PD). Nevertheless, the roles of ATP13A2 in the biological features of astrocytes, especially in the regulation of PD-related neuroinflammation, have not been investigated. METHODS We cultured primary neurons and astrocytes from mouse midbrain to investigate the mechanisms for astrocyte ATP13A2-regulated lysosomal function and neuroinflammation following 1-methyl-4-phenylpyridinium (MPP(+) ) treatment. RESULTS We found that astrocytes expressed considerable levels of ATP13A2 and deficiency of ATP13A2 in astrocyte-induced intense inflammation, which exacerbated dopaminergic neuron damage after exposure to MPP(+) . Notably, lack of ATP13A2 increased lysosomal membrane permeabilization and cathepsin B release, which in turn exacerbated activation of nod-like receptor protein 3 (NLRP3) inflammasome to produce excess IL-1β from astrocytes. Furthermore, overexpression of ATP13A2 reversed MPP(+) -induced cathepsin B release and NLRP3 inflammasome activation in astrocytes. CONCLUSIONS Our results have revealed a novel role of ATP13A2 in modulating astrocyte-mediated neuroinflammation via NLRP3 inflammasome activation, thus bringing to light of a direct link between astrocyte lysosome and neuroinflammation in the pathological model of PD.
Collapse
Affiliation(s)
- Chen Qiao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nuo Yin
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huan-Yu Gu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jia-Lei Zhu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian-Hua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China.,Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
81
|
Fattahi F, Ward PA. Anti-inflammatory interventions-what has worked, not worked, and what may work in the future. Transl Res 2016; 167:1-6. [PMID: 26323016 PMCID: PMC5062739 DOI: 10.1016/j.trsl.2015.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 12/31/2022]
Abstract
Our Introductory Commentary relates to many topics that are linked to inflammatory responses and how these responses are regulated in order to promote healing of damaged tissues and bring about effective clearance of infectious agents. In non-infectious situations, cells and tissues release products (danger associated molecular patterns) that can trigger damaging inflammatory responses. These products must be effectively dealt with in order to avoid serious tissue injury. We provide a perspective about many decades of research into the inflammatory response and describe strategies that have achieved success in restraining inflammatory responses, as well as many approaches that have not been clinically effective. With development of new technologies such as advanced genomic analysis, highly sensitive and sophisticated mass spectrometry and related approaches, as well as the ability to employ mutagenesis induction, we are beginning to define highly sophisticated molecular pathways that previously were opaque. This progress may well have clinical relevance, and we may be on the edge of a scientific revolution in the broad area of inflammation.
Collapse
Affiliation(s)
- Fatemeh Fattahi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich.
| |
Collapse
|
82
|
Geng F, Ma Y, Xing T, Zhuang X, Zhu J, Yao L. Effects of Hyperbaric Oxygen Therapy on Inflammasome Signaling after Traumatic Brain Injury. Neuroimmunomodulation 2016; 23:122-9. [PMID: 27216735 DOI: 10.1159/000445689] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/18/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Neuroinflammation plays an important role in secondary tissue damage after traumatic brain injury (TBI). Recently, the inflammasome-mediated inflammatory pathway has been observed in the inflammatory response of TBI. In this study, we investigated the influence of hyperbaric oxygen therapy (HBOT) on inflammasome activation after TBI. METHODS The experimental mice were randomly divided into 4 groups as follows: sham-operated normobaric air (21% O2 at one absolute atmosphere), HBOT only, TBI + normobaric air and TBI + HBOT. Following the evaluation of motor deficits and brain edema, the expression of inflammasome components and effectors was measured by qRT-PCR and Western blotting. Moreover, alterations in IL-1β, IL-18 and high-mobility group box 1 (HMGB1) were calculated by enzyme-linked immunosorbent assay at each time point after injury. RESULTS HBOT improved motor score and reduced brain edema. Furthermore, it suppressed protein expression of inflammasome components and reduced the levels of IL-1β and IL-18, accompanied by the reduction of HMGB1 in brain tissues and serum. CONCLUSION These results suggest that HBOT may alleviate the inflammatory response after TBI by inhibiting the activation of inflammasome signaling.
Collapse
Affiliation(s)
- Fengyang Geng
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, PR China
| | | | | | | | | | | |
Collapse
|
83
|
Wang YC, Li WZ, Wu Y, Yin YY, Dong LY, Chen ZW, Wu WN. Acid-sensing ion channel 1a contributes to the effect of extracellular acidosis on NLRP1 inflammasome activation in cortical neurons. J Neuroinflammation 2015; 12:246. [PMID: 26715049 PMCID: PMC4696203 DOI: 10.1186/s12974-015-0465-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/20/2015] [Indexed: 12/23/2022] Open
Abstract
Background Acid-sensing ion channels (ASICs) are cation channels which were activated by extracellular acidosis and involved in various physiological and pathological processes in the nervous system. Inflammasome is a key component of the innate immune response in host against harmful and irritable stimuli. As the first discovered molecular platform, NLRP1 (nucleotide-binding oligomerization domain (NOD)-like receptor protein 1) inflammasome is expressed in neurons and implicated in many nervous system diseases such as brain injury, nociception and epilepsy. However, little is known about the effect of ASICs on NLRP1 inflammasome activation under acidosis. Methods The expression of inflammasome complex protein (NLRP1, ASC (apoptosis-associated speck-like protein containing a caspase-activating recruitment domain) and caspase-1), inflammatory cytokines (IL-1β and IL-18), and apoptosis-related protein (Bax, Bcl-2, and activated caspase-3) was detected by Western blot. Large-conductance Ca2+ and voltage-activated K+ (BK) channel currents were recorded by whole-cell patch-clamp technology. Measurement of [K+]i was performed by fluorescent ion imaging system. Co-expression of ASICs and BK channels was determined by dual immunofluorescence. Cell viability was assessed by MTT and LDH kit. Results ASICs and BK channels were co-expressed in primary cultured cortical neurons. Extracellular acidosis increased the expression of NLRP1, ASC, caspase-1, IL-1β, and IL-18. Further mechanistic studies revealed that acidosis-induced ASIC1a activation results in the increase of BK channel currents, with the subsequent K+ efflux and a low concentration of intracellular K+, which activated NLRP1 inflammasome. Furthermore, these effects of acidosis could be blocked by specific ASIC1a inhibitor PcTX1 and BK channel inhibitor IbTX. The data also demonstrated neutralization of NLRP1-protected cortical neurons against injury induced by extracellular acidosis. Conclusions Our data showed that NLRP1 inflammasome could be activated by extracellular acidosis though ASIC-BK channel K+ signal pathway and was involved in extracellular acidosis-induced cortical neuronal injury. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0465-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Chan Wang
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Wei-Zu Li
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yu Wu
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yan-Yan Yin
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Liu-Yi Dong
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Zhi-Wu Chen
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Wen-Ning Wu
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|