51
|
Zhao D, Song GQ. High-throughput sequencing as an effective approach in profiling small RNAs derived from a hairpin RNA expression vector in woody plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:39-47. [PMID: 25438784 DOI: 10.1016/j.plantsci.2014.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 06/04/2023]
Abstract
Hairpin RNA (hpRNA)-mediated gene silencing has proved to be an efficient approach to develop virus-resistant transgenic plants. To characterize small RNA molecules (sRNAs) derived from an hpRNA expression vector in transgenic cherry rootstock plants, we conducted small RNA sequencing of (1) a transgenic rootstock containing an inverted repeat of the partial coat protein of Prunus necrotic ring spot virus (PNRSV-hpRNA); (2) a nontransgenic rootstock; and (3) a PNRSV-infected sweet cherry plant. Analysis of the PNRSV sRNA pools indicated that 24-nt (nucleotide) small interfering RNAs (siRNAs) were the most prevalent sRNAs in the transgenic rootstock whereas the most abundant sRNAs in the PNRSV-infected nontransgenic rootstock were 21-nt siRNAs. In addition, the 24-nt siRNAs of the PNRSV-hpRNA were more abundant on the sense strand than those on the antisense strand in the transgenic rootstock. In contrast, preference in generating PNRSV sRNAs, ranging from 19-nt to 30-nt for sense and antisense strands, was not distinct in the PNRSV-infected nontransgenic sweet cherry. Taken together, this is the first report on profiling hpRNA-derived sRNAs in woody plants using high-throughput sequencing technology, which is an efficient way to verify the presence/absence, the abundance, and the sequence features of certain sRNAs.
Collapse
Affiliation(s)
- Dongyan Zhao
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
| | - Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
52
|
Montes C, Castro Á, Barba P, Rubio J, Sánchez E, Carvajal D, Aguirre C, Tapia E, DelÍ Orto P, Decroocq V, Prieto H. Differential RNAi responses of Nicotiana benthamiana individuals transformed with a hairpin-inducing construct during Plum pox virus challenge. Virus Genes 2014; 49:325-38. [PMID: 24964777 DOI: 10.1007/s11262-014-1093-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
Abstract
Gene silencing and large-scale small RNA analysis can be used to develop RNA interference (RNAi)-based resistance strategies for Plum pox virus (PPV), a high impact disease of Prunus spp. In this study, a pPPViRNA hairpin-inducing vector harboring two silencing motif-rich regions of the PPV coat protein (CP) gene was evaluated in transgenic Nicotiana benthamiana (NB) plants. Wild-type NB plants infected with a chimeric PPV virus (PPV::GFP) exhibited affected leaves with mosaic chlorosis congruent to GFP fluorescence at 21 day post-inoculation; transgenic lines depicted a range of phenotypes from fully resistant to susceptible. ELISA values and GFP fluorescence intensities were used to select transgenic-resistant (TG-R) and transgenic-susceptible (TG-S) lines for further characterization of small interfering RNAs (siRNAs) by large-scale small RNA sequencing. In infected TG-S and untransformed (WT) plants, the observed siRNAs were nearly exclusively 21- and 22-nt siRNAs that targeted the whole PPV::GFP genome; 24-nt siRNAs were absent in these individuals. Challenged TG-R plants accumulated a full set of 21- to 24-nt siRNAs that were primarily associated with the selected motif-rich regions, indicating that a trans-acting siRNAs process prevented viral multiplication. BLAST analysis identified 13 common siRNA clusters targeting the CP gene. 21-nt siRNA sequences were associated with the 22-nt siRNAs and the scarce 23- and 24-nt molecules in TG-S plants and with most of the observed 22-, 23-, and 24-nt siRNAs in TG-R individuals. These results validate the use of a multi-hot spot silencing vector against PPV and elucidate the molecules by which hairpin-inducing vectors initiate RNAi in vivo.
Collapse
Affiliation(s)
- Christian Montes
- Biotechnology Laboratory, Instituto de Investigaciones Agropecuarias, La Platina Research Station, Avenida Santa Rosa 11610, La Pintana, 8831314, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Evasion of short interfering RNA-directed antiviral silencing in Musa acuminata persistently infected with six distinct banana streak pararetroviruses. J Virol 2014; 88:11516-28. [PMID: 25056897 DOI: 10.1128/jvi.01496-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Vegetatively propagated crop plants often suffer from infections with persistent RNA and DNA viruses. Such viruses appear to evade the plant defenses that normally restrict viral replication and spread. The major antiviral defense mechanism is based on RNA silencing generating viral short interfering RNAs (siRNAs) that can potentially repress viral genes posttranscriptionally through RNA cleavage and transcriptionally through DNA cytosine methylation. Here we examined the RNA silencing machinery of banana plants persistently infected with six pararetroviruses after many years of vegetative propagation. Using deep sequencing, we reconstructed consensus master genomes of the viruses and characterized virus-derived and endogenous small RNAs. Consistent with the presence of endogenous siRNAs that can potentially establish and maintain DNA methylation, the banana genomic DNA was extensively methylated in both healthy and virus-infected plants. A novel class of abundant 20-nucleotide (nt) endogenous small RNAs with 5'-terminal guanosine was identified. In all virus-infected plants, 21- to 24-nt viral siRNAs accumulated at relatively high levels (up to 22% of the total small RNA population) and covered the entire circular viral DNA genomes in both orientations. The hotspots of 21-nt and 22-nt siRNAs occurred within open reading frame (ORF) I and II and the 5' portion of ORF III, while 24-nt siRNAs were more evenly distributed along the viral genome. Despite the presence of abundant viral siRNAs of different size classes, the viral DNA was largely free of cytosine methylation. Thus, the virus is able to evade siRNA-directed DNA methylation and thereby avoid transcriptional silencing. This evasion of silencing likely contributes to the persistence of pararetroviruses in banana plants. IMPORTANCE We report that DNA pararetroviruses in Musa acuminata banana plants are able to evade DNA cytosine methylation and transcriptional gene silencing, despite being targeted by the host silencing machinery generating abundant 21- to 24-nucleotide short interfering RNAs. At the same time, the banana genomic DNA is extensively methylated in both healthy and virus-infected plants. Our findings shed light on the siRNA-generating gene silencing machinery of banana and provide a possible explanation why episomal pararetroviruses can persist in plants whereas true retroviruses with an obligatory genome-integration step in their replication cycle do not exist in plants.
Collapse
|
54
|
Naveed K, Mitter N, Harper A, Dhingra A, Pappu HR. Comparative analysis of virus-specific small RNA profiles of three biologically distinct strains of Potato virus Y in infected potato (Solanum tuberosum) cv. Russet Burbank. Virus Res 2014; 191:153-60. [PMID: 25036885 DOI: 10.1016/j.virusres.2014.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 11/17/2022]
Abstract
Deep sequencing technology has enabled the analysis of small RNA profiles of virus-infected plants and could provide insights into virus-host interactions. Potato virus Y is an economically important viral pathogen of potato worldwide. In this study, we investigated the nature and relative levels of virus-derived small interfering RNAs (vsiRNAs) in potato cv. Russet Burbank infected with three biologically distinct and economically important strains of PVY, the ordinary strain (PVY-O), tobacco veinal-necrotic strain (PVY-N) and tuber necrotic strain (PVY-NTN). The analysis showed an overall abundance of vsiRNAs of 20-24nt in PVY-infected plants. Considerable differences were present in the distribution of vsiRNAs as well as total small RNAs. The 21nt class was the most prevalent in PVY-infected plants irrespective of the virus strain, whereas in healthy potato plants, the 24nt class was the most dominant. vsiRNAs were derived from every position in the PVY genome, though certain hotspots were identified for each of the PVY strains. Among the three strains used, the population of vsiRNAs of different size classes was relatively different with PVY-NTN accumulating the highest level of vsiRNAs, while PVY-N infected plants had the least population of vsiRNAs. Unique vsiRNAs mapping to PVY genome in PVY-infected plants amounted to 3.13, 1.93 and 1.70% for NTN, N and O, respectively. There was a bias in the generation of vsiRNAs from the plus strand of the genome in comparison to the negative strand. The highest number of total vsiRNAs was from the cytoplasmic inclusion protein gene (CI) in PVY-O and PVY-NTN strains, whereas from PVY-N, the NIb gene produced maximum total vsiRNAs. These findings indicate that the three PVY strains interact differently in the same host genetic background and provided insights into virus-host interactions in an important food crop.
Collapse
Affiliation(s)
- Khalid Naveed
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Artemus Harper
- Department of Horticulture, Washington State University, Pullman, USA
| | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, USA
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
55
|
Melcher U, Verma R, Schneider WL. Metagenomic search strategies for interactions among plants and multiple microbes. FRONTIERS IN PLANT SCIENCE 2014; 5:268. [PMID: 24966863 PMCID: PMC4052219 DOI: 10.3389/fpls.2014.00268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/24/2014] [Indexed: 05/22/2023]
Abstract
Plants harbor multiple microbes. Metagenomics can facilitate understanding of the significance, for the plant, of the microbes, and of the interactions among them. However, current approaches to metagenomic analysis of plants are computationally time consuming. Efforts to speed the discovery process include improvement of computational speed, condensing the sequencing reads into smaller datasets before BLAST searches, simplifying the target database of BLAST searches, and flipping the roles of metagenomic and reference datasets. The latter is exemplified by the e-probe diagnostic nucleic acid analysis approach originally devised for improving analysis during plant quarantine.
Collapse
Affiliation(s)
- Ulrich Melcher
- Department of Biochemistry and Molecular Biology, Oklahoma State UniversityStillwater, OK, USA
| | - Ruchi Verma
- Department of Biochemistry and Molecular Biology, Oklahoma State UniversityStillwater, OK, USA
| | - William L. Schneider
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture – Agricultural Research ServiceFort Detrick, MD, USA
| |
Collapse
|
56
|
Barba M, Czosnek H, Hadidi A. Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses 2014; 6:106-36. [PMID: 24399207 PMCID: PMC3917434 DOI: 10.3390/v6010106] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/17/2013] [Accepted: 12/24/2013] [Indexed: 12/27/2022] Open
Abstract
Next-generation high throughput sequencing technologies became available at the onset of the 21st century. They provide a highly efficient, rapid, and low cost DNA sequencing platform beyond the reach of the standard and traditional DNA sequencing technologies developed in the late 1970s. They are continually improved to become faster, more efficient and cheaper. They have been used in many fields of biology since 2004. In 2009, next-generation sequencing (NGS) technologies began to be applied to several areas of plant virology including virus/viroid genome sequencing, discovery and detection, ecology and epidemiology, replication and transcription. Identification and characterization of known and unknown viruses and/or viroids in infected plants are currently among the most successful applications of these technologies. It is expected that NGS will play very significant roles in many research and non-research areas of plant virology.
Collapse
Affiliation(s)
- Marina Barba
- Consiglio per la ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Patologia Vegetale, Via C. G. Bertero 22, Rome 00156, Italy.
| | - Henryk Czosnek
- Consiglio per la ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Patologia Vegetale, Via C. G. Bertero 22, Rome 00156, Italy.
| | - Ahmed Hadidi
- Consiglio per la ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Patologia Vegetale, Via C. G. Bertero 22, Rome 00156, Italy.
| |
Collapse
|
57
|
Hicks J, Liu HC. Involvement of eukaryotic small RNA pathways in host defense and viral pathogenesis. Viruses 2013; 5:2659-78. [PMID: 24178713 PMCID: PMC3856408 DOI: 10.3390/v5112659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 12/19/2022] Open
Abstract
Post-transcriptional gene regulation by small RNAs is now established as an important branch of the gene regulatory system. Many different classes of small RNAs have been discovered; among these are short interfering RNAs (siRNAs) and microRNA (miRNAs). Though differences in the processing and function of small RNAs exist between plants and animals, both groups utilize small RNA-mediated gene regulation in response to pathogens. Host encoded miRNAs and siRNAs are generated from viral RNA function in host defense and pathogenic resistance in plants. In animals, miRNAs are key regulators in both immune system development and in immune function. Pathogens, in particular viruses, have evolved mechanisms to usurp the host’s small RNA-mediated regulatory system. Overall, small RNAs are a major component of host defense and immunity in eukaryotes. The goal of this review is to summarize our current knowledge of the involvement of eukaryotic small RNA pathways in host defense and viral pathogenesis.
Collapse
Affiliation(s)
- Julie Hicks
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA.
| | | |
Collapse
|
58
|
Mitter N, Koundal V, Williams S, Pappu H. Differential expression of tomato spotted wilt virus-derived viral small RNAs in infected commercial and experimental host plants. PLoS One 2013; 8:e76276. [PMID: 24143182 PMCID: PMC3797105 DOI: 10.1371/journal.pone.0076276] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/21/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Viral small RNAs (vsiRNAs) in the infected host can be generated from viral double-stranded RNA replicative intermediates, self-complementary regions of the viral genome or from the action of host RNA-dependent RNA polymerases on viral templates. The vsiRNA abundance and profile as well as the endogenous small RNA population can vary between different hosts infected by the same virus influencing viral pathogenicity and host response. There are no reports on the analysis of vsiRNAs of Tomato spotted wilt virus (TSWV), a segmented negative stranded RNA virus in the family Bunyaviridae, with two of its gene segments showing ambisense gene arrangement. The virus causes significant economic losses to numerous field and horticultural crops worldwide. PRINCIPAL FINDINGS Tomato spotted wilt virus (TSWV)-specific vsiRNAs were characterized by deep sequencing in virus-infected experimental host Nicotiana benthamiana and a commercial, susceptible host tomato. The total small (s) RNA reads in TSWV-infected tomato sample showed relatively equal distribution of 21, 22 and 24 nt, whereas N. benthamiana sample was dominated by 24 nt total sRNAs. The number of vsiRNA reads detected in tomato was many a magnitude (~350:1) higher than those found in N. benthamiana, however the profile of vsiRNAs in terms of relative abundance 21, 22 and 24 nt class size was similar in both the hosts. Maximum vsiRNA reads were obtained for the M RNA segment of TSWV while the largest L RNA segment had the least number of vsiRNAs in both tomato and N. benthamiana. Only the silencing suppressor, NSs, of TSWV recorded higher antisense vsiRNA with respect to the coding frame among all the genes of TSWV. SIGNIFICANCE Details of the origin, distribution and abundance of TSWV vsiRNAs could be useful in designing efficient targets for exploiting RNA interference for virus resistance. It also has major implications toward our understanding of the differential processing of vsiRNAs in antiviral defense and viral pathogenicity.
Collapse
Affiliation(s)
- Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, the University of Queensland, St. Lucia, Australia
| | - Vikas Koundal
- Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
| | - Sarah Williams
- Institute for Molecular Biology, The University of Queensland, St Lucia, Australia
| | - Hanu Pappu
- Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
59
|
Vives MC, Velázquez K, Pina JA, Moreno P, Guerri J, Navarro L. Identification of a new enamovirus associated with citrus vein enation disease by deep sequencing of small RNAs. PHYTOPATHOLOGY 2013; 103:1077-86. [PMID: 23718835 DOI: 10.1094/phyto-03-13-0068-r] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To identify the causal agent of citrus vein enation disease, we examined by deep sequencing (Solexa-Illumina) the small RNA (sRNA) fraction from infected and healthy Etrog citron plants. Our results showed that virus-derived sRNAs (vsRNAs): (i) represent about 14.21% of the total sRNA population, (ii) are predominantly of 21 and 24 nucleotides with a biased distribution of their 5' nucleotide and with a clear prevalence of those of (+) polarity, and (iii) derive from all the viral genome, although a prominent hotspot is present at a 5'-proximal region. Contigs assembled from vsRNAs showed similarity with luteovirus sequences, particularly with Pea enation mosaic virus, the type member of the genus Enamovirus. The genomic RNA (gRNA) sequence of a new virus, provisionally named Citrus vein enation virus (CVEV), was completed and characterized. The CVEV gRNA was found to be single-stranded, positive-sense, with a size of 5,983 nucleotides and five open reading frames. Phylogenetic comparisons based on amino acid signatures of the RNA polymerase and the coat protein clearly classifies CVEV within the genus Enamovirus. Dot-blot hybridization and reverse transcription-polymerase chain reaction tests were developed to detect CVEV in plants affected by vein enation disease. CVEV detection by these methods has already been adopted for use in the Spanish citrus quarantine, sanitation, and certification programs.
Collapse
|
60
|
Al Rwahnih M, Dave A, Anderson MM, Rowhani A, Uyemoto JK, Sudarshana MR. Association of a DNA virus with grapevines affected by red blotch disease in California. PHYTOPATHOLOGY 2013; 103:1069-1076. [PMID: 23656312 DOI: 10.1094/phyto-10-12-0253-r] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In the Napa Valley of California, vineyards of 'Cabernet Franc' (CF) clone 214, 'Cabernet Sauvignon' clone 337, and 'Zinfandel' clone 1A (Z1A) with grapevines exhibiting foliar symptoms of red blotches, marginal reddening, and red veins that were accompanied by reduced sugar accumulation in fruit at harvest were initially suspected to be infected with leafroll-associated viruses. However, reverse-transcription polymerase chain reaction (PCR) tests were negative for all known leafroll-associated viruses, with the exception of Grapevine leafroll-associated virus 2 in Z1A. Metagenomic analysis of cDNA libraries obtained from double-stranded RNA enriched nucleic acid (NA) preparations from bark scrapings of dormant canes on an Illumina platform revealed sequences having a distant relationship with members of the family Geminiviridae. Sequencing of products obtained by PCR assays using overlapping primers and rolling circle amplification (RCA) confirmed the presence of a single circular genome of 3,206 nucleotides which was nearly identical to the genome of a recently reported Grapevine cabernet franc-associated virus found in declining grapevines in New York. We propose to call this virus "Grapevine red blotch-associated virus" (GRBaV) to describe its association with grapevine red blotch disease. Primers specific to GRBaV amplified a product of expected size (557 bp) from NA preparations obtained from petioles of several diseased source vines. Chip bud inoculations successfully transmitted GRBaV to test plants of CF, as confirmed by PCR analysis. This is the first report of a DNA virus associated with red blotch disease of grapevines in California.
Collapse
|
61
|
Miozzi L, Pantaleo V, Burgyán J, Accotto GP, Noris E. Analysis of small RNAs derived from tomato yellow leaf curl Sardinia virus reveals a cross reaction between the major viral hotspot and the plant host genome. Virus Res 2013; 178:287-96. [PMID: 24091361 DOI: 10.1016/j.virusres.2013.09.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
RNA silencing is a defense mechanism exploited by plants against viruses. Upon infection, viral genomes and their transcripts are processed by Dicer-like (DCL) ribonucleases into viral small interfering RNAs (vsRNAs) of 21-24 nucleotides that further guide silencing of viral transcripts. To get an insight into the molecular interaction between tomato and the monopartite phloem-limited begomovirus tomato yellow leaf curl Sardinia virus (TYLCSV), a pathogen inducing a devastating disease of tomato in the Mediterranean region, we characterized by deep sequencing the vsRNA population in virus-infected tomato plants, using a Solexa/Illumina platform. TYLCSV-sRNAs spanned the entire viral genome but were discontinuously distributed throughout it, with a prevalence from the transcribed regions. TYLCSV-sRNAs were mainly 21-22 nucleotides in length and their polarity was asymmetrically distributed along the genome. The most abundant vsRNAs originated from a narrow region overlapping the Rep/C4 genes and from a broader region including the end of the V2 and the beginning of the coat protein genes. Deep sequencing results were validated by different hybridization techniques. Comparisons with the data available on vsRNAs for other begomoviruses highlighted both similarities and differences. Host-derived RNA species cross-reacting with a portion of the viral genome corresponding to the most abundant vsRNAs hotspot were detected. Bioinformatics analyses were carried out to investigate the nature of these host molecules.
Collapse
Affiliation(s)
- Laura Miozzi
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 101035 Torino, Italy
| | | | | | | | | |
Collapse
|
62
|
Feng H, Zhang Q, Li H, Wang X, Wang X, Duan X, Wang B, Kang Z. vsiRNAs derived from the miRNA-generating sites of pri-tae-miR159a based on the BSMV system play positive roles in the wheat response to Puccinia striiformis f. sp. tritici through the regulation of taMyb3 expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 68:90-95. [PMID: 23665893 DOI: 10.1016/j.plaphy.2013.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/13/2013] [Indexed: 06/02/2023]
Abstract
Plants live in a complex environment, exposed to stresses, such as unsuitable climates, pests and pathogenic microorganisms. Pathogens are one of the most serious factors that threaten plant growth. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases worldwide. Virus-induced gene silencing (VIGS) is a popular tool for the functional analysis of wheat genes, generating abundant small RNAs (sRNAs). sRNAs are key components in gene regulatory networks, silencing corresponding genes at the post-transcriptional level. In this study, we transduced pri-tae-miR159a into plant tissues using the barley stripe mosaic virus (BSMV) system, and demonstrated that vsiRNAs were generated from the same miRNAs generating sites of pri-tae-miR159a, with the function of Dicer RNase III-like classes of endonucleases (DCL4). In addition, the accumulation of vsiRNAs in wheat leaves challenged with Pst Chinese yellow rust 23 (CYR23), resulted in a resistant phenotype, and in the compatible interaction, the sporation of Pst was limited. Whereas, infection with a control construct had no effect on the resistance or susceptibility. The results of the histological observation also supported these phenotype changes. Interestingly, vsiRNAs were also involved in the interactions between wheat and Pst through the tae-miR159-mediated regulation of taMyb3 expression. Moreover, these results also supported the speculation that vsiRNAs were generated from the same sites of pri-tae-miR159a. These studies indicated that vsiRNAs from miRNAs generating sites of pri-tae-miR159a based on the BSMV system play positive roles in the wheat response to Pst through the regulation of taMyb3 expression.
Collapse
Affiliation(s)
- Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Roy A, Choudhary N, Guillermo LM, Shao J, Govindarajulu A, Achor D, Wei G, Picton DD, Levy L, Nakhla MK, Hartung JS, Brlansky RH. A novel virus of the genus Cilevirus causing symptoms similar to citrus leprosis. PHYTOPATHOLOGY 2013; 103:488-500. [PMID: 23268581 DOI: 10.1094/phyto-07-12-0177-r] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Citrus leprosis in Colombia was previously shown to be caused by cytoplasmic Citrus leprosis virus (CiLV-C). In 2011, enzyme-linked immunosorbent assay and reverse-transcription polymerase chain reaction (RT-PCR)-based diagnostic methods failed to identify CiLV-C from citrus samples with symptoms similar to citrus leprosis; however, virions similar to CiLV-C were observed in the cytoplasm of the symptomatic leaves by transmission electron microscopy. Furthermore, the causal organism was transmitted by the false spider mite, Brevipalpus phoenicis, to healthy citrus seedlings. A library of small RNAs was constructed from symptomatic leaves and used as the template for Illumina high-throughput parallel sequencing. The complete genome sequence and structure of a new bipartite RNA virus was determined. RNA1 (8,717 nucleotides [nt]) contained two open reading frames (ORFs). ORF1 encoded the replication module, consisting of five domains: namely, methyltransferase (MTR), cysteine protease-like, FtsJ-MTR, helicase (Hel), and RNA-dependent RNA polymerase (RdRp); whereas ORF2 encoded the putative coat protein. RNA2 (4,989 nt) contained five ORFs that encode the movement protein (MP) and four hypothetical proteins (p7, p15, p24, and p61). The structure of this virus genome resembled that of CiLV-C except that it contained a long 3' untranslated terminal region and an extra ORF (p7) in RNA2. Both the RNA1 and RNA2 of the new virus had only 58 and 50% nucleotide identities, respectively, with known CiLV-C sequences and, thus, it appears to be a novel virus infecting citrus. Phylogenetic analyses of the MTR, Hel, RdRp, and MP domains also indicated that the new virus was closely related to CiLV-C. We suggest that the virus be called Citrus leprosis virus cytoplasmic type 2 (CiLV-C2) and it should be unambiguously classified as a definitive member of the genus Cilevirus. A pair of CiLV-C2 genome-specific RT-PCR primers was designed and validated to detect its presence in citrus leprosis samples collected from the Casanare and Meta states in Colombia.
Collapse
|
64
|
Maree HJ, Almeida RPP, Bester R, Chooi KM, Cohen D, Dolja VV, Fuchs MF, Golino DA, Jooste AEC, Martelli GP, Naidu RA, Rowhani A, Saldarelli P, Burger JT. Grapevine leafroll-associated virus 3. Front Microbiol 2013; 4:82. [PMID: 23596440 PMCID: PMC3627144 DOI: 10.3389/fmicb.2013.00082] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/22/2013] [Indexed: 11/17/2022] Open
Abstract
Grapevine leafroll disease (GLD) is one of the most important grapevine viral diseases affecting grapevines worldwide. The impact on vine health, crop yield, and quality is difficult to assess due to a high number of variables, but significant economic losses are consistently reported over the lifespan of a vineyard if intervention strategies are not implemented. Several viruses from the family Closteroviridae are associated with GLD. However, Grapevine leafroll-associated virus 3 (GLRaV-3), the type species for the genus Ampelovirus, is regarded as the most important causative agent. Here we provide a general overview on various aspects of GLRaV-3, with an emphasis on the latest advances in the characterization of the genome. The full genome of several isolates have recently been sequenced and annotated, revealing the existence of several genetic variants. The classification of these variants, based on their genome sequence, will be discussed and a guideline is presented to facilitate future comparative studies. The characterization of sgRNAs produced during the infection cycle of GLRaV-3 has given some insight into the replication strategy and the putative functionality of the ORFs. The latest nucleotide sequence based molecular diagnostic techniques were shown to be more sensitive than conventional serological assays and although ELISA is not as sensitive it remains valuable for high-throughput screening and complementary to molecular diagnostics. The application of next-generation sequencing is proving to be a valuable tool to study the complexity of viral infection as well as plant pathogen interaction. Next-generation sequencing data can provide information regarding disease complexes, variants of viral species, and abundance of particular viruses. This information can be used to develop more accurate diagnostic assays. Reliable virus screening in support of robust grapevine certification programs remains the cornerstone of GLD management.
Collapse
Affiliation(s)
- Hans J. Maree
- Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
- Biotechnology Platform, Agricultural Research CouncilStellenbosch, South Africa
| | - Rodrigo P. P. Almeida
- Department of Environmental Science, Policy and Management, University of CaliforniaBerkeley, CA, USA
| | - Rachelle Bester
- Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Kar Mun Chooi
- School of Biological Sciences, University of AucklandAuckland, New Zealand
| | - Daniel Cohen
- The New Zealand Institute for Plant and Food ResearchAuckland, New Zealand
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
| | - Marc F. Fuchs
- Department of Plant Pathology and Plant-Microbe Biology, Cornell UniversityGeneva, NY, USA
| | - Deborah A. Golino
- Department of Plant Pathology, University of CaliforniaDavis, CA, USA
| | - Anna E. C. Jooste
- Plant Protection Research Institute, Agricultural Research CouncilPretoria, South Africa
| | - Giovanni P. Martelli
- Department of Soil, Plant and Food Sciences, University Aldo Moro of BariBari, Italy
| | - Rayapati A. Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State UniversityProsser, WA, USA
| | - Adib Rowhani
- Department of Plant Pathology, University of CaliforniaDavis, CA, USA
| | | | - Johan T. Burger
- Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| |
Collapse
|
65
|
Szittya G, Burgyán J. RNA Interference-Mediated Intrinsic Antiviral Immunity in Plants. Curr Top Microbiol Immunol 2013; 371:153-81. [DOI: 10.1007/978-3-642-37765-5_6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
66
|
Miozzi L, Gambino G, Burgyan J, Pantaleo V. Genome-wide identification of viral and host transcripts targeted by viral siRNAs in Vitis vinifera. MOLECULAR PLANT PATHOLOGY 2013; 14:30-43. [PMID: 22947170 PMCID: PMC6638717 DOI: 10.1111/j.1364-3703.2012.00828.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In plants, RNA silencing is a surveillance mechanism against invading viruses. It involves the production of virus-derived small interfering RNAs (vsiRNAs), which guide the RNA-induced silencing complex (RISC) to inactivate viruses. vsiRNAs may also promote the silencing of host mRNAs in a sequence-specific manner. In this work, vsiRNAs derived from two grapevine-infecting viruses (Grapevine fleck virus and Grapevine rupestris stem pitting-associated virus) were selected from cDNA libraries of short RNAs and were cross-referenced with the remnants of both cleaved host transcripts and viral RNAs from a degradome dataset. We identified dozens of host transcripts targeted by vsiRNAs. Among them, several encode putative proteins involved in ribosome biogenesis and in biotic and abiotic stresses. Moreover, we identified vsiRNAs which explain the cleavage sites in viral genomes. A consistent fraction of vsiRNAs did not apparently account for cleavage, suggesting that only a low percentage of vsiRNAs are involved in the antiviral response.
Collapse
Affiliation(s)
- Laura Miozzi
- Istituto di Virologia Vegetale del CNR, 10135, Torino, Italy
| | | | | | | |
Collapse
|
67
|
Alabi OJ, Zheng Y, Jagadeeswaran G, Sunkar R, Naidu RA. High-throughput sequence analysis of small RNAs in grapevine (Vitis vinifera L.) affected by grapevine leafroll disease. MOLECULAR PLANT PATHOLOGY 2012; 13:1060-76. [PMID: 22827483 PMCID: PMC6638782 DOI: 10.1111/j.1364-3703.2012.00815.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Grapevine leafroll disease (GLRD) is one of the most economically important virus diseases of grapevine (Vitis spp.) worldwide. In this study, we used high-throughput sequencing of cDNA libraries made from small RNAs (sRNAs) to compare profiles of sRNA populations recovered from own-rooted Merlot grapevines with and without GLRD symptoms. The data revealed the presence of sRNAs specific to Grapevine leafroll-associated virus 3, Hop stunt viroid (HpSVd), Grapevine yellow speckle viroid 1 (GYSVd-1) and Grapevine yellow speckle viroid 2 (GYSVd-2) in symptomatic grapevines and sRNAs specific only to HpSVd, GYSVd-1 and GYSVd-2 in nonsymptomatic grapevines. In addition to 135 previously identified conserved microRNAs in grapevine (Vvi-miRs), we identified 10 novel and several candidate Vvi-miRs in both symptomatic and nonsymptomatic grapevine leaves based on the cloning of miRNA star sequences. Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of selected conserved Vvi-miRs indicated that individual members of an miRNA family are differentially expressed in symptomatic and nonsymptomatic leaves. The high-resolution mapping of sRNAs specific to an ampelovirus and three viroids in mixed infections, the identification of novel Vvi-miRs and the modulation of certain conserved Vvi-miRs offers resources for the further elucidation of compatible host-pathogen interactions and for the provision of ecologically relevant information to better understand host-pathogen-environment interactions in a perennial fruit crop.
Collapse
Affiliation(s)
- Olufemi J Alabi
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| | | | | | | | | |
Collapse
|
68
|
Kashif M, Pietilä S, Artola K, Jones RAC, Tugume AK, Mäkinen V, Valkonen JPT. Detection of Viruses in Sweetpotato from Honduras and Guatemala Augmented by Deep-Sequencing of Small-RNAs. PLANT DISEASE 2012; 96:1430-1437. [PMID: 30727310 DOI: 10.1094/pdis-03-12-0268-re] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sweetpotato (Ipomoea batatas) plants become infected with over 30 RNA or DNA viruses in different parts of the world but little is known about viruses infecting sweetpotato crops in Central America, the center of sweetpotato domestication. Small-RNA deep-sequencing (SRDS) analysis was used to detect viruses in sweetpotato in Honduras and Guatemala, which detected Sweet potato feathery mottle virus strain RC and Sweet potato virus C (Potyvirus spp.), Sweet potato chlorotic stunt virus strain WA (SPCSV-WA; Crinivirus sp.), Sweet potato leaf curl Georgia virus (Begomovirus sp.), and Sweet potato pakakuy virus strain B (synonym: Sweet potato badnavirus B). Results were confirmed by polymerase chain reaction and sequencing of the amplicons. Four viruses were detected in a sweetpotato sample from the Galapagos Islands. Serological assays available to two of the five viruses gave results consistent with those obtained by SRDS, and were negative for six additional sweetpotato viruses tested. Plants coinfected with SPCSV-WA and one to two other viruses displayed severe foliar symptoms of epinasty and leaf malformation, purpling, vein banding, or chlorosis. The results suggest that SRDS is suitable for use as a universal, robust, and reliable method for detection of plant viruses, and especially useful for determining virus infections in crops infected with a wide range of unrelated viruses.
Collapse
Affiliation(s)
- M Kashif
- Department of Agricultural Sciences, FI-00014 University of Helsinki, Finland
| | - S Pietilä
- Department of Agricultural Sciences, FI-00014 University of Helsinki, Finland
| | - K Artola
- Department of Agricultural Sciences, FI-00014 University of Helsinki, Finland
| | - R A C Jones
- School of Plant Biology and Institute of Agriculture, Faculty of Natural and Agricultural Sciences, University of Western Australia, Perth, WA 6009, and Department of Agriculture, Locked Bag No. 4, Bentley Delivery Centre, Perth, WA 6983, Australia
| | - A K Tugume
- Department of Agricultural Sciences, University of Helsinki, and Department of Biological Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - V Mäkinen
- Department of Computer Science, University of Helsinki, Finland
| | - J P T Valkonen
- Department of Agricultural Sciences, University of Helsinki
| |
Collapse
|
69
|
Bi Y, Tugume AK, Valkonen JPT. Small-RNA deep sequencing reveals Arctium tomentosum as a natural host of Alstroemeria virus X and a new putative Emaravirus. PLoS One 2012; 7:e42758. [PMID: 22912734 PMCID: PMC3422356 DOI: 10.1371/journal.pone.0042758] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/10/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Arctium species (Asteraceae) are distributed worldwide and are used as food and rich sources of secondary metabolites for the pharmaceutical industry, e.g., against avian influenza virus. RNA silencing is an antiviral defense mechanism that detects and destroys virus-derived double-stranded RNA, resulting in accumulation of virus-derived small RNAs (21-24 nucleotides) that can be used for generic detection of viruses by small-RNA deep sequencing (SRDS). METHODOLOGY/PRINCIPAL FINDINGS SRDS was used to detect viruses in the biennial wild plant species Arctium tomentosum (woolly burdock; family Asteraceae) displaying virus-like symptoms of vein yellowing and leaf mosaic in southern Finland. Assembly of the small-RNA reads resulted in contigs homologous to Alstroemeria virus X (AlsVX), a positive/single-stranded RNA virus of genus Potexvirus (family Alphaflexiviridae), or related to negative/single-stranded RNA viruses of the genus Emaravirus. The coat protein gene of AlsVX was 81% and 89% identical to the two AlsVX isolates from Japan and Norway, respectively. The deduced, partial nucleocapsid protein amino acid sequence of the emara-like virus was only 78% or less identical to reported emaraviruses and showed no variability among the virus isolates characterized. This virus--tentatively named as Woolly burdock yellow vein virus--was exclusively associated with yellow vein and leaf mosaic symptoms in woolly burdock, whereas AlsVX was detected in only one of the 52 plants tested. CONCLUSIONS/SIGNIFICANCE These results provide novel information about natural virus infections in Acrtium species and reveal woolly burdock as the first natural host of AlsVX besides Alstroemeria (family Alstroemeriaceae). Results also revealed a new virus related to the recently emerged Emaravirus genus and demonstrated applicability of SRDS to detect negative-strand RNA viruses. SRDS potentiates virus surveys of wild plants, a research area underrepresented in plant virology, and helps reveal natural reservoirs of viruses that cause yield losses in cultivated plants.
Collapse
Affiliation(s)
- Yaqi Bi
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Arthur K. Tugume
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Jari P. T. Valkonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
70
|
Thompson JR, Fuchs M, Fischer KF, Perry KL. Macroarray detection of grapevine leafroll-associated viruses. J Virol Methods 2012; 183:161-9. [DOI: 10.1016/j.jviromet.2012.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/17/2012] [Accepted: 04/23/2012] [Indexed: 01/18/2023]
|
71
|
Radford AD, Chapman D, Dixon L, Chantrey J, Darby AC, Hall N. Application of next-generation sequencing technologies in virology. J Gen Virol 2012; 93:1853-1868. [PMID: 22647373 PMCID: PMC3709572 DOI: 10.1099/vir.0.043182-0] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The progress of science is punctuated by the advent of revolutionary technologies that provide new ways and scales to formulate scientific questions and advance knowledge. Following on from electron microscopy, cell culture and PCR, next-generation sequencing is one of these methodologies that is now changing the way that we understand viruses, particularly in the areas of genome sequencing, evolution, ecology, discovery and transcriptomics. Possibilities for these methodologies are only limited by our scientific imagination and, to some extent, by their cost, which has restricted their use to relatively small numbers of samples. Challenges remain, including the storage and analysis of the large amounts of data generated. As the chemistries employed mature, costs will decrease. In addition, improved methods for analysis will become available, opening yet further applications in virology including routine diagnostic work on individuals, and new understanding of the interaction between viral and host transcriptomes. An exciting era of viral exploration has begun, and will set us new challenges to understand the role of newly discovered viral diversity in both disease and health.
Collapse
Affiliation(s)
- Alan D Radford
- University of Liverpool, Institute of Infection and Global Health, Leahurst Campus, Chester High Road, Neston, South Wirral CH64 7TE, UK
| | - David Chapman
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Linda Dixon
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Julian Chantrey
- University of Liverpool, School of Veterinary Science, Leahurst Campus, Chester High Road, Neston, South Wirral CH64 7TE, UK
| | - Alistair C Darby
- Institute of Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK
| | - Neil Hall
- Institute of Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
72
|
Giampetruzzi A, Roumi V, Roberto R, Malossini U, Yoshikawa N, La Notte P, Terlizzi F, Credi R, Saldarelli P. A new grapevine virus discovered by deep sequencing of virus- and viroid-derived small RNAs in Cv Pinot gris. Virus Res 2012; 163:262-8. [DOI: 10.1016/j.virusres.2011.10.010] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/12/2011] [Accepted: 10/15/2011] [Indexed: 12/13/2022]
|
73
|
Studholme DJ. Deep sequencing of small RNAs in plants: applied bioinformatics. Brief Funct Genomics 2011; 11:71-85. [PMID: 22184332 DOI: 10.1093/bfgp/elr039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Small RNAs, including microRNA and short-interfering RNAs, play important roles in plants. In recent years, developments in sequencing technology have enabled the large-scale discovery of sRNAs in various cells, tissues and developmental stages and in response to various stresses. This review describes the bioinformatics challenges to analysing these large datasets of short-RNA sequences and some of the solutions to those challenges.
Collapse
|
74
|
Donaire L, Pedrola L, de la Rosa R, Llave C. High-throughput sequencing of RNA silencing-associated small RNAs in olive (Olea europaea L.). PLoS One 2011; 6:e27916. [PMID: 22140484 PMCID: PMC3225373 DOI: 10.1371/journal.pone.0027916] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 10/27/2011] [Indexed: 11/18/2022] Open
Abstract
Small RNAs (sRNAs) of 20 to 25 nucleotides (nt) in length maintain genome integrity and control gene expression in a multitude of developmental and physiological processes. Despite RNA silencing has been primarily studied in model plants, the advent of high-throughput sequencing technologies has enabled profiling of the sRNA component of more than 40 plant species. Here, we used deep sequencing and molecular methods to report the first inventory of sRNAs in olive (Olea europaea L.). sRNA libraries prepared from juvenile and adult shoots revealed that the 24-nt class dominates the sRNA transcriptome and atypically accumulates to levels never seen in other plant species, suggesting an active role of heterochromatin silencing in the maintenance and integrity of its large genome. A total of 18 known miRNA families were identified in the libraries. Also, 5 other sRNAs derived from potential hairpin-like precursors remain as plausible miRNA candidates. RNA blots confirmed miRNA expression and suggested tissue- and/or developmental-specific expression patterns. Target mRNAs of conserved miRNAs were computationally predicted among the olive cDNA collection and experimentally validated through endonucleolytic cleavage assays. Finally, we use expression data to uncover genetic components of the miR156, miR172 and miR390/TAS3-derived trans-acting small interfering RNA (tasiRNA) regulatory nodes, suggesting that these interactive networks controlling developmental transitions are fully operational in olive.
Collapse
Affiliation(s)
- Livia Donaire
- Department of Environmental Biology, Centro de Investigaciones Biológicas, The Spanish National Research Council, Madrid, Spain
| | - Laia Pedrola
- Lifesequencing S.L., Parc Científic Universitat de Valéncia, Valencia, Spain
| | | | - César Llave
- Department of Environmental Biology, Centro de Investigaciones Biológicas, The Spanish National Research Council, Madrid, Spain
- * E-mail:
| |
Collapse
|
75
|
Acosta-Leal R, Duffy S, Xiong Z, Hammond RW, Elena SF. Advances in plant virus evolution: translating evolutionary insights into better disease management. PHYTOPATHOLOGY 2011; 101:1136-48. [PMID: 21554186 DOI: 10.1094/phyto-01-11-0017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent studies in plant virus evolution are revealing that genetic structure and behavior of virus and viroid populations can explain important pathogenic properties of these agents, such as host resistance breakdown, disease severity, and host shifting, among others. Genetic variation is essential for the survival of organisms. The exploration of how these subcellular parasites generate and maintain a certain frequency of mutations at the intra- and inter-host levels is revealing novel molecular virus-plant interactions. They emphasize the role of host environment in the dynamic genetic composition of virus populations. Functional genomics has identified host factors that are transcriptionally altered after virus infections. The analyses of these data by means of systems biology approaches are uncovering critical plant genes specifically targeted by viruses during host adaptation. Also, a next-generation resequencing approach of a whole virus genome is opening new avenues to study virus recombination and the relationships between intra-host virus composition and pathogenesis. Altogether, the analyzed data indicate that systematic disruption of some specific parameters of evolving virus populations could lead to more efficient ways of disease prevention, eradication, or tolerable virus-plant coexistence.
Collapse
|
76
|
Gabriel C, Stabentheiner S, Danzer M, Pröll J. What Next? The Next Transit from Biology to Diagnostics: Next Generation Sequencing for Immunogenetics. ACTA ACUST UNITED AC 2011; 38:308-317. [PMID: 22670120 DOI: 10.1159/000332433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/01/2011] [Indexed: 01/06/2023]
Abstract
The human genome project triggered the introduction of next generation sequencing (NGS) systems. Although originally developed for total genome sequencing, metagenomics and plant genetics, the ultra-deep sequencing feature of NGS was utilized for diagnostic purposes in HIV resistance and tropism as well in detecting new mutations and tumor clones in oncology. Recent publications exploited the feature of clonal sequencing for immunogenetics to dissolve the growing number of ambiguities. This concept is quite reliable if all exons of interest are tested and the amplification region includes flanking introns. Challenging questions on quality control, cost effectiveness, workflow, and management of enormous loads of data remain if NGS is considered as routine method in the immunogenetics laboratory. If solved, NGS has big potential to have a major impact on immunogenetics by way of providing ambiguity-free HLA-typing results faster, but will also have a great influence on how immunogenetics testing and workflows are organized.
Collapse
|
77
|
Devers EA, Branscheid A, May P, Krajinski F. Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. PLANT PHYSIOLOGY 2011; 156:1990-2010. [PMID: 21571671 PMCID: PMC3149951 DOI: 10.1104/pp.111.172627] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 05/06/2011] [Indexed: 05/18/2023]
Abstract
The majority of plants are able to form the arbuscular mycorrhizal (AM) symbiosis in association with AM fungi. During symbiosis development, plant cells undergo a complex reprogramming resulting in profound morphological and physiological changes. MicroRNAs (miRNAs) are important components of the regulatory network of plant cells. To unravel the impact of miRNAs and miRNA-mediated mRNA cleavage on root cell reprogramming during AM symbiosis, we carried out high-throughput (Illumina) sequencing of small RNAs and degradome tags of Medicago truncatula roots. This led to the annotation of 243 novel miRNAs. An increased accumulation of several novel and conserved miRNAs in mycorrhizal roots suggest a role of these miRNAs during AM symbiosis. The degradome analysis led to the identification of 185 root transcripts as mature miRNA and also miRNA*-mediated mRNA cleavage targets. Several of the identified miRNA targets are known to be involved in root symbioses. In summary, the increased accumulation of specific miRNAs and the miRNA-mediated cleavage of symbiosis-relevant genes indicate that miRNAs are an important part of the regulatory network leading to symbiosis development.
Collapse
|
78
|
Hu Q, Hollunder J, Niehl A, Kørner CJ, Gereige D, Windels D, Arnold A, Kuiper M, Vazquez F, Pooggin M, Heinlein M. Specific impact of tobamovirus infection on the Arabidopsis small RNA profile. PLoS One 2011; 6:e19549. [PMID: 21572953 PMCID: PMC3091872 DOI: 10.1371/journal.pone.0019549] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 04/01/2011] [Indexed: 12/02/2022] Open
Abstract
Tobamoviruses encode a silencing suppressor that binds small RNA (sRNA) duplexes in vitro and supposedly in vivo to counteract antiviral silencing. Here, we used sRNA deep-sequencing combined with transcriptome profiling to determine the global impact of tobamovirus infection on Arabidopsis sRNAs and their mRNA targets. We found that infection of Arabidopsis plants with Oilseed rape mosaic tobamovirus causes a global size-specific enrichment of miRNAs, ta-siRNAs, and other phased siRNAs. The observed patterns of sRNA enrichment suggest that in addition to a role of the viral silencing suppressor, the stabilization of sRNAs might also occur through association with unknown host effector complexes induced upon infection. Indeed, sRNA enrichment concerns primarily 21-nucleotide RNAs with a 5'-terminal guanine. Interestingly, ORMV infection also leads to accumulation of novel miRNA-like sRNAs from miRNA precursors. Thus, in addition to canonical miRNAs and miRNA*s, miRNA precursors can encode additional sRNAs that may be functional under specific conditions like pathogen infection. Virus-induced sRNA enrichment does not correlate with defects in miRNA-dependent ta-siRNA biogenesis nor with global changes in the levels of mRNA and ta-siRNA targets suggesting that the enriched sRNAs may not be able to significantly contribute to the normal activity of pre-loaded RISC complexes. We conclude that tobamovirus infection induces the stabilization of a specific sRNA pool by yet unknown effector complexes. These complexes may sequester viral and host sRNAs to engage them in yet unknown mechanisms involved in plant:virus interactions.
Collapse
Affiliation(s)
- Quanan Hu
- Botanical Institute, Department of Plant
Physiology, Zürich-Basel Plant Science Center, University of Basel, Basel,
Switzerland
| | - Jens Hollunder
- Department of Plant Systems Biology, Vlaams
Interuniversitair Instituut voor Biotechnologie (VIB) - Ghent University, Ghent,
Belgium
- Department of Plant Biotechnology and
Genetics, Ghent University, Ghent, Belgium
| | - Annette Niehl
- Institut de Biologie Moléculaire des
Plantes du CNRS (UPR 2357), Université de Strasbourg, Strasbourg,
France
| | - Camilla Julie Kørner
- Botanical Institute, Department of Plant
Physiology, Zürich-Basel Plant Science Center, University of Basel, Basel,
Switzerland
| | - Dalya Gereige
- Institut de Biologie Moléculaire des
Plantes du CNRS (UPR 2357), Université de Strasbourg, Strasbourg,
France
| | - David Windels
- Botanical Institute, Department of Plant
Physiology, Zürich-Basel Plant Science Center, University of Basel, Basel,
Switzerland
| | - Andreas Arnold
- Botanical Institute, Department of Plant
Physiology, Zürich-Basel Plant Science Center, University of Basel, Basel,
Switzerland
| | - Martin Kuiper
- Department of Biology, Norwegian University of
Science and Technology, Trondheim, Norway
| | - Franck Vazquez
- Botanical Institute, Department of Plant
Physiology, Zürich-Basel Plant Science Center, University of Basel, Basel,
Switzerland
| | - Mikhail Pooggin
- Botanical Institute, Department of Plant
Physiology, Zürich-Basel Plant Science Center, University of Basel, Basel,
Switzerland
| | - Manfred Heinlein
- Botanical Institute, Department of Plant
Physiology, Zürich-Basel Plant Science Center, University of Basel, Basel,
Switzerland
- Institut de Biologie Moléculaire des
Plantes du CNRS (UPR 2357), Université de Strasbourg, Strasbourg,
France
| |
Collapse
|