51
|
Feeding the Building Plumbing Microbiome: The Importance of Synthetic Polymeric Materials for Biofilm Formation and Management. WATER 2020. [DOI: 10.3390/w12061774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The environmental conditions in building plumbing systems differ considerably from the larger distribution system and, as a consequence, uncontrolled changes in the drinking water microbiome through selective growth can occur. In this regard, synthetic polymeric plumbing materials are of particular relevance, since they leach assimilable organic carbon that can be utilized for bacterial growth. Here, we discuss the complexity of building plumbing in relation to microbial ecology, especially in the context of low-quality synthetic polymeric materials (i.e., plastics) and highlight the major knowledge gaps in the field. We furthermore show how knowledge on the interaction between material properties (e.g., carbon migration) and microbiology (e.g., growth rate) allows for the quantification of initial biofilm development in buildings. Hence, research towards a comprehensive understanding of these processes and interactions will enable the implementation of knowledge-based management strategies. We argue that the exclusive use of high-quality materials in new building plumbing systems poses a straightforward strategy towards managing the building plumbing microbiome. This can be achieved through comprehensive material testing and knowledge sharing between all stakeholders including architects, planners, plumbers, material producers, home owners, and scientists.
Collapse
|
52
|
Maertens L, Coninx I, Claesen J, Leys N, Matroule JY, Van Houdt R. Copper Resistance Mediates Long-Term Survival of Cupriavidus metallidurans in Wet Contact With Metallic Copper. Front Microbiol 2020; 11:1208. [PMID: 32582116 PMCID: PMC7284064 DOI: 10.3389/fmicb.2020.01208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/12/2020] [Indexed: 11/13/2022] Open
Abstract
Metallic copper to combat bacterial proliferation in drinking water systems is being investigated as an attractive alternative to existing strategies. A potential obstacle to this approach is the induction of metal resistance mechanisms in contaminating bacteria, that could severely impact inactivation efficacy. Thus far, the role of these resistance mechanisms has not been studied in conditions relevant to drinking water systems. Therefore, we evaluated the inactivation kinetics of Cupriavidus metallidurans CH34 in contact with metallic copper in drinking water. Viability and membrane permeability were examined for 9 days through viable counts and flow cytometry. After an initial drop in viable count, a significant recovery was observed starting after 48 h. This behavior could be explained by either a recovery from an injured/viable-but-non-culturable state or regrowth of surviving cells metabolizing lysed cells. Either hypothesis would necessitate an induction of copper resistance mechanisms, since no recovery was seen in a CH34 mutant strain lacking metal resistance mechanisms, while being more pronounced when copper resistance mechanisms were pre-induced. Interestingly, no biofilms were formed on the copper surface, while extensive biofilm formation was observed on the stainless steel control plates. When CH34 cells in water were supplied with CuSO4, a similar initial decrease in viable counts was observed, but cells recovered fully after 7 days. In conclusion, we have shown that long-term bacterial survival in the presence of a copper surface is possible upon the induction of metal resistance mechanisms. This observation may have important consequences in the context of the increasing use of copper as an antimicrobial surface, especially in light of potential co-selection for metal and antimicrobial resistance.
Collapse
Affiliation(s)
- Laurens Maertens
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Research Unit in Microorganisms Biology (URBM), Narilis Institute, University of Namur, Namur, Belgium
| | - Ilse Coninx
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Jürgen Claesen
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Natalie Leys
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Jean-Yves Matroule
- Research Unit in Microorganisms Biology (URBM), Narilis Institute, University of Namur, Namur, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
53
|
Jia S, Jia R, Zhang K, Sun S, Lu N, Wang M, Zhao Q. Disinfection characteristics of Pseudomonas peli, a chlorine-resistant bacterium isolated from a water supply network. ENVIRONMENTAL RESEARCH 2020; 185:109417. [PMID: 32247906 DOI: 10.1016/j.envres.2020.109417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Lack of microbial contamination is crucial for drinking water quality and safety. Chlorine-resistant bacteria in drinking water distribution systems pose a threat to drinking water quality. A bacterium was isolated from an urban water supply network in northern China and identified as Pseudomonas peli by 16S rDNA gene analysis. This P. peli strain had high chlorine tolerance. The CT value (the product of disinfectant concentration and contact time) to achieve 3 lg unit (i.e. 99.9%)-inactivation of this P. peli isolate was 51.26-90.36 mg min/L, inversely proportional to the free chlorine concentration. Chlorine dioxide could inactivate the bacterium faster and more efficiently than free chlorine, as shown by flow cytometry. Thiazole orange plus propidium iodide staining indicated that free chlorine and chlorine dioxide inactivated P. peli primarily by disrupting the integrity and permeability of the cell membrane. The P. peli was also sensitive to ultraviolet (UV) radiation; a UV dose of 40 mJ/cm2 achieved 4 lg unit (99.99%)-inactivation. The Hom model was more suitable for analyzing the disinfection kinetics of P. peli than the Chick and Chick-Watson models.
Collapse
Affiliation(s)
- Shuyu Jia
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250000, China; College of Environmental Science and Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Ruibao Jia
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250000, China.
| | - Kefeng Zhang
- College of Environmental Science and Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Shaohua Sun
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250000, China
| | - Nannan Lu
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250000, China
| | - Mingquan Wang
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250000, China
| | - Qinghua Zhao
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan, 250000, China
| |
Collapse
|
54
|
Abstract
Nitrification is a major issue that utilities must address if they utilize chloramines as a secondary disinfectant. Nitrification is the oxidation of free ammonia to nitrite which is then further oxidized to nitrate. Free ammonia is found in drinking water systems as a result of overfeeding at the water treatment plant (WTP) or as a result of the decomposition of monochloramine. Premise plumbing systems (i.e., the plumbing systems within buildings and homes) are characterized by irregular usage patterns, high water age, high temperature, and high surface-to-volume ratios. These characteristics create ideal conditions for increased chloramine decay, bacterial growth, and nitrification. This review discusses factors within premise plumbing that are likely to influence nitrification, and vice versa. Factors influencing, or influenced by, nitrification include the rate at which chloramine residual decays, microbial regrowth, corrosion of pipe materials, and water conservation practices. From a regulatory standpoint, the greatest impact of nitrification within premise plumbing is likely to be a result of increased lead levels during Lead and Copper Rule (LCR) sampling. Other drinking water regulations related to nitrifying parameters are monitored in a manner to reduce premise plumbing impacts. One way to potentially control nitrification in premise plumbing systems is through the development of building management plans.
Collapse
|
55
|
Gomes IB, Simões LC, Simões M. Influence of surface copper content on Stenotrophomonas maltophilia biofilm control using chlorine and mechanical stress. BIOFOULING 2020; 36:1-13. [PMID: 31997661 DOI: 10.1080/08927014.2019.1708334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
This work aimed to evaluate the action of materials with different copper content (0, 57, 96 and 100%) on biofilm formation and control by chlorination and mechanical stress. Stenotrophomonas maltophilia isolated from drinking water was used as a model microorganism and biofilms were developed in a rotating cylinder reactor using realism-based shear stress conditions. Biofilms were characterized phenotypically and exposed to three control strategies: 10 mg l-1 of free chlorine for 10 min, an increased shear stress (a fluid velocity of 1.5 m s-1 for 30s), and a combination of both treatments. These shock treatments were not effective in biofilm control. The benefits from the use of copper surfaces was found essentially in reducing the numbers of non-damaged cells. Copper materials demonstrated better performance in biofilm prevention than chlorine. In general, copper alloys may have a positive public health impact by reducing the number of non-damaged cells in the water delivered after chlorine exposure.
Collapse
Affiliation(s)
- I B Gomes
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - L C Simões
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - M Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
56
|
Tu C, Zhou Q, Zhang C, Liu Y, Luo Y. Biofilms of Microplastics. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2020_461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
57
|
Zhang Y, Ma Y, Zhang R, Zhang B, Zhai X, Li W, Xu L, Jiang Q, Duan J, Hou B. Metagenomic Resolution of Functional Diversity in Copper Surface-Associated Marine Biofilms. Front Microbiol 2019; 10:2863. [PMID: 31921043 PMCID: PMC6917582 DOI: 10.3389/fmicb.2019.02863] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/26/2019] [Indexed: 01/16/2023] Open
Abstract
We used metagenomic sequencing combined with morphological and chemical analyses to investigate microbial taxa and functions related to copper-resistance and microbiologically influenced corrosion in mature copper-associated biofilms in coastal seawater for 44 months. Facultative anaerobic microbes such as Woeseia sp. were found to be the dominant groups on the copper surface. Genes related to stress response and possible heavy metal transport systems, especially RNA polymerase sigma factors (rpoE) and putative ATP-binding cassette (ABC) transport system permease protein (ABC.CD.P) were observed to be highly enriched in copper-associated biofilms, while genes encoding DNA-methyltransferase and RNA polymerase subunit were highly enriched in aluminum-associated biofilms and seawater planktonic cells, respectively. Moreover, copper-associated biofilms harbored abundant copper-resistance genes including cus, cop and pco, as well as abundant genes related to extracellular polymeric substances, indicating the presence of diverse copper-resistance patterns. The proportion of dsr in copper-associated biofilms, key genes related to sulfide production, was as low as that in aluminum biofilm and seawater, which ruled out the possibility of microbial sulfide-induced copper-corrosion under field conditions. These results may fill knowledge gaps about the in situ microbial functions of marine biofilms and their effects on toxic-metal corrosion.
Collapse
Affiliation(s)
- Yimeng Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yan Ma
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ruiyong Zhang
- Federal Institute for Geosciences and Natural Resources, Hanover, Germany
| | - Binbin Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiaofan Zhai
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Wangqiang Li
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Liting Xu
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Quantong Jiang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Baorong Hou
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
58
|
Huang X, Pieper KJ, Cooper HK, Diaz-Amaya S, Zemlyanov DY, Whelton AJ. Corrosion of upstream metal plumbing components impact downstream PEX pipe surface deposits and degradation. CHEMOSPHERE 2019; 236:124329. [PMID: 31310967 DOI: 10.1016/j.chemosphere.2019.07.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/30/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Plastic pipes have been and are being installed downstream of metal drinking water plumbing components. Prior research has suggested that such pipe configurations may induce plastic pipe degradation and even system failure. To explore the impact of upstream metal plumbing components on downstream plastic pipes, field- and bench-scale experiments were conducted. Six month old galvanized iron pipes (GIPs) and downstream crosslinked polyethylene (PEX) pipes were exhumed from a residential home. Calcium, iron, manganese, phosphorous, and zinc were the most abundant elements on both GIPs and PEX pipes. Black and yellow deposits were found on some of the exhumed PEX pipe inner walls, which were mainly copper, iron, and manganese oxides (CuO, Cu(OH)2, Fe2O3, FeOOH and MnO2). Follow-up bench-scale experiments revealed that metal levels in the drinking water did not always predict metal loadings on plastic pipe surfaces. The pH 4 water resulted in a greater amount of metals released into the bulk water, but the pH 7.5 water resulted in a greater amount of metals deposited on the PEX pipe surfaces. Hot water (55 °C) induced a greater amount of organics released and higher metal loadings on PEX pipe surfaces at pH 7.5. ATR-FTIR analysis showed that at 55 °C, PEX pipes connected to copper and brass components had the greatest oxidation functional group peak intensity (COOC, CO, and COC). This study highlights potential downstream plastic pipe degradation and metal deposition, which may cause plumbing problems and failures for building owners, inhabitants, and water utilities.
Collapse
Affiliation(s)
- Xiangning Huang
- Lyles School of Civil Engineering, Purdue University, 550 W. Stadium Ave., West Lafayette, IN, 47907, USA.
| | - Kelsey J Pieper
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, 200 Patton Hall, Blacksburg, VA, 24061, USA.
| | - H Kory Cooper
- Department of Anthropology, Purdue University, 700 W. State St., West Lafayette, IN, 47907, USA.
| | - Susana Diaz-Amaya
- School of Materials Engineering, Purdue University, 701 W Stadium Ave., West Lafayette, IN, 47907, USA.
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, 1205 W State St., West Lafayette, IN, 47907, USA.
| | - Andrew J Whelton
- Lyles School of Civil Engineering, Purdue University, 550 W. Stadium Ave., West Lafayette, IN, 47907, USA; Division of Environmental and Ecological Engineering, Purdue University, 500 Central Dr., West Lafayette, IN, 47907, USA.
| |
Collapse
|
59
|
Neu L, Proctor CR, Walser JC, Hammes F. Small-Scale Heterogeneity in Drinking Water Biofilms. Front Microbiol 2019; 10:2446. [PMID: 31736893 PMCID: PMC6828615 DOI: 10.3389/fmicb.2019.02446] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
Biofilm heterogeneity has been characterized on various scales for both natural and engineered ecosystems. This heterogeneity has been attributed to spatial differences in environmental factors. Understanding their impact on localized biofilm heterogeneity in building plumbing systems is important for both management and representative sampling strategies. We assessed heterogeneity within the confined engineered ecosystem of a shower hose by high-resolution sampling (200 individual biofilm sections per hose) on varying scales (μm to m). We postulated that a biofilm grown on a single material under uniform conditions should be homogeneous in its structure, bacterial numbers, and community composition. A biofilm grown for 12 months under controlled laboratory conditions, showed homogeneity on large-scale. However, some small-scale heterogeneity was clearly observed. For example, biofilm thickness of cm-sections varied up to 4-fold, total cell concentrations (TCC) 3-fold, and relative abundance of dominant taxa up to 5-fold. A biofilm grown under real (i.e., uncontrolled) use conditions developed considerably more heterogeneity in all variables which was attributed to more discontinuity in environmental conditions. Interestingly, biofilm communities from both hoses showed comparably low diversity, with <400 taxa each, and only three taxa accounting for 57%, respectively, 73% of the community. This low diversity was attributed to a strong selective pressure, originating in migrating carbon from the flexible hoses as major carbon source. High-resolution sampling strategy enabled detailed analysis of spatial heterogeneity within an individual drinking water biofilm. This study gives insight into biofilm structure and community composition on cm-to m-scale and is useful for decision-making on sampling strategies in biofilm research and monitoring.
Collapse
Affiliation(s)
- Lisa Neu
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zurich, Switzerland
| | - Caitlin R. Proctor
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Schools of Civil, Environmental and Ecological, Materials, and Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | | | - Frederik Hammes
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
60
|
The Impact of the Quality of Tap Water and the Properties of Installation Materials on the Formation of Biofilms. WATER 2019. [DOI: 10.3390/w11091903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The article presents changes in the quality of tap water depending on time spent in installation and its impact on the creation of biofilms on various materials (polyethylene (PE), polyvinyl chloride (PVC), chrome-nickel steel and galvanized steel). For the first time, quantitative analyses of biofilm were performed using methods such as: Adenosine 5’-triphosphate (ATP) measurement, flow cytometry, heterotrophic plate count and using fractographical parameters. In the water, after leaving the experimental installation, the increase of turbidity, content of organic compounds, nitrites and nitrates was found, as well as the decrease in the content of chlorine compounds, dissolved oxygen and phosphorus compounds. There was an increase in the number of mesophilic and psychrophilic bacteria. In addition, the presence of Escherichia coli was also found. The analysis of the quantitative determination of microorganisms in a biofilm indicates that galvanized steel is the most susceptible material for the adhesion of microorganisms. These results were also confirmed by the analysis of the biofilm morphology. The roughness profile, the thickness of the biofilm layer can be estimated at about 300 μm on galvanized steel.
Collapse
|
61
|
Wei L, Wu Q, Zhang J, Guo W, Gu Q, Wu H, Wang J, Lei T, Chen M, Wu M, Li A. Composition and Dynamics of Bacterial Communities in a Full-Scale Mineral Water Treatment Plant. Front Microbiol 2019; 10:1542. [PMID: 31396165 PMCID: PMC6668249 DOI: 10.3389/fmicb.2019.01542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/20/2019] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to gain insight into the bacterial composition and dynamics in a mineral water treatment system (MWTS). The bacterial community of a full-scale mineral water treatment plant in the Maofeng Mountain, South China, was studied using high-throughput sequencing combined with cultivation-based techniques in both the dry and wet season. Overall, adenosine tri-phosphate (ATP) concentration (6.47 × 10-11 – 3.32 × 10-8 M) and heterotrophic plate counts (HPC) (3 – 1.29 × 103 CFU/mL) of water samples in the wet season were lower than those (ATP concentration 5.10 × 10-11 – 6.96 × 10-8 M, HPC 2 – 1.97 × 103 CFU/mL) in the dry season throughout the whole MWTS. The microbial activity and biomass of water samples obviously changed along with treatment process. All 300 isolates obtained using cultivation-based techniques were distributed in 5 phyla, 7 classes, and 19 genera. Proteobacteria accounted for 55.7% (167) of the total isolates, among which predominant genus was Pseudomonas (19.3%). Illumina sequencing analysis of 16s rRNA genes revealed 15 bacterial phyla (relative abundance >0.1%) as being identified in all water samples. Among these, Proteobacteria constituted the dominant bacteria microbiota in all water samples. A large shift in the proportion of Bacteroidetes, Actinobacteria, and Firmicutes was obtained during the treatment process, with the proportion of Bacteroidetes, Actinobacteria decreasing sharply, whereas that of Firmicutes increased and predominated in the final water product. The core microbiome, which was still present in whole MWTS comprised several genera including Pseudomonas, Acinetobacter, Clostridium, and Mycobacterium, that contain species that are opportunistic pathogens, suggesting a potential threat for mineral water microbiology safety. This study is the first to investigate the bacterial community of a full-scale mineral water treatment plant in China. The results provided data regarding the bacteria composition and dynamics in an MWTS, which will contribute to the beneficial manipulation of the mineral water microbiome.
Collapse
Affiliation(s)
- Lei Wei
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, China
| | - Weipeng Guo
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, China
| | - Qihui Gu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, China
| | - Huiqing Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Tao Lei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, China
| | - Moutong Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, China
| | - Musheng Wu
- Guangdong Dinghu Mountain Spring Company Limited, Zhaoqing, China
| | - Aimei Li
- Guangdong Dinghu Mountain Spring Company Limited, Zhaoqing, China
| |
Collapse
|
62
|
Yao Y, Habimana O. Biofilm research within irrigation water distribution systems: Trends, knowledge gaps, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:254-265. [PMID: 30991317 DOI: 10.1016/j.scitotenv.2019.03.464] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/25/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
Biofilms in irrigation water distribution systems (IWDSs) play an essential role in spreading pathogens, chemical pollutants, and environmental pollutants into downstream irrigated crops and thus should be considered a potential threat to food safety. Although the role of biofilms in drinking water distribution systems has been extensively studied in the last decade, the research on IWDS biofilms in this period has been limited. This review identifies research gaps in the field of IWDS biofilms, provides perspectives on experimental designs for investigating IWDS biofilms, and suggests potential strategies worth pursuing in IWDS management. The current state of the art of IWDS biofilms is discussed, and an analysis of the challenges in IWDS biofilm research is presented. Furthermore, this review proposes useful advanced technologies that allow a practical, in-depth fundamental understanding of IWDS biofilms. In a nutshell, this article provides future directions and insights into detailed experimental designs on a relatively under-reported research topic: "IWDS biofilms."
Collapse
Affiliation(s)
- Yuan Yao
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Olivier Habimana
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong Province, People's Republic of China.
| |
Collapse
|
63
|
Johansen MP, Cresswell T, Davis J, Howard DL, Howell NR, Prentice E. Biofilm-enhanced adsorption of strong and weak cations onto different microplastic sample types: Use of spectroscopy, microscopy and radiotracer methods. WATER RESEARCH 2019; 158:392-400. [PMID: 31059933 DOI: 10.1016/j.watres.2019.04.029] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/29/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
The adsorption of metals and other elements onto environmental plastics has been previously quantified and is known to be enhanced by surface-weathering and development of biofilms. However, further biofilm-adsorption characterisation is needed with respect to the fate of radionuclides. This study uses spectroscopy, microscopy and radiotracer methods to investigate the adsorption capacity of relatively strong and weak cations onto different microplastic sample types that were conditioned in freshwater, estuarine and marine conditions although marine data were limited. Fourier-transform infrared spectroscopy confirmed that surface oxidation chemistry changes induced by gamma irradiation were similar to those resulting from environmental exposures. Microscopy elemental mapping revealed patchy biofilm development, which contained Si, Al, and O, consistent with microbial-facilitated capture of clays. The plastics+biofilm of all sample types had measurable adsorption for Cs and Sr radiotracers, suggesting environmental plastics act broadly as a sink for the key pervasive environmental radionuclides of 137Cs and 90Sr associated with releases from nuclear activities. Adsorption onto high-density polyethylene plastic types was greater than that on polypropylene. However, in most cases, the adsorption rates of all types of plastic+biofilm were much lower than those of reference sediments and roughly consistent with their relative exchangeable surface areas.
Collapse
Affiliation(s)
- Mathew P Johansen
- Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia.
| | - Tom Cresswell
- Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Joel Davis
- Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Daryl L Howard
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria, 3168, Australia
| | - Nicholas R Howell
- Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Emily Prentice
- Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia; University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
64
|
Antimicrobial performance of polyethylene nanocomposite monofilaments reinforced with metal nanoparticles decorated montmorillonite. Colloids Surf B Biointerfaces 2019; 178:87-93. [DOI: 10.1016/j.colsurfb.2019.02.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 02/05/2019] [Accepted: 02/21/2019] [Indexed: 01/17/2023]
|
65
|
Li RA, McDonald JA, Sathasivan A, Khan SJ. Disinfectant residual stability leading to disinfectant decay and by-product formation in drinking water distribution systems: A systematic review. WATER RESEARCH 2019; 153:335-348. [PMID: 30743084 DOI: 10.1016/j.watres.2019.01.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Secondary disinfectants, such as chlorine and chloramine, have been widely applied to minimise microbial risks in drinking water during distribution. Key challenges have included the maintenance of stable concentrations of disinfectant residuals and the control of disinfection by-products that may form as a consequence of residual decay processes. Many factors may influence disinfectant residual stability and the consequential formation of by-products. Thus predictions of disinfectant stability and by-product formation are multifactorial problems, complete with numerous complications of parameter co-dependence and feedback amplification of some key parameters. The aim of this review was to derive an understanding of how disinfectant residual stability in drinking water distribution systems is impacted by various influencing factors such as water quality and operational parameters. Factors known to influence disinfectant stability and by-product formation were critically reviewed. A systematic review method was applied to identify 1809 journal articles published in the two decades from January 1998 to December 2017. From the initial screening, 161 papers were selected for detailed assessment. Important factors were identified to include temperature, water age, piping material, corrosion products, pH, hydraulic condition, disinfectant residual type and dosage and microbial activity. Microbial activity is a particularly complex parameter on which to base predictions since many factors are known to influence the degree and nature of such activity. These include temperature, water age, piping material, corrosion products, nutrients, natural organic matter, hydraulic condition and disinfectant residual type and dosage. Disinfectant types and dosages were found to be among the most important factors. Many knowledge gaps and research needs still remain, including the need for a more complete understanding of the factors that influence the production of nitrogenous disinfection by-products.
Collapse
Affiliation(s)
- Rebecca A Li
- UNSW Water Research Centre, School of Civil & Environmental Engineering, University of New South Wales, NSW, 2052, Australia.
| | - James A McDonald
- UNSW Water Research Centre, School of Civil & Environmental Engineering, University of New South Wales, NSW, 2052, Australia.
| | - Arumugam Sathasivan
- School of Computing Engineering and Mathematics, University of Western Sydney, Kingswood, NSW, 2747, Australia.
| | - Stuart J Khan
- UNSW Water Research Centre, School of Civil & Environmental Engineering, University of New South Wales, NSW, 2052, Australia.
| |
Collapse
|
66
|
Yu Y, Park KY, Jung J, Song W, Kim J, Ryu J, Lade H, Kweon J. Monitoring biofouling based on aerobic respiration in reverse osmosis system. J Environ Sci (China) 2019; 78:247-256. [PMID: 30665643 DOI: 10.1016/j.jes.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 06/09/2023]
Abstract
A monitoring method of biofouling in reverse osmosis (RO) system was proposed based on the fluorescent signal of resorufin, which is reduced by nicotinamide adenine dinucleotide released from viable cells during aerobic respiration. The fluorescent signal of resorufin reduced by planktonic cells and microorganisms of biofilm showed linearity, indicating its feasibility to monitor biofouling in a RO system. For the application of the method to the lab-scale RO system, the injection concentration of resazurin and the injection flow rate were optimized. Biofilm on RO membranes continuously operated in a lab-scale RO system was estimated by resorufin fluorescence under optimized detection condition. As a result, resorufin fluorescence on RO membrane showed a significant increase in which the permeability of RO system decreased by 30.48%. Moreover, it represented the development of biofilm as much as conventional biofilm parameters such as adenosine triphosphate, extracellular polymeric substances, and biofilm thickness. The proposed method could be used as a sensitive and low-cost technology to monitor biofouling without autopsy of membranes.
Collapse
Affiliation(s)
- Youngjae Yu
- Department of Environmental Engineering, Konkuk University, Seoul 05029, Korea
| | - Keun-Young Park
- Department of Environmental Engineering, Konkuk University, Seoul 05029, Korea
| | - Jaehyun Jung
- Department of Environment and Energy, Sejong University, Seoul 05006, Korea
| | - Wonjung Song
- Department of Environmental Engineering, Konkuk University, Seoul 05029, Korea
| | - Jaehyeok Kim
- Department of Environmental Engineering, Konkuk University, Seoul 05029, Korea
| | - Junhee Ryu
- Department of Environmental Engineering, Konkuk University, Seoul 05029, Korea
| | - Harshad Lade
- Department of Laboratory Medicine, Hallym University Medical Center, Seoul 07247, Korea
| | - Jihyang Kweon
- Department of Environmental Engineering, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
67
|
Gomes IB, Simões LC, Simões M. The role of surface copper content on biofilm formation by drinking water bacteria. RSC Adv 2019; 9:32184-32196. [PMID: 35530774 PMCID: PMC9072912 DOI: 10.1039/c9ra05880j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/03/2019] [Indexed: 11/21/2022] Open
Abstract
Copper alloys demonstrated comparable or higher performance than elemental copper in biofilm control. The alloy containing 96% copper was the most promising surface in biofilm control and regrowth prevention.
Collapse
Affiliation(s)
- I. B. Gomes
- LEPABE
- Department of Chemical Engineering
- Faculty of Engineering
- University of Porto
- 4200-465 Porto
| | - L. C. Simões
- LEPABE
- Department of Chemical Engineering
- Faculty of Engineering
- University of Porto
- 4200-465 Porto
| | - M. Simões
- LEPABE
- Department of Chemical Engineering
- Faculty of Engineering
- University of Porto
- 4200-465 Porto
| |
Collapse
|
68
|
Biostability of Tap Water—A Qualitative Analysis of Health Risk in the Example of Groundwater Treatment (Semi-Technical Scale). WATER 2018. [DOI: 10.3390/w10121764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article presents results of research which aimed to assess the impact of biofiltration processing on the biological stability of water. Effectiveness of biogenic substances removal (C, N, P) and bacteriological quality of water after the biofiltration process were discussed. The research was carried out on a semi-technical scale on natural underground water rich in organic compounds. A filter with a biologically active carbon (BAC) bed was used for the research. Despite the low water temperature of between 9–12 °C, there was a high efficiency of organic matter removal—33–70%. The number of mesophilic and psychrophilic bacteria in the water before and after the biofiltration process was comparable (0–23 CFU/mL) and met the requirements for drinking water. No E. coli was detected in the water samples. The biological material washed out of the filter bed did not cause deterioration of water quality which proved that the operating parameters of the biofilters were properly chosen, i.e., contact time of 30 min, filtration speed up to 3 m/h. Reduction of the content of nutrients in the treated water limits the risk of microbial growth and thus the emergence of biological growth in the distribution system.
Collapse
|
69
|
Indoor Air Quality and Potential Health Risk Impacts of Exposure to Antibiotic Resistant Bacteria in an Office Rooms in Southern Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15112604. [PMID: 30469413 PMCID: PMC6267043 DOI: 10.3390/ijerph15112604] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/08/2018] [Accepted: 11/21/2018] [Indexed: 01/06/2023]
Abstract
The aims of this article are to characterize: the quantity of culturable bacterial aerosol (QCBA) and the quality of culturable bacterial aerosol (QlCBA) in an office building in Southern Poland during the spring. The average concentration of culturable bacterial aerosol (CCBA) in this building ranged from 424 CFU m-3 to 821 CFU m-3, below Polish proposals for threshold limit values. Size distributions were unimodal, with a peak of particle bacterial aerodynamic diameters less than 3.3 μm, increasing potentially adverse health effects due to their inhalation. The spring office exposure dose (SPED) of bacterial aerosol was estimated. The highest value of SPED was in April (218 CFU kg-1), whereas the lowest was in June (113 CFU kg-1). Analysis was undertaken to determine the antibiotic resistance of isolated strains and their ability to form biofilms, which may facilitate the spread of antibiotic resistance genes. In the course of the study, it was found that Staphylococcus xylosus had the greatest ability to form biofilms, while the strains with the highest antibiotic resistance were Micrococcus luteus D and Macrococcus equipercicus. Given that mainly antibiotic-sensitive bacteria from bioaerosol were isolated, which transfers resistance genes to their plasmids, this shows the need for increased monitoring of indoor air quality in workplaces.
Collapse
|
70
|
Aggarwal S, Gomez-Smith CK, Jeon Y, LaPara TM, Waak MB, Hozalski RM. Effects of Chloramine and Coupon Material on Biofilm Abundance and Community Composition in Bench-Scale Simulated Water Distribution Systems and Comparison with Full-Scale Water Mains. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13077-13088. [PMID: 30351033 DOI: 10.1021/acs.est.8b02607] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The vast majority of bacteria in drinking water distribution systems (DWDSs) reside in biofilms on the interior walls of water mains. Little is known about how water quality conditions affect water-main biofilms because of the inherent limitations in experimenting with drinking water supplies and accessing the water mains for sampling. Bench-scale reactors permit experimentation and ease of biofilm sampling, yet questions remain as to how well biofilms in laboratory reactors represent those on water mains. In this study, the effects of DWDS pipe materials and chloramine residual on biofilms were investigated by cultivating biofilms on cement, polyvinyl chloride, and high density polyethylene coupons in CDC reactors for up to 28 months in the presence of chloraminated or dechlorinated tap water. The bench-scale biofilm microbiomes were then compared with the microbiome on a water main from the full-scale system that supplied the water to the reactors. The presence of a chloramine residual (1.74 ± 0.21 mg/L) suppressed biofilm accumulation and selected for Mycobacterium-like and Sphingopyxis-like operational taxonomic units (OTUs) while the destruction of the chloramine residual resulted in a significant increase in biomass quantity and a shift toward a more diverse community dominated by Nitrospira-like OTUs, which, our results suggest, may be complete ammonia oxidizers (comammox). Coupon material, however, had a relatively minor effect on the abundance and community composition of the biofilm bacteria. Although biofilm communities from the chloraminated water reactor and the water mains shared some dominant populations (namely, Mycobacterium- and Nitrosomonas-like OTUs), the communities were significantly different. This manuscript provides novel insights into the effects of dechlorination and pipe material on biofilm community composition. Furthermore, to our knowledge, it is the first study to compare biofilm in a tap water-fed, bench-scale simulated distribution system to biofilm on water mains from the full-scale system supplying the tap water.
Collapse
Affiliation(s)
- Srijan Aggarwal
- Department of Civil and Environmental Engineering , University of Alaska Fairbanks , Fairbanks , Alaska 99775 , United States
| | - C Kimloi Gomez-Smith
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Youchul Jeon
- Department of Civil and Environmental Engineering , University of Toledo , Toledo , Ohio 43606-339 , United States
| | - Timothy M LaPara
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- BioTechnology Institute , University of Minnesota , St. Paul , Minnesota 55108 , United States
| | - Michael B Waak
- Department of Civil and Environmental Engineering , Norwegian University of Science and Technology , 7491 Trondheim , Norway
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- BioTechnology Institute , University of Minnesota , St. Paul , Minnesota 55108 , United States
| |
Collapse
|
71
|
Xu H, Lin C, Chen W, Shen Z, Liu Z, Chen T, Wang Y, Li Y, Lu C, Luo J. Effects of pipe material on nitrogen transformation, microbial communities and functional genes in raw water transportation. WATER RESEARCH 2018; 143:188-197. [PMID: 29957407 DOI: 10.1016/j.watres.2018.06.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
Raw water transportation pipelines are vital in an urban water supply system for transporting raw water to drinking water treatment plants. This study investigated the effects of pipe material on nitrogen transformation, microbial communities and characteristics of related function genes in paint-lined steel pipe (PLSP) and cement-lined steel pipe (CLSP) raw water model systems. We established quantitative relationships between specific functional genes and change rates of nitrogen pollutants, which were verified by field investigation on nitrogen pollutant transformations in real raw water transportation systems. The results showed that the CLSP produced higher ammonia nitrogen (NH4+-N) transformation rates and higher effluent concentrations of nitrate nitrogen (NO3--N) and dissolved organic nitrogen (DON) than the PLSP. Both pipes achieved high and stable nitrite nitrogen (NO2--N) and low total nitrogen (TN) removal efficiency. Nitrification was found to be the dominant process in both model systems, especially in the CLSP. Characteristics of microbial communities and nitrogen functional genes, which were analysed by high-throughput pyrosequencing and quantitative polymerase chain reaction (qPCR), respectively, varied between the two pipe systems. Nitrogen transformation pathways, identified by path analysis, were also different between the PLSP and CLSP due to different microbial community characteristics and synergistic effects of nitrogen functional genes. In the CLSP, (NH4+-N→NO2--N) with part denitrification, was the primary transformation pathway of ammonia nitrogen (NH4+-N), while only ammonia oxidization contributed to NH4+-N transformation in the PLSP. (NO2--N→NO3--N) was the main pathway involved in NO2--N transformation and NO3--N accumulation. The TN removal showed complex relationships with nitrification, denitrification and nitrogen fixation processes. These findings provided molecular-level insights into nitrogen pollutant transformations during the transportation of raw water through different types of pipes and technical support for the selection of raw water pipe materials. In our study area, the Taihu basin, China, PLSP was better than CLSP for distributing raw water in a short transportation distance, due to the lower effluent concentrations of DON and NO3--N and less abundance of microorganisms.
Collapse
Affiliation(s)
- Hang Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Chenshuo Lin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Wei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Zhen Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Zhigang Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China; Ningbo Water Supply Co., Ltd, No.348 Xinhe Road, Ningbo, 315041, China
| | - Taoyuan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Yueting Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Yang Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Chunhui Lu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, USA
| |
Collapse
|
72
|
Johansen MP, Prentice E, Cresswell T, Howell N. Initial data on adsorption of Cs and Sr to the surfaces of microplastics with biofilm. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 190-191:130-133. [PMID: 29787932 DOI: 10.1016/j.jenvrad.2018.05.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 05/20/2023]
Abstract
The adsorption of radiocesium and radiostrontium onto a range of natural materials has been well quantified, but not for the new media of environmental plastics, which may have enhanced adsorption due to surface-weathering and development of biofilms. Microplastic samples were deployed in freshwater, estuarine and marine conditions, then characterised using infrared spectroscopy to document changes to the plastic surface (vs interior). Synchrotron elemental mapping data revealed surfaces that were well-covered by accumulation of reactive water solutes and sulphur, but, in contrast, had highly discrete coverage of elements such as Fe and Ti, indicating adhered mineral/clay-associated agglomerates that may increase overall adsorption capacity. Plastics that had been deployed for nearly five months adsorbed radionuclides in both freshwater and estuarine conditions with the highest Kd for cesium (Cs) in freshwater (80 ml g-1) and lowest for strontium (Sr) in estuarine conditions (5 ml g-1). The degree of Cs and Sr adsorption onto plastics appears to be approximately 2-3 orders of magnitude lower than for sediment reference values. While lower than for sediments, adsorption occurred on all samples and may indicate a significant radionuclide reservoir, given that plastics are relatively buoyant and mobile in water regimes, and are increasing in global aquatic systems.
Collapse
Affiliation(s)
- Mathew P Johansen
- Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia.
| | - Emily Prentice
- Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia; University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Tom Cresswell
- Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Nick Howell
- Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| |
Collapse
|
73
|
Douterelo I, Fish KE, Boxall JB. Succession of bacterial and fungal communities within biofilms of a chlorinated drinking water distribution system. WATER RESEARCH 2018; 141:74-85. [PMID: 29778067 DOI: 10.1016/j.watres.2018.04.058] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/05/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Understanding the temporal dynamics of multi-species biofilms in Drinking Water Distribution Systems (DWDS) is essential to ensure safe, high quality water reaches consumers after it passes through these high surface area reactors. This research studied the succession characteristics of fungal and bacterial communities under controlled environmental conditions fully representative of operational DWDS. Microbial communities were observed to increase in complexity after one month of biofilm development but they did not reach stability after three months. Changes in cell numbers were faster at the start of biofilm formation and tended to decrease over time, despite the continuing changes in bacterial community composition. Fungal diversity was markedly less than bacterial diversity and had a lag in responding to temporal dynamics. A core-mixed community of bacteria including Pseudomonas, Massillia and Sphingomonas and the fungi Acremonium and Neocosmopora were present constantly and consistently in the biofilms over time and conditions studied. Monitoring and managing biofilms and such ubiquitous core microbial communities are key control strategies to ensuring the delivery of safe drinking water via the current ageing DWDS infrastructure.
Collapse
Affiliation(s)
- I Douterelo
- Pennine Water Group, Department of Civil and Structural Engineering, Mappin Street, University of Sheffield, Sheffield, S1 3JD, UK.
| | - K E Fish
- Pennine Water Group, Department of Civil and Structural Engineering, Mappin Street, University of Sheffield, Sheffield, S1 3JD, UK
| | - J B Boxall
- Pennine Water Group, Department of Civil and Structural Engineering, Mappin Street, University of Sheffield, Sheffield, S1 3JD, UK
| |
Collapse
|
74
|
Jing H, Sahle-Demessie E, Sorial GA. Inhibition of biofilm growth on polymer-MWCNTs composites and metal surfaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:167-178. [PMID: 29573683 DOI: 10.1016/j.scitotenv.2018.03.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
There is an increased interest in incorporating multi-wall carbon nanotubes (MWCNTs) into polymer matrices to control the adhesion of bacteria to surfaces and the subsequent formation of biofilm growth on the surface of water pipes, food packages, and medical devices. Microbial interactions with carbon nanotube-polymer composites in the environment are not well understood. The growth of Pseudomonas fluorescens (gram-negative) and Mycobacterium smegmatis (gram-positive) biofilms on copper, polyethylene (PE), polyvinyl chloride, and stainless steel was compared with growth on MWCNT-PE composites in order to gain insight into the effect of the surface properties of nanomaterials on the attachment and proliferation of microorganism which could result in the engineering of better, non-fouling materials. A statistical analysis of the biofilm growth showed a significant impact of materials for both P. fluorescens (p < 0.0001) and M. smegmatis (p = 0.00426). Biofilm growth after 56 days on PE compared to biofilm growth on copper surfaces decreased by 46.4% and 34.9% for P. fluorescens and M. smegmatis, respectively. Biofilm growth on PE-multiwall-carbon-nanotubes (MWCNTs)-composites surface compared to PE decreased by 89.3% and 29% for P. fluorescens and M. smegmatis, respectively. Bacterial species (p < 0.0006) and surface roughness (p < 0.0001) were important factors in determining the attachment and initial biofilm growth rate. The interactions between cells and material surface could be attributed to the complicated and collective effect of electrostatic forces, hydrophobic interactions, and hydrogen/covalent bonding. Further study is needed to determine whether or not there is a difference between the cell attachment in the exponential growth phase and the stationary, or decay, phase cells.
Collapse
Affiliation(s)
- Hengye Jing
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | | | - George A Sorial
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
75
|
|
76
|
Hou L, Zhou Q, Wu Q, Gu Q, Sun M, Zhang J. Spatiotemporal changes in bacterial community and microbial activity in a full-scale drinking water treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:449-459. [PMID: 29291559 DOI: 10.1016/j.scitotenv.2017.12.301] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
To gain insight into the bacterial dynamics present in drinking water treatment (DWT) systems, the microbial community and activity in a full-scale DWT plant (DWTP) in Guangzhou, South China, were investigated using Illumina Hiseq sequencing analyses combined with cultivation-based techniques during the wet and dry seasons. Illumina sequencing analysis of 16S rRNA genes revealed a large shift in the proportion of Actinobacteria, Proteobacteria and Firmicutes during the treatment process, with the proportion of Actinobacteria decreased sharply, whereas that of Proteobacteria and Firmicutes increased and predominated in treated water. Both microbial activity and bacterial diversity during the treatment process showed obvious spatial variation, with higher levels observed during the dry season and lower levels during the wet season. Clustering analysis and principal component analysis indicated dramatic shifts in the bacterial community after chlorination, suggesting that chlorination was highly effective at influencing the bacterial community. The bacterial community structure of finished water primarily comprised Pseudomonas, Citrobacter, and Acinetobacter, and interestingly showed high similarity to biofilms on granular activated carbon. Additionally, the abundance of bacterial communities was relatively stable in finished water and did not change with the season. A large number of unique operational taxonomic units were shared during treatment steps, indicating the presence of a diverse core microbiome throughout the treatment process. Opportunistic pathogens, including Pseudomonas, Acinetobacter, Citrobacter, Mycobacterium, Salmonella, Staphylococcus, Legionella, Streptococcus and Enterococcus, were detected in water including finished water, suggesting a potential threat to drinking-water safety. We also detected bacteria isolated from each treatment step using the pure-culture method. In particular, two isolates, identified as Mycobacterium sp. and Blastococcus sp., which belong to the phylum Actinobacteria, were obtained from finished water during the dry season. Together, these results provided evidence of spatial and temporal variations in DWTPs and contributed to the beneficial manipulation of the drinking water microbiome.
Collapse
Affiliation(s)
- Luanfeng Hou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| | - Qin Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Qingping Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| | - Qihui Gu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| | - Ming Sun
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China; Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Jumei Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China.
| |
Collapse
|
77
|
Influence of an Extended Domestic Drinking Water System on the Drinking Water Quality. WATER 2018. [DOI: 10.3390/w10050582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
78
|
Assaidi A, Ellouali M, Latrache H, Mabrouki M, Timinouni M, Zahir H, Tankiouine S, Barguigua A, Mliji EM. Adhesion of Legionella pneumophila on glass and plumbing materials commonly used in domestic water systems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2018; 28:125-133. [PMID: 29376417 DOI: 10.1080/09603123.2018.1429580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
We aimed to investigate the adhesion of Legionella pneumophila serogroup1 and L. pneumophila serogroup2-15 on glass, galvanized steel, stainless steel, copper, Polyvinyl chloride(PVC), Cross-linked polyethylene(PEX-c) and Polypropylene Random Copolymer(PPR). The surface physicochemical properties of both bacterial cells and materials were estimated through contact angle measurements. The roughness and surface topography of the materials were evaluated by Atomic Force Microscopy. The two L. pneumophila serogroups and plumbing materials showed a hydrophobic character, while glass surface was hydrophilic. All strains were adhered to all materials with the exception of copper. The result showed that the adhesion of both L. pneumophila sg1 and sg2-15 was systematically expressed with high intensity on galvanized steel followed by PVC, PEX-c, PPR, stainless steel and the low intensity on glass. The extent of adhesion is in correlation with the surface roughness and acid-bases interactions, while hydrophobicity seems to have no effect in adhesion intensity.
Collapse
Affiliation(s)
- Abdelwahid Assaidi
- a Laboratory of Bioprocess and Biointerfaces, Faculty of Sciences and Techniques , Sultan Moulay Slimane University , Beni Mellal , Morocco
- b Laboratory of Water Microbiology and Environmental Hygiene , Institut Pasteur du Maroc , Casablanca , Morocco
| | - Mostafa Ellouali
- a Laboratory of Bioprocess and Biointerfaces, Faculty of Sciences and Techniques , Sultan Moulay Slimane University , Beni Mellal , Morocco
| | - Hassan Latrache
- a Laboratory of Bioprocess and Biointerfaces, Faculty of Sciences and Techniques , Sultan Moulay Slimane University , Beni Mellal , Morocco
| | - Mustapha Mabrouki
- c Laboratory of Industrial Engineering, Faculty of Sciences and Techniques , Sultan Moulay Slimane University , Beni Mellal , Morocco
| | - Mohammed Timinouni
- b Laboratory of Water Microbiology and Environmental Hygiene , Institut Pasteur du Maroc , Casablanca , Morocco
| | - Hafida Zahir
- a Laboratory of Bioprocess and Biointerfaces, Faculty of Sciences and Techniques , Sultan Moulay Slimane University , Beni Mellal , Morocco
| | - Safae Tankiouine
- a Laboratory of Bioprocess and Biointerfaces, Faculty of Sciences and Techniques , Sultan Moulay Slimane University , Beni Mellal , Morocco
| | - Abouddihaj Barguigua
- d Polyvalent Laboratory of Research and Development, Polydisciplinary Faculty , Sultan Moulay Slimane University , Beni Mellal , Morocco
| | - El Mostafa Mliji
- b Laboratory of Water Microbiology and Environmental Hygiene , Institut Pasteur du Maroc , Casablanca , Morocco
| |
Collapse
|
79
|
Neu L, Bänziger C, Proctor CR, Zhang Y, Liu WT, Hammes F. Ugly ducklings-the dark side of plastic materials in contact with potable water. NPJ Biofilms Microbiomes 2018; 4:7. [PMID: 29619241 PMCID: PMC5869678 DOI: 10.1038/s41522-018-0050-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 02/16/2018] [Accepted: 03/01/2018] [Indexed: 01/06/2023] Open
Abstract
Bath toys pose an interesting link between flexible plastic materials, potable water, external microbial and nutrient contamination, and potentially vulnerable end-users. Here, we characterized biofilm communities inside 19 bath toys used under real conditions. In addition, some determinants for biofilm formation were assessed, using six identical bath toys under controlled conditions with either clean water prior to bathing or dirty water after bathing. All examined bath toys revealed notable biofilms on their inner surface, with average total bacterial numbers of 5.5 × 106 cells/cm2 (clean water controls), 9.5 × 106 cells/cm2 (real bath toys), and 7.3 × 107 cells/cm2 (dirty water controls). Bacterial community compositions were diverse, showing many rare taxa in real bath toys and rather distinct communities in control bath toys, with a noticeable difference between clean and dirty water control biofilms. Fungi were identified in 58% of all real bath toys and in all dirty water control toys. Based on the comparison of clean water and dirty water control bath toys, we argue that bath toy biofilms are influenced by (1) the organic carbon leaching from the flexible plastic material, (2) the chemical and biological tap water quality, (3) additional nutrients from care products and human body fluids in the bath water, as well as, (4) additional bacteria from dirt and/or the end-users’ microbiome. The present study gives a detailed characterization of bath toy biofilms and a better understanding of determinants for biofilm formation and development in systems comprising plastic materials in contact with potable water. While bathing typically means good hygiene, bath toys can serve as incubators for microbial growth. Microbes colonize nearly every natural and human-made surface, sometimes living within complex communities called biofilms. A team led by Frederik Hammes at the Swiss Federal Institute of Aquatic Science and Technology found that tap water bacteria and fungi readily formed biofilms inside bath toys, suggesting that bathing provides food for microbes. These nutrients may come from bath toys’ polymeric material, from care products like soap and from human secretions like sweat. While 16S rRNA sequence analysis found that some of the microbes were related to disease-causing strains, future work is needed to assess the disease risk from these bath toy-associated biofilms. This work sheds light on how microbes are spread by our routine activities and that we are bathed in microbes, literally.
Collapse
Affiliation(s)
- Lisa Neu
- 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,2Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Carola Bänziger
- 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Caitlin R Proctor
- 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,2Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Ya Zhang
- 3Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, USA
| | - Wen-Tso Liu
- 3Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, USA
| | - Frederik Hammes
- 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
80
|
Drinking water microbiome assembly induced by water stagnation. ISME JOURNAL 2018; 12:1520-1531. [PMID: 29588495 PMCID: PMC5955952 DOI: 10.1038/s41396-018-0101-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/09/2018] [Accepted: 02/20/2018] [Indexed: 01/05/2023]
Abstract
What happens to tap water when you are away from home? Day-to-day water stagnation in building plumbing can potentially result in water quality deterioration (e.g., lead release or pathogen proliferation), which is a major public health concern. However, little is known about the microbial ecosystem processes in plumbing systems, hindering the development of biological monitoring strategies. Here, we track tap water microbiome assembly in situ, showing that bacterial community composition changes rapidly from the city supply following ~6-day stagnation, along with an increase in cell count from 103 cells/mL to upwards of 7.8 × 105 cells/mL. Remarkably, bacterial community assembly was highly reproducible in this built environment system (median Spearman correlation between temporal replicates = 0.78). Using an island biogeography model, we show that neutral processes arising from the microbial communities in the city water supply (i.e., migration and demographic stochasticity) explained the island community composition in proximal pipes (Goodness-of-fit = 0.48), yet declined as water approached the faucet (Goodness-of-fit = 0.21). We developed a size-effect model to simulate this process, which indicated that pipe diameter drove these changes by mediating the kinetics of hypochlorite decay and cell detachment, affecting selection, migration, and demographic stochasticity. Our study challenges current water quality monitoring practice worldwide which ignore biological growth in plumbing, and suggests the island biogeography model as a useful framework to evaluate building water system quality.
Collapse
|
81
|
Mao G, Wang Y, Hammes F. Short-term organic carbon migration from polymeric materials in contact with chlorinated drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:1220-1227. [PMID: 28958129 DOI: 10.1016/j.scitotenv.2017.09.166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 06/07/2023]
Abstract
Polymeric materials are widely used in drinking water distribution systems. These materials could release organic carbon that supports bacterial growth. To date, the available migration assays for polymeric materials have not included the potential influence of chlorination on organic carbon migration behavior. Hence, we established a migration and growth potential protocol specifically for analysis of carbon migration from materials in contact with chlorinated drinking water. Four different materials were tested, including ethylene propylene dienemethylene (EPDM), poly-ethylene (PEX b and PEX c) and poly-butylene (PB). Chlorine consumption rates decreased gradually over time for EPDM, PEXc and PB. In contrast, no free chlorine was detected for PEXb at any time during the 7 migration cycles. Total organic carbon (TOC) and assimilable organic carbon (AOC) was evaluated in both chlorinated and non-chlorinated migrations. TOC concentrations for EPDM and PEXb in chlorinated migrations were significantly higher than non-chlorinated migrations. The AOC results showed pronounced differences among tested materials. AOC concentrations from chlorinated migration waters of EPDM and PB were higher compared to non-chlorinated migrations, whereas the opposite trend was observed for PEXb and PEXc. There was also a considerable difference between tested materials with regards to bacterial growth potential. The results revealed that the materials exposed to chlorine-influenced migration still exhibited a strong biofilm formation potential. The overall results suggested that the choice in material would make a considerable difference in chlorine consumption and carbon migration behavior in drinking water distribution systems.
Collapse
Affiliation(s)
- Guannan Mao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Frederik Hammes
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland.
| |
Collapse
|
82
|
Inkinen J, Jayaprakash B, Ahonen M, Pitkänen T, Mäkinen R, Pursiainen A, Santo Domingo J, Salonen H, Elk M, Keinänen-Toivola M. Bacterial community changes in copper and PEX drinking water pipeline biofilms under extra disinfection and magnetic water treatment. J Appl Microbiol 2018; 124:611-624. [DOI: 10.1111/jam.13662] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/07/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Affiliation(s)
- J. Inkinen
- Department of Civil Engineering; School of Engineering; Aalto University; Espoo Finland
- Faculty of Technology; Satakunta University of Applied Sciences; Rauma Finland
| | - B. Jayaprakash
- Department of Health Security; National Institute for Health and Welfare; Kuopio Finland
| | - M. Ahonen
- Faculty of Technology; Satakunta University of Applied Sciences; Rauma Finland
| | - T. Pitkänen
- Department of Health Security; National Institute for Health and Welfare; Kuopio Finland
| | - R. Mäkinen
- Faculty of Technology; Satakunta University of Applied Sciences; Rauma Finland
| | - A. Pursiainen
- Department of Health Security; National Institute for Health and Welfare; Kuopio Finland
| | - J.W. Santo Domingo
- Office of Research and Development; U.S. Environmental Protection Agency; Cincinnati OH USA
| | - H. Salonen
- Department of Civil Engineering; School of Engineering; Aalto University; Espoo Finland
| | - M. Elk
- Office of Research and Development; U.S. Environmental Protection Agency; Cincinnati OH USA
| | | |
Collapse
|
83
|
Zhang Y, Kitajima M, Whittle AJ, Liu WT. Benefits of Genomic Insights and CRISPR-Cas Signatures to Monitor Potential Pathogens across Drinking Water Production and Distribution Systems. Front Microbiol 2017; 8:2036. [PMID: 29097994 PMCID: PMC5654357 DOI: 10.3389/fmicb.2017.02036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/05/2017] [Indexed: 11/22/2022] Open
Abstract
The occurrence of pathogenic bacteria in drinking water distribution systems (DWDSs) is a major health concern, and our current understanding is mostly related to pathogenic species such as Legionella pneumophila and Mycobacterium avium but not to bacterial species closely related to them. In this study, genomic-based approaches were used to characterize pathogen-related species in relation to their abundance, diversity, potential pathogenicity, genetic exchange, and distribution across an urban drinking water system. Nine draft genomes recovered from 10 metagenomes were identified as Legionella (4 draft genomes), Mycobacterium (3 draft genomes), Parachlamydia (1 draft genome), and Leptospira (1 draft genome). The pathogenicity potential of these genomes was examined by the presence/absence of virulence machinery, including genes belonging to Type III, IV, and VII secretion systems and their effectors. Several virulence factors known to pathogenic species were detected with these retrieved draft genomes except the Leptospira-related genome. Identical clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins (CRISPR-Cas) genetic signatures were observed in two draft genomes recovered at different stages of the studied system, suggesting that the spacers in CRISPR-Cas could potentially be used as a biomarker in the monitoring of Legionella related strains at an evolutionary scale of several years across different drinking water production and distribution systems. Overall, metagenomics approach was an effective and complementary tool of culturing techniques to gain insights into the pathogenic characteristics and the CRISPR-Cas signatures of pathogen-related species in DWDSs.
Collapse
Affiliation(s)
- Ya Zhang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Andrew J Whittle
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
84
|
Zlatanović L, van der Hoek JP, Vreeburg JHG. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system. WATER RESEARCH 2017; 123:761-772. [PMID: 28732329 DOI: 10.1016/j.watres.2017.07.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/02/2017] [Accepted: 07/09/2017] [Indexed: 06/07/2023]
Abstract
The drinking water quality changes during the transport through distribution systems. Domestic drinking water systems (DDWSs), which include the plumbing between the water meter and consumer's taps, are the most critical points in which water quality may be affected. In distribution networks, the drinking water temperature and water residence time are regarded as indicators of the drinking water quality. This paper describes an experimental research on the influence of stagnation time and temperature change on drinking water quality in a full-scale DDWS. Two sets of stagnation experiments, during winter and summer months, with various stagnation intervals (up to 168 h of stagnation) were carried out. Water and biofilms were sampled at two different taps, a kitchen and a shower tap. Results from this study indicate that temperature and water stagnation affect both chemical and microbial quality in DDWSs, whereas microbial parameters in stagnant water appear to be driven by the temperature of fresh water. Biofilm formed in the shower pipe contained more total and intact cells than the kitchen pipe biofilm. Alphaproteobacteria were found to dominate in the shower biofilm (78% of all Proteobacteria), while in the kitchen tap biofilm Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria were evenly distributed.
Collapse
Affiliation(s)
- Lj Zlatanović
- Delft University of Technology, Department of Water Management, Delft, The Netherlands.
| | - J P van der Hoek
- Delft University of Technology, Department of Water Management, Delft, The Netherlands; Waternet, Strategic Centre, Amsterdam, The Netherlands.
| | - J H G Vreeburg
- Wageningen University, Sub- Department of Environmental Technology, Wageningen, The Netherlands; KWR Watercycle Research Institute, Nieuwegein, The Netherlands.
| |
Collapse
|
85
|
Proctor CR, Dai D, Edwards MA, Pruden A. Interactive effects of temperature, organic carbon, and pipe material on microbiota composition and Legionella pneumophila in hot water plumbing systems. MICROBIOME 2017; 5:130. [PMID: 28978350 PMCID: PMC5628487 DOI: 10.1186/s40168-017-0348-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/20/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Several biotic and abiotic factors have been reported to influence the proliferation of microbes, including Legionella pneumophila, in hot water premise plumbing systems, but their combined effects have not been systematically evaluated. Here, we utilize simulated household water heaters to examine the effects of stepwise increases in temperature (32-53 °C), pipe material (copper vs. cross-linked polyethylene (PEX)), and influent assimilable organic carbon (0-700 μg/L) on opportunistic pathogen gene copy numbers and the microbiota composition, as determined by quantitative polymerase chain reaction and 16S rRNA gene amplicon sequencing. RESULTS Temperature had an overarching influence on both the microbiota composition and L. pneumophila numbers. L. pneumophila peaked at 41 °C in the presence of PEX (1.58 × 105 gene copies/mL). At 53 °C, L. pneumophila was not detected. Several operational taxonomic units (OTUs) persisted across all conditions, accounting for 50% of the microbiota composition from 32 to 49 °C and 20% at 53 °C. Pipe material most strongly influenced microbiota composition at lower temperatures, driven by five to six OTUs enriched with each material. Copper pipes supported less L. pneumophila than PEX pipes (mean 2.5 log10 lower) at temperatures ≤ 41 °C, but showed no difference in total bacterial numbers. Differences between pipe materials diminished with elevated temperature, probably resulting from decreased release of copper ions. At temperatures ≤ 45 °C, influent assimilable organic carbon correlated well with total bacterial numbers, but not with L. pneumophila numbers. At 53 °C, PEX pipes leached organic carbon, reducing the importance of dosed organic carbon. L. pneumophila numbers correlated with a Legionella OTU and a Methylophilus OTU identified by amplicon sequencing. CONCLUSIONS Temperature was the most effective factor for the control of L. pneumophila, while microbiota composition shifted with each stepwise temperature increase. While copper pipe may also help shape the microbiota composition and limit L. pneumophila proliferation, its benefits might be constrained at higher temperatures. Influent assimilable organic carbon affected total bacterial numbers, but had minimal influence on opportunistic pathogen gene numbers or microbiota composition. These findings provide guidance among multiple control measures for the growth of opportunistic pathogens in hot water plumbing and insight into the mediating role of microbial ecological factors.
Collapse
Affiliation(s)
- Caitlin R. Proctor
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, 24061 USA
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstr 133, CH-8600 Duebendorf, Switzerland
| | - Dongjuan Dai
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, 24061 USA
| | - Marc A. Edwards
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, 24061 USA
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, 24061 USA
| |
Collapse
|
86
|
Gulati P, Ghosh M. Biofilm forming ability of Sphingomonas paucimobilis isolated from community drinking water systems on plumbing materials used in water distribution. JOURNAL OF WATER AND HEALTH 2017; 15:942-954. [PMID: 29215358 DOI: 10.2166/wh.2017.294] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sphingomonas paucimobilis, an oligotroph, is well recognized for its potential for biofilm formation. The present study explored the biofilm forming ability of a strain isolated from municipal drinking water on plumbing materials. The intensity of biofilm formation of this strain on different plumbing materials was examined by using 1 × 1 cm2 pieces of six different pipe materials, i.e. polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), aluminium (Al), copper (Cu) and rubber (R) and observing by staining with the chemical chromophore, Calcofluor. To understand whether biofilm formation occurs under flow through conditions, a laboratory-scale simulated distribution system, comprised of the above materials was fabricated. Biofilm samples were collected from the designed system at different biofilm ages (10, 40 and 90 hours old) and enumerated. The results indicated that the biofilm formation occurred on all plumbing materials with Cu and R as exceptions. The intensity of biofilm formation was found to be maximum on PVC followed by PP and PE. We also demonstrated the chemical chromophore (Calcofluor) successfully for rapid and easy visual detection of biofilms, validated by scanning electron microscope (SEM) analysis of the plumbing materials. Chlorination has little effect in preventing biofilm development.
Collapse
Affiliation(s)
- Parul Gulati
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India E-mail:
| | - Moushumi Ghosh
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India E-mail:
| |
Collapse
|
87
|
Vargas IT, Fischer DA, Alsina MA, Pavissich JP, Pastén PA, Pizarro GE. Copper Corrosion and Biocorrosion Events in Premise Plumbing. MATERIALS 2017; 10:ma10091036. [PMID: 28872628 PMCID: PMC5615691 DOI: 10.3390/ma10091036] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/20/2017] [Accepted: 08/30/2017] [Indexed: 11/22/2022]
Abstract
Corrosion of copper pipes may release high amounts of copper into the water, exceeding the maximum concentration of copper for drinking water standards. Typically, the events with the highest release of copper into drinking water are related to the presence of biofilms. This article reviews this phenomenon, focusing on copper ingestion and its health impacts, the physicochemical mechanisms and the microbial involvement on copper release, the techniques used to describe and understand this phenomenon, and the hydrodynamic effects. A conceptual model is proposed and the mathematical models are reviewed.
Collapse
Affiliation(s)
- Ignacio T Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
- CEDEUS, Centro de Desarrollo Urbano Sustentable, Santiago 7820436, Chile.
| | - Diego A Fischer
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
| | - Marco A Alsina
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
| | - Juan P Pavissich
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago 7941169, Chile.
| | - Pablo A Pastén
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
- CEDEUS, Centro de Desarrollo Urbano Sustentable, Santiago 7820436, Chile.
| | - Gonzalo E Pizarro
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
- CEDEUS, Centro de Desarrollo Urbano Sustentable, Santiago 7820436, Chile.
| |
Collapse
|
88
|
Ikonen J, Pitkänen T, Kosse P, Ciszek R, Kolehmainen M, Miettinen IT. On-line detection of Escherichia coli intrusion in a pilot-scale drinking water distribution system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 198:384-392. [PMID: 28494427 DOI: 10.1016/j.jenvman.2017.04.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Improvements in microbial drinking water quality monitoring are needed for the better control of drinking water distribution systems and for public health protection. Conventional water quality monitoring programmes are not always able to detect a microbial contamination of drinking water. In the drinking water production chain, in addition to the vulnerability of source waters, the distribution networks are prone to contamination. In this study, a pilot-scale drinking-water distribution network with an on-line monitoring system was utilized for detecting bacterial intrusion. During the experimental Escherichia coli intrusions, the contaminant was measured by applying a set of on-line sensors for electric conductivity (EC), pH, temperature (T), turbidity, UV-absorbance at 254 nm (UVAS SC) and with a device for particle counting. Monitored parameters were compared with the measured E. coli counts using the integral calculations of the detected peaks. EC measurement gave the strongest signal compared with the measured baseline during the E. coli intrusion. Integral calculations showed that the peaks in the EC, pH, T, turbidity and UVAS SC data were detected corresponding to the time predicted. However, the pH and temperature peaks detected were barely above the measured baseline and could easily be mixed with the background noise. The results indicate that on-line monitoring can be utilized for the rapid detection of microbial contaminants in the drinking water distribution system although the peak interpretation has to be performed carefully to avoid being mixed up with normal variations in the measurement data.
Collapse
Affiliation(s)
- Jenni Ikonen
- Water and Health Unit, Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701, Kuopio, Finland.
| | - Tarja Pitkänen
- Water and Health Unit, Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701, Kuopio, Finland
| | - Pascal Kosse
- Water and Health Unit, Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701, Kuopio, Finland; University of Duisburg-Essen, Biofilm Centre, Universitätsstr. 5, 45141, Essen, Germany
| | - Robert Ciszek
- Research Group of Environmental Informatics, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Mikko Kolehmainen
- Research Group of Environmental Informatics, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ilkka T Miettinen
- Water and Health Unit, Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701, Kuopio, Finland
| |
Collapse
|
89
|
Lemire JA, Kalan L, Gugala N, Bradu A, Turner RJ. Silver oxynitrate - an efficacious compound for the prevention and eradication of dual-species biofilms. BIOFOULING 2017; 33:460-469. [PMID: 28521545 DOI: 10.1080/08927014.2017.1322586] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
Preventing and eradicating biofilms remains a challenge in clinical and industrial settings. Recently, the present authors demonstrated that silver oxynitrate (Ag7NO11) prevented and eradicated single-species planktonic and biofilm populations of numerous microbes at lower concentrations than other silver (Ag) compounds. Here, the antimicrobial and anti-biofilm efficacy of Ag7NO11 is elaborated by testing its in vitro activity against combinations of dual-species, planktonic and biofilm populations of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. As further evidence emerges that multispecies bacterial communities are more common in the environment than their single-species counterparts, this study reinforces the diverse applicability of the minimal biofilm eradication concentration (MBEC™) assay for testing antimicrobial compounds against biofilms. Furthermore, this study demonstrated that Ag7NO11 had enhanced antimicrobial and anti-biofilm activity compared to copper sulfate (CuSO4) and silver nitrate (AgNO3) against the tested bacterial species.
Collapse
Affiliation(s)
- Joe A Lemire
- a The Biofilm Research Group, Department of Biological Sciences , University of Calgary , Calgary , Canada
| | | | - Natalie Gugala
- a The Biofilm Research Group, Department of Biological Sciences , University of Calgary , Calgary , Canada
| | - Alexandru Bradu
- a The Biofilm Research Group, Department of Biological Sciences , University of Calgary , Calgary , Canada
| | - Raymond J Turner
- a The Biofilm Research Group, Department of Biological Sciences , University of Calgary , Calgary , Canada
| |
Collapse
|
90
|
van der Kooij D, Bakker GL, Italiaander R, Veenendaal HR, Wullings BA. Biofilm Composition and Threshold Concentration for Growth of Legionella pneumophila on Surfaces Exposed to Flowing Warm Tap Water without Disinfectant. Appl Environ Microbiol 2017; 83:e02737-16. [PMID: 28062459 PMCID: PMC5311405 DOI: 10.1128/aem.02737-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023] Open
Abstract
Legionella pneumophila in potable water installations poses a potential health risk, but quantitative information about its replication in biofilms in relation to water quality is scarce. Therefore, biofilm formation on the surfaces of glass and chlorinated polyvinyl chloride (CPVC) in contact with tap water at 34 to 39°C was investigated under controlled hydraulic conditions in a model system inoculated with biofilm-grown L. pneumophila The biofilm on glass (average steady-state concentration, 23 ± 9 pg ATP cm-2) exposed to treated aerobic groundwater (0.3 mg C liter-1; 1 μg assimilable organic carbon [AOC] liter-1) did not support growth of the organism, which also disappeared from the biofilm on CPVC (49 ± 9 pg ATP cm-2) after initial growth. L. pneumophila attained a level of 4.3 log CFU cm-2 in the biofilms on glass (1,055 ± 225 pg ATP cm-2) and CPVC (2,755 ± 460 pg ATP cm-2) exposed to treated anaerobic groundwater (7.9 mg C liter-1; 10 μg AOC liter-1). An elevated biofilm concentration and growth of L. pneumophila were also observed with tap water from the laboratory. The Betaproteobacteria Piscinibacter and Methyloversatilis and amoeba-resisting Alphaproteobacteria predominated in the clones and isolates retrieved from the biofilms. In the biofilms, the Legionella colony count correlated significantly with the total cell count (TCC), heterotrophic plate count, ATP concentration, and presence of Vermamoeba vermiformis This amoeba was rarely detected at biofilm concentrations of <100 pg ATP cm-2 A threshold concentration of approximately 50 pg ATP cm-2 (TCC = 1 × 106 to 2 × 106 cells cm-2) was derived for growth of L. pneumophila in biofilms.IMPORTANCELegionella pneumophila is the etiologic agent in more than 10,000 cases of Legionnaires' disease that are reported annually worldwide and in most of the drinking water-associated disease outbreaks reported in the United States. The organism proliferates in biofilms on surfaces exposed to warm water in engineered freshwater installations. An investigation with a test system supplied with different types of warm drinking water without disinfectant under controlled hydraulic conditions showed that treated aerobic groundwater (0.3 mg liter-1 of organic carbon) induced a low biofilm concentration that supported no or very limited growth of L. pneumophila Elevated biofilm concentrations and L. pneumophila colony counts were observed on surfaces exposed to two types of extensively treated groundwater, containing 1.8 and 7.9 mg C liter-1 and complying with the microbial water quality criteria during distribution. Control measures in warm tap water installations are therefore essential for preventing growth of L. pneumophila.
Collapse
Affiliation(s)
| | | | | | | | - Bart A Wullings
- KWR Watercycle Research Institute, Nieuwegein, the Netherlands
| |
Collapse
|
91
|
Effectiveness of Devices to Monitor Biofouling and Metals Deposition on Plumbing Materials Exposed to a Full-Scale Drinking Water Distribution System. PLoS One 2017; 12:e0169140. [PMID: 28060947 PMCID: PMC5218461 DOI: 10.1371/journal.pone.0169140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/12/2016] [Indexed: 11/19/2022] Open
Abstract
A Modified Robbins Device (MRD) was installed in a full-scale water distribution system to investigate biofouling and metal depositions on concrete, high-density polyethylene (HDPE) and stainless steel surfaces. Bulk water monitoring and a KIWA monitor (with glass media) were used to offline monitor biofilm development on pipe wall surfaces. Results indicated that adenosine triphosphate (ATP) and metal concentrations on coupons increased with time. However, bacterial diversities decreased. There was a positive correlation between increase of ATP and metal deposition on pipe surfaces of stainless steel and HDPE and no correlation was observed on concrete and glass surfaces. The shared bacterial diversity between bulk water and MRD was less than 20% and the diversity shared between the MRD and KIWA monitor was only 10%. The bacterial diversity on biofilm of plumbing material of MRD however, did not show a significant difference suggesting a lack of influence from plumbing material during early stage of biofilm development.
Collapse
|
92
|
Chu W, Li X, Bond T, Gao N, Bin X, Wang Q, Ding S. Copper increases reductive dehalogenation of haloacetamides by zero-valent iron in drinking water: Reduction efficiency and integrated toxicity risk. WATER RESEARCH 2016; 107:141-150. [PMID: 27837731 DOI: 10.1016/j.watres.2016.10.047] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/16/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
The haloacetamides (HAcAms), an emerging class of nitrogen-containing disinfection byproducts (N-DBPs), are highly cytotoxic and genotoxic, and typically occur in treated drinking waters at low μg/L concentrations. Since many drinking distribution and storage systems contain unlined cast iron and copper pipes, reactions of HAcAms with zero-valent iron (ZVI) and metallic copper (Cu) may play a role in determining their fate. Moreover, ZVI and/or Cu are potentially effective HAcAm treatment technologies in drinking water supply and storage systems. This study reports that ZVI alone reduces trichloroacetamide (TCAcAm) to sequentially form dichloroacetamide (DCAcAm) and then monochloroacetamide (MCAcAm), whereas Cu alone does not impact HAcAm concentrations. The addition of Cu to ZVI significantly improved the removal of HAcAms, relative to ZVI alone. TCAcAm and their reduction products (DCAcAm and MCAcAm) were all decreased to below detection limits at a molar ratio of ZVI/Cu of 1:1 after 24 h reaction (ZVI/TCAcAm = 0.18 M/5.30 μM). TCAcAm reduction increased with the decreasing pH from 8.0 to 5.0, but values from an integrated toxic risk assessment were minimised at pH 7.0, due to limited removal MCAcAm under weak acid conditions (pH = 5.0 and 6.0). Higher temperatures (40 °C) promoted the reductive dehalogenation of HAcAms. Bromine was preferentially removed over chlorine, thus brominated HAcAms were more easily reduced than chlorinated HAcAms by ZVI/Cu. Although tribromoacetamide was more easily reduced than TCAcAm during ZVI/Cu reduction, treatment of tribromoacetamide resulted in a higher integrated toxicity risk than TCAcAm, due to the formation of monobromoacetamide (MBAcAm).
Collapse
Affiliation(s)
- Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Xin Li
- State Key Laboratory of Pollution Control and Resources Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tom Bond
- Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xu Bin
- State Key Laboratory of Pollution Control and Resources Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qiongfang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shunke Ding
- State Key Laboratory of Pollution Control and Resources Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
93
|
Gonzalez D, Tjandraatmadja G, Barry K, Vanderzalm J, Kaksonen AH, Dillon P, Puzon GJ, Sidhu J, Wylie J, Goodman N, Low J. Biofouling potential and material reactivity in a simulated water distribution network supplied with stormwater recycled via managed aquifer recharge. WATER RESEARCH 2016; 105:110-118. [PMID: 27607597 DOI: 10.1016/j.watres.2016.08.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/29/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
The injection of stormwater into aquifers for storage and recovery during high water demand periods is a promising technology for augmenting conventional water reserves. Limited information exists regarding the potential impact of aquifer treated stormwater in distribution system infrastructure. This study describes a one year pilot distribution pipe network trial to determine the biofouling potential for cement, copper and polyvinyl chloride pipe materials exposed to stormwater stored in a limestone aquifer compared to an identical drinking water rig. Median alkalinity (123 mg/L) and colour (12 HU) in stormwater was significantly higher than in drinking water (82 mg/L and 1 HU) and pipe discolouration was more evident for stormwater samples. X-ray Diffraction and Fluorescence analyses confirmed this was driven by the presence of iron rich amorphous compounds in more thickly deposited sediments also consistent with significantly higher median levels of iron (∼0.56 mg/L) in stormwater compared to drinking water (∼0.17 mg/L). Water type did not influence biofilm development as determined by microbial density but faecal indicators were significantly higher for polyvinyl chloride and cement exposed to stormwater. Treatment to remove iron through aeration and filtration would reduce the potential for sediment accumulation. Operational and verification monitoring parameters to manage scaling, corrosion, colour, turbidity and microbial growth in recycled stormwater distribution networks are discussed.
Collapse
Affiliation(s)
- Dennis Gonzalez
- CSIRO Land and Water, Private Bag 2, Glen Osmond, SA, 5064, Australia.
| | - Grace Tjandraatmadja
- CSIRO Land and Water, CSIRO, Private Bag 10, Clayton South, Vic, 3169, Australia
| | - Karen Barry
- CSIRO Land and Water, Private Bag 2, Glen Osmond, SA, 5064, Australia
| | - Joanne Vanderzalm
- CSIRO Land and Water, Private Bag 2, Glen Osmond, SA, 5064, Australia
| | - Anna H Kaksonen
- CSIRO Land and Water, CSIRO, Private Bag 5, Wembley, WA, 6913, Australia
| | - Peter Dillon
- CSIRO Land and Water, Private Bag 2, Glen Osmond, SA, 5064, Australia
| | - Geoff J Puzon
- CSIRO Land and Water, CSIRO, Private Bag 5, Wembley, WA, 6913, Australia
| | - Jatinder Sidhu
- CSIRO Land and Water, CSIRO, GPO Box 2583, Brisbane, Qld, 4001, Australia
| | - Jason Wylie
- CSIRO Land and Water, CSIRO, Private Bag 5, Wembley, WA, 6913, Australia
| | - Nigel Goodman
- CSIRO Land and Water, CSIRO, Private Bag 10, Clayton South, Vic, 3169, Australia
| | - Jason Low
- CSIRO Land and Water, CSIRO, Private Bag 10, Clayton South, Vic, 3169, Australia
| |
Collapse
|
94
|
Musa HI, Hassan L, Shamsuddin ZH, Panchadcharam C, Zakaria Z, Abdul Aziz S. Physicochemical Properties Influencing Presence of Burkholderia pseudomallei in Soil from Small Ruminant Farms in Peninsular Malaysia. PLoS One 2016; 11:e0162348. [PMID: 27635652 PMCID: PMC5026356 DOI: 10.1371/journal.pone.0162348] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/22/2016] [Indexed: 11/18/2022] Open
Abstract
Soil is considered to be a major reservoir of Burkholderia pseudomallei in the environment. This paper investigates soil physicochemical properties that may influence presence of B. pseudomallei in soil samples from small ruminant farms in Peninsular Malaysia. Soil samples were collected from the farms and cultured for B. pseudomallei. The texture, organic matter and water contents, pH, elemental contents, cation exchange capacities, carbon, sulfur and nitrogen contents were determined. Analysis of soil samples that were positive and negative for B. pseudomallei using multivariable logistic regression found that the odds of bacterial isolation from soil was significantly higher for samples with higher contents of iron (OR = 1.01, 95%CI = 1.00-1.02, p = 0.03), water (OR = 1.28, 95%CI = 1.05-1.55, p = 0.01) and clay (OR = 1.54, 95%CI = 1.15-2.06, p = 0.004) compared to the odds of isolation in samples with lower contents of the above variables. These three factors may have favored the survival of B. pseudomallei because iron regulates expression of respiratory enzymes, while water is essential for soil ecology and agent's biological processes and clay retains water and nutrients.
Collapse
Affiliation(s)
- Hassan Ismail Musa
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Borno State, Nigeria
| | - Latiffah Hassan
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- * E-mail:
| | - Zulkifli Hj. Shamsuddin
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Zunita Zakaria
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Saleha Abdul Aziz
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
95
|
Abberton CL, Bereschenko L, van der Wielen PWJJ, Smith CJ. Survival, Biofilm Formation, and Growth Potential of Environmental and Enteric Escherichia coli Strains in Drinking Water Microcosms. Appl Environ Microbiol 2016; 82:5320-31. [PMID: 27342552 PMCID: PMC4988207 DOI: 10.1128/aem.01569-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Escherichia coli is the most commonly used indicator for fecal contamination in drinking water distribution systems (WDS). The assumption is that E. coli bacteria are of enteric origin and cannot persist for long outside their host and therefore act as indicators of recent contamination events. This study investigates the fate of E. coli in drinking water, specifically addressing survival, biofilm formation under shear stress, and regrowth in a series of laboratory-controlled experiments. We show the extended persistence of three E. coli strains (two enteric isolates and one soil isolate) in sterile and nonsterile drinking water microcosms at 8 and 17°C, with T90 (time taken for a reduction in cell number of 1 log10 unit) values ranging from 17.4 ± 1.8 to 149 ± 67.7 days, using standard plate counts and a series of (reverse transcription-)quantitative PCR [(RT-)Q-PCR] assays targeting 16S rRNA, tuf, uidA, and rodA genes and transcripts. Furthermore, each strain was capable of attaching to a surface and replicating to form biofilm in the presence of nutrients under a range of shear stress values (0.6, 2.0, and 4.4 dynes [dyn] cm(-2); BioFlux system; Fluxion); however, cell numbers did not increase when drinking water flowed over the biofilm (P > 0.05 by t test). Finally, E. coli regrowth within drinking water microcosms containing polyethylene PE-100 pipe wall material was not observed in the biofilm or water phase using a combination of culturing and Q-PCR methods for E. coli The results of this work highlight that when E. coli enters drinking water it has the potential to survive and attach to surfaces but that regrowth within drinking water or biofilm is unlikely. IMPORTANCE The provision of clean, safe drinking water is fundamental to society. WDS deliver water to consumers via a vast network of pipes. E. coli is used as an indicator organism for recent contamination events based on the premise that it cannot survive for long outside its host. A key public health concern therefore arises around the fate of E. coli on entering a WDS; its survival, ability to form a biofilm, and potential for regrowth. In particular, if E. coli bacteria have the ability to incorporate and regrow within the pipe wall biofilm of a WDS, they could reinoculate the water at a later stage. This study sheds light on the fate of environmental and enteric strains of E. coli in drinking water showing extended survival, the potential for biofilm formation under shear stress, and importantly, that regrowth in the presence of an indigenous microbial community is unlikely.
Collapse
Affiliation(s)
- Cathy L Abberton
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | | | | - Cindy J Smith
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
96
|
Point-of-use Unit Based on Gravity Ultrafiltration Removes Waterborne Gastrointestinal Pathogens from Untreated Water Sources in Rural Communities. Wilderness Environ Med 2016; 27:379-85. [DOI: 10.1016/j.wem.2016.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 11/22/2022]
|
97
|
Douterelo I, Husband S, Loza V, Boxall J. Dynamics of Biofilm Regrowth in Drinking Water Distribution Systems. Appl Environ Microbiol 2016; 82:4155-4168. [PMID: 27208119 PMCID: PMC4959196 DOI: 10.1128/aem.00109-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The majority of biomass within water distribution systems is in the form of attached biofilm. This is known to be central to drinking water quality degradation following treatment, yet little understanding of the dynamics of these highly heterogeneous communities exists. This paper presents original information on such dynamics, with findings demonstrating patterns of material accumulation, seasonality, and influential factors. Rigorous flushing operations repeated over a 1-year period on an operational chlorinated system in the United Kingdom are presented here. Intensive monitoring and sampling were undertaken, including time-series turbidity and detailed microbial analysis using 16S rRNA Illumina MiSeq sequencing. The results show that bacterial dynamics were influenced by differences in the supplied water and by the material remaining attached to the pipe wall following flushing. Turbidity, metals, and phosphate were the main factors correlated with the distribution of bacteria in the samples. Coupled with the lack of inhibition of biofilm development due to residual chlorine, this suggests that limiting inorganic nutrients, rather than organic carbon, might be a viable component in treatment strategies to manage biofilms. The research also showed that repeat flushing exerted beneficial selective pressure, giving another reason for flushing being a viable advantageous biofilm management option. This work advances our understanding of microbiological processes in drinking water distribution systems and helps inform strategies to optimize asset performance. IMPORTANCE This research provides novel information regarding the dynamics of biofilm formation in real drinking water distribution systems made of different materials. This new knowledge on microbiological process in water supply systems can be used to optimize the performance of the distribution network and to guarantee safe and good-quality drinking water to consumers.
Collapse
Affiliation(s)
- I Douterelo
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - S Husband
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - V Loza
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - J Boxall
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
98
|
Keswani A, Oliver DM, Gutierrez T, Quilliam RS. Microbial hitchhikers on marine plastic debris: Human exposure risks at bathing waters and beach environments. MARINE ENVIRONMENTAL RESEARCH 2016; 118:10-9. [PMID: 27128352 DOI: 10.1016/j.marenvres.2016.04.006] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/06/2016] [Accepted: 04/10/2016] [Indexed: 05/20/2023]
Abstract
Marine plastic debris is well characterized in terms of its ability to negatively impact terrestrial and marine environments, endanger coastal wildlife, and interfere with navigation, tourism and commercial fisheries. However, the impacts of potentially harmful microorganisms and pathogens colonising plastic litter are not well understood. The hard surface of plastics provides an ideal environment for opportunistic microbial colonisers to form biofilms and might offer a protective niche capable of supporting a diversity of different microorganisms, known as the "Plastisphere". This biotope could act as an important vector for the persistence and spread of pathogens, faecal indicator organisms (FIOs) and harmful algal bloom species (HABs) across beach and bathing environments. This review will focus on the existent knowledge and research gaps, and identify the possible consequences of plastic-associated microbes on human health, the spread of infectious diseases and bathing water quality.
Collapse
Affiliation(s)
- Anisha Keswani
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - David M Oliver
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Tony Gutierrez
- School of Life Sciences, Herriot Watt University, Edinburgh, EH14 4AS, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
99
|
Mulamattathil SG, Bezuidenhout C, Mbewe M. Analysis of physico-chemical and bacteriological quality of drinking water in Mafikeng, South Africa. JOURNAL OF WATER AND HEALTH 2015; 13:1143-1152. [PMID: 26608775 DOI: 10.2166/wh.2015.273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mafikeng, the capital of the North West Province, receives water from two sources, namely the Molopo eye and the Modimola dam. Once treated, the potable water is mixed and supplied to the city via distribution systems. This study was designed to assess the quality of drinking water in Mafikeng and also to determine whether the water from the two sources has an impact on the mixed water quality. Physico-chemical parameters and bacteriological quality (faecal coliforms (FCs), total coliforms (TCs), heterotrophic bacteria and Peudomonas spp.) was monitored at three drinking water sites weekly for 4 months. The results revealed that the physico-chemical quality of the water was generally acceptable. The pH ranged from 5.7 ± 0.18 to 8.6 ± 0.14, the temperature ranged from 18.3 ± 0.69 to 25.1 ± 0.69 °C and the total dissolved solids (TDS) ranged from 159.9 ± 22.44 to 364.4 ± 12.44 mg/l. These values are within the target water quality range for drinking water as prescribed by WHO, Department of Water Affairs and SANS 241. What is of concern was the microbial quality of the water. FCs, TCs, heterotrophic bacteria and Pseudomonas spp. were present in some of the treated water samples. The most significant finding of this study is that all drinking water samples were positive for Pseudomonas spp. (>100/100 ml).
Collapse
Affiliation(s)
- Suma George Mulamattathil
- School of Agricultural and Environmental Sciences, Department of Water and Sanitation, University of Limpopo, Turfloop Campus, Private Bag X1106, Sovenga 0727, South Africa E-mail:
| | - Carlos Bezuidenhout
- Unit for Environmental Science and Management, North West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Moses Mbewe
- School of Agricultural and Environmental Sciences, Department of Water and Sanitation, University of Limpopo, Turfloop Campus, Private Bag X1106, Sovenga 0727, South Africa E-mail:
| |
Collapse
|
100
|
Ng TW, Huang G, Wong PK. Investigation of drinking water bacterial community through high-throughput sequencing. J Environ Sci (China) 2015; 37:154-156. [PMID: 26574098 DOI: 10.1016/j.jes.2015.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Tsz Wai Ng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR, China
| | - Guocheng Huang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR, China
| | - Po Keung Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR, China.
| |
Collapse
|