51
|
Chen Q, Zhang L, Han Y, Fang J, Wang H. Degradation and metabolic pathways of sulfamethazine and enrofloxacin in Chlorella vulgaris and Scenedesmus obliquus treatment systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28198-28208. [PMID: 32415445 DOI: 10.1007/s11356-020-09008-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
The degradation and metabolic pathways of sulfamethazine (SMZ) and enrofloxacin (ENR) via microalgal treatment systems were investigated in this study. SMZ and ENR applied at 1-25 mg L-1 did not significantly inhibit the growth of Chlorella vulgaris or Scenedesmus obliquus. SMZ and ENR exposure did not significantly alter the maximum quantum efficiencies of C. vulgaris and S. obliquus. When cultured at light intensities of 45-50 μmol photon m-2 s-1, the C. vulgaris and S. obliquus treatment systems achieved 24% and 11% degradation, respectively. The greatest removal of ENR was 52% and 43.3%, for C. vulgaris and S. obliquus treatment systems, respectively, after 15 days. The results indicated that the degradation of SMZ and ENR occurred by a combination of biodegradation and photolysis. Kinetic investigations revealed that the removal of SMZ and ENR (5 mg L-1) followed a first-order model, with apparent rate constants (k) ranging from 0.0141 to 0.0048 day-1 and 0.0132 to 0.0086 day-1, respectively. Fifteen metabolites of SMZ and five intermediates of ENR were identified by UPLC-MS, and degradation pathways for SMZ and ENR were proposed. SMZ transformation reactions included ring cleavage, hydroxylation, methylation, and oxidation, whereas ENR was degraded by dealkylation, decarboxylation, and defluorination. Graphical abstract.
Collapse
Affiliation(s)
- Qiaohong Chen
- Key laboratory of Hubei Province for the Protection and Utilization of Special Plant Germplasm in Wuling Mountain Area, College of Life Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Li Zhang
- Key laboratory of Hubei Province for the Protection and Utilization of Special Plant Germplasm in Wuling Mountain Area, College of Life Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Yihong Han
- Key laboratory of Hubei Province for the Protection and Utilization of Special Plant Germplasm in Wuling Mountain Area, College of Life Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Jingyun Fang
- Crean Lutheran High School, Irvine, CA, 92618, USA
| | - Haiying Wang
- Key laboratory of Hubei Province for the Protection and Utilization of Special Plant Germplasm in Wuling Mountain Area, College of Life Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China.
| |
Collapse
|
52
|
Song Y, Huang L, Zhang X, Zhang H, Wang L, Zhang H, Liu Y. Synergistic effect of persulfate and g-C 3N 4 under simulated solar light irradiation: Implication for the degradation of sulfamethoxazole. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122379. [PMID: 32120217 DOI: 10.1016/j.jhazmat.2020.122379] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
A method combining g-C3N4 and potassium peroxydisulfate (PDS) under simulated sunlight was put forward to effectively degrade sulfamethoxazole (SMX). The SMX removal efficiency was substantially improved compared with the processes involving only g-C3N4 or PDS. The kinetic constants for the g-C3N4, PDS and g-C3N4/PDS systems were 0.0023, 0.0239 and 0.068 min-1, respectively. The g-C3N4/PDS process reached an SMX removal rate of 98.4 % after 60 min of simulated sunlight; in addition, the proposed system showed desirable efficiency for SMX degradation in two different actual water samples as well. The reaction mechanism was illustrated by trapping experiments, which showed that g-C3N4 can promote S2O82- to transfer SO4-, S2O82- favored the generation of O2-, and O2-, SO4- and holes (h+) were the main oxidative species for the SMX degradation in the combined reaction process under simulated sunlight. Then, to further explore this mechanism, the intermediates generated during the combined reaction process were analyzed by LC/MS and possible degradation pathways were proposed. The result showed that the breaking of the SN and C-S bonds, the hydroxylation of the benzene ring and the oxidation of the amino group were identified as the main pathways in the SMX degradation process by the g-C3N4/PDS system under simulated sunlight.
Collapse
Affiliation(s)
- Yali Song
- Department of Material and Chemical Engineering, Henan Collaborative Innovation Centre of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China.
| | - Long Huang
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xiaojing Zhang
- Department of Material and Chemical Engineering, Henan Collaborative Innovation Centre of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Hongzhong Zhang
- Department of Material and Chemical Engineering, Henan Collaborative Innovation Centre of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China.
| | - Lan Wang
- Department of Material and Chemical Engineering, Henan Collaborative Innovation Centre of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Huan Zhang
- Department of Material and Chemical Engineering, Henan Collaborative Innovation Centre of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Yali Liu
- School of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| |
Collapse
|
53
|
Wang D, Gu Y, Yang Z, Zhou L. Synthesis and assessment of schwertmannite/few-layer graphene composite for the degradation of sulfamethazine in heterogeneous Fenton-like reaction. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191977. [PMID: 32874605 PMCID: PMC7428258 DOI: 10.1098/rsos.191977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Schwertmannite (sch), an iron oxyhydrosulfate mineral, can catalyse a Fenton-like reaction to degrade organic contaminants, but the reduction of Fe(III) to Fe(II) on the surface of schwertmannite is a limiting step for the Fenton-like process. In the present study, the sch/few-layer graphene (sch-FLG) composite was synthesized to promote the catalytic activity of sch in a Fenton-like reaction. It was found that sch can be successfully carried by FLG in sch-FLG composite, mainly via the chemical bond of Fe-O-C on the surface of sch-FLG. The sch-FLG exhibited a much higher catalytic activity than sch or FLG for the degradation of sulfamethazine (SMT) in the heterogeneous Fenton-like reaction, which resulted from the fact that the FLG can pass electrons efficiently. The degradation efficiency of SMT was around 100% under the reaction conditions of H2O2 200-500 mg l-1, sch-FLG dosage 1-2 g l-1, temperature 28-38°C, and initial solution pH 1-9. During the repeated uses of sch-FLG in the Fenton-like reaction, it maintained a certain catalytic activity for the degradation of SMT and the mineral structure was not changed. In addition, SMT may be finally mineralized in the Fenton-like reaction catalysed by sch-FLG, and the possible degradation pathways were proposed. Therefore, the sch-FLG is an excellent catalyst for SMT degradation in a heterogeneous Fenton-like reaction.
Collapse
Affiliation(s)
- Dianzhan Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | | | | | | |
Collapse
|
54
|
Mourid EH, El Mouchtari EM, El Mersly L, Benaziz L, Rafqah S, Lakraimi M. Development of a new recyclable nanocomoposite LDH-TiO2 for the degradation of antibiotic sulfamethoxazole under UVA radiation: An approach towards sunlight. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112530] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
55
|
Liu W, Yin D, Guan X, Rao D, Cao G, Sun Y. Role of pyrophosphate on the degradation of sulfamethoxazole by permanganate combined with different reductants: Positive or negative. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:604-611. [PMID: 31602733 DOI: 10.1002/wer.1256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Activating permanganate with reductants has gained increasing attention recently for efficient organic contaminants abatement via reactive intermediate Mn species. However, few studies have been conducted to explore the role of pyrophosphate (PP), a typical complexing agent for intermediate Mn species, in activated permanganate systems. In this study, taking sulfamethoxazole (SMX) as a probe compound, the influences of PP on SMX degradation by permanganate/thiosulfate and permanganate/hydroxylamine were extensively studied. It was found that both thiosulfate and hydroxylamine were able to activate permanganate for oxidation of SMX in the absence of PP. However, upon the introduction of PP, opposite effects were observed in the two systems where PP further improved the activation of permanganate by thiosulfate but dampened the performance of permanganate/hydroxylamine markedly. For permanganate/hydroxylamine system, MnO2 was determined to be the only reactive oxidative species accounting for SMX degradation in the absence of PP, and its generation could be completely inhibited by PP. While in permanganate/thiosulfate system, both Mn(V) and MnO2 were responsible for SMX oxidation, and the introduction of PP could strengthen the oxidative ability of Mn(V). These results could shed some insights on the suitability of applying PP to explore the kinetics and mechanisms of manganese involved redox reactions. PRACTITIONER POINTS: Both Na2 S2 O3 and NH2 OH·HCl can activate KMnO4 for SMX removal without PP. MnO2 is the reactive oxidative species involved in KMnO4 /NH2 OH·HCl system. Mn(V) and MnO2 account for the SMX oxidation by KMnO4 /Na2 S2 O3 system. PP could inhibit the formation of MnO2 but enhance the oxidative ability of Mn(V).
Collapse
Affiliation(s)
- Weifan Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, International Joint Research Center for Sustainable Urban Water System, Shanghai, China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Dandan Rao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Guomin Cao
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuankui Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| |
Collapse
|
56
|
Xiong F, Chen D, Ma C, Cao L, Yang J. Zr-Doped Ir as an Effective Anode for Refractory SMX Degradation. ACS OMEGA 2020; 5:3358-3364. [PMID: 32118150 PMCID: PMC7045570 DOI: 10.1021/acsomega.9b03542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Electrochemical oxidation has been considered as an efficient method to degrade pharmaceuticals and personal care products. Maintaining low power consumption while increasing the number of oxidation intermediates is deserving of exploring. Herein, Ti/SnO2-Sb/Zr0.3Ir0.7O2 was prepared by Zr doped into IrO2 and used for Sulfamethoxazole (SMX) degradation. The addition of Zr significantly increased the electrochemically active area and facilitated the catalyst to degrade SMX dramatically at a lower overpotential. The extremely outstanding lifetime of catalysts can reach 800 h during the accelerated life test, which showed excellent stability and developmental prospects. The overpotential at 10 mA·cm-2 is about 329 mV, indicating that this electrode has a high oxygen evolution reaction activity. Furthermore, the electrical efficiency per log order for the electrode is only 8.50 kW h m-3 at 4 V. Our research provides new anode electrochemical catalysts for the degradation of organic pollutants.
Collapse
|
57
|
Misal SN, Lin MH, Mehraeen S, Chaplin BP. Modeling electrochemical oxidation and reduction of sulfamethoxazole using electrocatalytic reactive electrochemical membranes. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121420. [PMID: 31685319 DOI: 10.1016/j.jhazmat.2019.121420] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
In this research, degradation of the antibiotic sulfamethoxazole (SMX) was studied using electrochemical reduction and oxidation in single pass, flow-through mode using porous titanium suboxide (Ti4O7) reactive electrochemical membranes (REMs) and Pd-Cu doped Ti4O7 REMs (Pd-Cu/Ti4O7 REMs). Electrochemical reduction of SMX increased from 3.8 ± 0.3% for the Ti4O7 REM to 96.1 ± 3.9% for the Pd-Cu/Ti4O7 REM at -1.14 V/SHE and at a permeate flux of 300 L m-2 h-1 (LMH) (liquid residence time: ∼1.8 s). By contrast, electrochemical oxidation using Ti4O7 REMs achieved 95.7 ± 1.0% removal of SMX at 2.03 V/SHE and a permeate flux of 300 LMH (liquid residence time: ∼9.0 s) without the catalyst addition. We developed a reactive transport mathematical model and calibrated it to the SMX experimental data. The calibrated model predicted SMX permeate concentrations at fixed potentials and as a function of permeate flux. Based on products from SMX reduction, we proposed that SMX was reduced by a hydrogen atom transfer reaction that was mediated by the Pd-Cu/Ti4O7 REM. Toxicity tests indicated that electrochemical oxidation/reduction lowered solution toxicity. The results of this work indicate that a tandem electrochemical reduction/oxidation approach using the REM-based technology is a potential treatment strategy for sulfonamide-contaminated pharmaceutical wastewater.
Collapse
Affiliation(s)
- Saurabh N Misal
- Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton St., Chicago, IL, 60607, United States
| | - Meng-Hsuan Lin
- Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton St., Chicago, IL, 60607, United States
| | - Shafigh Mehraeen
- Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton St., Chicago, IL, 60607, United States
| | - Brian P Chaplin
- Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton St., Chicago, IL, 60607, United States.
| |
Collapse
|
58
|
Degradation of emerging contaminants diclofenac, sulfamethoxazole, trimethoprim and carbamazepine by bentonite and vermiculite at a pilot solar compound parabolic collector. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
59
|
Nawaz M, Shahzad A, Tahir K, Kim J, Moztahida M, Jang J, Alam MB, Lee SH, Jung HY, Lee DS. Photo-Fenton reaction for the degradation of sulfamethoxazole using a multi-walled carbon nanotube-NiFe2O4 composite. CHEMICAL ENGINEERING JOURNAL 2020; 382:123053. [DOI: 10.1016/j.cej.2019.123053] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
60
|
Cacciari RD, Reynoso E, Candela FM, Sabini C, Montejano HA, Biasutti MA. Photochemical study of the highly used corticosteroids dexamethasone and prednisone. Effects of micellar confinement and cytotoxicity analysis of photoproducts. NEW J CHEM 2020. [DOI: 10.1039/d0nj03640d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodegradation of dexamethasone (Dexa) and prednisone (Pred) occurs by a combination of ROS attack and unimolecular photodegradation reactions. The photoproducts obtained are more cytotoxic than the parent compounds.
Collapse
Affiliation(s)
- R. Daniel Cacciari
- Departamento de Química
- Facultad de Ciencias Exactas
- Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto
- Ruta Nacional 36 Km 601
- X5804BYA Río Cuarto
| | - Eugenia Reynoso
- Departamento de Química
- Facultad de Ciencias Exactas
- Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto
- Ruta Nacional 36 Km 601
- X5804BYA Río Cuarto
| | - Florencia Menis Candela
- Departamento de Microbiología, Facultad de Ciencias Exactas
- Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto
- Ruta Nacional 36 Km 601, X5804BYA Río Cuarto
- Córdoba
- Argentina
| | - Carola Sabini
- Departamento de Microbiología, Facultad de Ciencias Exactas
- Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto
- Ruta Nacional 36 Km 601, X5804BYA Río Cuarto
- Córdoba
- Argentina
| | - Hernán A. Montejano
- Departamento de Química
- Facultad de Ciencias Exactas
- Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto
- Ruta Nacional 36 Km 601
- X5804BYA Río Cuarto
| | - M. Alicia Biasutti
- Departamento de Química
- Facultad de Ciencias Exactas
- Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto
- Ruta Nacional 36 Km 601
- X5804BYA Río Cuarto
| |
Collapse
|
61
|
Teng J, Liu G, Liang J, You S. Electrochemical oxidation of sulfadiazine with titanium suboxide mesh anode. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135441] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
62
|
Li H, Jiang H, Liu C, Zhu C, Zhu XP. Electrochemical Oxidation of Sulfonamides with Boron-Doped Diamond and Pt Anodes. ChemistryOpen 2019; 8:1421-1428. [PMID: 31867150 PMCID: PMC6909879 DOI: 10.1002/open.201900250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/09/2019] [Indexed: 11/24/2022] Open
Abstract
Electrochemical oxidation processes usually favored specific degradation pathways depending on anode materials. In this work, a series of sulfonamides (SNs) were degraded by electrochemical oxidation. Compared to Pt anodes (0.1567–0.1795 h−1), degradation rates of SNs were much higher at boron‐doped diamond (BDD) anodes (2.4290–13.1950 h−1). However, the same intermediates were detected in the two anode systems. Due to the strong oxidizing ability of BDD anodes, a large amount of intermediates with high toxicities were initially generated and then finally reduced in the BDD anode systems, while the amount of intermediates continuously increased in the Pt anode systems. Additionally, SNs were degraded faster in Na2SO4 than NaH2PO4 electrolytes at BDD anodes, while they were similar at Pt anodes. This study demonstrated that the degradation pathways of SNs at BDD and Pt anodes were similar, but the evolutions of intermediate amounts and toxicities were different due to their varied oxidizing abilities.
Collapse
Affiliation(s)
- Hongna Li
- Agricultural Clean Watershed Research Group Institute of Environment and Sustainable Development in Agriculture Chinese Academy of Agricultural Sciences Beijing 100081 P.R. China
| | - Huan Jiang
- Department of Environmental Engineering Peking University Beijing 100871 P.R. China
| | - Chong Liu
- Agricultural Clean Watershed Research Group Institute of Environment and Sustainable Development in Agriculture Chinese Academy of Agricultural Sciences Beijing 100081 P.R. China
| | - Changxiong Zhu
- Agricultural Clean Watershed Research Group Institute of Environment and Sustainable Development in Agriculture Chinese Academy of Agricultural Sciences Beijing 100081 P.R. China
| | - Xiuping P Zhu
- Department of Civil and Environmental Engineering Louisiana State University Baton Rouge LA 70803 USA
| |
Collapse
|
63
|
Chen M, Xu J, Dai R, Wu Z, Liu M, Wang Z. Development of a moving-bed electrochemical membrane bioreactor to enhance removal of low-concentration antibiotic from wastewater. BIORESOURCE TECHNOLOGY 2019; 293:122022. [PMID: 31470228 DOI: 10.1016/j.biortech.2019.122022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Removal of low-concentration (ng/L ~ μg/L) antibiotics from water calls for the development of cost-effective treatment technologies. In this study, a novel moving-bed electrochemical membrane bioreactor (MEMBR) was developed for removing sulfamethoxazole (SMX). Results showed that the introduction of external electric field and carbon felt particles could efficiently eliminate SMX (removal efficiency of 88.9%). In contrast, the moving-bed membrane bioreactor (MMBR) took a long time to acclimate microorganism, reaching a removal efficiency of 43.9%. Transmembrane pressure increase rate was much lower in MEMBR (1.06 kPa/d) compared to MMBR (1.72 kPa/d). The presence of carriers increased the generation of reactive oxygen species, contributing to SMX removal. Microbial community analysis revealed that the introduction of electric field could increase microbial community richness/diversity and enrich the phyla of Actinobacteria and Gemmatimonadete, potentially capable of mineralizing SMX. These results clearly demonstrated the potential of this novel MEMBR to be used for enhanced micropollutants removal from water/wastewater.
Collapse
Affiliation(s)
- Mei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jun Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Shanghai 200092, China.
| |
Collapse
|
64
|
Wang C, Liu Y, Zhou T, Huang M, Mao J, Wu X. Efficient decomposition of sulfamethoxazole in a novel neutral Fered-Fenton like/oxalate system based on effective heterogeneous-homogeneous iron cycle. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
65
|
Zhou L, Yang X, Ji Y, Wei J. Sulfate radical-based oxidation of the antibiotics sulfamethoxazole, sulfisoxazole, sulfathiazole, and sulfamethizole: The role of five-membered heterocyclic rings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:201-208. [PMID: 31344571 DOI: 10.1016/j.scitotenv.2019.07.259] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/03/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
The widespread occurrence of sulfonamides (SAs) in natural waters, wastewater, soil and sediment has raised increasing concerns about their potential risks to human health and ecological systems. Sulfate radical (SO4-)-based advanced oxidation processes (SR-AOPs) have become promising technologies to remove such contaminants in the environment. The present study systematically investigated the degradation of four selected SAs with different five-membered heterocyclic rings, namely, sulfamethoxazole (SMX), sulfisoxazole (SIX), sulfathiazole (STZ), and sulfamethizole (SMT), by thermo-activated persulfate (PS) process, and the role of heterocyclic rings was assessed particularly. The results revealed that all the selected SAs could be degraded efficiently by thermo-activated PS process and their decay rates were appreciably increased with increasing temperature. For instance, degradation rates of STZ increased from 0.3 × 10-3 to 19.5 × 10-3 min-1 as the temperature was increased from 30 to 60 °C. Under the same experimental conditions, the degradation rates of SAs followed the order of SIX > SMX ≈ STZ > SMT, which was in accordance with decay rates of their R-NH2 moieties. Kinetic results indicated that five-membered heterocyclic rings could serve as reactive moieties toward SO4- attack, which were confirmed by frontier electron density (FED) calculations. Based on the transformation products identified by high-resolution mass spectrometry (HR-MS), five different oxidation pathways, including hydroxylation, aniline moiety oxidation, dimerization, sulfonamide bond cleavage, and heterocyclic ring oxidation/cleavage were proposed. Moreover, the degradation efficiency in real surface water (RSW) was found to be slightly slower than that in artificial surface water (ASW), suggesting that SR-AOPs could be an efficient approach for remediation of soil and water contaminated by these SAs.
Collapse
Affiliation(s)
- Lei Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xuerui Yang
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jie Wei
- School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
66
|
Bilal M, Ashraf SS, Barceló D, Iqbal HMN. Biocatalytic degradation/redefining "removal" fate of pharmaceutically active compounds and antibiotics in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:1190-1211. [PMID: 31466201 DOI: 10.1016/j.scitotenv.2019.07.224] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 02/05/2023]
Abstract
Recently, the increasing concentration and persistent appearance of antibiotics traces in the water streams are considered an issue of high concern. In this context, an array of antibiotics has been categorized as pollutants of emerging concern due to their complex and highly stable bioactivity, indiscriminate usage with ultimate release into water bodies, and notable persistence in environmental matrices. Moreover, antibiotics traces containing household sewage/drain waste and pharmaceutical wastewater effluents contain a range of bioactive/toxic organic compounds, inorganic salts, pharmaceutically-active ingredients, or a mixture of all, which possesses negative influences ranging from ecological pollution to damage biodiversity. Moreover, their uncontrolled and undesirable bioaccumulation also poses a potential threat to target and non-target organisms in the environment. Aiming to tackle this issue effectively, various detection, quantification, degradation, and redefining "removal" processes have been proposed and investigated based on physical, chemical, and biological strategies. Though both useful and side effects of antibiotics on humans and animals are usually investigated thoroughly following safety and toxicity measures, however, their direct or indirect environmental impacts are not well reviewed yet. Owing to the considerable research gap, the environmental perfectives of antibiotics traces and their effects on target and non-target populations have now become the topic of research interest. Based on literature evidence, over the past several years, numerous individual studies have been performed and published covering various aspects of antibiotics. However, a comprehensive compilation on enzyme-based degradation of antibiotics is still lacking and requires careful consideration. Hence, this review summarizes up-to-date literature on enzymes as biocatalytic systems, explicitly, free as well as immobilized forms and their effective exploitation for the degradation of various antibiotics traces and other pharmaceutically-active compounds present in the water bodies. It is further envisioned that the enzyme-based strategies, for antibiotics degradation or removal, discussed herein, will help readers for a better understanding of antibiotics persistence in the environment along with the associated risks and removal measures. In summary, the current research thrust presented in this review will additionally evoke researcher to engineer robust and sustainable processes to effectively remediate antibiotics-contaminated environmental matrices.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Syed Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Damiá Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain; ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona 17003, Spain; Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.
| |
Collapse
|
67
|
Fawzy A. Removal of toxic tellurium (IV) compounds via bioreduction using flucloxacillin in aqueous acidic medium: A kinetic and mechanistic approach. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
68
|
Three-dimensional electro-Fenton system with iron foam as particle electrode for folic acid wastewater pretreatment. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
69
|
Majumder A, Gupta B, Gupta AK. Pharmaceutically active compounds in aqueous environment: A status, toxicity and insights of remediation. ENVIRONMENTAL RESEARCH 2019; 176:108542. [PMID: 31387068 DOI: 10.1016/j.envres.2019.108542] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 05/22/2023]
Abstract
Pharmaceutically active compounds (PhACs) have pernicious effects on all kinds of life forms because of their toxicological effects and are found profoundly in various wastewater treatment plant influents, hospital effluents, and surface waters. The concentrations of different pharmaceuticals were found in alarmingly high concentrations in various parts of the globe, and it was also observed that the concentration of PhACs present in the water could be eventually related to the socio-economic conditions and climate of the region. Drinking water equivalent limit for each PhAC has been calculated and compared with the occurrence data from various continents. Since these compounds are recalcitrant towards conventional treatment methods, while advanced oxidation processes (AOPs) have shown better efficiency in degrading these PhACs. The performance of the AOPs have been evaluated based on percentage removal, time, and electrical energy consumed to degrade different classes of PhACs. Ozone based AOPs were found to be favorable because of their low treatment time, low cost, and high efficiency. However, complete degradation cannot be achieved by these processes, and various transformation products are formed, which may be more toxic than the parent compounds. The various transformation products formed from various PhACs during treatment have been highlighted. Significant stress has been given on the role of various process parameters, water matrix, oxidizing radicals, and the mechanism of degradation. Presence of organic compounds, nitrate, and phosphate usually hinders the degradation process, while chlorine and sulfate showed a positive effect. The role of individual oxidizing radicals, interfering ions, and pH demonstrated dissimilar effects on different groups of PhACs.
Collapse
Affiliation(s)
- Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Bramha Gupta
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
70
|
Graça CAL, Maniero MG, De Andrade LM, Roberto Guimarães J, Teixeira ACSC. Evaluation of amicarbazone toxicity removal through degradation processes based on hydroxyl and sulfate radicals. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:1126-1143. [PMID: 31328643 DOI: 10.1080/10934529.2019.1643693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
The herbicide amicarbazone (AMZ), which appeared as a possible alternative to atrazine, presents moderate environmental persistence and is unlikely to be removed by conventional water treatment techniques. Advanced oxidation processes (AOPs) driven by •OH and/or SO4•- radicals are then promising alternatives to AMZ-contaminated waters remediation, even though, in some cases, they can originate more toxic degradation products than the parent-compound. Therefore, assessing treated solutions toxicity prior to disposal is of extreme importance. In this study, the toxicity of AMZ solutions, before and after treatment with different •OH-driven and SO4•--driven AOPs, was evaluated for five different microorganisms: Vibrio fischeri, Chlorella vulgaris, Tetrahymena thermophila, Escherichia coli, and Bacillus subtilis. In general, the toxic response of AMZ was greatly affected by the addition of reactants, especially when persulfate (PS) and/or Fe(III)-carboxylate complexes were added. The modifications of this response after treatment were correlated with AMZ intermediates, which were identified by mass spectrometry. Thus, low molecular weight by-products, resulting from fast degradation kinetics, were associated with increased toxicity to bacteria and trophic effects to microalgae. These observations were compared with toxicological predictions given by a Structure-Activity Relationships software, which revealed to be fairly compatible with our empirical findings.
Collapse
Affiliation(s)
- Cátia A L Graça
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto , Porto , Portugal
| | - Milena Guedes Maniero
- School of Civil Engineering, Architecture and Urban Design, University of Campinas , Campinas , Brazil
| | | | - José Roberto Guimarães
- School of Civil Engineering, Architecture and Urban Design, University of Campinas , Campinas , Brazil
| | - Antonio Carlos S C Teixeira
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, University of São Paulo , São Paulo , Brazil
| |
Collapse
|
71
|
Black GP, Anumol T, Young TM. Analyzing a broader spectrum of endocrine active organic contaminants in sewage sludge with high resolution LC-QTOF-MS suspect screening and QSAR toxicity prediction. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1099-1114. [PMID: 31179481 PMCID: PMC7036296 DOI: 10.1039/c9em00144a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Endocrine active contaminants (EACs) in environmental samples can pose a range of toxicological threats to ecosystems, especially through their impacts on reproductive pathways mediated by the estrogen receptor. The physicochemical properties of known organic EACs vary greatly and typically require different sample preparation techniques to identify different classes of compounds. EAC sources are similarly diverse, including both endogenous compounds and anthropogenic chemicals found in personal care products, pharmaceuticals, and their transformation products, which are often disposed of to sewers at their end of use. Looking for EACs in sewage sludge proposes a bottom-up, or end-of-use and treatment approach to discover environmentally relevant EACs, since many EACs accumulate in sludges even after application of robust wastewater treatment processes. This study demonstrates an extraction and analytical method capable of detecting a broad spectrum of known and suspected EACs via High Resolution Liquid Chromatography Quadropole Time-of-Flight Mass Spectrometry (LC-QTOF-MS) suspect screening of fourteen California sewage sludge samples. Spike-recovery experiments were performed using twelve carefully selected surrogates to assess different extraction solvents, sample weights, extraction pH values, procedures for combining extracts with different extraction pH's, and solid phase extraction cartridges. Using LC-QTOF-MS, identifications of several other organic compounds in the samples were made, a goal unachievable with unit resolution mass spectrometry. Suspect screening of California sludge samples discovered 118 compounds including hormones, pharmaceuticals, phosphate flame retardants, recreational drugs, antimicrobials, and pesticides. Additionally, 22 of these identified compounds are predicted to interfere with estrogen receptors or other reproductive/developmental pathways based on the VEGA QSAR toxicity prediction model.
Collapse
Affiliation(s)
- Gabrielle P Black
- Agricultural and Environmental Chemistry, University of California, Davis, USA
| | | | - Thomas M Young
- Civil & Environmental Engineering, University of California, Davis, USA.
| |
Collapse
|
72
|
Zhu G, Sun Q, Wang C, Yang Z, Xue Q. Removal of Sulfamethoxazole, Sulfathiazole and Sulfamethazine in their Mixed Solution by UV/H 2O 2 Process. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16101797. [PMID: 31117187 PMCID: PMC6572640 DOI: 10.3390/ijerph16101797] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 11/16/2022]
Abstract
Sulfamethoxazole (SMZ), sulfathiazole (STZ) and sulfamethazine (SMT) are typical sulfonamides, which are widespread in aqueous environments and have aroused great concern in recent years. In this study, the photochemical oxidation of SMZ, STZ and SMT in their mixed solution using UV/H2O2 process was innovatively investigated. The result showed that the sulfonamides could be completely decomposed in the UV/H2O2 system, and each contaminant in the co-existence system fitted the pseudo-first-order kinetic model. The removal of sulfonamides was influenced by the initial concentration of the mixed solution, the intensity of UV light irradiation, the dosage of H2O2 and the initial pH of the solution. The increase of UV light intensity and H2O2 dosage substantially enhanced the decomposition efficiency, while a higher initial concentration of mixed solution heavily suppressed the decomposition rate. The decomposition of SMZ and SMT during the UV/H2O2 process was favorable under neutral and acidic conditions. Moreover, the generated intermediates of SMZ, STZ and SMT during the UV/H2O2 process were identified in depth, and a corresponding degradation pathway was proposed.
Collapse
Affiliation(s)
- Guangcan Zhu
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Qi Sun
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Chuya Wang
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Zhonglian Yang
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Qi Xue
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University, Nanjing 210096, Jiangsu, China.
| |
Collapse
|
73
|
Biomarker Effects in Carassius auratus Exposure to Ofloxacin, Sulfamethoxazole and Ibuprofen. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091628. [PMID: 31075982 PMCID: PMC6540135 DOI: 10.3390/ijerph16091628] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 11/27/2022]
Abstract
Ofloxacin, sulfamethoxazole and ibuprofen are three commonly used drugs which can be detected in aquatic environments. To assess their ecotoxicity, the effects of these three pharmaceuticals and their mixture on AChE (acetylcholinesterase) activity in the brain, and EROD (7-ethoxyresorufin-O-deethylase) and SOD (superoxide dismutase) activities in the liver of the freshwater crucian carp Carassius auratus were tested after exposure for 1, 2, 4 and 7 days. The results showed that treatments with 0.002–0.01 mg/L ofloxacin and 0.0008–0.004 mg/L sulfamethoxazole did not significantly change AChE, EROD and SOD activities. AChE activity was significantly inhibited in response to treatment with >0.05mg/L ofloxacin and >0.02 mg/L sulfamethoxazole. All three biomarkers were induced significantly in treatments with ibuprofen and the mixture of the three pharmaceuticals at all the tested concentrations. The combined effects of ofloxacin, sulfamethoxazole and ibuprofen were compared with their isolated effects on the three biomarkers, and the results indicated that exposure to ibuprofen and the mixture at environmentally relevant concentrations could trigger adverse impacts on Carassius auratus. The hazard quotient (HQ) index also demonstrated a high risk for ibuprofen. Moreover, the present study showed that the effects of ofloxacin, sulfamethoxazole and ibuprofen might be additive on the physiological indices of Carassius auratus.
Collapse
|
74
|
Song D, Jefferson WA, Cheng H, Jiang X, Qiang Z, He H, Liu H, Qu J. Acidic permanganate oxidation of sulfamethoxazole by stepwise electron-proton transfer. CHEMOSPHERE 2019; 222:71-82. [PMID: 30690403 DOI: 10.1016/j.chemosphere.2019.01.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/13/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Permanganate is a versatile chemical oxidant, and has undergone a dramatic evolution toward deep insight into its reaction mechanism. However, the hydrogen abstraction of the NH bond by permanganate remains unclear. We studied the permanganate oxidation of the emerging micropollutant sulfamethoxazole in acidic aqueous solution. The reaction followed autocatalytic kinetics and demonstrated first-order with respect to each reactant. The presence of HMnO4 accelerated the reaction rate, which was four orders of magnitude higher than that of MnO4-. Based on the identified products, the rate-limiting step was determined to be simple NH bond oxidation by metal-oxo species permanganate. The mechanism was then studied computationally by density functional theory (DFT) using ammonia as the simplest model. Results showed that the NH bond oxidation by MnO4- (32.86 kcal/mol) was a concerted mechanism similar to that of CH bond oxidation, whereas HMnO4 oxidation of the NH bond (10.44 kcal/mol) was a stepwise electron-proton transfer. This reminds us that coordination of Brønsted acid could not only produce the stronger electrophile but also change the reaction mode by avoiding the bond cleavage in electron transfer process.
Collapse
Affiliation(s)
- Dean Song
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Agriculture Ministry Laboratory of Quality & Safety Risk Assessment for Tobacco, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - William A Jefferson
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hanyang Cheng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaohua Jiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hong He
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huijuan Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
75
|
Dong F, Li C, Crittenden J, Zhang T, Lin Q, He G, Zhang W, Luo J. Sulfadiazine destruction by chlorination in a pilot-scale water distribution system: Kinetics, pathway, and bacterial community structure. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:88-97. [PMID: 30502576 DOI: 10.1016/j.jhazmat.2018.11.096] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Sulfadiazine (SDZ) has been frequently detected in surface waters in recent years. We evaluated the kinetics, mechanisms, intermediate products and bacterial community structure that result from the reaction of SDZ with free chlorine (HOCl/OCl-). We examined this in a pilot-scale water distribution system. Neutral pH had the fastest rate of destruction of SDZ. A second-order reaction constant for the destruction of SDZ by chlorine increased with increasing concentration of free chlorine (FC). For different pipe materials, the rate of SDZ degradation decreased as follows: stainless steel (SS) pipe > polyethylene (PE) pipe > ductile iron (DI) pipe. Based on the less complex bacterial diversity and more chlorine-resistant by 16S ribosomal ribonucleic acid (rRNA) gene analysis, SS pipe and PE pipe were more suitable in SDZ degradation in water distribution system (WDS) than DI pipe. In addition, the transformation products from SDZ chlorination were identified by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry, and the products included SO2 extrusion products, haloacetic acids and trihalomethanes. Toxicity tests further confirmed that the toxicity of SDZ chlorination was higher both in low FC (0.7 mg/L) and high FC (1.3 mg/L) in WDS.
Collapse
Affiliation(s)
- Feilong Dong
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310027, China
| | - Cong Li
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310027, China; School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200433, China.
| | - John Crittenden
- School of Civil and Environmental Engineering, Georgia Institute of Technology, USA
| | - Tuqiao Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310027, China
| | - Qiufeng Lin
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310027, China
| | - Guilin He
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310027, China
| | - Weiqiu Zhang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, USA
| | - Jinming Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, USA
| |
Collapse
|
76
|
Bao Y, Oh WD, Lim TT, Wang R, Webster RD, Hu X. Elucidation of stoichiometric efficiency, radical generation and transformation pathway during catalytic oxidation of sulfamethoxazole via peroxymonosulfate activation. WATER RESEARCH 2019; 151:64-74. [PMID: 30594091 DOI: 10.1016/j.watres.2018.12.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
In this work, nano-bimetallic Co/Fe oxides with different stoichiometric Co/Fe ratios were prepared using a novel one-step solution combustion method. The nano-bimetallic Co/Fe oxides were used for sulfamethoxazole (SMX) degradation via peroxymonosulfate (PMS) activation. The stoichiometric efficiencies of the as-prepared nano-bimetallic catalysts were calculated and compared for the first time. The radical generation was identified by electron paramagnetic resonance (EPR) as well as chemical quenching experiments, in which different scavengers were used and compared. The catalytic PMS activation mechanism in the presence of catalyst was examined by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The results showed that besides SO4•- and •OH, •OOH was also detected in the PMS/CoFeO2.5 system. Meanwhile, in addition to the previously proposed radical oxidation pathway, the results showed that SMX degradation also involved a non-radical oxidation, which could be verified by the degradation experiment without catalyst as well as the detection of 1O2. In the PMS activation process, cobalt functioned as the active site on CoFeO2.5 while Fe oxide functioned as the adsorption site. The electron transfer mechanism was proposed based on the XPS and metal leaching results. Additionally, via the detection of transformation products, different SMX transformation pathways involving nitration, hydroxylation and hydrolysis in the PMS/CoFeO2.5 system were proposed.
Collapse
Affiliation(s)
- Yueping Bao
- Interdisciplinary Graduate School, Nanyang Technological University, 637141, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Wen-Da Oh
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Teik-Thye Lim
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Rong Wang
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental and Engineering, Nanyang Technological University, 639798, Singapore
| | - Richard David Webster
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Xiao Hu
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
77
|
Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU, Mohan D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem Rev 2019; 119:3510-3673. [DOI: 10.1021/acs.chemrev.8b00299] [Citation(s) in RCA: 827] [Impact Index Per Article: 137.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rahul Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kamal Kishor
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Todd Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Charles U. Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
78
|
Tan N, Yang Z, Gong XB, Wang ZR, Fu T, Liu Y. In situ generation of H 2O 2 using MWCNT-Al/O 2 system and possible application for glyphosate degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2567-2576. [PMID: 30293008 DOI: 10.1016/j.scitotenv.2018.09.353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/02/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Hydrogen peroxide (H2O2), as a green oxidant, has been widely applied into advanced oxidation processes (AOPs) for the degradation of toxic organic pollutants. The in situ generation of H2O2 can not only improve the storage and transportation safety of H2O2 but also reduce the capital and operation costs. In the present work, a novel system, i.e., multi-walled carbon nanotube‑aluminum (MWCNT-Al) composite was used to in situ generate H2O2 through micro-electrolysis. The MWCNT-Al composite was characterized and optimized. The accumulation concentration of H2O2 reached 947 mg/L at the initial pH of 9.0, the MWCNT-Al composite dosage of 8 g/L and oxygen gas flow rate of 400 mL/min after 60 min. The in situ generation of H2O2 was achieved by MWCNT-Al/O2 system, mainly owing to the direct contact between Al0 and MWCNT in MWCNT-Al composite, which accelerated the transfer of electrons from Al0 to O2, as well as the excellent electrocatalytic activity of MWCNT toward the two-electron reduction of oxygen. When H2O2 in situ generation technology was used in peroxone process (O3/H2O2 process) to degrade glyphosate in aqueous solution, the removal efficiency of TOC and total phosphorus was 68.35% and 73.27%, respectively. Finally, the possible mechanism of in situ generation of H2O2 in MWCNT-Al/O2 system was temporarily proposed.
Collapse
Affiliation(s)
- Ni Tan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Zhao Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Xiao-Bo Gong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China; Key Laboratory of Treatment for Special Wastewater of Sichuan Province Higher Education System, Sichuan, Chengdu 610066, China
| | - Zhen-Ran Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Tao Fu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Yong Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China; Key Laboratory of Treatment for Special Wastewater of Sichuan Province Higher Education System, Sichuan, Chengdu 610066, China.
| |
Collapse
|
79
|
Sun B, Xiao Z, Dong H, Ma S, Wei G, Cao T, Guan X. Bisulfite triggers fast oxidation of organic pollutants by colloidal MnO 2. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:412-420. [PMID: 30326356 DOI: 10.1016/j.jhazmat.2018.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 05/25/2023]
Abstract
Colloidal MnO2 is the most reactive phase of Mn(IV) while HSO3- is a common reductant in water treatment. This study shows that the presence of HSO3- resulted in significant increase in the decomposition rate of organic contaminants by colloidal MnO2. The degradation rate of contaminants in the MnO2/HSO3- process dropped with elevating pH and a proper MnO2/HSO3- molar ratio was critical for efficient decomposition of contaminants. The time-resolved spectroscopy of manganese species, the influence of pyrophosphate on UV absorbance spectra, and the relative rate constants of contaminants oxidation in MnO2/HSO3- process suggested that the synergetic effect of HSO3- and colloidal MnO2 arose from the generation of Mn(III)aq, which could oxidize contaminants rapidly. The presence of pyrophosphate, ethylenediaminetetraacetic acid, and humic acid depressed the degradation of contaminants in MnO2/HSO3- process by complexing with Mn(III)aq, buffering the solution or competing with contaminants for Mn(III)aq, and/or inhibiting the consumption of bisulfite. However, Ca2+ and Mg2+ accelerated the oxidation of contaminants in MnO2/HSO3- process by enhancing the reduction of MnO2 by HSO3-. The good negative correlation of the O/N or H Mulliken charges of organic contaminants with their removal in MnO2/HSO3- process suggested that organic contaminants were oxidized by Mn(III)aq via electrophilic attack.
Collapse
Affiliation(s)
- Bo Sun
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhongjin Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Hongyu Dong
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Shangchen Ma
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Guangfeng Wei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tongcheng Cao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
80
|
Ge L, Zhang P, Halsall C, Li Y, Chen CE, Li J, Sun H, Yao Z. The importance of reactive oxygen species on the aqueous phototransformation of sulfonamide antibiotics: kinetics, pathways, and comparisons with direct photolysis. WATER RESEARCH 2019; 149:243-250. [PMID: 30448736 DOI: 10.1016/j.watres.2018.11.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/02/2018] [Accepted: 11/04/2018] [Indexed: 05/08/2023]
Abstract
Sulfonamide antibiotics (SAs) are increasingly detected as aquatic contaminants and exist as different dissociated species depending on the pH of the water. Their removal in sunlit surface waters is governed by photochemical transformation. Here we report a detailed examination of the hydroxyl radical (•OH) and singlet oxygen (1O2) mediated photooxidation of nine SAs: sulfamethoxazole, sulfisoxazole, sulfamethizole, sulfathiazole, sulfamethazine, sulfamerazine, sulfadiazine, sulfachloropyridazine and sulfadimethoxine. Both •OH and 1O2 oxidation kinetics varied depending on the dominant protonated states of the SA in question (H2SAs+, HSAs0 and SAs-) as a function of pH. Based on competition kinetic experiments and matrix deconvolution calculations, HSAs0 or SAs- (pH ∼5-8) were observed to be more highly reactive towards •OH, while SAs- (pH ∼8) react the fastest with 1O2 for most of the SAs tested. Using the empirically derived rates of reaction for the speciated forms at different pHs, the environmental half-lives were determined using typical 1O2 and •OH concentrations observed in the environment. This approach suggests that photochemical 1O2 oxidation contributes more than •OH oxidation and direct photolysis to the overall phototransformation of SAs in sunlit waters. Based on the identification of key photointermediates using tandem mass spectrometry, 1O2 oxidation generally occurred at the amino moiety on the molecule, whereas •OH reaction experienced multi-site hydroxylation. Both these reactions preserve the basic parent structure of the compounds and raise concerns that the routes of phototransformation give rise to intermediates with similar antimicrobial potency as the parent SAs. We therefore recommend that these phototransformation pathways are included in risk assessments concerning the presence and fate of SAs in waste and surface waters.
Collapse
Affiliation(s)
- Linke Ge
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, 116023, PR China; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Peng Zhang
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, 116023, PR China; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Crispin Halsall
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| | - Yanying Li
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Chang-Er Chen
- Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, PR China
| | - Jun Li
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Helin Sun
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Ziwei Yao
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| |
Collapse
|
81
|
Wu CH, Kuo CY, Dong CD, Chen CW, Lin YL. Removal of sulfonamides from wastewater in the UV/TiO 2 system: effects of pH and salinity on photodegradation and mineralization. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:349-355. [PMID: 30865606 DOI: 10.2166/wst.2019.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The effects of salinity on the photodegradation and mineralization of sulfonamides in the UV/TiO2 system were investigated. The goals of this study were to analyze the effects of pH and salinity on the sulfonamide concentration and total organic carbon (TOC) during the removal of sulfonamides in a UV/TiO2 system. Four sulfonamides - sulfadiazine (SDZ), sulfamethizole (SFZ), sulfamethoxazole (SMX) and sulfathiazole (STZ) - were selected as parent compounds. The photodegradation and mineralization rates of sulfonamides in the UV/TiO2 system satisfy pseudo-first-order kinetics. Direct photolysis degraded sulfonamides but sulfonamides cannot be mineralized. The photodegradation and mineralization rate constants in all experiments followed the order pH 5 > pH 7 > pH 9. At pH 5, the mineralization rate constants of SMX, SFZ, SDZ and STZ were 0.015, 0.009, 0.012 and 0.011 min-1, respectively. The addition of NaCl inhibited the mineralization of the four tested sulfonamides more than it inhibited their photodegradation. The inhibitory effect of chloride ions on the removal of sulfonamides in the UV/TiO2 system was attributed to the scavenging by chloride ions of hydroxyl radicals (HO•) and holes and the much lower reactivity of chlorine radicals thus formed, even though the chlorine radicals were more abundant than HO•.
Collapse
Affiliation(s)
- C H Wu
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan E-mail:
| | - C Y Kuo
- Department of Environmental and Safety Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan
| | - C D Dong
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan E-mail:
| | - C W Chen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan E-mail:
| | - Y L Lin
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan E-mail:
| |
Collapse
|
82
|
Ao X, Liu W, Sun W, Yang C, Lu Z, Li C. Mechanisms and toxicity evaluation of the degradation of sulfamethoxazole by MPUV/PMS process. CHEMOSPHERE 2018; 212:365-375. [PMID: 30149309 DOI: 10.1016/j.chemosphere.2018.08.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/01/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
In this work, a sulfate radical (SO4-)-based advanced oxidation process was applied to the degradation of sulfamethoxazole (SMX). In these experiments, a medium pressure UV (MPUV) lamp was employed to active peroxymonosulfate (PMS). It was found that 98% of SMX was removed by MPUV/PMS at a UV dose of 200 mJ cm-2 (3.95 μM SMX, 0.2 mM PMS, pH0 = 3.7). Direct MPUV photolysis played a remarkable role in SMX removal by MPUV/PMS process. As for the indirect photolysis, SO4- was the major reactive species under acidic and neutral conditions in MPUV/PMS system, while the hydroxyl radical (OH) became the predominant radical under alkaline conditions. The transformation products (TPs) of SMX that formed in the MPUV-only and MPUV/PMS experiments were identified, and the possible degradation pathways were proposed. Photoisomerization of the isoxazole ring was the major pathway of SMX during MPUV-only process. Hydroxylation/oxidation of the aniline and isoxazole ring was the predominant degradation mechanism of SMX by MPUV/PMS. Toxicity evaluation showed that MPUV/PMS was effective at reducing the antibacterial activity of SMX solutions, while MPUV-only was not. However, some TPs with equivalent or even higher antibacterial activity than SMX were formed during the initial degradation period in MPUV/PMS system. Ecotoxicity of SMX and its TPs was also hypothetically predicted via the ECOSAR program, and the results indicated that some TPs could be more toxic than SMX.
Collapse
Affiliation(s)
- Xiuwei Ao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wenjun Liu
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Chao Yang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zedong Lu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chen Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
83
|
Yan P, Sui Q, Lyu S, Hao H, Schröder HF, Gebhardt W. Elucidation of the oxidation mechanisms and pathways of sulfamethoxazole degradation under Fe(II) activated percarbonate treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:973-980. [PMID: 30021330 DOI: 10.1016/j.scitotenv.2018.05.315] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/17/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
Fe(II) activated sodium percarbonate (SPC) process (SPC/Fe(II)) could efficiently remove sulfamethoxazole (SMX) in the aqueous phase, and has the potential in groundwater remediation. However, the degradation mechanisms, especially the degradation products and pathways till now have remained unclear. In the present study, intermediate products were identified using high resolution liquid chromatography coupled with ion trap and time-of-flight mass spectrometry (LCMS-IT-TOF). Nine intermediate products were identified, six of which have not yet been reported during the oxidation of SMX. The oxidation mechanisms involved hydroxyl substitution, the cleavage of sulfonamide bond, isoxazole ring opening and a rearrangement following the loss of the SO2-group. Based on the identified intermediate products, the degradation pathways of SMX by SPC/Fe(II) process were illustrated. Fenton's reaction after the dissolution of SPC was proposed as the main reaction mechanisms, which was checked and confirmed by radical species detection tests and radical species scavenging studies. The results showed that although both O2- and HO were present in SPC/Fe(II) system, HO was dominant in the system while O2- was seldom involved in the degradation of SMX. These findings provided useful information and supported the application of this advanced oxidation process for antibiotics elimination in the groundwater.
Collapse
Affiliation(s)
- Pingping Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hongyuan Hao
- Analytical Applications Center, Shimadzu (China) CO., LTD, Shanghai 200233, China
| | - Horst Friedrich Schröder
- Institute of Environmental Engineering, Environmental Analytical Laboratory, RWTH Aachen University, Templergraben 55, D-52056 Aachen, Germany
| | - Wilhelm Gebhardt
- Institute of Environmental Engineering, Environmental Analytical Laboratory, RWTH Aachen University, Templergraben 55, D-52056 Aachen, Germany
| |
Collapse
|
84
|
Rong C, Shao Y, Wang Y, Zhang Y, Yu K. Formation of disinfection byproducts from sulfamethoxazole during sodium hypochlorite disinfection of marine culture water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33196-33206. [PMID: 30255267 DOI: 10.1007/s11356-018-3278-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
The fates of the antibiotic sulfamethoxazole (SMX) in the chlorination of fresh water, simulated brackish marine culture water, and marine water were investigated. SMX was oxidized by sodium hypochlorite (NaClO) at different reaction rates in the different samples. The oxidation of SMX followed pseudo-first-order kinetics, and the rate constant was the largest in marine water (3.44 min-1), as Br- ions promote the oxidation reaction. Moreover, the kinds of disinfection byproducts (DBPs) were also affected by Br- ions. Br-DBPs were found in the simulated brackish marine culture water and marine water disinfection systems. The structures of the DBPs indicated that S-C cleavage, polymerization, S-N hydrolysis, chlorine/bromine substitution, and desulfonation reactions occurred on SMX during the disinfection process. EPI (Estimation Programs Interface) Suite™ and absorbable organic halogen (AOX) analysis were used to evaluate the toxicity of the DBPs. The results suggested that DBPs in the simulated brackish marine culture water and marine water systems were more toxic than those in the fresh water system.
Collapse
Affiliation(s)
- Chuan Rong
- School of Marine Sciences, Guangxi University, Nanning, 530004, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, No. 100 East Daxue Road, Xixiangtang District, Nanning, 530004, Guangxi Autonomous Region, China
| | - Yanan Shao
- School of Marine Sciences, Guangxi University, Nanning, 530004, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, No. 100 East Daxue Road, Xixiangtang District, Nanning, 530004, Guangxi Autonomous Region, China
| | - Yinghui Wang
- School of Marine Sciences, Guangxi University, Nanning, 530004, China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, No. 100 East Daxue Road, Xixiangtang District, Nanning, 530004, Guangxi Autonomous Region, China
| | - Yuanyuan Zhang
- School of Marine Sciences, Guangxi University, Nanning, 530004, China.
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, No. 100 East Daxue Road, Xixiangtang District, Nanning, 530004, Guangxi Autonomous Region, China.
| | - Kefu Yu
- School of Marine Sciences, Guangxi University, Nanning, 530004, China.
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, No. 100 East Daxue Road, Xixiangtang District, Nanning, 530004, Guangxi Autonomous Region, China.
| |
Collapse
|
85
|
Bartolomeu M, Neves MGPMS, Faustino MAF, Almeida A. Wastewater chemical contaminants: remediation by advanced oxidation processes. Photochem Photobiol Sci 2018; 17:1573-1598. [PMID: 30328883 DOI: 10.1039/c8pp00249e] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Approximately 70% of the terrestrial area is covered with water, but only a small water fraction is compatible with terrestrial life forms. Due to the increment in human consumption, the need for water resources is increasing, and it is estimated that more than 40% of the population worldwide will face water stress/scarcity within the next few decades. Water recycling and reuse may offer the opportunity to expand water resources. For that, the wastewater treatment paradigm should be changed and adequately treated wastewater should be seen as a valuable resource instead of a waste product. It is easily understandable that the exact composition and constituent concentration of wastewater vary according to its different sources (industrial, agricultural, urban usage of water). Consequently, a variety of known and emerging pollutants like heavy metals, antibiotics, pesticides, phthalates, polyaromatic hydrocarbons, halogenated compounds and endocrine disruptors have been found in natural water reservoirs, due to the limited effectiveness of conventional wastewater treatment. The conventional approach consists of a combination of physical, chemical and biological processes, aiming at the removal of large sediments such as heavier solids, scum and grease and of organic content in order to avoid the growth of microorganisms and eutrophication of the receiving water bodies. However, this approach is not sufficient to reduce the chemical pollutants and much less the emerging chemical pollutants. In this review, after some considerations concerning chemical pollutants and the problematic efficiency of their removal by conventional methods, an update is presented on the successes and challenges of novel approaches for wastewater remediation based on advanced oxidation processes. An insight into wastewater remediation involving the photodynamic approach mediated by tetrapyrrolic derivatives will be underlined.
Collapse
Affiliation(s)
- M Bartolomeu
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - M G P M S Neves
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - M A F Faustino
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - A Almeida
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
86
|
Naraginti S, Li Y, Puma GL. Photocatalytic mineralization and degradation kinetics of sulphamethoxazole and reactive red 194 over silver-zirconium co-doped titanium dioxide: Reaction mechanisms and phytotoxicity assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:301-309. [PMID: 29772462 DOI: 10.1016/j.ecoenv.2018.04.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
The photodegradation and phytotoxicity of the pharmaceutical antibiotic, sulphamethoxazole (SMX) and the azo-dye reactive-red-194 (RR194) under visible-light irradiation of TiO2 nanoparticles modified by silver and zirconium was investigated. The results indicated that sulphamethoxazole and its toxic degradation by product, 3-amino-5-methylisoxazole and RR-194 could be degraded efficiently by the co-doped Zr/Ag-TiO2 catalyst. PL studies and ROS generation results suggested that the effective charge separation was carried out while irradiation of the modified TiO2 nanoparticles. Phytotoxicity tests demonstrated lower percentage of germination in P. vulgaris (40%), V. radiata (30%) and P. lunatus (30%) of the seeds treated with 50 ppm of SMX, compared to the seeds treated with the degradation products (100%). The results with 50 ppm of RR-194 also showed lower percentage of germination in P. vulgaris (40%), V. radiata (50%) and P. lunatus (30%) compared to the degradation products (100%). Furthermore, significant increase in root and shoot development was observed in the seeds treated with the degraded products when compared with SMX and RR-194. Overall, this study contributes to further understanding the photodegradation mechanisms, degradation products and environmental fate of SMX and RR-194 in water which helps in the evaluation and mitigation of the environmental risk of SMX and RR-194 for water reuse and crop irrigation.
Collapse
Affiliation(s)
- Saraschandra Naraginti
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Biofuels Institute, School of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Gianluca Li Puma
- Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| |
Collapse
|
87
|
Arslan-Alaton I, Kolba O, Olmez-Hanci T. Removal of an X-Ray contrast chemical from tertiary treated wastewater: Investigation of persulfate-mediated photochemical treatment systems. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
88
|
Munoz M, Conde J, de Pedro ZM, Casas JA. Antibiotics abatement in synthetic and real aqueous matrices by H2O2/natural magnetite. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.10.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
89
|
Li Y, Rashid A, Wang H, Hu A, Lin L, Yu CP, Chen M, Sun Q. Contribution of biotic and abiotic factors in the natural attenuation of sulfamethoxazole: A path analysis approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:1217-1226. [PMID: 29758874 DOI: 10.1016/j.scitotenv.2018.03.232] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Sulfamethoxazole (SMX) is a sulfonamide antibiotic, widely used as curative and preventive drug for human, animal, and aquaculture bacterial infections. Its residues have been ubiquitously detected in the surface waters and sediments. In the present study, SMX dissipation and kinetics was studied in the natural water samples from Jiulong River under simulated complex natural conditions as well as conditions to mimic various biotic and abiotic environmental conditions in isolation. Structural equation modeling (SEM) by employing partial least square technique in path coefficient analysis was used to investigate the direct and indirect contributions of different environmental factors in the natural attenuation of SMX. The model explained 81% of the variability in natural attenuation as a dependent variable under the influence of sole effects of direct photo-degradation, indirect photo-degradation, hydrolysis, microbial degradation and bacterial degradation. The results of SEM suggested that the direct and indirect photo-degradation were the major pathways in the SMX natural attenuation. However, other biotic and abiotic factors also play a mediatory role during the natural attenuation and other processes. Furthermore, the potential transformation products of SMX were identified and their toxicity was evaluated.
Collapse
Affiliation(s)
- Yan Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, Beijing 100043, China
| | - Azhar Rashid
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; Nuclear Institute for Food and Agriculture, Tarnab, Peshawar 25000, Pakistan
| | - Hongjie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, Beijing 100043, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Lifeng Lin
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Meng Chen
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361021, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China.
| |
Collapse
|
90
|
Li Y, Zhang B, Liu X, Zhao Q, Zhang H, Zhang Y, Ning P, Tian S. Ferrocene-catalyzed heterogeneous Fenton-like degradation mechanisms and pathways of antibiotics under simulated sunlight: A case study of sulfamethoxazole. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:26-34. [PMID: 29631044 DOI: 10.1016/j.jhazmat.2018.02.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/05/2018] [Accepted: 02/17/2018] [Indexed: 06/08/2023]
Abstract
Readily-available and efficient catalyst is essential for activating oxidants to produce reactive species for deeply remediating water bodies contaminated by antibiotics. In this study, Ferrocene (Fc) was introduced to establish a heterogeneous photo-Fenton system for the degradation of sulfonamide antibiotics, taking sulfamethoxazole as a representative. Results showed that the removal of sulfamethoxazole was effective in Fc-catalyzed photo-Fenton system. Electron spin resonance and radical scavenging experiments verified that there was a photoindued electron transfer process from Fc to H2O2 and dissolved oxygen resulting in the formation of OH that was primarily responsible for the degradation of sulfamethoxazole. The reactions of OH with substructure model compounds of sulfamethoxazole unveiled that aniline moiety was the preferable reaction site of sulfamethoxazole, which was verified by the formation of hydroxylated product and the dimer of sulfamethoxazole in Fc-catalyzed photo-Fenton system. This heterogeneous photo-Fenton system displayed an effective degradation efficiency even in a complex water matrices, and Fc represented a long-term stability by using the catalyst for multiple cycles. These results demonstrate that Fc-catalyzed photo-Fenton oxidation may be an efficient approach for remediation of wastewater containing antibiotics.
Collapse
Affiliation(s)
- Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Biaojun Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Xiangliang Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Heming Zhang
- College of Chemistry, Dalian University of Technology, 116024, Dalian, Liaoning, China
| | - Yuechao Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China.
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China.
| |
Collapse
|
91
|
Giraldo-Aguirre AL, Serna-Galvis EA, Erazo-Erazo ED, Silva-Agredo J, Giraldo-Ospina H, Flórez-Acosta OA, Torres-Palma RA. Removal of β-lactam antibiotics from pharmaceutical wastewaters using photo-Fenton process at near-neutral pH. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:20293-20303. [PMID: 28160176 DOI: 10.1007/s11356-017-8420-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
In this work, the photo-Fenton process at near-neutral pH was applied for the removal of the β-lactam antibiotic oxacillin (OXA) in water using artificial and sunlight. Initially, the main variables of the process (Fe(II), H2O2, and light power) were optimized by a statistical factorial design (23 with center points). The experimental design indicated that 90 μmol L-1 of Fe(II), 10 mmol L-1 of H2O2, and 30 W of power light were the favorable conditions for degradation of OXA at 203 μmol L-1. In the photo-Fenton system, the H2O2 alone, UV-light/H2O2, and Fe(II)/H2O2 subsystems presented a significant participation on antibiotic removal. Moreover, based on the primary organic transformation products, a mechanism of OXA degradation was proposed. Under the favorable operational conditions, both the pollutant and the antimicrobial activity were eliminated after 50 min of process application. Although at 480 min of treatment, only 5% of mineralization was achieved, the level of biodegradability of the solutions increased from 0.08 to 0.98. Interestingly, the presence of pharmaceutical additives (glucose, isopropanol, and oxalic acid) had a moderate interference on the efficiency of the pollutant removal. Additionally, the treatment at pilot scale of the β-lactam antibiotic in a pharmaceutical complex matrix using solar radiation allowed the complete removal of the pollutant and its associated antimicrobial activity in a very short time period (5 min). These results evidenced the applicability of the photo-Fenton process to treat wastewaters from pharmaceutical industry loaded with β-lactam antibiotics at near neutral pH values efficiently.
Collapse
Affiliation(s)
- Ana L Giraldo-Aguirre
- Grupo de Diseño y Formulación de Medicamentos, Cosméticos y Afines (DYFOMECO), Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Edgar D Erazo-Erazo
- Grupo de Diseño y Formulación de Medicamentos, Cosméticos y Afines (DYFOMECO), Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Javier Silva-Agredo
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Héctor Giraldo-Ospina
- Grupo de Diseño y Formulación de Medicamentos, Cosméticos y Afines (DYFOMECO), Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Oscar A Flórez-Acosta
- Grupo de Diseño y Formulación de Medicamentos, Cosméticos y Afines (DYFOMECO), Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
92
|
Du J, Guo W, Wang H, Yin R, Zheng H, Feng X, Che D, Ren N. Hydroxyl radical dominated degradation of aquatic sulfamethoxazole by Fe 0/bisulfite/O 2: Kinetics, mechanisms, and pathways. WATER RESEARCH 2018; 138:323-332. [PMID: 29627708 DOI: 10.1016/j.watres.2017.12.046] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 05/27/2023]
Abstract
In this study, batch experiments were carried out to investigate the key factors on sulfamethoxazole (SMX) removal kinetics in a new AOPs based on the combination of zero valent iron (Fe0) and bisulfite (S(IV)). With the increase of Fe0 from 0.25 mM to 5 mM, the removal rate of SMX was linearly increased in the Fe0/S(IV)/O2 system by accelerating the activation of S(IV) and Fe0 corrosion to accelerate. In the first 10 min of reaction, the increasing concentration of S(IV) inhibited SMX removal after since the high S(IV) concentration quenched reactive oxidative species (ROS). Then SMX removal rate was accelerated with the increase of S(IV) concentration after S(IV) were consumed up. The optimal ratio of S(IV) concentrations to Fe0 concentration for SMX removal in the Fe0/S(IV)/O2 system was 1:1. With SMX concentrations increasing from 1 to 50 μM, SMX removal rate was inhibited for the limitation of ROS yields. Although the presence of SO4- and OH was confirmed by electron paramagnetic resonance (EPR) spectrum, OH was identified as the dominant ROS in the Fe0/S(IV)/O2 system by chemical quenching experiments. Besides, strong inhibitive effects of 1,10-phenanthroline on SMX degradation kinetics by Fe0/S(IV)/O2 proved that the generation of ROS was rely on the release of Fe(II) and Fe(III). The generation of SO4- was ascribed to the activation of S(IV) by Fe(II)/Fe(III) recycling and the activation of HSO5- by Fe(II). And OH was simultaneously transformed from SO4- and generated by Fe0/O2. Density functional theory (DFT) calculation was conducted to reveal special reactive sites on SMX for radicals attacking and predicted intermediates. Finally, four possible SMX degradation pathways were accordingly proposed in the Fe0/S(IV)/O2 system based on experimental methods and DFT calculation.
Collapse
Affiliation(s)
- Juanshan Du
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Renli Yin
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Heshan Zheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaochi Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Di Che
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
93
|
Martínez-Costa J, Rivera-Utrilla J, Leyva-Ramos R, Sánchez-Polo M, Velo-Gala I, Mota A. Individual and simultaneous degradation of the antibiotics sulfamethoxazole and trimethoprim in aqueous solutions by Fenton, Fenton-like and photo-Fenton processes using solar and UV radiations. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
94
|
Chen Y, Yang W, Gao S, Zhu L, Sun C, Li Q. Internal Polarization Modulation in Bi 2 MoO 6 for Photocatalytic Performance Enhancement under Visible-Light Illumination. CHEMSUSCHEM 2018; 11:1521-1532. [PMID: 29508555 DOI: 10.1002/cssc.201800180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/05/2018] [Indexed: 06/08/2023]
Abstract
A built-in electric field from polarization inside polar photocatalysts could provide the driving force for photogenerated electrons and holes to move in opposite directions for better separation to improve their photocatalytic performance. The photocatalytic performance of a polar photocatalyst of Bi2 MoO6 has been enhanced through the precise control of its structure to increase internal polarization. DFT calculations predicted that a shortened crystal lattice parameter b in Bi2 MoO6 could induce larger internal polarization, which was achieved by the modulation of the pH of the reaction solution during a solvothermal synthetic process. A series of Bi2 MoO6 samples were created with reaction solutions of pH≈1, 4, and 8; the crystal lattice parameter b was found to decrease gradually with increasing solution pH. Accordingly, these Bi2 MoO6 samples demonstrated a gradually enhanced photocatalytic performance with decreasing crystal lattice parameter b, as demonstrated by the photocatalytic degradation of sulfamethoxazole/phenol and disinfection of Staphylococcus aureus bacteria under visible-light illumination due to improved photogenerated charge-carrier separation. This study demonstrates an innovative design strategy for materials to further enhance the photocatalytic performance of polar photocatalysts for a broad range of technical applications.
Collapse
Affiliation(s)
- Yan Chen
- Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning Province, 110016, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Weiyi Yang
- Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning Province, 110016, PR China
| | - Shuang Gao
- Division of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Beijing, 100049, PR China
| | - Linggang Zhu
- School of Materials Science and Engineering, Beihang University, Beijing, 100049, PR China
| | - Caixia Sun
- Key Laboratory of New Metallic Functional Materials and Advanced Surface Engineering in Universities of Shandong, Qingdao Binhai University, Qingdao, 266555, PR China
- School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, 266555, PR China
| | - Qi Li
- Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning Province, 110016, PR China
| |
Collapse
|
95
|
Sági G, Bezsenyi A, Kovács K, Klátyik S, Darvas B, Székács A, Mohácsi-Farkas C, Takács E, Wojnárovits L. Radiolysis of sulfonamide antibiotics in aqueous solution: Degradation efficiency and assessment of antibacterial activity, toxicity and biodegradability of products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:1009-1015. [PMID: 29890571 DOI: 10.1016/j.scitotenv.2017.12.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 06/08/2023]
Abstract
Numerous studies have been published on the radiolysis of sulfonamide antibiotic solutions but little effort has been made to monitor the biological properties of degradation products. A complex approach should also clarify the changes in antibacterial activity and biodegradability, besides the usual screening of toxicity. To fill this gap, the ionizing radiation induced degradation of four sulfonamide antibiotics was investigated in dilute aqueous solutions, with emphasis on the biological assessment of decomposition products. Complete removal of sulfonamides was achieved by a low absorbed dose (1.5kGy). 2-2.5kGy dose was needed to transform the persistent initial molecules to substances biodegradable in both river water and activated sludge. The ratio of the biological and chemical oxygen demand increased from <0.21 to at least 0.59, but values as high as 0.80 were also measured. It was demonstrated that antibacterial activity is due to the initial molecules, as it disappeared when the sulfamethoxazole concentration decreased below the minimal inhibitory concentration (30 μM). This means that the products have no antibacterial activity. Toxicity testing performed on test organisms from three different trophic levels and activated sludge evidenced that the toxicity depends both on the test organism and on the sulfonamide used. The degradation of initial molecules is not always enough to eliminate the environmental risk due to the toxic products formed e.g. inhibitory effects to Vibrio fischeri increased by 34% at 2.5kGy. For this reason, complex biological assessment of treated solutions has to play an important role in development and optimization of advanced treatment techniques.
Collapse
Affiliation(s)
- Gyuri Sági
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences, H-1121, Konkoly-Thege Miklós út 29-33, Budapest, Hungary.
| | - Anikó Bezsenyi
- Budapest Sewage Works Pte Ltd., South-Pest Wastewater Treatment Plant, H-1238, Meddőhányó utca 1, Budapest, Hungary
| | - Krisztina Kovács
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences, H-1121, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Szandra Klátyik
- Agro-Environmental Research Institute, National Research and Innovation Centre, H-1022, Herman Ottó utca 15, Budapest, Hungary
| | - Béla Darvas
- Agro-Environmental Research Institute, National Research and Innovation Centre, H-1022, Herman Ottó utca 15, Budapest, Hungary
| | - András Székács
- Agro-Environmental Research Institute, National Research and Innovation Centre, H-1022, Herman Ottó utca 15, Budapest, Hungary
| | - Csilla Mohácsi-Farkas
- Department of Microbiology and Biotechnology, Szent István University, H-1118, Somlói út, 14-16 Budapest, Hungary
| | - Erzsébet Takács
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences, H-1121, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - László Wojnárovits
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences, H-1121, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| |
Collapse
|
96
|
Zhou L, Limbu SM, Qiao F, Du ZY, Zhang M. Influence of Long-Term Feeding Antibiotics on the Gut Health of Zebrafish. Zebrafish 2018; 15:340-348. [PMID: 29608420 DOI: 10.1089/zeb.2017.1526] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The use of antibiotics for anti-infection and growth promotion has caused the overuse of antibiotics in aquaculture. However, the benefit or risk of the long-term use of antibiotics on fish growth or health has not been fully addressed. In the present study, zebrafish were fed with sulfamethoxazole (SMX) or oxytetracycline (OTC) at the therapeutic concentrations (100 and 80 mg/kg body weight per day, respectively) for 6 weeks to mimic the long-term use of antibiotics. The digestive enzyme activities were higher in both antibiotic treatments, and higher oxygen consumption rate was found in OTC treated group. As a result, SMX increased the weight gain of zebrafish, and OTC treatment did not show significant prompting effect on growth. The mortality was higher in SMX or OTC treated group on 2nd-4th day after exposure to Aeromonas hydrophila. Lower alkaline phosphatase (AKP) and acid phosphatase (ACP) activities were found in OTC treated group, while higher malondialdehyde (MDA) content was found in the intestine of both SMX and OTC treated zebrafish. Furthermore, feeding OTC decreased the intestinal microbial richness. This study revealed that long-term use of legal aquaculture concentrations of antibiotics caused systemic adverse effects on fish gut health; stringent policy for use of antibiotics in fish is urgent.
Collapse
Affiliation(s)
- Li Zhou
- 1 Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University , Shanghai, China
| | - Samwel Mchele Limbu
- 1 Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University , Shanghai, China .,2 Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam , Dar es Salaam, Tanzania
| | - Fang Qiao
- 1 Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University , Shanghai, China
| | - Zhen-Yu Du
- 1 Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University , Shanghai, China
| | - Meiling Zhang
- 1 Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University , Shanghai, China
| |
Collapse
|
97
|
Zhou L, Limbu SM, Shen M, Zhai W, Qiao F, He A, Du ZY, Zhang M. Environmental concentrations of antibiotics impair zebrafish gut health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:245-254. [PMID: 29291524 DOI: 10.1016/j.envpol.2017.12.073] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/12/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
Antibiotics have been widely used in human and veterinary medicine to both treat and prevent disease. Due to their high water solubility and low bioavailability, many antibiotic residues have been found in aquatic environments. Fish are an indispensable link between the environmental pollution and human health. However, the chronic effects of environmental concentrations of antibiotics in fish have not been thoroughly investigated. Sulfamethoxazole (SMX) and oxytetracycline (OTC) are frequently detected in aquatic environments. In this study, zebrafish were exposed to SMX (260 ng/L) and OTC (420 ng/L) for a six-week period. Results indicated that exposure to antibiotics did not influence weight gain of fish but increased the metabolic rate and caused higher mortality when treated fish were challenged with Aeromonas hydrophila. Furthermore, exposure to antibiotics in water resulted in a significant decrease in intestinal goblet cell numbers, alkaline phosphatase (AKP), acid phosphatase (ACP) activities, and the anti-oxidant response while there was a significant increase in expression of inflammatory factors. Antibiotic exposure also disturbed the intestinal microbiota in the OTC-exposed group. Our results indicated that environmental antibiotic concentrations can impair the gut health of zebrafish. The potential health risk of antibiotic residues in water should be evaluated in the future.
Collapse
Affiliation(s)
- Li Zhou
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 DongChuan Road, Shanghai 200241, China
| | - Samwel Mchele Limbu
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 DongChuan Road, Shanghai 200241, China; Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Meilin Shen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 DongChuan Road, Shanghai 200241, China
| | - Wanying Zhai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 DongChuan Road, Shanghai 200241, China
| | - Anyuan He
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 DongChuan Road, Shanghai 200241, China; Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 DongChuan Road, Shanghai 200241, China.
| | - Meiling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 DongChuan Road, Shanghai 200241, China.
| |
Collapse
|
98
|
Ge P, Yu H, Chen J, Qu J, Luo Y. Photolysis mechanism of sulfonamide moiety in five-membered sulfonamides: A DFT study. CHEMOSPHERE 2018; 197:569-575. [PMID: 29407819 DOI: 10.1016/j.chemosphere.2018.01.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Quantum chemical calculations have been performed to investigate the photolysis mechanism of relatively susceptible sulfonamide moiety of five-membered sulfonamide (SA) antibiotics, such as sulfamethoxazole, sulfisoxazole, sulfamethizole, and sulfathiazole. The results show that the ·OH-mediated indirect photolysis of sulfonamide linkage has two possible multi-step reaction pathways, viz., H-abstraction and electrophilic C1-attack, which is contrast to previously reported one-step cleavage manner. The newly proposed indirect photolysis mechanisms could be applied to six-membered SAs such as sulfadimethoxine. It has been found that the dissociation of SN bond is easier in direct photolysis than ·OH-mediated indirect photolysis. Wiberg bond index and LUMO-HOMO energy gap are investigated to clarify the origin of the discrepant reactivity of sulfonamide moiety of SAs at singlet and triplet states. In comparison with singlet states, the SN bond of SAs is weaker at triplet states of SAs and thus results in higher reactivity of sulfonamide moiety, as also suggested by smaller LUMO-HOMO energy gap. This study could add better understanding to the photolysis mechanisms of SAs, which would be also helpful in utilizing quantum chemistry calculation to investigate the behavior and fate of antibiotics in the aquatic environment.
Collapse
Affiliation(s)
- Pu Ge
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Hang Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
99
|
Willach S, Lutze HV, Eckey K, Löppenberg K, Lüling M, Wolbert JB, Kujawinski DM, Jochmann MA, Karst U, Schmidt TC. Direct Photolysis of Sulfamethoxazole Using Various Irradiation Sources and Wavelength Ranges-Insights from Degradation Product Analysis and Compound-Specific Stable Isotope Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1225-1233. [PMID: 29303258 DOI: 10.1021/acs.est.7b04744] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The environmental micropollutant sulfamethoxazole (SMX) is susceptible to phototransformation by sunlight and UV-C light which is used for water disinfection. Depending on the environmental pH conditions SMX may be present as neutral or anionic species. This study systematically investigates the phototransformation of these two relevant SMX species using four different irradiation scenarios, i.e., a low, medium, and high pressure Hg lamp and simulated sunlight. The observed phototransformation kinetics are complemented by data from compound-specific stable isotope and transformation product analysis using isotope-ratio and high-resolution mass spectrometry (HRMS). Observed phototransformation kinetics were faster for the neutral than for the anionic SMX species (from 3.4 (LP lamp) up to 6.6 (HP lamp) times). Furthermore, four phototransformation products (with m/z 189, 202, 242, and 260) were detected by HRMS that have not yet been described for direct photolysis of SMX. Isotopic fractionation occurred only if UV-B and UV-A wavelengths prevailed in the emitted irradiation and was most pronounced for the neutral species with simulated sunlight (εC = -4.8 ± 0.1 ‰). Phototransformation of SMX with UV-C light did not cause significant isotopic fractionation. Consequently, it was possible to differentiate sunlight and UV-C light induced phototransformation of SMX. Thus, CSIA might be implemented to trace back wastewater point sources or to assess natural attenuation of SMX by sunlight photolysis. In contrast to the wavelength range, pH-dependent speciation of SMX hardly impacted isotopic fractionation.
Collapse
Affiliation(s)
- Sarah Willach
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
| | - Holger V Lutze
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
- IWW Water Centre , Moritzstraße 26, D-45476 Muelheim an der Ruhr, Germany
- University of Duisburg-Essen , Centre for Water and Environmental Research (ZWU), Universitaetsstraße 5 D-45141 Essen, Germany
| | - Kevin Eckey
- University of Muenster , Institute of Inorganic and Analytical Chemistry, Corrensstraße 28-30 D-48149, Muenster, Germany
| | - Katja Löppenberg
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
| | - Michelle Lüling
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
| | - Jens-Benjamin Wolbert
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
| | - Dorothea M Kujawinski
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
| | - Maik A Jochmann
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
- University of Duisburg-Essen , Centre for Water and Environmental Research (ZWU), Universitaetsstraße 5 D-45141 Essen, Germany
| | - Uwe Karst
- University of Muenster , Institute of Inorganic and Analytical Chemistry, Corrensstraße 28-30 D-48149, Muenster, Germany
| | - Torsten C Schmidt
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
- IWW Water Centre , Moritzstraße 26, D-45476 Muelheim an der Ruhr, Germany
- University of Duisburg-Essen , Centre for Water and Environmental Research (ZWU), Universitaetsstraße 5 D-45141 Essen, Germany
| |
Collapse
|
100
|
Graça CAL, Fugita LTN, de Velosa AC, Teixeira ACSC. Amicarbazone degradation promoted by ZVI-activated persulfate: study of relevant variables for practical application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5474-5483. [PMID: 29214480 DOI: 10.1007/s11356-017-0862-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Alarming amounts of organic pollutants are being detected in waterbodies due to their ineffective removal by conventional treatment techniques, which warn of the urgent need of developing new technologies for their remediation. In this context, advanced oxidation processes (AOPs), especially those based on Fenton reactions, have proved to be suitable alternatives, due to their efficacy of removing persistent organic compounds. However, the use of ferrous iron in these processes has several operational constraints; to avoid this, an alternative iron source was here investigated: zero-valent-iron (ZVI). A Fenton-like process based on the activation of a recently explored oxidant-persulfate (PS)-with ZVI was applied to degrade an emerging contaminant: Amicarbazone (AMZ). The influence of ZVI size and source, PS/ZVI ratio, pH, UVA radiation, dissolved O2, and inorganic ions was evaluated in terms of AMZ removal efficiency. So far, this is the first time these parameters are simultaneously investigated, in the same study, to evaluate a ZVI-activated PS process. The radical mechanism was also explored and two radical scavengers were used to determine the identity of major active species taking part in the degradation of AMZ. The degradation efficiency was found to be strongly affected by the ZVI dosage, while positively affected by the PS concentration. The PS/ZVI system enabled AMZ degradation in a wide range of pH, although with a lower efficiency under slightly alkaline conditions. Dissolved O2 revealed to play an important role in reaction kinetics as well as the presence of inorganic ions. UVA radiation seems to improve the degradation kinetics only in the presence of extra O2 content. Radicals quenching experiments indicated that both sulfate (SO4•-) and hydroxyl (•OH) radicals contributed to the overall oxidation performance, but SO4•- was the dominant oxidative species.
Collapse
Affiliation(s)
- Cátia A L Graça
- Department of Chemical Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, São Paulo, 380, Brazil.
| | - Lucas T N Fugita
- Department of Chemical Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, São Paulo, 380, Brazil
| | - Adriana Correia de Velosa
- Department of Chemical Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, São Paulo, 380, Brazil
| | - Antonio Carlos S C Teixeira
- Department of Chemical Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, São Paulo, 380, Brazil
| |
Collapse
|