51
|
Huang L, Cui L, Chen K, Han Z, Guo Q. Functional and structural network changes related with cognition in semantic dementia longitudinally. Hum Brain Mapp 2023; 44:4287-4298. [PMID: 37209400 PMCID: PMC10318263 DOI: 10.1002/hbm.26345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/06/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023] Open
Abstract
Longitudinal changes in the white matter/functional brain networks of semantic dementia (SD), as well as their relations with cognition remain unclear. Using a graph-theoretic method, we examined the neuroimaging (T1, diffusion tensor imaging, functional MRI) network properties and cognitive performance in processing semantic knowledge of general and six modalities (i.e., object form, color, motion, sound, manipulation and function) from 31 patients (at two time points with an interval of 2 years) and 20 controls (only at baseline). Partial correlation analyses were carried out to explore the relationships between the network changes and the declines of semantic performance. SD exhibited aberrant general and modality-specific semantic impairment, and gradually worsened over time. Overall, the brain networks showed a decreased global and local efficiency in the functional network organization but a preserved structural network organization with a 2-year follow-up. With disease progression, both structural and functional alterations were found to be extended to the temporal and frontal lobes. The regional topological alteration in the left inferior temporal gyrus (ITG.L) was significantly correlated with general semantic processing. Meanwhile, the right superior temporal gyrus and right supplementary motor area were identified to be associated with color and motor-related semantic attributes. SD manifested disrupted structural and functional network pattern longitudinally. We proposed a hub region (i.e., ITG.L) of semantic network and distributed modality-specific semantic-related regions. These findings support the hub-and-spoke semantic theory and provide targets for future therapy.
Collapse
Affiliation(s)
- Lin Huang
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liang Cui
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Keliang Chen
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Qihao Guo
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
52
|
Cossette-Roberge H, Li J, Citherlet D, Nguyen DK. Localizing and lateralizing value of auditory phenomena in seizures. Epilepsy Behav 2023; 145:109327. [PMID: 37422934 DOI: 10.1016/j.yebeh.2023.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Auditory seizures (AS) are a rare type of focal seizures. AS are classically thought to involve a seizure onset zone (SOZ) in the temporal lobe, but there remain uncertainties about their localizing and lateralizing value. We conducted a narrative literature review with the aim of providing an up-to-date description of the lateralizing and localizing value of AS. METHODS The databases PubMed, Scopus, and Google Scholar were searched for literature on AS in December 2022. All cortical stimulation studies, case reports, and case series were analyzed to assess for auditory phenomena that were suggestive of AS and to evaluate if the lateralization and/or localization of the SOZ could be determined. We classified AS according to their semiology (e.g., simple hallucination versus complex hallucination) and the level of evidence with which the SOZ could be predicted. RESULTS A total of 174 cases comprising 200 AS were analyzed from 70 articles. Across all studies, the SOZ of AS were more often in the left (62%) than in the right (38%) hemisphere. AS heard bilaterally followed this trend. Unilaterally heard AS were more often due to a SOZ in the contralateral hemisphere (74%), although they could also be ipsilateral (26%). The SOZ for AS was not limited to the auditory cortex, nor to the temporal lobe. The areas more frequently involved in the temporal lobe were the superior temporal gyrus (STG) and mesiotemporal structures. Extratemporal locations included parietal, frontal, insular, and rarely occipital structures. CONCLUSION Our review highlighted the complexity of AS and their importance in the identification of the SOZ. Due to the limited data and heterogeneous presentation of AS in the literature, the patterns associated with different AS semiologies warrant further research.
Collapse
Affiliation(s)
- Hélène Cossette-Roberge
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Neurology Division, Centre Hospitalier de l'Université de Sherbrooke (CHUS), Sherbrooke, QC, Canada.
| | - Jimmy Li
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Neurology Division, Centre Hospitalier de l'Université de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Daphné Citherlet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Dang Khoa Nguyen
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Department of Neurosciences, Université de Montréal, Montreal, QC, Canada; Neurology Division, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| |
Collapse
|
53
|
Tsai CL, Chou KH, Lee PL, Liang CS, Kuo CY, Lin GY, Lin YK, Hsu YC, Ko CA, Yang FC, Lin CP. Shared alterations in hippocampal structural covariance in subjective cognitive decline and migraine. Front Aging Neurosci 2023; 15:1191991. [PMID: 37409010 PMCID: PMC10318340 DOI: 10.3389/fnagi.2023.1191991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction Subjective cognitive decline (SCD) and migraine are often comorbid. Hippocampal structural abnormalities have been observed in individuals with both SCD and migraine. Given the known structural and functional heterogeneity along the long axis (anterior to posterior) of the hippocampus, we aimed to identify altered patterns of structural covariance within hippocampal subdivisions associated with SCD and migraine comorbidities. Methods A seed-based structural covariance network analysis was applied to examine large-scale anatomical network changes of the anterior and posterior hippocampus in individuals with SCD, migraine and healthy controls. Conjunction analyses were used to identify shared network-level alterations in the hippocampal subdivisions in individuals with both SCD and migraine. Results Altered structural covariance integrity of the anterior and posterior hippocampus was observed in the temporal, frontal, occipital, cingulate, precentral, and postcentral areas in individuals with SCD and migraine compared with healthy controls. Conjunction analysis revealed that, in both SCD and migraine, altered structural covariance integrity was shared between the anterior hippocampus and inferior temporal gyri and between the posterior hippocampus and precentral gyrus. Additionally, the structural covariance integrity of the posterior hippocampus-cerebellum axis was associated with the duration of SCD. Conclusion This study highlighted the specific role of hippocampal subdivisions and specific structural covariance alterations within these subdivisions in the pathophysiology of SCD and migraine. These network-level changes in structural covariance may serve as potential imaging signatures for individuals who have both SCD and migraine.
Collapse
Affiliation(s)
- Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Kun-Hsien Chou
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Pei-Lin Lee
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Chen-Yuan Kuo
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yu-Kai Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Chih Hsu
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Chien-An Ko
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City, Taiwan
| | - Ching-Po Lin
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| |
Collapse
|
54
|
Rao Y, Liu W, Zhu Y, Lin Q, Kuang C, Huang H, Jiao B, Ma L, Lin J. Altered functional brain network patterns in patients with migraine without aura after transcutaneous auricular vagus nerve stimulation. Sci Rep 2023; 13:9604. [PMID: 37311825 DOI: 10.1038/s41598-023-36437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/03/2023] [Indexed: 06/15/2023] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) shows excellent effects on relieving clinical symptoms in migraine patients. Nevertheless, the neurological mechanisms of taVNS for migraineurs remain unclear. In recent years, voxel-wise degree centrality (DC) and functional connectivity (FC) methods were extensively utilized for exploring alterations in patterns of FC in the resting-state brain. In the present study, thirty-five migraine patients without aura and thirty-eight healthy controls (HCs) were recruited for magnetic resonance imaging scans. Firstly, this study used voxel-wise DC analysis to explore brain regions where abnormalities were present in migraine patients. Secondly, for elucidating neurological mechanisms underlying taVNS in migraine, seed-based resting-state functional connectivity analysis was employed to the taVNS treatment group. Finally, correlation analysis was performed to explore the relationship between alterations in neurological mechanisms and clinical symptoms. Our findings indicated that migraineurs have lower DC values in the inferior temporal gyrus (ITG) and paracentral lobule than in healthy controls (HCs). In addition, migraineurs have higher DC values in the cerebellar lobule VIII and the fusiform gyrus than HCs. Moreover, after taVNS treatment (post-taVNS), patients displayed increased FC between the ITG with the inferior parietal lobule (IPL), orbitofrontal gyrus, angular gyrus, and posterior cingulate gyrus than before taVNS treatment (pre-taVNS). Besides, the post-taVNS patients showed decreased FC between the cerebellar lobule VIII with the supplementary motor area and postcentral gyrus compared with the pre-taVNS patients. The changed FC of ITG-IPL was significantly related to changes in headache intensity. Our study suggested that migraine patients without aura have altered brain connectivity patterns in several hub regions involving multisensory integration, pain perception, and cognitive function. More importantly, taVNS modulated the default mode network and the vestibular cortical network related to the dysfunctions in migraineurs. This paper provides a new perspective on the potential neurological mechanisms and therapeutic targets of taVNS for treating migraine.
Collapse
Affiliation(s)
- Yuyang Rao
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Wenting Liu
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Yunpeng Zhu
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Qiwen Lin
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Changyi Kuang
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Huiyuan Huang
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Bingqing Jiao
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Lijun Ma
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China.
| | - Jiabao Lin
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China.
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
55
|
Liu S, You B, Zhang X, Shaw A, Chen H, Jackson T. Individual Differences in Pain Catastrophizing and Regional Gray Matter Volume Among Community-dwelling Adults With Chronic Pain: A Voxel-based Morphology Study. Clin J Pain 2023; 39:209-216. [PMID: 36920221 DOI: 10.1097/ajp.0000000000001103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/01/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVES Elevations in pain catastrophizing (PC) are associated with more severe pain, emotional distress, and impairment within samples with chronic pain. However, brain structure correlates underlying individual differences in PC are not well understood and predict more severe pain and impairment within samples with chronic pain. This study assessed links between regional gray matter volume (GMV) and individual differences in PC within a large mixed chronic pain sample. MATERIALS AND METHODS Chinese adult community dwellers with chronic pain of at least 3 months duration (101 women and 59 men) completed self-report measures of background characteristics, pain severity, depression, and a widely validated PC questionnaire as well as a structural magnetic resonance imagining scan featuring voxel-based morphology to assess regional GMV correlates of PC. RESULTS After controlling for demographic correlates of PC, pain severity, and depression, higher PC scores had a significant, unique association with lower GMV levels in the inferior temporal area of the right fusiform gyrus, a region previously implicated in emotion regulation. DISCUSSION GMV deficits, particularly in right temporal-occipital emotion regulation regions, correspond to high levels of PC among individuals with chronic pain.
Collapse
Affiliation(s)
- Shuyang Liu
- School of Psychology, Southwest University, Chongqing
| | - BeiBei You
- School of Nursing, Guizhou Medical University, Guizhou
| | - Xin Zhang
- School of Psychology, Southwest University, Chongqing
| | - Amy Shaw
- Department of Psychology, University of Macau, Taipa, Macau, S.A.R., China
| | - Hong Chen
- School of Psychology, Southwest University, Chongqing
| | - Todd Jackson
- Department of Psychology, University of Macau, Taipa, Macau, S.A.R., China
| |
Collapse
|
56
|
Yan Y, Li M, Jia H, Fu L, Qiu J, Yang W. Amygdala-based functional connectivity mediates the relationship between thought control ability and trait anxiety. Brain Cogn 2023; 168:105976. [PMID: 37086555 DOI: 10.1016/j.bandc.2023.105976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/24/2023]
Abstract
Thought control ability (TCA) refers to the ability to exclude unwanted thoughts. There has been consistent evidence on the protective effect of TCA on anxiety, that higher TCA is associated with lower anxiety. However, the underlying neural mechanism remains unclear. In this study, with a large sample (N = 495), we investigated how seed-based resting-state functional connectivity (RSFC) mediates the relationship between TCA and anxiety. Our behaviour results replicated previous findings that TCA is negatively associated with trait anxiety after controlling for gender, age, and depression. More importantly, the RSFC results revealed that TCA is negatively associated with the left amygdala - left frontal pole (LA-LFP), left amygdala - left inferior temporal gyrus (LA-LITG), and left hippocampus - left inferior frontal gyrus (LH-LIFG) connectivity. In addition, a mediation analysis demonstrated that the LA-LFP and LA-LITG connectivity in particular mediated the influence of TCA on trait anxiety. Overall, our study extends previous research by revealing the neural bases underlying the protective effect of TCA on anxiety and pinpointing specific mediating RSFC pathways. Future studies could explore whether targeted TCA training (behavioural or neural) can help alleviate anxiety.
Collapse
Affiliation(s)
- Yuchi Yan
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Min Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Hui Jia
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Lei Fu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China.
| | - Wenjing Yang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China.
| |
Collapse
|
57
|
Cai LN, Yue J, Cao DN, Wang P, Zhang Q, Li A, Zhao WW, Yang G, Wang Y, Peng CL, Han SW, Hou Y, Li XL. Structural and functional activities of brain in patients with vascular cognitive impairment: A case-controlled magnetic resonance imaging study. Medicine (Baltimore) 2023; 102:e33534. [PMID: 37058059 PMCID: PMC10101273 DOI: 10.1097/md.0000000000033534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
This study aimed to identify abnormal brain regions and imaging indices of vascular cognitive impairment (VCI) and explore specific imaging diagnostic markers of VCI. In this study, 24 patients with VCI were allocated to the VCI group and 25 healthy subjects were assigned to the healthy control (HC) group. Demographic data and neuropsychological test scores were compared using SPSS 25.0. The structural and functional imaging data were post-processed and statistically analyzed using CAT12, DPARSF and SPM12 software, based on the MATLAB platform. The structural and functional indices of gray matter volume (GMV) and regional homogeneity (ReHo) were obtained, and inter-group data were analyzed using an independent-sample t test. Sex, age, years of education, and total brain volume were used as covariates. Compared to the HC group, the GMV of VCI in the VCI group decreased significantly in the rectus muscles of the bilateral gyrus, left superior temporal gyrus, left supplementary motor area (SMA), right insula, right superior temporal gyrus, right anterior cuneiform lobe, and right anterior central gyrus (PRECG) (P < .05, FWE correction), without GMV enlargement in the brain area. ReHo decreased in the right inferior temporal gyrus (ITG), right parahippocampal gyrus, and left temporal pole (middle temporal gyrus, right lingual gyrus, left posterior central gyrus, and right middle temporal gyrus), the areas of increased ReHo were the left caudate nucleus, left rectus gyrus, right anterior cingulate gyrus and lateral cingulate gyrus (P < .05, FWE correction). Correlation analysis showed that the GMV of the left superior temporal gyrus was positively correlated with the Montreal Cognitive Assessment (MoCA) score (P < .05), and the GMV of the right insula was positively correlated with the MESE and long delayed memory scores (P < .05). There was a significant positive correlation between the ReHo and short-term delayed memory scores in the middle temporal gyrus of the left temporal pole (P < .05). The volume of GMV and ReHo decreased in VCI patients, suggesting that impairment of brain structure and function in specific regions is the central mechanism of cognitive impairment in these patients. Meanwhile, the functional indices of some brain regions were increased, which may be a compensatory mechanism for the cognitive impairment associated with VCI.
Collapse
Affiliation(s)
- Li-Na Cai
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinhuan Yue
- Shenzhen Frontier in Chinese Medicine Research Co., Ltd., Shenzhen, China
- Department of Tuina, Acupuncture and Moxibustion, Shenzhen Jiuwei Chinese Medicine Clinic, Shenzhen, China
| | - Dan-Na Cao
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Peng Wang
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Oncology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qinhong Zhang
- Shenzhen Frontier in Chinese Medicine Research Co., Ltd., Shenzhen, China
- Department of Tuina, Acupuncture and Moxibustion, Shenzhen Jiuwei Chinese Medicine Clinic, Shenzhen, China
| | - Ang Li
- Sanofi-Aventis China Investment Co., Ltd., Beijing, China
| | | | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH
| | - Yang Wang
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Cai-Liang Peng
- Department of Third Cardiovascular, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Sheng-Wang Han
- Department of Third Cardiovascular, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Third Rehabilitation Medicine, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Hou
- Department of Gynecology, Harbin Traditional Chinese Medicine Hospital, Harbin, China
| | - Xiao-Ling Li
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
58
|
Can AT, Hermens DF, Mohamed AZ, Shan ZY, Dutton M, Gallay C, Forsyth G, Jamieson D, Lagopoulos J. Treatment response with ketamine in chronic suicidality: An open label functional connectivity study. J Affect Disord 2023; 331:92-100. [PMID: 36963514 DOI: 10.1016/j.jad.2023.03.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND Ketamine has recently been proposed as a treatment option for suicidality. Whilst its mechanism of action has been explored at molecular levels, the effect on the brain at the organ level remains unclear. Here we investigate immediate post-treatment and prolonged large-scale resting-state neural network changes to elucidate the neuronal underpinnings associated with ketamine's therapeutic effects. METHODS Twenty-eight adults (aged 22-72 years) participated in the Oral Ketamine Trial On Suicidality, which is an open-label trial of weekly sub-anaesthetic doses of oral ketamine over 6 weeks. MRI was acquired at baseline, post-treatment, and follow-up. Functional connectivity changes at post-treatment and follow-up were examined using seed based and independent component analysis. RESULTS The seed-based connectivity analysis revealed significantly reduced connectivity at post-treatment from the right hippocampus to both right and left superior frontal gyrus, from the left anterior parahippocampus to right superior frontal gyrus, left superior frontal gyrus, right middle frontal gyrus, and left frontal operculum cortex. Compared with baseline, the ICA showed reduced anterior default mode network connectivities to bilateral posterior cingulate cortex, middle and anterior cingulate cortex, lingual gyrus, and cuneus and increased connectivity of the frontoparietal network to the right superior parietal lobule at post-treatment. LIMITATIONS Open label pilot study. CONCLUSIONS We have shown sub-anaesthetic doses of ketamine alters connectivity in networks which have been shown to be aberrantly hyper-connected in numerous psychiatric conditions. These neurocircuitry changes are supported by significant reductions in suicide ideation. Our results provide support for the use of ketamine as a treatment for suicidality.
Collapse
Affiliation(s)
- Adem T Can
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Abdalla Z Mohamed
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Zack Y Shan
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Megan Dutton
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Cyrana Gallay
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Grace Forsyth
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Daniel Jamieson
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia.
| |
Collapse
|
59
|
Chen Z, He C, Zhang P, Cai X, Huang W, Chen X, Xu M, Wang L, Zhang Y. Abnormal cerebellum connectivity patterns related to motor subtypes of Parkinson's disease. J Neural Transm (Vienna) 2023; 130:549-560. [PMID: 36859555 PMCID: PMC10050038 DOI: 10.1007/s00702-023-02606-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
Cerebellar dysfunction may substantially contribute to the clinical symptoms of Parkinson's disease (PD). The role of cerebellar subregions in tremors and gait disturbances in PD remains unknown. To investigate alterations in cerebellar subregion volumes and functional connectivity (FC), as well as FC between the dentate nucleus (DN) and ventral lateral posterior nucleus (VLp) of the thalamus, which are potentially involved in different PD motor subtypes. We conducted morphometric and resting-state functional connectivity analyses in various cerebellar subregions in 22 tremor-dominant (TD)-PD and 35 postural instability gait difficulty dominant (PIGD)-PD patients and 38 sex- and age-matched healthy controls (HCs). The volume and FC alterations in various cerebellar subregions and the neural correlates of these changes with the clinical severity scores were investigated. The PIGD-PD group showed greater FC between the right motor cerebellum (CBMm) and left postcentral gyrus than the HC group, and a higher FC was associated with less severe PIGD symptoms. In contrast, the TD-PD group had decreased FC between the right DN and left VLp compared with the PIGD-PD and HC groups, and lower FC was associated with worse TD symptoms. Furthermore, the PIGD-PD group had higher FC between the left DN and left inferior temporal gyrus than the TD-PD group. Morphometric analysis revealed that the TD-PD group showed a significantly higher volume of left CBMm than the HC group. Our findings point to differential alteration patterns in cerebellar subregions and offer a new perspective on the pathophysiology of motor subtypes of PD.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China.,Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.,Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Chentao He
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China.,Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Piao Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China.,Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xin Cai
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China
| | - Wenlin Huang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China
| | - Xi Chen
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China
| | - Mingze Xu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100190, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China.,Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, China. .,Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
60
|
Du Y, Yu J, Liu M, Qiu Q, Fang Y, Zhao L, Wei W, Wang J, Lin X, Yan F, Li X. The relationship between depressive symptoms and cognitive function in Alzheimer's disease: The mediating effect of amygdala functional connectivity and radiomic features. J Affect Disord 2023; 330:101-109. [PMID: 36863470 DOI: 10.1016/j.jad.2023.02.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND Depressive symptoms are common in Alzheimer's disease (AD) and are associated with cognitive function. Amygdala functional connectivity (FC) and radiomic features related to depression and cognition. However, studies have yet to explore the neural mechanisms underlying these associations. METHODS We enrolled eighty-two AD patients with depressive symptoms (ADD) and 85 healthy controls (HCs) in this study. We compared amygdala FC using the seed-based approach between ADD patients and HCs. The least absolute shrinkage and selection operator (LASSO) was used to select amygdala radiomic features. A support vector machine (SVM) model was constructed based on the identified radiomic features to distinguish ADD from HCs. We used mediation analyses to explore the mediating effects of amygdala radiomic features and amygdala FC on cognition. RESULTS We found that ADD patients showed decreased amygdala FC with posterior cingulate cortex, middle frontal gyrus (MFG), and parahippocampal gyrus involved in the default mode network compared to HCs. The area under the receiver operating characteristic curve (AUC) of the amygdala radiomic model was 0.95 for ADD patients and HCs. Notably, the mediation model demonstrated that amygdala FC with the MFG and amygdala-based radiomic features mediated the relationship between depressive symptoms and cognitive function in AD. LIMITATIONS This study is a cross-sectional study and lacks longitudinal data. CONCLUSION Our findings may not only expand existing biological knowledge of the relationship between cognition and depressive symptoms in AD from the perspective of brain function and structure but also may ultimately provide potential targets for personalized treatment strategies.
Collapse
Affiliation(s)
- Yang Du
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jie Yu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Manhua Liu
- MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Qiu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuan Fang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lu Zhao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenjing Wei
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jinghua Wang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiang Lin
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Feng Yan
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Xia Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
61
|
Hong TY, Yang CJ, Shih CH, Fan SF, Yeh TC, Yu HY, Chen LF, Hsieh JC. Enhanced intrinsic functional connectivity in the visual system of visual artist: Implications for creativity. Front Neurosci 2023; 17:1114771. [PMID: 36908805 PMCID: PMC9992720 DOI: 10.3389/fnins.2023.1114771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction This study sought to elucidate the cognitive traits of visual artists (VAs) from the perspective of visual creativity and the visual system (i.e., the most fundamental neural correlate). Methods We examined the local and long-distance intrinsic functional connectivity (FC) of the visual system to unravel changes in brain traits among VAs. Twenty-seven university students majoring in visual arts and 27 non-artist controls were enrolled. Results VAs presented enhanced local FC in the right superior parietal lobule, right precuneus, left inferior temporal gyrus (ITG), left superior parietal lobule, left angular gyrus, and left middle occipital gyrus. VAs also presented enhanced FC with the ITG that targeted the visual area (occipital gyrus and cuneus), which appears to be associated with visual creativity. Discussion The visual creativity of VAs was correlated with strength of intrinsic functional connectivity in the visual system. Learning-induced neuroplasticity as a trait change observed in VAs can be attributed to the macroscopic consolidation of consociated neural circuits that are engaged over long-term training in the visual arts and aesthetic experience. The consolidated network can be regarded as virtuoso-specific neural fingerprint.
Collapse
Affiliation(s)
- Tzu-Yi Hong
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Ju Yang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Heng Shih
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Fen Fan
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Chen Yeh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Yen Yu
- Graduate Institute of Arts and Humanities Education, Taipei National University of the Arts, Taipei, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jen-Chuen Hsieh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
62
|
Lang X, Wang D, Zhou H, Wang L, Kosten TR, Zhang XY. P50 inhibition defects, psychopathology and gray matter volume in patients with first-episode drug-naive schizophrenia. Asian J Psychiatr 2023; 80:103421. [PMID: 36563611 DOI: 10.1016/j.ajp.2022.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Sensory gating deficits and gray matter volume (GMV) abnormalities have been found to be associated with the pathogenesis and psychopathology of patients with schizophrenia (SCZ). However, no studies have investigated their interrelationship in first-episode treatment-naive (FETN) SCZ patients. METHODS We recruited 52 FETN SCZ patients and 57 healthy controls. The Positive and Negative Syndrome Scale (PANSS) was used to measure the psychopathology of the patients. We collected magnetic resonance imaging and P50 inhibition data from all participants. RESULTS Compared to healthy controls, patients had shorter S1 and S2 latencies but larger S2 amplitudes and P50 ratio (Bonferroni adjusted all p < 0.01). In patients, S2 latency was independently associated with PANSS total score, negative symptoms and general psychopathology (t = 2.26-2.58, both P < 0.05), whereas S1 (t = 2.44, P < 0.05) and S2 latencies (t = 2.13, P < 0.05) were associated with PANSS cognitive factor. Moreover, GMV in the left inferior temporal gyrus, left lingual gyrus and right superior occipital gyrus, and bilateral dorsolateral superior frontal gyrus were each associated with the P50 components (all p < 0.05). In addition, GMV associated with S2 latency was negatively correlated with PANSS general psychopathology (t = -2.46, p < 0.05) and total score (t = -2.34, p < 0.05). CONCLUSIONS Our findings indicate that FETN SCZ patients exhibit deficits in P50 inhibition and GMV of brain regions associated with these deficits may be associated with their psychopathological symptoms, suggesting that brain structures associated with P50 components may be important biomarkers of SCZ psychopathology. Future studies could use a prospective longitudinal design to investigate the potential causal relationship of brain structures associated with P50 components in the psychopathological symptoms of SCZ patients.
Collapse
Affiliation(s)
- XiaoE Lang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Dongmei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Huixia Zhou
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Li Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Thomas R Kosten
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
63
|
Zhou Z, Luo Y, Gao X, Zhu Y, Bai X, Yang H, Bi Q, Chen S, Duan L, Wang L, Gong F, Feng F, Gong G, Zhu H, Pan H. Alterations in brain structure and function associated with pediatric growth hormone deficiency: A multi-modal magnetic resonance imaging study. Front Neurosci 2023; 16:1043857. [PMID: 36685242 PMCID: PMC9853296 DOI: 10.3389/fnins.2022.1043857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/02/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Pediatric growth hormone deficiency (GHD) is a disease resulting from impaired growth hormone/insulin-like growth factor-1 (IGF-1) axis but the effects of GHD on children's cognitive function, brain structure and brain function were not yet fully illustrated. Methods Full Wechsler Intelligence Scales for Children, structural imaging, diffusion tensor imaging, and resting-state functional magnetic resonance imaging were assessed in 11 children with GHD and 10 matched healthy controls. Results (1) The GHD group showed moderate cognitive impairment, and a positive correlation existed between IGF-1 levels and cognitive indices. (2) Mean diffusivity was significantly increased in both corticospinal tracts in GHD group. (3) There were significant positive correlations between IGF-1 levels and volume metrics of left thalamus, left pallidum and right putamen but a negative correlation between IGF-1 levels and cortical thickness of the occipital lobe. And IGF-1 levels negatively correlated with fractional anisotropy in the superior longitudinal fasciculus and right corticospinal tract. (4) Regional homogeneity (ReHo) in the left hippocampus/parahippocampal gyrus was negatively correlated with IGF-1 levels; the amplitude of low-frequency fluctuation (ALFF) and ReHo in the paracentral lobe, postcentral gyrus and precentral gyrus were also negatively correlated with IGF-1 levels, in which region ALFF fully mediates the effect of IGF-1 on working memory index. Conclusion Multiple subcortical, cortical structures, and regional neural activities might be influenced by serum IGF-1 levels. Thereinto, ALFF in the paracentral lobe, postcentral gyrus and precentral gyrus fully mediates the effect of IGF-1 on the working memory index.
Collapse
Affiliation(s)
- Zhibo Zhou
- Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Department of Endocrinology, Chinese Research Center for Behavior Medicine in Growth and Development, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunyun Luo
- Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Department of Endocrinology, Chinese Research Center for Behavior Medicine in Growth and Development, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoxing Gao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanlin Zhu
- Beijing Normal University, Beijing, China
| | - Xi Bai
- Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Department of Endocrinology, Chinese Research Center for Behavior Medicine in Growth and Development, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Department of Endocrinology, Chinese Research Center for Behavior Medicine in Growth and Development, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiuhui Bi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Shi Chen
- Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Department of Endocrinology, Chinese Research Center for Behavior Medicine in Growth and Development, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lian Duan
- Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Department of Endocrinology, Chinese Research Center for Behavior Medicine in Growth and Development, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Department of Endocrinology, Chinese Research Center for Behavior Medicine in Growth and Development, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Department of Endocrinology, Chinese Research Center for Behavior Medicine in Growth and Development, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Department of Endocrinology, Chinese Research Center for Behavior Medicine in Growth and Development, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Huijuan Zhu,
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Department of Endocrinology, Chinese Research Center for Behavior Medicine in Growth and Development, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Hui Pan,
| |
Collapse
|
64
|
Ma L, Liu G, Zhang P, Wang J, Huang W, Jiang Y, Zheng Y, Han N, Zhang Z, Zhang J. Altered Cerebro-Cerebellar Effective Connectivity in New-Onset Juvenile Myoclonic Epilepsy. Brain Sci 2022; 12:brainsci12121658. [PMID: 36552118 PMCID: PMC9775154 DOI: 10.3390/brainsci12121658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Objective: Resting-state fMRI studies have indicated that juvenile myoclonic epilepsy (JME) could cause widespread functional connectivity disruptions between the cerebrum and cerebellum. However, the directed influences or effective connectivities (ECs) between these brain regions are poorly understood. In the current study, we aimed to evaluate the ECs between the cerebrum and cerebellum in patients with new-onset JME. (2) Methods: Thirty-four new-onset JME patients and thirty-four age-, sex-, and education-matched healthy controls (HCs) were included in this study. We compared the degree centrality (DC) between the two groups to identify intergroup differences in whole-brain functional connectivity. Then, we used a Granger causality analysis (GCA) to explore JME-caused changes in EC between cerebrum regions and cerebellum regions. Furthermore, we applied a correlation analysis to identify associations between aberrant EC and disease severity in patients with JME. (3) Results: Compared to HCs, patients with JME showed significantly increased DC in the left cerebellum posterior lobe (CePL.L), the right inferior temporal gyrus (ITG.R) and the right superior frontal gyrus (SFG.R), and decreased DC in the left inferior frontal gyrus (IFG.L) and the left superior temporal gyrus (STG.L). The patients also showed unidirectionally increased ECs from cerebellum regions to the cerebrum regions, including from the CePL.L to the right precuneus (PreCU.R), from the left cerebellum anterior lobe (CeAL.L) to the ITG.R, from the right cerebellum posterior lobe (CePL.R) to the IFG.L, and from the left inferior semi-lunar lobule of the cerebellum (CeISL.L) to the SFG.R. Additionally, the EC from the CeISL.L to the SFG.R was negatively correlated with the disease severity. (4) Conclusions: JME patients showed unidirectional EC disruptions from the cerebellum to the cerebrum, and the negative correlation between EC and disease severity provides a new perspective for understanding the cerebro-cerebellar neural circuit mechanisms in JME.
Collapse
Affiliation(s)
- Laiyang Ma
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Pengfei Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Jun Wang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Wenjing Huang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Yanli Jiang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Yu Zheng
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Na Han
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Zhe Zhang
- School of Physics, Hangzhou Normal University, Hangzhou 311121, China
- Institute of Brain Science, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (Z.Z.); (J.Z.); Tel.: +86-0571-28861955 (Z.Z.); +86-0931-8942090 (J.Z.)
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
- Correspondence: (Z.Z.); (J.Z.); Tel.: +86-0571-28861955 (Z.Z.); +86-0931-8942090 (J.Z.)
| |
Collapse
|
65
|
Meier MA, Wambacher D, Vogel SE, Grabner RH. Interference between naïve and scientific theories in mathematics and science: An fMRI study comparing mathematicians and non-mathematicians. Trends Neurosci Educ 2022; 29:100194. [PMID: 36470624 DOI: 10.1016/j.tine.2022.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND One frequent learning obstacle in mathematics is conceptual interference. However, the majority of research on conceptual interference has focused on science. In this functional magnetic resonance imaging (fMRI) study, we examined the conceptual interference effects in both mathematics and science and the moderating influence of mathematical expertise. METHODS Thirty adult mathematicians and 31 gender-, age-, and intelligence-matched non-mathematicians completed a speeded reasoning tasks with statements from mathematics and science. Statements were either congruent (true or false according to both scientifically and naïve theories) or incongruent (differed in their truth value). FINDINGS Both groups exhibited more errors and a slower response time when evaluating incongruent compared to congruent statements in the science and mathematics task, but mathematicians were less affected by naïve theories. In mathematics, the left dorsolateral prefrontal cortex was activated when inhibiting naïve theories, while in science it was the dorsolateral and the ventrolateral prefrontal cortex bilaterally. Mathematical expertise did not moderate the conceptual interference effect at the neural level. CONCLUSION This study demonstrates that naïve theories in mathematics are still present in mathematicians, even though they are less affected by them in performance than novices. In addition, the differential brain activation in the mathematics and science task indicates that the extent of inhibitory control processes to resolve conceptual interference depends on the quality of the involved concepts.
Collapse
Affiliation(s)
- Michaela A Meier
- Educational Neuroscience, Institute of Psychology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Dennis Wambacher
- Educational Neuroscience, Institute of Psychology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Stephan E Vogel
- Educational Neuroscience, Institute of Psychology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Roland H Grabner
- Educational Neuroscience, Institute of Psychology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
66
|
Associations between digital media use and brain surface structural measures in preschool-aged children. Sci Rep 2022; 12:19095. [PMID: 36351968 PMCID: PMC9645312 DOI: 10.1038/s41598-022-20922-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
The American Academy of Pediatrics recommends limits on digital media use ("screen time"), citing cognitive-behavioral risks. Media use in early childhood is ubiquitous, though few imaging-based studies have been conducted to quantify impacts on brain development. Cortical morphology changes dynamically from infancy through adulthood and is associated with cognitive-behavioral abilities. The current study involved 52 children who completed MRI and cognitive testing at a single visit. The MRI protocol included a high-resolution T1-weighted anatomical scan. The child's parent completed the ScreenQ composite measure of media use. MRI measures included cortical thickness (CT) and sulcal depth (SD) across the cerebrum. ScreenQ was applied as a predictor of CT and SD first in whole-brain regression analyses and then for regions of interest (ROIs) identified in a prior study of screen time involving adolescents, controlling for sex, age and maternal education. Higher ScreenQ scores were correlated with lower CT in right-lateralized occipital, parietal, temporal and fusiform areas, and also lower SD in right-lateralized inferior temporal/fusiform areas, with substantially greater statistical significance in ROI-based analyses. These areas support primary visual and higher-order processing and align with prior findings in adolescents. While differences in visual areas likely reflect maturation, those in higher-order areas may suggest under-development, though further studies are needed.
Collapse
|
67
|
Billot A, Thiebaut de Schotten M, Parrish TB, Thompson CK, Rapp B, Caplan D, Kiran S. Structural disconnections associated with language impairments in chronic post-stroke aphasia using disconnectome maps. Cortex 2022; 155:90-106. [PMID: 35985126 PMCID: PMC9623824 DOI: 10.1016/j.cortex.2022.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/14/2021] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Inconsistent findings have been reported about the impact of structural disconnections on language function in post-stroke aphasia. This study investigated patterns of structural disconnections associated with chronic language impairments using disconnectome maps. Seventy-six individuals with post-stroke aphasia underwent a battery of language assessments and a structural MRI scan. Support-vector regression disconnectome-symptom mapping analyses were performed to examine the correlations between disconnectome maps, representing the probability of disconnection at each white matter voxel and different language scores. To further understand whether significant disconnections were primarily representing focal damage or a more extended network of seemingly preserved but disconnected areas beyond the lesion site, results were qualitatively compared to support-vector regression lesion-symptom mapping analyses. Part of the left white matter perisylvian network was similarly disconnected in 90% of the individuals with aphasia. Surrounding this common left perisylvian disconnectome, specific structural disconnections in the left fronto-temporo-parietal network were significantly associated with aphasia severity and with lower performance in auditory comprehension, syntactic comprehension, syntactic production, repetition and naming tasks. Auditory comprehension, repetition and syntactic processing deficits were related to disconnections in areas that overlapped with and extended beyond lesion sites significant in SVR-LSM analyses. In contrast, overall language abilities as measured by aphasia severity and naming seemed to be mostly explained by focal damage at the level of the insular and central opercular cortices, given the high overlap between SVR-DSM and SVR-LSM results for these scores. While focal damage seems to be sufficient to explain broad measures of language performance, the structural disconnections between language areas provide additional information on the neural basis of specific and persistent language impairments at the chronic stage beyond lesion volume. Leveraging routinely available clinical data, disconnectome mapping furthers our understanding of anatomical connectivity constraints that may limit the recovery of some language abilities in chronic post-stroke aphasia.
Collapse
Affiliation(s)
- Anne Billot
- Sargent College of Health & Rehabilitation Sciences, Boston University, Boston, MA, USA; School of Medicine, Boston University, Boston, MA, USA.
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Todd B Parrish
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cynthia K Thompson
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| | - David Caplan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Swathi Kiran
- Sargent College of Health & Rehabilitation Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
68
|
Ji Y, Cheng Q, Fu WW, Zhong PP, Huang SQ, Chen XL, Wu XR. Exploration of abnormal dynamic spontaneous brain activity in patients with high myopia via dynamic regional homogeneity analysis. Front Hum Neurosci 2022; 16:959523. [PMID: 35992950 PMCID: PMC9390771 DOI: 10.3389/fnhum.2022.959523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Aim Patients with high myopia (HM) reportedly exhibit changes in functional brain activity, but the mechanism underlying such changes is unclear. This study was conducted to observe differences in dynamic spontaneous brain activity between patients with HM and healthy controls (HCs) via dynamic regional homogeneity (dReHo) analysis. Methods Resting-state functional magnetic resonance imaging (rs-fMRI) scans were performed on 82 patients with HM and 59 HCs who were closely matched for age, sex, and weight. The dReHo approach was used to assess local dynamic activity in the human brain. The association between mean dReHo signal values and clinical symptoms in distinct brain areas in patients with HM was determined via correlation analysis. Results In the left fusiform gyrus (L-FG), right inferior temporal gyrus (R-ITG), right Rolandic operculum (R-ROL), right postcentral gyrus (R-PoCG), and right precentral gyrus (R-PreCG), dReHo values were significantly greater in patients with HM than in HCs. Conclusion Patients with HM have distinct functional changes in various brain regions that mainly include the L-FG, R-ITG, R-ROL, R-PoCG, and R-PreCG. These findings constitute important evidence for the roles of brain networks in the pathophysiological mechanisms of HM and may aid in the diagnosis of HM.
Collapse
|
69
|
Superficial white matter bundle atlas based on hierarchical fiber clustering over probabilistic tractography data. Neuroimage 2022; 262:119550. [DOI: 10.1016/j.neuroimage.2022.119550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
|
70
|
Gu Y, Zhao P, Feng W, Xia X, Tian X, Yan Y, Wang X, Gao D, Du Y, Li X. Structural brain network measures in elderly patients with cerebral small vessel disease and depressive symptoms. BMC Geriatr 2022; 22:568. [PMID: 35810313 PMCID: PMC9270825 DOI: 10.1186/s12877-022-03245-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022] Open
Abstract
Objectives To investigate the relationship between diffusion tensor imaging (DTI) indicators and cerebral small vessel disease (CSVD) with depressive states, and to explore the underlying mechanisms of white matter damage in CSVD with depression. Method A total of 115 elderly subjects were consecutively recruited from the neurology clinic, including 36 CSVD patients with depressive state (CSVD+D), 34 CSVD patients without depressive state (CSVD-D), and 45 controls. A detailed neuropsychological assessment and multimodal magnetic resonance imaging (MRI) were performed. Based on tract-based spatial statistics (TBSS) analysis and structural network analysis, differences between groups were compared, including white matter fiber indicators (fractional anisotropy and mean diffusivity) and structural brain network indicators (global efficiency, local efficiency and network strength), in order to explore the differences and correlations of DTI parameters among the three groups. Results There were no significant differences in terms of CSVD burden scores and conventional imaging findings between the CSVD-D and CSVD+D groups. Group differences were found in DTI indicators (p < 0.05), after adjusting for age, gender, education level, and vascular risk factors (VRF), there were significant correlations between TBSS analysis indicators and depression, including: fractional anisotropy (FA) (r = − 0.291, p < 0.05), mean diffusivity (MD) (r = 0.297, p < 0.05), at the same time, between structural network indicators and depression also show significant correlations, including: local efficiency (ELocal) (r = − 0.278, p < 0.01) and network strength (r = − 0.403, p < 0.001). Conclusions Changes in FA, MD values and structural network indicators in DTI parameters can predict the depressive state of CSVD to a certain extent, providing a more direct structural basis for the hypothesis of abnormal neural circuits in the pathogenesis of vascular-related depression. In addition, abnormal white matter alterations in subcortical neural circuits probably affect the microstructural function of brain connections, which may be a mechanism for the concomitant depressive symptoms in CSVD patients.
Collapse
Affiliation(s)
- Yumeng Gu
- Department of Neurology, Second Hospital of Tianjin Medical University, No.23, Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Ping Zhao
- Department of Neurology, Second Hospital of Tianjin Medical University, No.23, Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Wenjun Feng
- Department of Neurology, Second Hospital of Tianjin Medical University, No.23, Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Xiaoshuang Xia
- Department of Neurology, Second Hospital of Tianjin Medical University, No.23, Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Xiaolin Tian
- Department of Rehabilitation, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yu Yan
- Department of Neurology, Second Hospital of Tianjin Medical University, No.23, Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Xiaowen Wang
- Department of Neurology, Second Hospital of Tianjin Medical University, No.23, Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Decheng Gao
- Department of Neurology, Second Hospital of Tianjin Medical University, No.23, Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Yanfen Du
- Department of Neurology, Second Hospital of Tianjin Medical University, No.23, Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Xin Li
- Department of Neurology, Second Hospital of Tianjin Medical University, No.23, Pingjiang Road, Hexi District, Tianjin, 300211, China.
| |
Collapse
|
71
|
Zhang M, Huang X, Li B, Shang H, Yang J. Gray Matter Structural and Functional Alterations in Idiopathic Blepharospasm: A Multimodal Meta-Analysis of VBM and Functional Neuroimaging Studies. Front Neurol 2022; 13:889714. [PMID: 35734475 PMCID: PMC9207395 DOI: 10.3389/fneur.2022.889714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2022] [Indexed: 12/03/2022] Open
Abstract
Background Neuroimaging studies have shown gray matter structural and functional alterations in patients with idiopathic blepharospasm (iBSP) but with variations. Here we aimed to investigate the specific and common neurostructural/functional abnormalities in patients with iBSP. Methods A systematic literature search from PubMed, Web of Science and Embase was conducted to identify relevant publications. We conducted separate meta-analysis for whole-brain voxel-based morphometry (VBM) studies and for functional imaging studies, and a multimodal meta-analysis across VBM and functional studies in iBSP, using anisotropic effect size-based signed differential mapping. Results The structural database comprised 129 patients with iBSP and 144 healthy controls whilst the functional database included 183 patients with iBSP and 253 healthy controls. The meta-analysis of VBM studies showed increased gray matter in bilateral precentral and postcentral gyri, right supplementary motor area and bilateral paracentral lobules, while decreased gray matter in right superior and inferior parietal gyri, left inferior parietal gyrus, left inferior temporal gyrus, left fusiform gyrus and parahippocampal gyrus. The meta-analysis of functional studies revealed hyperactivity in right dorsolateral superior frontal gyrus, left thalamus and right fusiform gyrus, while hypoactivity in left temporal pole, left insula, left precentral gyrus, bilateral precuneus and paracentral lobules, right supplementary motor area and middle frontal gyrus. The multimodal meta-analysis identified conjoint anatomic and functional changes in left precentral gyrus, bilateral supplementary motor areas and paracentral lobules, right inferior occipital gyrus and fusiform gyrus. Conclusions The patterns of conjoint and dissociated gray matter alterations identified in the meta-analysis may enhance our understanding of the pathophysiological mechanisms underlying iBSP.
Collapse
|
72
|
Su C, Liu W, Wang Q, Qiu S, Li M, Lv Y, Yu Y, Jia X, Li H. Abnormal resting-state local spontaneous functional activity in irritable bowel syndrome patients: A meta-analysis. J Affect Disord 2022; 302:177-184. [PMID: 35066011 DOI: 10.1016/j.jad.2022.01.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/01/2022] [Accepted: 01/18/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder. The current understanding of the pathogenesis underlying IBS is still unclear. Numerous studies have reported local abnormal resting state spontaneous functional activity in IBS patients in widespread brain regions. However, the results have not yet yielded consistent conclusions. Thus, we investigated common spontaneous functional activity abnormalities in patients with IBS by conducting a voxel-based meta-analysis. METHODS Up to December 2021, we performed a systematic search of IBS studies in five databases. These studies investigated the differences of resting state spontaneous brain activity between patients with IBS and healthy controls (HCs). The reference lists of included studies, relevant reviews and meta-analyses were investigated manually. Anisotropic effect-size signed differential mapping (AES-SDM) was applied in this meta-analysis. RESULTS Twelve studies encompassing 335 patients with IBS and 327 HCs were included in this meta-analysis. The local brain activities of the left calcarine fissure and surrounding cortex, right postcentral gyrus, left postcentral gyrus, left cerebellum, left inferior temporal gyrus, and left inferior frontal gyrus of triangular part in IBS patients were significantly increased compared with HCs, while the brain activities of the left anterior cingulate and paracingulate gyrus, right middle frontal gyrus, right supramarginal gyrus, left middle frontal gyrus, left precuneus, right putamen and right insula were significantly decreased compared with HCs. CONCLUSION The current study expands on a growing literature exploring resting state activity in IBS, which provides useful insights for understanding the underlying pathophysiology of nonorganic functional bowel disease and developing more targeted treatment and intervention strategies.
Collapse
Affiliation(s)
- Chang Su
- College of Teacher Education, Zhejiang Normal University, Jinhua, China; Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Wanlun Liu
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Qianqian Wang
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Shasha Qiu
- College of Teacher Education, Zhejiang Normal University, Jinhua, China; Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Mengting Li
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Yating Lv
- Institute of Brain Science and Department of Psychology, School of Education, Hangzhou Normal University, Hangzhou, China; Center for Cognition and Brain Disorders, the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
| | - Yang Yu
- Department of Psychiatry, Second Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Xize Jia
- College of Teacher Education, Zhejiang Normal University, Jinhua, China.
| | - Huayun Li
- College of Teacher Education, Zhejiang Normal University, Jinhua, China; Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China.
| |
Collapse
|
73
|
Kawata NYS, Nouchi R, Oba K, Matsuzaki Y, Kawashima R. Auditory Cognitive Training Improves Brain Plasticity in Healthy Older Adults: Evidence From a Randomized Controlled Trial. Front Aging Neurosci 2022; 14:826672. [PMID: 35431898 PMCID: PMC9010026 DOI: 10.3389/fnagi.2022.826672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
The number of older adults is increasing globally. Aging is associated with cognitive and sensory decline. Additionally, declined auditory performance and cognitive function affect the quality of life of older adults. Therefore, it is important to develop an intervention method to improve both auditory and cognitive performances. The current study aimed to investigate the beneficial effects of auditory and cognitive training on auditory ability and cognitive functions in healthy older adults. Fifty healthy older adults were randomly divided into four training groups-an auditory-cognitive training group (AC training; n = 13), an auditory training group (A training; n = 13), a cognitive training group (C training; n = 14), and an active control group (n = 12). During the training period, we reduced the sound intensity level in AC and A training groups and increase training task difficulty in AC, A, and C training groups based on participants' performance. Cognitive function measures [digit-cancelation test (D-CAT); logical memory (LM); digit span (DS)], auditory measures [pure-tone audiometry (PTA)], and magnetic resonance imaging (MRI) scans were performed before and after the training periods. We found three key findings. First, the AC training group showed difference between other training groups (A, C, and active control training groups) in regional gray matter volume (rGMV) in the right dorsolateral prefrontal cortex, the left inferior temporal gyrus (L. ITG), the left superior frontal gyrus, the left orbitofrontal cortex, the right cerebellum (lobule 7 Crus 1). Second, the auditory training factor groups (ATFGs, the AC and A training groups) improved auditory measures and increased the rGMV and functional connectivity (FC) in the left temporal pole compared to the non-ATFGs (the C training group and active control group). Third, the cognitive training factor groups (CTFGs; the AC and C training groups) showed statistically significant improvement in cognitive performances in LM and D-CAT compared to the non-CTFGs (the A training group and active control group). Therefore, the auditory training factor and cognitive training factor would be useful in enhancing the quality of life of older adults. The current AC training study, the plasticity of the brain structure was observed after 4 weeks of training.
Collapse
Affiliation(s)
- Natasha Y. S. Kawata
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
- Smart Aging Research Center, Tohoku University, Sendai, Japan
| | - Kentaro Oba
- Department of Human Brain Science, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Yutaka Matsuzaki
- Department of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
- Smart Aging Research Center, Tohoku University, Sendai, Japan
- Department of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| |
Collapse
|
74
|
Zhang S, Xu X, Li Q, Chen J, Liu S, Zhao W, Cai H, Zhu J, Yu Y. Brain Network Topology and Structural–Functional Connectivity Coupling Mediate the Association Between Gut Microbiota and Cognition. Front Neurosci 2022; 16:814477. [PMID: 35422686 PMCID: PMC9002058 DOI: 10.3389/fnins.2022.814477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence indicates that gut microbiota can influence cognition via the gut–brain axis, and brain networks play a critical role during the process. However, little is known about how brain network topology and structural–functional connectivity (SC–FC) coupling contribute to gut microbiota-related cognition. Fecal samples were collected from 157 healthy young adults, and 16S amplicon sequencing was used to assess gut diversity and enterotypes. Topological properties of brain structural and functional networks were acquired by diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (fMRI data), and SC–FC coupling was further calculated. 3-Back, digit span, and Go/No-Go tasks were employed to assess cognition. Then, we tested for potential associations between gut microbiota, complex brain networks, and cognition. The results showed that gut microbiota could affect the global and regional topological properties of structural networks as well as node properties of functional networks. It is worthy of note that causal mediation analysis further validated that gut microbial diversity and enterotypes indirectly influence cognitive performance by mediating the small-worldness (Gamma and Sigma) of structural networks and some nodal metrics of functional networks (mainly distributed in the cingulate gyri and temporal lobe). Moreover, gut microbes could affect the degree of SC–FC coupling in the inferior occipital gyrus, fusiform gyrus, and medial superior frontal gyrus, which in turn influence cognition. Our findings revealed novel insights, which are essential to provide the foundation for previously unexplored network mechanisms in understanding cognitive impairment, particularly with respect to how brain connectivity participates in the complex crosstalk between gut microbiota and cognition.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xiaotao Xu
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qian Li
- Department of Radiology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Jingyao Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- *Correspondence: Jiajia Zhu,
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Radiology, Chaohu Hospital of Anhui Medical University, Hefei, China
- Yongqiang Yu,
| |
Collapse
|
75
|
Neuner I, Veselinović T, Ramkiran S, Rajkumar R, Schnellbaecher GJ, Shah NJ. 7T ultra-high-field neuroimaging for mental health: an emerging tool for precision psychiatry? Transl Psychiatry 2022; 12:36. [PMID: 35082273 PMCID: PMC8791951 DOI: 10.1038/s41398-022-01787-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Given the huge symptom diversity and complexity of mental disorders, an individual approach is the most promising avenue for clinical transfer and the establishment of personalized psychiatry. However, due to technical limitations, knowledge about the neurobiological basis of mental illnesses has, to date, mainly been based on findings resulting from evaluations of average data from certain diagnostic groups. We postulate that this could change substantially through the use of the emerging ultra-high-field MRI (UHF-MRI) technology. The main advantages of UHF-MRI include high signal-to-noise ratio, resulting in higher spatial resolution and contrast and enabling individual examinations of single subjects. Thus, we used this technology to assess changes in the properties of resting-state networks over the course of therapy in a naturalistic study of two depressed patients. Significant changes in several network property measures were found in regions corresponding to prior knowledge from group-level studies. Moreover, relevant parameters were already significantly divergent in both patients at baseline. In summary, we demonstrate the feasibility of UHF-MRI for capturing individual neurobiological correlates of mental diseases. These could serve as a tool for therapy monitoring and pave the way for a truly individualized and predictive clinical approach in psychiatric care.
Collapse
Affiliation(s)
- Irene Neuner
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany.
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.
- JARA-BRAIN, Jülich/Aachen, Germany.
| | - Tanja Veselinović
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Shukti Ramkiran
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Ravichandran Rajkumar
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN, Jülich/Aachen, Germany
| | | | - N Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- JARA-BRAIN, Jülich/Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 11, INM-11, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
76
|
Zhu P, Liu Z, Lu Y, Wang Y, Zhang D, Zhao P, Lin L, Hussein NM, Liu X, Yan Z, Bai G, Tu Y. Alterations in Spontaneous Neuronal Activity and Microvascular Density of the Optic Nerve Head in Active Thyroid-Associated Ophthalmopathy. Front Endocrinol (Lausanne) 2022; 13:895186. [PMID: 35937801 PMCID: PMC9354054 DOI: 10.3389/fendo.2022.895186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To investigate changes in local spontaneous brain activity in patients with active thyroid-associated ophthalmopathy (TAO) and explore the relationship between such alterations and microvascular indices. METHODS Thirty-six active TAO patients with active phase and 39 healthy controls (HCs) were enrolled in this study. All participants underwent resting-state functional magnetic resonance imaging (rs-fMRI), neuropsychological tests, and ophthalmological examinations. The rs-fMRI-based fractional low-frequency fluctuation amplitude (fALFF) analysis methods were used to assess spontaneous brain activity in both groups. The structure (peripapillary retinal nerve fiber layer, pRNFL) and microvascular indices (the optic nerve head (ONH) whole image vessel density, ONH-wiVD, and peripapillary vessel density) were analyzed through optical coherence tomographic angiography imaging. The relationship between abnormal spontaneous brain activity and ophthalmological indices was analyzed using the Spearman's rank correlation analysis. RESULTS Compared with HCs, active TAO patients had increased fALFF in the right inferior temporal gyrus (R.ITG) and left posterior cingulate gyrus (L.PCC), but decreased fALFF in the right calcarine (R.CAL). The fALFF values in L.PCC were positively correlated with peripapillary vessel density, whereas fALFF values in R.CAL were negatively related to peripapillary vessel density. CONCLUSIONS This study demonstrates that changes in spontaneous brain activity of active TAO are accompanied by peripapillary microvascular variations. These results provide insights into the pathophysiological mechanisms of active TAO. In addition, the combination of fALFF values and peripapillary vessel density may be served as important references for better clinical decision making.
Collapse
Affiliation(s)
- Pingyi Zhu
- Wenzhou Medical University, Wenzhou, China
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zihui Liu
- Department of Orbital and Oculoplastic Surgery, The Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Lu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Wang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danbin Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pinghui Zhao
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lulu Lin
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Nimo Mohamed Hussein
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozheng Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- China-USA Neuroimaging Research Institute, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guanghui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, Wenzhou, China
- *Correspondence: Guanghui Bai, ; Yunhai Tu,
| | - Yunhai Tu
- Wenzhou Medical University, Wenzhou, China
- Department of Orbital and Oculoplastic Surgery, The Eye Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Guanghui Bai, ; Yunhai Tu,
| |
Collapse
|
77
|
Pallidal functional connectivity changes are associated with disgust recognition in pure motor amyotrophic lateral sclerosis. NEUROIMAGE: CLINICAL 2022; 35:103145. [PMID: 36002963 PMCID: PMC9421543 DOI: 10.1016/j.nicl.2022.103145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
In cognitively normal ALS, we detected early difficulties in recognizing disgust. Pallidum functional connectivity (FC) alterations occur in pure-motor ALS patients. Reduced left pallidum-temporal FC is linked to altered disgust recognition.
In the present study, we aimed to investigate the resting-state functional connectivity (RS-FC) of the globus pallidus (GP) in patients with amyotrophic lateral sclerosis (ALS) compared to healthy controls, and the relationship between RS-FC changes and disgust recognition. Twenty-six pure-motor ALS patients and 52 healthy controls underwent RS functional MRI and a neuropsychological assessment including the Comprehensive Affect Testing System. A seed-based RS-FC analysis was performed between the left and right GP and the rest of the brain and compared between groups. Correlations between RS-FC significant changes and subjects’ performance in recognizing disgust were tested. Compared to controls, patients were significantly less able to recognize disgust. In ALS compared to controls, the seed-based analysis showed: reduced RS-FC between bilateral GP and bilateral middle and superior frontal and middle cingulate gyri, and increased RS-FC between bilateral GP and bilateral postcentral, supramarginal and superior temporal gyri and Rolandic operculum. Decreased RS-FC was further observed between left GP and left middle and inferior temporal gyri and bilateral caudate; and increased RS-FC was also shown between right GP and left lingual and fusiform gyri. In patients and controls, lower performance in recognizing disgust correlated with reduced RS-FC between left GP and left middle and inferior temporal gyri. In pure-motor ALS patients, we demonstrated altered RS-FC between GP and the rest of the brain. The reduced left pallidum-temporo-striatal RS-FC may have a role in the lower ability of patients in recognizing disgust.
Collapse
|
78
|
Liu L, Fan J, Zhan H, Huang J, Cao R, Xiang X, Tian S, Ren H, Tong M, Li Q. Abnormal regional signal in the left cerebellum as a potential neuroimaging biomarker of sudden sensorineural hearing loss. Front Psychiatry 2022; 13:967391. [PMID: 35935421 PMCID: PMC9354585 DOI: 10.3389/fpsyt.2022.967391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE While prior reports have characterized visible changes in neuroimaging findings in individuals suffering from sudden sensorineural hearing loss (SSNHL), the utility of regional homogeneity (ReHo) as a means of diagnosing SSNHL has yet to be established. The present study was thus conducted to assess ReHo abnormalities in SSNHL patients and to establish whether these abnormalities offer value as a diagnostic neuroimaging biomarker of SSNHL through a support vector machine (SVM) analysis approach. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) analyses of 27 SSNHL patients and 27 normal controls were conducted, with the resultant imaging data then being analyzed based on a combination of ReHo and SVM approaches. RESULTS Relative to normal control individuals, patients diagnosed with SSNHL exhibited significant reductions in ReHo values in the left cerebellum, bilateral inferior temporal gyrus (ITG), left superior temporal pole (STP), right parahippocampal gyrus (PHG), left posterior cingulum cortex (PCC), and right superior frontal gyrus (SFG). SVM analyses suggested that reduced ReHo values in the left cerebellum were associated with high levels of diagnostic accuracy (96.30%, 52/54), sensitivity (92.59%, 25/27), and specificity (100.00%, 27/27) when distinguishing between SSNHL patients and control individuals. CONCLUSION These data suggest that SSNHL patients exhibit abnormal resting-state neurological activity, with changes in the ReHo of the left cerebellum offering value as a diagnostic neuroimaging biomarker associated with this condition.
Collapse
Affiliation(s)
- Lei Liu
- Department of Otorhinolaryngology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jun Fan
- Department of Otorhinolaryngology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hui Zhan
- Department of Otorhinolaryngology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Junli Huang
- Department of Medical Imaging, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Rui Cao
- Department of Otorhinolaryngology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoran Xiang
- Department of Otorhinolaryngology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Shuai Tian
- Department of Otorhinolaryngology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hongwei Ren
- Department of Medical Imaging, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Miao Tong
- Department of Stomatology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Otorhinolaryngology, Tianyou Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
79
|
Ott LR, Penhale SH, Taylor BK, Lew BJ, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Spontaneous cortical MEG activity undergoes unique age- and sex-related changes during the transition to adolescence. Neuroimage 2021; 244:118552. [PMID: 34517128 PMCID: PMC8685767 DOI: 10.1016/j.neuroimage.2021.118552] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND While numerous studies have examined the developmental trajectory of task-based neural oscillations during childhood and adolescence, far less is known about the evolution of spontaneous cortical activity during this time period. Likewise, many studies have shown robust sex differences in task-based oscillations during this developmental period, but whether such sex differences extend to spontaneous activity is not understood. METHODS Herein, we examined spontaneous cortical activity in 111 typically-developing youth (ages 9-15 years; 55 male). Participants completed a resting state magnetoencephalographic (MEG) recording and a structural MRI. MEG data were source imaged and the power within five canonical frequency bands (delta, theta, alpha, beta, gamma) was computed. The resulting power spectral density maps were analyzed via vertex-wise ANCOVAs to identify spatially-specific effects of age, sex, and their interaction. RESULTS We found robust increases in power with age in all frequencies except delta, which decreased over time, with findings largely confined to frontal cortices. Sex effects were distributed across frontal and temporal regions; females tended to have greater delta and beta power, whereas males had greater alpha. Importantly, there was a significant age-by-sex interaction in theta power, such that males exhibited decreasing power with age while females showed increasing power with age in the bilateral superior temporal cortices. DISCUSSION These data suggest that the strength of spontaneous activity undergoes robust change during the transition from childhood to adolescence (i.e., puberty onset), with intriguing sex differences in some cortical areas. Future developmental studies should probe task-related oscillations and spontaneous activity in parallel.
Collapse
Affiliation(s)
- Lauren R Ott
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samantha H Penhale
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Brandon J Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
80
|
Li H, Jia X, Li Y, Jia X, Yang Q. Aberrant Amplitude of Low-Frequency Fluctuation and Degree Centrality within the Default Mode Network in Patients with Vascular Mild Cognitive Impairment. Brain Sci 2021; 11:1534. [PMID: 34827533 PMCID: PMC8615791 DOI: 10.3390/brainsci11111534] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023] Open
Abstract
This study aimed to investigate whole-brain spontaneous activities changes in patients with vascular mild cognitive impairment (VaMCI), and to evaluate the relationships between these brain alterations and their neuropsychological assessments. Thirty-one patients with VaMCI and thirty-one healthy controls (HCs) underwent structural MRI and resting-state functional MRI (rs-fMRI) and neuropsychological assessments. The functional alterations were determined by the amplitude of low-frequency fluctuation (ALFF) and degree centrality (DC). The gray matter volume (GMV) changes were analyzed using voxel-based morphometry (VBM). Linear regression analysis was used to evaluate the relationships between the structural and functional changes of brain regions and neuropsychological assessments. The VaMCI group had significantly lower scores in the Montreal Cognitive Assessment (MoCA), and higher scores on the Hamilton Anxiety Rating Scale (HAMA) and Hamilton Depression Rating Scale (HAMD). Compared to the HCs, the VaMCI group exhibited GM atrophy in the right precentral gyrus (PreCG) and right inferior temporal gyrus (ITG). VaMCI patients further exhibited significantly decreased brain activity within the default mode network (DMN), including the bilateral precuneus (PCu), angular gyrus (AG), and medial frontal gyrus (medFG). Linear regression analysis revealed that the decreased ALFF was independently associated with lower MoCA scores, and the GM atrophy was independently associated with higher HAMD scores. The current finding suggested that aberrant spontaneous brain activity in the DMN might subserve as a potential biomarker of VaMCI, which may highlight the underlying mechanism of cognitive decline in cerebral small vessel disease.
Collapse
Affiliation(s)
- Haoyuan Li
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (H.L.); (X.J.); (Y.L.); (X.J.)
| | - Xiuqin Jia
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (H.L.); (X.J.); (Y.L.); (X.J.)
- Key Laboratory of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing 100020, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing 100020, China
| | - Yingying Li
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (H.L.); (X.J.); (Y.L.); (X.J.)
| | - Xuejia Jia
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (H.L.); (X.J.); (Y.L.); (X.J.)
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (H.L.); (X.J.); (Y.L.); (X.J.)
- Key Laboratory of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing 100020, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing 100020, China
| |
Collapse
|
81
|
Kesler SR, Tang T, Henneghan AM, Wright M, Gaber MW, Palesh O. Cross-Sectional Characterization of Local Brain Network Connectivity Pre and Post Breast Cancer Treatment and Distinct Association With Subjective Cognitive and Psychological Function. Front Neurol 2021; 12:746493. [PMID: 34777216 PMCID: PMC8586413 DOI: 10.3389/fneur.2021.746493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: We aimed to characterize local brain network connectivity in long-term breast cancer survivors compared to newly diagnosed patients. Methods: Functional magnetic resonance imaging (fMRI) and subjective cognitive and psychological function data were obtained from a group of 76 newly diagnosed, pre-treatment female patients with breast cancer (mean age 57 ± 7 years) and a separate group of 80, post-treatment, female breast cancer survivors (mean age 58 ± 8; mean time since treatment 44 ± 43 months). The network-based statistic (NBS) was used to compare connectivity of local brain edges between groups. Hubs were defined as nodes with connectivity indices one standard deviation or more above network mean and were further classified as provincial (higher intra-subnetwork connectivity) or connector (higher inter-subnetwork connectivity) using the participation coefficient. We determined the hub status of nodes encompassing significantly different edges and correlated the centralities of edges with behavioral measures. Results: The post-treatment group demonstrated significantly lower subjective cognitive function (W = 3,856, p = 0.004) but there were no group differences in psychological distress (W = 2,866, p = 0.627). NBS indicated significantly altered connectivity (p < 0.042, corrected) in the post-treatment group compared to the pre-treatment group largely in temporal, frontal-temporal and temporal-parietal areas. The majority of the regions projecting these connections (78%) met criteria for hub status and significantly less of these hubs were connectors in the post-treatment group (z = 1.85, p = 0.031). Subjective cognitive function and psychological distress were correlated with largely non-overlapping edges in the post-treatment group (p < 0.05). Conclusion: Widespread functional network alterations are evident in long-term survivors of breast cancer compared to newly diagnosed patients. We also demonstrated that there are both overlapping and unique brain network signatures for subjective cognitive function vs. psychological distress.
Collapse
Affiliation(s)
- Shelli R. Kesler
- School of Nursing, University of Texas at Austin, Austin, TX, United States
| | - Tien Tang
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | | | - Michelle Wright
- School of Nursing, University of Texas at Austin, Austin, TX, United States
| | - M. Waleed Gaber
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Oxana Palesh
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
82
|
Zhang X, Xue C, Cao X, Yuan Q, Qi W, Xu W, Zhang S, Huang Q. Altered Patterns of Amplitude of Low-Frequency Fluctuations and Fractional Amplitude of Low-Frequency Fluctuations Between Amnestic and Vascular Mild Cognitive Impairment: An ALE-Based Comparative Meta-Analysis. Front Aging Neurosci 2021; 13:711023. [PMID: 34531735 PMCID: PMC8438295 DOI: 10.3389/fnagi.2021.711023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Changes in the amplitude of low-frequency fluctuations (ALFF) and the fractional amplitude of low-frequency fluctuations (fALFF) have provided stronger evidence for the pathophysiology of cognitive impairment. Whether the altered patterns of ALFF and fALFF differ in amnestic cognitive impairment (aMCI) and vascular mild cognitive impairment (vMCI) is largely unknown. The purpose of this study was to explore the ALFF/fALFF changes in the two diseases and to further explore whether they contribute to the diagnosis and differentiation of these diseases. Methods: We searched PubMed, Ovid, and Web of Science databases for articles on studies using the ALFF/fALFF method in patients with aMCI and vMCI. Based on the activation likelihood estimation (ALE) method, connectivity modeling based on coordinate meta-analysis and functional meta-analysis was carried out. Results: Compared with healthy controls (HCs), patients with aMCI showed increased ALFF/fALFF in the bilateral parahippocampal gyrus/hippocampus (PHG/HG), right amygdala, right cerebellum anterior lobe (CAL), left middle temporal gyrus (MTG), left cerebrum temporal lobe sub-gyral, left inferior temporal gyrus (ITG), and left cerebrum limbic lobe uncus. Meanwhile, decreased ALFF/fALFF values were also revealed in the bilateral precuneus (PCUN), bilateral cuneus (CUN), and bilateral posterior cingulate (PC) in patients with aMCI. Compared with HCs, patients with vMCI predominantly showed decreased ALFF/fALFF in the bilateral CUN, left PCUN, left PC, and right cingulate gyrus (CG). Conclusions: The present findings suggest that ALFF and fALFF displayed remarkable altered patterns between aMCI and vMCI when compared with HCs. Thus, the findings of this study may serve as a reliable tool for distinguishing aMCI from vMCI, which may help understand the pathophysiological mechanisms of these diseases.
Collapse
Affiliation(s)
- Xulian Zhang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan Cao
- Division of Statistics and Data Science, Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Qianqian Yuan
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shaojun Zhang
- Department of Statistics, University of Florida, Gainesville, FL, United States
| | - Qingling Huang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
83
|
Zhang L, Cao G, Liu Z, Bai Y, Li D, Liu J, Yin H. The gray matter volume of bilateral inferior temporal gyrus in mediating the association between psychological stress and sleep quality among Chinese college students. Brain Imaging Behav 2021; 16:557-564. [PMID: 34417968 DOI: 10.1007/s11682-021-00524-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
The role of brain regions in the relationship between psychological stress and sleep quality is unclear. This study investigates the neuroanatomical basis of the association between psychological stress and sleep quality. Data were collected using the Pittsburgh Sleep Quality Index, the Psychosomatic Tension Relaxation Inventory, and voxel-based morphometry among 318 healthy students. The results showed that psychological stress was negatively correlated with sleep quality. According to the mediation analysis results, the correlation between psychological stress and sleep quality was partially mediated by the region of the bilateral inferior temporal gyrus. These findings suggest that there is a strong link between sleep quality and psychological stress, highlighting the gray matter volume of the bilateral inferior temporal gyrus related to emotional processing, which plays an essential role in improving sleep quality.
Collapse
Affiliation(s)
- Li Zhang
- School of Education Science, Hunan Normal University, Changsha, 410081, China.,Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Gege Cao
- School of Education Science, Hunan Normal University, Changsha, 410081, China.,Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Zhenghua Liu
- Changsha Institute of Educational Sciences, Changsha, 410081, China
| | - Youling Bai
- School of Education Science, Hunan Normal University, Changsha, 410081, China.,Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Dan Li
- School of Education Science, Hunan Normal University, Changsha, 410081, China. .,Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, 410081, China.
| | - Jinping Liu
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Huazhan Yin
- School of Education Science, Hunan Normal University, Changsha, 410081, China. .,Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
84
|
Zhang M, Liu S, Wang S, Xu Y, Chen L, Shao Z, Wen X, Yang W, Liu J, Yuan K. Reduced thalamic resting-state functional connectivity and impaired cognition in acute abstinent heroin users. Hum Brain Mapp 2021; 42:2077-2088. [PMID: 33459459 PMCID: PMC8046054 DOI: 10.1002/hbm.25346] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
As a critical component of cortico-striato-thalamo-cortical loop in addiction, our understanding of the thalamus in impaired cognition of heroin users (HU) has been limited. Due to the complex thalamic connection with cortical and subcortical regions, thalamus was divided into prefrontal (PFC), occipital (OC), premotor, primary motor, sensory, temporal, and posterior parietal association subregions according to white matter tractography. We adopted seven subregions of bilateral thalamus as regions of interest to systematically study the implications of distinct thalamic nuclei in acute abstinent HU. The volume and resting-state functional connectivity (RSFC) differences of the thalamus were investigated between age-, gender-, and alcohol-matched 37 HU and 33 healthy controls (HCs). Trail making test-A (TMT-A) was adopted to assess cognitive function deficits, which were then correlated with neuroimaging findings. Although no significant different volumes were found, HU group showed decreased RSFC between left PFC_thalamus and middle temporal gyrus as well as between left OC_thalamus and inferior frontal gyrus and supplementary motor area relative to HCs. Meanwhile, the higher TMT-A scores in HU were negatively correlated with PFC_thalamic RSFC with inferior temporal gyrus, fusiform, and precuneus. Craving scores were negatively correlated with OC_thalamic RSFC with accumbens, hippocampus, and insula. Opiate Withdrawal Scale scores were negatively correlated with left PFC/OC_thalamic RSFC with orbitofrontal cortex and medial PFC. We indicated two thalamus subregions separately involvement in cognitive control and craving to reveal the implications of thalamic subnucleus in pathology of acute abstinent HU.
Collapse
Affiliation(s)
- Min Zhang
- School of Life Science and TechnologyXidian UniversityXi'anShaanxiPeople's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of EducationXi'anPeople's Republic of China
| | - Shuang Liu
- School of Life Science and TechnologyXidian UniversityXi'anShaanxiPeople's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of EducationXi'anPeople's Republic of China
| | - Shicong Wang
- School of Life Science and TechnologyXidian UniversityXi'anShaanxiPeople's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of EducationXi'anPeople's Republic of China
| | - Yan Xu
- School of Life Science and TechnologyXidian UniversityXi'anShaanxiPeople's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of EducationXi'anPeople's Republic of China
| | - Longmao Chen
- School of Life Science and TechnologyXidian UniversityXi'anShaanxiPeople's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of EducationXi'anPeople's Republic of China
| | - Ziqiang Shao
- School of Life Science and TechnologyXidian UniversityXi'anShaanxiPeople's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of EducationXi'anPeople's Republic of China
| | - Xinwen Wen
- School of Life Science and TechnologyXidian UniversityXi'anShaanxiPeople's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of EducationXi'anPeople's Republic of China
| | - Wenhan Yang
- Department of RadiologySecond Xiangya Hospital, Central South UniversityChangshaChina
| | - Jun Liu
- Department of RadiologySecond Xiangya Hospital, Central South UniversityChangshaChina
| | - Kai Yuan
- School of Life Science and TechnologyXidian UniversityXi'anShaanxiPeople's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of EducationXi'anPeople's Republic of China
| |
Collapse
|
85
|
Lin YH, Dhanaraj V, Mackenzie AE, Young IM, Tanglay O, Briggs RG, Chakraborty AR, Hormovas J, Fonseka RD, Kim SJ, Yeung JT, Teo C, Sughrue ME. Anatomy and White Matter Connections of the Parahippocampal Gyrus. World Neurosurg 2021; 148:e218-e226. [PMID: 33412321 DOI: 10.1016/j.wneu.2020.12.136] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND The parahippocampal gyrus is understood to have a role in high cognitive functions including memory encoding and retrieval and visuospatial processing. A detailed understanding of the exact location and nature of associated white tracts could significantly improve postoperative morbidity related to declining capacity. Through diffusion tensor imaging-based fiber tracking validated by gross anatomic dissection as ground truth, we have characterized these connections based on relationships to other well-known structures. METHODS Diffusion imaging from the Human Connectome Project for 10 healthy adult controls was used for tractography analysis. We evaluated the parahippocampal gyrus as a whole based on connectivity with other regions. All parahippocampal gyrus tracts were mapped in both hemispheres, and a lateralization index was calculated with resultant tract volumes. RESULTS We identified 2 connections of the parahippocampal gyrus: inferior longitudinal fasciculus and cingulum. Lateralization of the cingulum was detected (P < 0.05). CONCLUSIONS The parahippocampal gyrus is an important center for memory processing. Subtle differences in executive functioning following surgery for limbic tumors may be better understood in the context of the fiber-bundle anatomy highlighted by this study.
Collapse
Affiliation(s)
- Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - Vukshitha Dhanaraj
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - Alana E Mackenzie
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | | | - Onur Tanglay
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Arpan R Chakraborty
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jorge Hormovas
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - R Dineth Fonseka
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - Sihyong J Kim
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - Jacky T Yeung
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - Charles Teo
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery Prince of Wales Private Hospital, Sydney, Australia.
| |
Collapse
|
86
|
Qiu Y, Yang M, Li S, Teng Z, Jin K, Wu C, Xu X, Chen J, Tang H, Huang J, Xiang H, Guo W, Wang B, Wu H. Altered Fractional Amplitude of Low-Frequency Fluctuation in Major Depressive Disorder and Bipolar Disorder. Front Psychiatry 2021; 12:739210. [PMID: 34721109 PMCID: PMC8548428 DOI: 10.3389/fpsyt.2021.739210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Discriminating between major depressive disorder (MDD) and bipolar disorder (BD) remains challenging and cognitive deficits in MDD and BD are generally recognized. In this study, the fractional amplitude of low-frequency fluctuation (fALFF) approach was performed to explore neural activity and cognition in first-episode, drug-naïve BD and MDD patients, as well as the relationship between altered fALFF values and clinical or psychometric variables. Methods: A total of 21 BD patients, 25 MDD patients, and 41 healthy controls (HCs) completed clinical assessments and resting-state functional magnetic resonance imaging (rs-fMRI) scans in this study. The rs-fMRI data were analyzed by fALFF method and Pearson correlation analyses were performed between altered fALFF values and clinical variables or cognition. Support vector machine (SVM) was adopted to identify the three groups from each other with abnormal fALFF values in the brain regions obtained by group comparisons. Results: (1) The fALFF values were significantly different in the frontal lobe, temporal lobe, and left precuneus among three groups. In comparison to HCs, BD showed increased fALFF values in the right inferior temporal gyrus (ITG) and decreased fALFF values in the right middle temporal gyrus, while MDD showed decreased fALFF values in the right cerebellar lobule IV/V. In comparison to MDD, BD showed decreased fALFF values in bilateral posterior cingulate gyrus and the right cerebellar lobule VIII/IX. (2) In the BD group, a negative correlation was found between increased fALFF values in the right ITG and years of education, and a positive correlation was found between decreased fALFF values in the right cerebellar lobule VIII/IX and visuospatial abilities. (3) The fALFF values in the right cerebellar lobule VIII/IX may have the ability to discriminate BD patients from MDD patients, with sensitivity, specificity, and accuracy all over 0.70. Conclusions: Abnormal brain activities were observed in BD and MDD and were related with cognition in BD patients. The abnormality in the cerebellum can be potentially used to identify BD from MDD patients.
Collapse
Affiliation(s)
- Yan Qiu
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Min Yang
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sujuan Li
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Teng
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kun Jin
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chujun Wu
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xuelei Xu
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Tang
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Huang
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Xiang
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haishan Wu
- Department of Psychiatry, China National Technology Institute on Mental Disorders, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
87
|
Yang YC, Li QY, Chen MJ, Zhang LJ, Zhang MY, Pan YC, Ge QM, Shu HY, Lin Q, Shao Y. Investigation of Changes in Retinal Detachment-Related Brain Region Activities and Functions Using the Percent Amplitude of Fluctuation Method: A Resting-State Functional Magnetic Resonance Imaging Study. Neuropsychiatr Dis Treat 2021; 17:251-260. [PMID: 33536757 PMCID: PMC7850567 DOI: 10.2147/ndt.s292132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 12/29/2022] Open
Abstract
PURPOSE The percent amplitude of fluctuation (PerAF) method was used to study the changes in neural activities and functions in specific brain regions of patients with a retinal detachment (RD). PATIENTS AND METHODS In this study, we recruited 15 RD patients (nine males and six females) and 15 healthy controls (HCs) matched for gender, age, and weight. All participants were scanned with resting functional magnetic resonance imaging (rs-fMRI). The PerAF method was then used for data analysis to evaluate and detect changes in neural activity in relevant brain regions. Receiver operating characteristic (ROC) curve analysis was used to evaluate the two groups. RESULTS The PerAF signal values of the right fusiform gyrus and the left inferior temporal gyrus of RD patients were significantly higher than those of HCs. This may indicate changes in neural activity and function in the related brain regions. The anxiety and depression scores of hospital anxiety and depression scale (HADS) and the durations in RD patients were positively correlated with the PerAF values of the left inferior temporal gyrus. CONCLUSION In this study, we demonstrated that there were significant changes in the PerAF values in specific areas of the brain in patients with RD. The change of PerAF values represent the changes of BOLD signal intensity, which reflect the hyperactivity or weakening of specific brain regions in RD patients, which are helpful to predict the development and prognosis of RD patients, and play an important role in the early diagnosis of RD. In addition, according to the results, changes in neural activity in specific brain regions of RD patients increase the risk of brain dysfunction related diseases, which may help to understand the pathological mechanism of vision loss in RD patients.
Collapse
Affiliation(s)
- Yan-Chang Yang
- Department of Ophthalmology, Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006, Jiangxi, People's Republic of China
| | - Qiu-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006, Jiangxi, People's Republic of China
| | - Min-Jie Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006, Jiangxi, People's Republic of China
| | - Li-Juan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006, Jiangxi, People's Republic of China
| | - Meng-Yao Zhang
- Department of Ophthalmology, Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006, Jiangxi, People's Republic of China
| | - Yi-Cong Pan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006, Jiangxi, People's Republic of China
| | - Qian-Min Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006, Jiangxi, People's Republic of China
| | - Hui-Ye Shu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006, Jiangxi, People's Republic of China
| | - Qi Lin
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006, Jiangxi, People's Republic of China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006, Jiangxi, People's Republic of China
| |
Collapse
|