51
|
Wada N, Nohno T, Kuratani S. Dual origins of the prechordal cranium in the chicken embryo. Dev Biol 2011; 356:529-40. [DOI: 10.1016/j.ydbio.2011.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 05/01/2011] [Accepted: 06/06/2011] [Indexed: 12/17/2022]
|
52
|
Barron F, Woods C, Kuhn K, Bishop J, Howard MJ, Clouthier DE. Downregulation of Dlx5 and Dlx6 expression by Hand2 is essential for initiation of tongue morphogenesis. Development 2011; 138:2249-59. [PMID: 21558373 DOI: 10.1242/dev.056929] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Lower jaw development is a complex process in which multiple signaling cascades establish a proximal-distal organization. These cascades are regulated both spatially and temporally and are constantly refined through both induction of normal signals and inhibition of inappropriate signals. The connective tissue of the tongue arises from cranial neural crest cell-derived ectomesenchyme within the mandibular portion of the first pharyngeal arch and is likely to be impacted by this signaling. Although the developmental mechanisms behind later aspects of tongue development, including innervation and taste acquisition, have been elucidated, the early patterning signals driving ectomesenchyme into a tongue lineage are largely unknown. We show here that the basic helix-loop-helix transcription factor Hand2 plays key roles in establishing the proximal-distal patterning of the mouse lower jaw, in part through establishing a negative-feedback loop in which Hand2 represses Dlx5 and Dlx6 expression in the distal arch ectomesenchyme following Dlx5- and Dlx6-mediated induction of Hand2 expression in the same region. Failure to repress distal Dlx5 and Dlx6 expression results in upregulation of Runx2 expression in the mandibular arch and the subsequent formation of aberrant bone in the lower jaw along with proximal-distal duplications. In addition, there is an absence of lateral lingual swelling expansion, from which the tongue arises, resulting in aglossia. Hand2 thus appears to establish a distal mandibular arch domain that is conducive for lower jaw development, including the initiation of tongue mesenchyme morphogenesis.
Collapse
Affiliation(s)
- Francie Barron
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
53
|
Putnová I, Odehnalová S, Horák V, Stehlík L, Míšek I, Lozanoff S, Buchtová M. Comparative morphology of normal and cleft minipigs demonstrates dual origin of incisors. Arch Oral Biol 2011; 56:1624-34. [PMID: 21752351 DOI: 10.1016/j.archoralbio.2011.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/07/2011] [Accepted: 06/12/2011] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The incisors of the mammalian dental arch develop from tissues arising from separated facial prominences. These primordial craniofacial structures undergo complex morphogenetic processes as they merge and fuse in a time and space dependent fashion. However, local contributions of precursor facial prominences to the incisors that develop subsequently remain unknown. The purpose of this study was to characterize the development of all three deciduous upper rostral teeth in the pig (Sus scrofa f. domestica) for the identification of the likely facial prominence contributions to the incisors based on normal and pathological developmental relationships. DESIGN Embryonic minipigs were collected between gestational days 20-36 (E20-36), processed for histological analysis and subjected to computerized 3D modelling. The location and morphology of the incisors (i) in these specimens were characterized and compared between developmental stages. A second set of neonatal minipigs displaying cleft lip and/or cleft palate defects were also obtained and incisor locations and eruption patterns were morphologically examined. RESULTS Palate formation begins during the third week of gestation (E20) in the minipig with ossification of the premaxilla initiating soon afterwards (E24). The third incisor (i3) develops caudally to the contact seam formed by the fusion of the primary and secondary palates in normal embryos. All cleft animals displayed normal i3 and canine, on other hand, development of i1 and i2 was often disrupted similar to human. CONCLUSIONS Our observations suggest a dual embryonic origin of the incisors in minipigs with the first and second incisors originating from the frontonasal prominence whilst the third incisor forms from tissues derived from the maxillary prominence.
Collapse
Affiliation(s)
- Iveta Putnová
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
54
|
Yao T, Ohtani K, Kuratani S, Wada H. Development of lamprey mucocartilage and its dorsal-ventral patterning by endothelin signaling, with insight into vertebrate jaw evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:339-46. [DOI: 10.1002/jez.b.21406] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/17/2010] [Accepted: 01/15/2011] [Indexed: 11/06/2022]
|
55
|
Schmidt J, Schuff M, Olsson L. A role for FoxN3 in the development of cranial cartilages and muscles in Xenopus laevis (Amphibia: Anura: Pipidae) with special emphasis on the novel rostral cartilages. J Anat 2011; 218:226-42. [PMID: 21050205 PMCID: PMC3042756 DOI: 10.1111/j.1469-7580.2010.01315.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2010] [Indexed: 01/07/2023] Open
Abstract
The origin of morphological novelties is a controversial topic in evolutionary developmental biology. The heads of anuran larvae have several unique structures, including the supra- and infrarostral cartilages, the specialised structure of the gill basket (used for filtration), and novel cranial muscle arrangements. FoxN3, a member of the forkhead/winged helix family of transcription factors, has been implicated as important for normal craniofacial development in the pipid anuran Xenopus laevis. We have investigated the effects of functional knockdown of FoxN3 (using antisense oligonucleotide morpholino) on the development of the larval head skeleton and the associated cranial muscles in X. laevis. Our data complement earlier studies and provide a more complete account of the requirement of FoxN3 in chondrocranium development. In addition, we analyse the effects of FoxN3 knockdown on cranial muscle development. We show that FoxN3 knockdown primarily affects the novel skeletal structures unique to anuran larvae, i.e. the rostralia or the fine structure of the gill apparatus. The articulation between the infrarostral and Meckel's cartilage is malformed and the filigreed processes of the gill basket do not develop. Because these features do not develop after FoxN3 knockdown, the head morphology resembles that in the less specialised larvae of salamanders. Furthermore, the development of all cartilages derived from the neural crest is delayed and cranial muscle fibre development incomplete. The cartilage precursors initially condense in their proper position but later differentiate incompletely; several visceral arch muscles start to differentiate at their origin but fail to extend toward their insertion. Our findings indicate that FoxN3 is essential for the development of novel cartilages such as the infrarostral and other cranial tissues derived from the neural crest and, indirectly, also for muscle morphogenesis.
Collapse
Affiliation(s)
- Jennifer Schmidt
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität, Jena, Germany.
| | | | | |
Collapse
|
56
|
Evidence for the prepattern/cooption model of vertebrate jaw evolution. Proc Natl Acad Sci U S A 2010; 107:17262-7. [PMID: 20855630 DOI: 10.1073/pnas.1009304107] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The appearance of jaws was a turning point in vertebrate evolution because it allowed primitive vertebrates to capture and process large, motile prey. The vertebrate jaw consists of separate dorsal and ventral skeletal elements connected by a joint. How this structure evolved from the unjointed gill bar of a jawless ancestor is an unresolved question in vertebrate evolution. To understand the developmental bases of this evolutionary transition, we examined the expression of 12 genes involved in vertebrate pharyngeal patterning in the modern jawless fish lamprey. We find nested expression of Dlx genes, as well as combinatorial expression of Msx, Hand and Gsc genes along the dorso-ventral (DV) axis of the lamprey pharynx, indicating gnathostome-type pharyngeal patterning evolved before the appearance of the jaw. In addition, we find that Bapx and Gdf5/6/7, key regulators of joint formation in gnathostomes, are not expressed in the lamprey first arch, whereas Barx, which is absent from the intermediate first arch in gnathostomes, marks this domain in lamprey. Taken together, these data support a new scenario for jaw evolution in which incorporation of Bapx and Gdf5/6/7 into a preexisting DV patterning program drove the evolution of the jaw by altering the identity of intermediate first-arch chondrocytes. We present this "Pre-pattern/Cooption" model as an alternative to current models linking the evolution of the jaw to the de novo appearance of sophisticated pharyngeal DV patterning.
Collapse
|
57
|
Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 2010; 137:2605-21. [DOI: 10.1242/dev.040048] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During vertebrate craniofacial development, neural crest cells (NCCs) contribute much of the cartilage, bone and connective tissue that make up the developing head. Although the initial patterns of NCC segmentation and migration are conserved between species, the variety of vertebrate facial morphologies that exist indicates that a complex interplay occurs between intrinsic genetic NCC programs and extrinsic environmental signals during morphogenesis. Here, we review recent work that has begun to shed light on the molecular mechanisms that govern the spatiotemporal patterning of NCC-derived skeletal structures – advances that are central to understanding craniofacial development and its evolution.
Collapse
Affiliation(s)
- Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
- Faculté de Chirurgie Dentaire, 1, Place de l'Hôpital, 67000 Strasbourg, France
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
58
|
New directions in craniofacial morphogenesis. Dev Biol 2009; 341:84-94. [PMID: 19941846 DOI: 10.1016/j.ydbio.2009.11.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/29/2009] [Accepted: 11/17/2009] [Indexed: 01/15/2023]
Abstract
The vertebrate head is an extremely complicated structure: development of the head requires tissue-tissue interactions between derivates of all the germ layers and coordinated morphogenetic movements in three dimensions. In this review, we highlight a number of recent embryological studies, using chicken, frog, zebrafish and mouse, which have identified crucial signaling centers in the embryonic face. These studies demonstrate how small variations in growth factor signaling can lead to a diversity of phenotypic outcomes. We also discuss novel genetic studies, in human, mouse and zebrafish, which describe cell biological mechanisms fundamental to the growth and morphogenesis of the craniofacial skeleton. Together, these findings underscore the complex interactions leading to species-specific morphology. These and future studies will improve our understanding of the genetic and environmental influences underlying human craniofacial anomalies.
Collapse
|
59
|
Liu B, Rooker SM, Helms JA. Molecular control of facial morphology. Semin Cell Dev Biol 2009; 21:309-13. [PMID: 19747977 DOI: 10.1016/j.semcdb.2009.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 12/31/2022]
Abstract
We present a developmental perspective on the concept of phylotypic and phenotypic stages of craniofacial development. Within orders of avians and mammals, a phylotypic period exists when the morphology of the facial prominences is minimally divergent. We postulate that species-specific facial variations arise as a result of subtle shifts in the timing and the duration of molecular pathway activity (e.g., heterochrony), and present evidence demonstrating a critical role for Wnt and FGF signaling in this process. The same molecular pathways that shape the vertebrate face are also implicated in craniofacial deformities, indicating that comparisons between and among animal species may represent a novel method for the identification of human craniofacial disease genes.
Collapse
Affiliation(s)
- B Liu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford University, Stanford, CA 94305, United States
| | | | | |
Collapse
|
60
|
Voss SR, Epperlein HH, Tanaka EM. Ambystoma mexicanum, the axolotl: a versatile amphibian model for regeneration, development, and evolution studies. Cold Spring Harb Protoc 2009; 2009:pdb.emo128. [PMID: 20147230 DOI: 10.1101/pdb.emo128] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
INTRODUCTIONAdult salamanders are best known for their capacity to regenerate an astounding range of body structures including the whole limb and tail, the central nervous system, and tissues of the eye and heart. The axolotl (Ambystoma mexicanum) represents the salamander species that is most easily bred in the laboratory, and for which the most comprehensive genetic, genomic, and transgenesis tools have been developed. As such, it serves as an important vertebrate model for studying regeneration and tissue repair. Beyond regeneration, axolotls have a deep and rich history as primary amphibian models, especially in research areas concerning embryonic development--most notably the inductive mode of germ cell formation. The easily obtained oocytes, high quantities of embryos produced by each spawning, large size of the embryo, and ability to graft tissues from individual to individual at any stage without rejection make the axolotl an advantageous model system for the study of development, electrophysiology, and regeneration.
Collapse
Affiliation(s)
- S Randal Voss
- Department of Biology and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY 40506, USA
| | | | | |
Collapse
|
61
|
Kuratani S. Modularity, comparative embryology and evo-devo: Developmental dissection of evolving body plans. Dev Biol 2009; 332:61-9. [DOI: 10.1016/j.ydbio.2009.05.564] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
|
62
|
Gillis JA, Dahn RD, Shubin NH. Chondrogenesis and homology of the visceral skeleton in the little skate, Leucoraja erinacea (Chondrichthyes: Batoidea). J Morphol 2009; 270:628-43. [PMID: 19117064 DOI: 10.1002/jmor.10710] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chondrichthyan fishes possess visceral skeletons that differ considerably, morphologically, from those of their sister taxon, the osteichthyans. Here, we use histological techniques and whole-mount skeletal preparations to visualize and describe the sequence of visceral skeletal condensation and chondrogenesis in a chondrichthyan, the little skate (Leucoraja erinacea). We demonstrate that visceral skeletal condensation begins rostrally, with the mandibular arch, and progresses caudally with the hyoid arch and posterior branchial arches condensing soon after. We provide a detailed account of the condensation and chondrogenesis of all major components of the L. erinacea visceral skeleton and discuss these data in the context of what is known from classical descriptions of chondrichthyan visceral skeletal development. Significant differences exist between the hypobranchial and basibranchial skeleton of L. erinacea and other chondrichthyan species, and the possible evolutionary and developmental significance of this is considered. We discuss the homology of the chondrichthyan hyoid arch and, based on patterns of mesenchymal condensation, we propose a model of condensation splitting and diversification that may account for the morphological diversification of gnathostome branchial arch derivatives. Finally, we suggest that the unique presence of certain visceral skeletal elements in chondrichthyans make oviparous chondrichthyans an ideal system for addressing questions of endoskeletal axial patterning during development.
Collapse
Affiliation(s)
- J Andrew Gillis
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
63
|
Rose C. Generating, growing and transforming skeletal shape: insights from amphibian pharyngeal arch cartilages. Bioessays 2009; 31:287-99. [DOI: 10.1002/bies.200800059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
64
|
Twisted gastrulation limits apoptosis in the distal region of the mandibular arch in mice. Dev Biol 2009; 328:13-23. [PMID: 19389368 DOI: 10.1016/j.ydbio.2008.12.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/03/2008] [Accepted: 12/31/2008] [Indexed: 11/23/2022]
Abstract
The mandibular arch (BA1) is critical for craniofacial development. The distal region of BA1, which gives rise to most of the mandible, is dependent upon an optimal level of bone morphogenetic protein (BMP) signaling. BMP activity is modulated in the extracellular space by BMP-binding proteins such as Twisted gastrulation (TWSG1). Twsg1(-/-) mice have a spectrum of craniofacial phenotypes, including mandibular defects that range from micrognathia to agnathia. At E9.5, the distal region of the mutant BA1 was prematurely and variably fused with loss of distal markers eHand and Msx1. Expression of proximal markers Fgf8 and Barx1 was expanded across the fused BA1. The expression of Bmp4 and Msx2 was preserved in the distal region, but shifted ventrally. While wild type embryos showed a gradient of BMP signaling with higher activity in the distal region of BA1, this gradient was disrupted and shifted ventrally in the mutants. Thus, loss of TWSG1 results in disruption of the BMP4 gradient at the level of signaling activity as well as mRNA expression. Altered distribution of BMP signaling leads to a shift in gene expression and increase in apoptosis. The extent of apoptosis may account for the variable degree of mandibular defects in Twsg1 mutants.
Collapse
|
65
|
Abe M, Maeda T, Wakisaka S. Retinoic acid affects craniofacial patterning by changing Fgf8 expression in the pharyngeal ectoderm. Dev Growth Differ 2009; 50:717-29. [PMID: 19046160 DOI: 10.1111/j.1440-169x.2008.01069.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Retinoic acid signaling plays important roles in establishing normal patterning and cellular differentiation during embryonic development. In this study, we show that single administration of retinoic acid at embryonic day 8.5 causes homeotic transformation of the lower jaw into upper jaw-like structures. This homeosis was preceded by downregulation of Fgf8 and Sprouty expression in the proximal domain of the first pharyngeal arch. Downregulation of mesenchymal genes such as Dlx5, Hand2, Tbx1 and Pitx2 was also observed. The oropharynx in retinoic acid-treated embryos was severely constricted. Consistent with this observation, Patched expression in the arch endoderm and mesenchyme was downregulated. Thus, retinoic acid affects the expression of subsets of epithelial and mesenchymal genes, possibly disrupting the regional identity of the pharyngeal arch.
Collapse
Affiliation(s)
- Makoto Abe
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.
| | | | | |
Collapse
|
66
|
Abstract
In most versions of theories of the segmentation of the vertebrate head, a premandibular segment is present rostral to the jaw-forming mandibular segment. These theories posit that in ancient fishes this segment included a gill and a gill-supporting skeleton, which then was modified to support the anterior brain. However, we find no recent evidence for existence of such a premandibular segment. Rather, new findings from studies of fate mapping and gene expression show that the "premandibular" territory is in fact the maxillary region of the mandibular arch. A signaling cascade, beginning with dorsal midline mesoderm in the gastrula and relayed through neural ectoderm and then oral ectoderm, greatly expands the skeletal derivatives of maxillary neural crest in a manner fully consistent with the Gans-Northcutt theory of the vertebrate new head.
Collapse
Affiliation(s)
- Charles B. Kimmel
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
67
|
Mallatt J. The Origin of the Vertebrate Jaw: Neoclassical Ideas Versus Newer, Development-Based Ideas. Zoolog Sci 2008; 25:990-8. [DOI: 10.2108/zsj.25.990] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
68
|
Dual epithelial origin of vertebrate oral teeth. Nature 2008; 455:795-8. [PMID: 18794902 DOI: 10.1038/nature07304] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 07/29/2008] [Indexed: 11/09/2022]
Abstract
The oral cavity of vertebrates is generally thought to arise as an ectodermal invagination. Consistent with this, oral teeth are proposed to arise exclusively from ectoderm, contributing to tooth enamel epithelium, and from neural crest derived mesenchyme, contributing to dentin and pulp. Yet in many vertebrate groups, teeth are not restricted only to the oral cavity, but extend posteriorly as pharyngeal teeth that could be derived either directly from the endodermal epithelium, or from the ectodermal epithelium that reached this location through the mouth or through the pharyngeal slits. However, when the oropharyngeal membrane, which forms a sharp ecto/endodermal border, is broken, the fate of these cells is poorly known. Here, using transgenic axolotls with a combination of fate-mapping approaches, we present reliable evidence of oral teeth derived from both the ectoderm and endoderm and, moreover, demonstrate teeth with a mixed ecto/endodermal origin. Despite the enamel epithelia having a different embryonic source, oral teeth in the axolotl display striking developmental uniformities and are otherwise identical. This suggests a dominant role for the neural crest mesenchyme over epithelia in tooth initiation and, from an evolutionary point of view, that an essential factor in teeth evolution was the odontogenic capacity of neural crest cells, regardless of possible 'outside-in' or 'inside-out' influx of the epithelium.
Collapse
|
69
|
Brito JM, Teillet MA, Le Douarin NM. Induction of mirror-image supernumerary jaws in chicken mandibular mesenchyme by Sonic Hedgehog-producing cells. Development 2008; 135:2311-9. [PMID: 18539924 DOI: 10.1242/dev.019125] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have shown that Sonic Hedgehog (Shh) signaling is crucial for the development of the first branchial arch (BA1) into a lower-jaw in avian and mammalian embryos. We have already shown that if Shh expression is precociously inhibited in pharyngeal endoderm, neural crest cells migrate to BA1 but fail to survive, and Meckel's cartilage and associated structures do not develop. This phenotype can be rescued by addition of an exogenous source of Shh. To decipher the role of Shh, we explored the consequences of providing an extra source of Shh to the presumptive BA1 territory. Grafting quail fibroblasts engineered to produce Shh (QT6-Shh), at the 5- to 8-somite stage, resulted in the induction of mirror-image extra lower jaws, caudolateral to the normal one. It turns out that the oral opening epithelium, in which Shh, Fgf8 and Bmp4 are expressed in a definite pattern, functions as an organizing center for lower-jaw development. In our experimental design, the extra source of Shh activates Fgf8, Bmp4 and Shh genes in caudal BA1 ectoderm in a spatial pattern similar to that of the oral epithelium, and regularly leads to the formation of two extra lower-jaw-organizing centers with opposite rostrocaudal polarities. These results emphasize the similarities between the developmental processes of the limb and mandibular buds, and show that in both cases Shh-producing cells create a zone of polarizing activity for the structures deriving from them.
Collapse
Affiliation(s)
- José M Brito
- CNRS, UPR 2197, Laboratoire de Développement, Evolution et Plasticité du Système nerveux, Institut de Neurobiologie Alfred Fessard, F-91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
70
|
Kim SM, Lee YJ, Lee SS, Kim YS, Lee SK, Kim IB, Chi JG. Abnormal maxillary trapezoid pattern in human fetal cleft lip and palate. Cleft Palate Craniofac J 2008; 45:131-40. [PMID: 18333644 DOI: 10.1597/06-077.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To elucidate abnormal growth patterns of human fetal maxillae with cleft lip and palate (CLP). SUBJECT A total of 71 fetal maxillae with CLP were obtained from aborted human fetuses. METHOD Dimensions of the maxillary trapezoid (MT), formed by the maxillary primary growth centers (MxPGC), were taken from radiographic images. The CLP dimensions were compared with maxillary trapezoid dimensions of normal fetuses from a previous study (Lee et al., 1992). MAIN OUTCOME MEASURES Cleft lip subjects without a cleft palate, unilateral cleft lip-alveolar cleft or cleft palate (UCL+A/UCLP), and bilateral cleft lip-alveolar cleft or cleft palate (BCL+A/BCLP) displayed abnormal MT patterns. MT abnormalities were most marked in the BCL+A/BCLP cohort. RESULTS The MT growth of prenatal CLP maxillae was severely arrested, resulting in abnormal MT shape on palatal radiograms. BCL+A/BCLP subjects had a more protruded nasal septum than subjects with other types of CLPs, while UCL+A/UCLP subjects showed severe deviation of the protruded nasal septum toward the noncleft side. Cleft lip-only subjects also exhibited abnormal MT growth. CONCLUSION MT is primarily involved in CLPs, so that the MT shape could be utilized as a sensitive indicator for the analysis of maxillary malformation in different types of CLPs.
Collapse
Affiliation(s)
- Soung Min Kim
- Department of Oral and Maxillofacial Surgery, Kangnung National University, Gangeung, Korea
| | | | | | | | | | | | | |
Collapse
|
71
|
Review of fate-mapping studies of osteogenic cranial neural crest in vertebrates. Dev Biol 2008; 317:389-400. [DOI: 10.1016/j.ydbio.2008.02.046] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 02/20/2008] [Accepted: 02/21/2008] [Indexed: 01/20/2023]
|
72
|
|
73
|
Ericsson R, Joss J, Olsson L. The fate of cranial neural crest cells in the Australian lungfish,Neoceratodus forsteri. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:345-54. [PMID: 17563085 DOI: 10.1002/jez.b.21178] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The cranial neural crest has been shown to give rise to a diversity of cells and tissues, including cartilage, bone and connective tissue, in a variety of tetrapods and in the zebrafish. It has been claimed, however, that in the Australian lungfish these tissues are not derived from the cranial neural crest, and even that no migrating cranial neural crest cells exist in this species. We have earlier documented that cranial neural crest cells do migrate, although they emerge late, in the Australian lungfish. Here, we have used the lipophilic fluorescent dye, DiI, to label premigratory cranial neural crest cells and follow their fate until stage 43, when several cranial skeletal elements have started to differentiate. The timing and extent of their migration was investigated, and formation of mandibular, hyoid and branchial streams documented. Cranial neural crest was shown to contribute cells to several parts of the head skeleton, including the trabecula cranii and derivatives of the mandibular arch (e.g., Meckel's cartilage, quadrate), the hyoid arch (e.g., the ceratohyal) and the branchial arches (ceratobranchials I-IV), as well as to the connective tissue surrounding the myofibers in cranial muscles. We conclude that cranial neural crest migration and fate in the Australian lungfish follow the stereotyped pattern documented in other vertebrates.
Collapse
Affiliation(s)
- Rolf Ericsson
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
74
|
Knight RD, Schilling TF. Cranial neural crest and development of the head skeleton. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 589:120-33. [PMID: 17076278 DOI: 10.1007/978-0-387-46954-6_7] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The skeletal derivatives of the cranial neural crest (CNC) are patterned through a combination of intrinsic differences between crest cells and extrinsic signals from adjacent tissues, including endoderm and ectoderm. In this chapter, we focus on how CNC cells positionally interpret these cues to generate such highly specialized structures as the jaw and ear ossicles. We highlight recent genetic studies of craniofacial development in zebrafish that have revealed new tissue interactions and show that the process of CNC development is highly conserved across the vertebrates.
Collapse
Affiliation(s)
- Robert D Knight
- Centre for Developmental and Biomedical Genetics, Department of Biomedical Sciences, University of Sheffield, South Yorkshire, UK
| | | |
Collapse
|
75
|
Hovorakova M, Lesot H, Vonesch JL, Peterka M, Peterkova R. Early development of the lower deciduous dentition and oral vestibule in human embryos. Eur J Oral Sci 2007; 115:280-7. [PMID: 17697167 DOI: 10.1111/j.1600-0722.2007.00464.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this work was to investigate the early development of the deciduous dentition and oral vestibule in the human embryonic lower jaw. Histological sections and three-dimensional reconstructions from prenatal weeks 6-9 were used. A continuous anlage for the oral vestibule did not exist in the mandible. In contrast to the upper jaw, where we previously observed that the dental and vestibular epithelia developed separately, two dento-vestibular bulges differentiated in the incisor region of the mandible. The lingual parts of each bulge were found to give rise to the respective central and lateral incisors, whereas the labial parts differentiated into the vestibular epithelium. In the canine and molar areas, the dental and vestibular epithelia originated separately. Later, the segments of the vestibular epithelium fused into the labial vestibular ridge, giving rise to the lower oral vestibule in the lip region. In the cheek region, the oral vestibule was found to originate in the mucosal inflection between the developing jaw and the cheek. A similar heterogeneous developmental base for the oral vestibule was also observed in the upper jaw. There is thus no general scheme for the early development of the dental and vestibular epithelia that applies to both the upper and lower jaws, and to both their anterior and posterior regions.
Collapse
Affiliation(s)
- Maria Hovorakova
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
76
|
Schuff M, Rössner A, Wacker SA, Donow C, Gessert S, Knöchel W. FoxN3 is required for craniofacial and eye development of Xenopus laevis. Dev Dyn 2007; 236:226-39. [PMID: 17089409 DOI: 10.1002/dvdy.21007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A functional knockdown of FoxN3, a member of subclass N of fork head/winged helix transcription factors in Xenopus laevis, leads to an abnormal formation of the jaw cartilage, absence or malformation of distinct cranial nerves, and reduced size of the eye. While the eye phenotype is due to an increased rate of apoptosis, the cellular basis of the jaw phenotype is more complex. The upper and lower jaw cartilages are derivatives of a subset of cranial neural crest cells, which migrate into the first pharyngeal arch. Histological analysis of FoxN3-depleted embryos reveals severe deformation and false positioning of infrarostral, Meckel's, and palatoquadrate cartilages, structural elements derived from the first pharyngeal arch, and of the ceratohyale, which derives from the second pharyngeal arch. The derivatives of the third and fourth pharyngeal arches are less affected. FoxN3 is not required for early neural crest migration. Defects in jaw formation rather arise by failure of differentiation than by positional effects of crest migration. By GST-pulldown analysis, we have identified two different members of histone deacetylase complexes (HDAC), xSin3 and xRPD3, as putative interaction partners of FoxN3, suggesting that FoxN3 regulates craniofacial and eye development by recruiting HDAC.
Collapse
|
77
|
Van de Putte T, Francis A, Nelles L, van Grunsven LA, Huylebroeck D. Neural crest-specific removal of Zfhx1b in mouse leads to a wide range of neurocristopathies reminiscent of Mowat-Wilson syndrome. Hum Mol Genet 2007; 16:1423-36. [PMID: 17478475 DOI: 10.1093/hmg/ddm093] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mowat-Wilson syndrome is a recently delineated autosomal dominant developmental anomaly, whereby heterozygous mutations in the ZFHX1B gene cause mental retardation, delayed motor development, epilepsy and a wide spectrum of clinically heterogeneous features, suggestive of neurocristopathies at the cephalic, cardiac and vagal levels. However, our understanding of the etiology of this condition at the cellular level remains vague. This study presents the Zfhx1b protein expression domain in mouse embryos and correlates this with a novel mouse model involving a conditional mutation in the Zfhx1b gene in neural crest precursor cells. These mutant mice display craniofacial and gastrointestinal malformations that show resemblance to those found in human patients with Mowat-Wilson syndrome. In addition to these clinically recognized alterations, we document developmental defects in the heart, melanoblasts and sympathetic and parasympathetic anlagen. The latter observations in our mouse model for Mowat-Wilson suggest a hitherto unknown role for Zfhx1b in the development of these particular neural crest derivatives, which is a set of observations that should be acknowledged in the clinical management of this genetic disorder.
Collapse
Affiliation(s)
- Tom Van de Putte
- Laboratory of Molecular Biology (Celgen), KULeuven, Herestraat 49,B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
78
|
Handrigan GR, Buchtová M, Richman JM. Gene discovery in craniofacial development and disease--cashing in your chips. Clin Genet 2007; 71:109-19. [PMID: 17250659 DOI: 10.1111/j.1399-0004.2007.00761.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An unbiased, polygenic approach is needed to unravel the complex molecular bases of craniofacial development and disease. DNA microarrays, the current paradigm of genome-wide analysis, permit the simultaneous study of many thousands of genes, the ready identification of candidate molecules and pathways, and the compilation of gene expression profiles for whole systems--pathologic and embryonic alike. We survey the existing literature applying microarrays to craniofacial biology and highlight the value of animal models, particularly mice and chickens, to understanding molecular regulation in the craniofacial complex. We also emphasize the importance of functional studies and high-throughput assays to extracting useful data from microarray output. It is our goal to help put researchers and clinicians on the same page as microarray technology moves into the forefront of craniofacial biology.
Collapse
Affiliation(s)
- G R Handrigan
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, B.C., Canada
| | | | | |
Collapse
|
79
|
Nakanishi K, Chan YS, Ito K. Notch signaling is required for the chondrogenic specification of mouse mesencephalic neural crest cells. Mech Dev 2007; 124:190-203. [PMID: 17241776 DOI: 10.1016/j.mod.2006.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 12/13/2006] [Accepted: 12/14/2006] [Indexed: 11/25/2022]
Abstract
We examined the roles of Notch signaling in the chondrogenesis of mouse mesencephalic neural crest cells. The present study demonstrated that the activation of Notch signaling or the treatment with fibroblast growth factors (FGFs) promotes the differentiation of proliferative and prehypertrophic chondrocytes expressing collagen type II. Notch activation or FGF2 exposure during the first 24h in culture was critical for the differentiation of proliferative and prehypertrophic chondrocytes. The expression of SOX9, a transcription activator of collagen type II, was also upregulated by Notch activation or FGF2 treatment. The promotion of proliferative and prehypertrophic chondrocyte differentiation by FGF2 was significantly suppressed by the inhibition of Notch signaling using Notch-1 siRNA. These results suggest that FGFs activate Notch signaling and that this activation promotes the chondrogenic specification of mouse mesencephalic neural crest cells. Furthermore, we investigated the expression patterns of Notch-1, SOX9, and p75, which is a marker of undifferentiated neural crest cells, in the mandibular arch where mesencephalic neural crest cells colonize and undergo chondrogenesis. These in vivo observations, coupled with the results of the present in vitro study, suggest that Notch signaling as well as FGFs is a component of epithelial-mesenchymal interactions that promote the chondrogenic specification of mouse mesencephalic neural crest cells.
Collapse
Affiliation(s)
- Kouichi Nakanishi
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | | | | |
Collapse
|
80
|
Di Renzo F, Broccia ML, Giavini E, Menegola E. Antifungal triazole derivative triadimefon induces ectopic maxillary cartilage by altering the morphogenesis of the first branchial arch. ACTA ACUST UNITED AC 2007; 80:2-11. [PMID: 17187389 DOI: 10.1002/bdrb.20097] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The triazole derivative, triadimefon (FON), induces branchial arch abnormalities in post-implantation rat embryos cultured in vitro, and cranio-facial malformations in mouse fetuses. Ectopic maxillary cartilage has been also described as a typical FON-related malformation. This work studies the morphogenesis of the ectopic cartilage in rat embryos and fetuses exposed in vivo to FON during the early postimplantation period. METHODS Pregnant rats were treated with 0, 250, and 500 mg/kg FON on Day 9.5 of pregnancy (D9.5) and sacrificed at term (D20), during the early fetal period (D17) or at different embryogenetic periods (D10, D11, D12). The skeleton was examined after stain of bone and cartilage or of cartilage alone respectively at term or at D17. The neural crest cell (NCC) migration and compaction was investigated at D10 and D11 and the cranial nerve organization described at D12. RESULTS Triadimefon is teratogenic in rats under the chosen experimental conditions. The malformations were at the level of the cranio-facial and axial skeleton at term and of the hindbrain nerves in embryos. A NCC abnormal migration and compaction was observed at the level of the first branchial arch: in FON-exposed embryos NCC were detected at the level of both maxillary and mandibular processes, whereas control embryos showed the immunostained tissue only at the level of the mandibular bud. CONCLUSIONS The pathogenic pathway, proposed to explain the ectopic cartilage, is the displacement of part of the NCC-derived tissues at the maxillary region of the first branchial arch.
Collapse
|
81
|
Depew MJ, Simpson CA. 21st century neontology and the comparative development of the vertebrate skull. Dev Dyn 2006; 235:1256-91. [PMID: 16598716 DOI: 10.1002/dvdy.20796] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Classic neontology (comparative embryology and anatomy), through the application of the concept of homology, has demonstrated that the development of the gnathostome (jawed vertebrate) skull is characterized both by a fidelity to the gnathostome bauplan and the exquisite elaboration of final structural design. Just as homology is an old concept amended for modern purposes, so are many of the questions regarding the development of the skull. With due deference to Geoffroy-St. Hilaire, Cuvier, Owen, Lankester et al., we are still asking: How are bauplan fidelity and elaboration of design maintained, coordinated, and modified to generate the amazing diversity seen in cranial morphologies? What establishes and maintains pattern in the skull? Are there universal developmental mechanisms underlying gnathostome autapomorphic structural traits? Can we detect and identify the etiologies of heterotopic (change in the topology of a developmental event), heterochronic (change in the timing of a developmental event), and heterofacient (change in the active capacetence, or the elaboration of capacity, of a developmental event) changes in craniofacial development within and between taxa? To address whether jaws are all made in a like manner (and if not, then how not), one needs a starting point for the sake of comparison. To this end, we present here a "hinge and caps" model that places the articulation, and subsequently the polarity and modularity, of the upper and lower jaws in the context of cranial neural crest competence to respond to positionally located epithelial signals. This model expands on an evolving model of polarity within the mandibular arch and seeks to explain a developmental patterning system that apparently keeps gnathostome jaws in functional registration yet tractable to potential changes in functional demands over time. It relies upon a system for the establishment of positional information where pattern and placement of the "hinge" is driven by factors common to the junction of the maxillary and mandibular branches of the first arch and of the "caps" by the signals emanating from the distal-most first arch midline and the lamboidal junction (where the maxillary branch meets the frontonasal processes). In this particular model, the functional registration of jaws is achieved by the integration of "hinge" and "caps" signaling, with the "caps" sharing at some critical level a developmental history that potentiates their own coordination. We examine the evidential foundation for this model in mice, examine the robustness with which it can be applied to other taxa, and examine potential proximate sources of the signaling centers. Lastly, as developmental biologists have long held that the anterior-most mesendoderm (anterior archenteron roof or prechordal plate) is in some way integral to the normal formation of the head, including the cranial skeletal midlines, we review evidence that the seminal patterning influences on the early anterior ectoderm extend well beyond the neural plate and are just as important to establishing pattern within the cephalic ectoderm, in particular for the "caps" that will yield medial signaling centers known to coordinate jaw development.
Collapse
Affiliation(s)
- Michael J Depew
- Department of Craniofacial Development, King's College London, Guy's Hospital, London Bridge, London, United Kingdom.
| | | |
Collapse
|
82
|
Abstract
Hedgehog signaling coordinates a variety of patterning processes during early embryonic development. Drosophila hedgehog and its vertebrate orthologs, Sonic hedgehog, Indian hedgehog, and Desert hedgehog, share a generally conserved signal transduction cascade. However, the particular mechanisms by which the lipid-modified molecules specify embryonic tissues differ substantially. Vertebrate skeletal patterning is one of the most intensively studied biological processes. During skeletogenesis, Sonic and Indian hedgehog provide positional information and initiate or maintain cellular differentiation programs regulating the formation of cartilage and bone. They either signal directly to adjacent cells or form tightly regulated gradients that act over long distances to pattern the axial and appendicular skeleton and regulate crucial steps during endochondral ossification. As a consequence, malfunction of the hedgehog signaling network can cause severe skeletal disorders and tumors.
Collapse
Affiliation(s)
- Harald W A Ehlen
- University of Duisburg-Essen, Center for Medical Biotechnology, Essen, Germany
| | | | | |
Collapse
|
83
|
McCauley DW, Bronner-Fraser M. Importance of SoxE in neural crest development and the evolution of the pharynx. Nature 2006; 441:750-2. [PMID: 16760978 DOI: 10.1038/nature04691] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 03/03/2006] [Indexed: 11/08/2022]
Abstract
The neural crest, a defining character of vertebrates, is of prime importance to their evolutionary origin. To understand neural crest evolution, we explored molecular mechanisms underlying craniofacial development in the basal jawless vertebrate, sea lamprey (Petromyzon marinus), focusing on the SoxE (Sox8, Sox9 and Sox10) gene family. In jawed vertebrates, these are important transcriptional regulators of the neural crest, and the loss of Sox9 causes abnormal craniofacial development. Here we report that two lamprey SoxE genes are expressed in migrating neural crest and crest-derived prechondrocytes in posterior branchial arches, whereas a third paralogue is expressed later in the perichondrium and mandibular arch. Morpholino knock-down of SoxE1 reveals that it is essential for posterior branchial arch development, although the mandibular arch is unaffected. The results show that chondrogenic function of SoxE regulators can be traced to the lamprey-gnathostome common ancestor and indicate that lamprey SoxE genes might have undergone independent duplication to have distinct functions in mandibular versus caudal branchial arches. This work sheds light on the homology of vertebrate branchial arches and supports their common origin at the base of vertebrates.
Collapse
Affiliation(s)
- David W McCauley
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | |
Collapse
|
84
|
Baltzinger M, Ori M, Pasqualetti M, Nardi I, Rijli FM. Hoxa2 knockdown in Xenopus results in hyoid to mandibular homeosis. Dev Dyn 2006; 234:858-67. [PMID: 16222714 DOI: 10.1002/dvdy.20567] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The skeletal structures of the face and throat are derived from cranial neural crest cells (NCCs) that migrate from the embryonic neural tube into a series of branchial arches (BAs). The first arch (BA1) gives rise to the upper and lower jaw cartilages, whereas hyoid structures are generated from the second arch (BA2). The Hox paralogue group 2 (PG2) genes, Hoxa2 and Hoxb2, show distinct roles for hyoid patterning in tetrapods and fishes. In the mouse, Hoxa2 acts as a selector of hyoid identity, while its paralogue Hoxb2 is not required. On the contrary, in zebrafish Hoxa2 and Hoxb2 are functionally redundant for hyoid arch patterning. Here, we show that in Xenopus embryos morpholino-induced functional knockdown of Hoxa2 is sufficient to induce homeotic changes of the second arch cartilage. Moreover, Hoxb2 is downregulated in the BA2 of Xenopus embryos, even though initially expressed in second arch NCCs, similar to mouse and unlike in zebrafish. Finally, Xbap, a gene involved in jaw joint formation, is selectively upregulated in the BA2 of Hoxa2 knocked-down frog embryos, supporting a hyoid to mandibular change of NCC identity. Thus, in Xenopus Hoxa2 does not act redundantly with Hoxb2 for BA2 patterning, similar to mouse and unlike in fish. These data bring novel insights into the regulation of Hox PG2 genes and hyoid patterning in vertebrate evolution and suggest that Hoxa2 function is required at late stages of BA2 development.
Collapse
Affiliation(s)
- Mireille Baltzinger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Strasbourg, France
| | | | | | | | | |
Collapse
|
85
|
Yamagishi C, Yamagishi H, Maeda J, Tsuchihashi T, Ivey K, Hu T, Srivastava D. Sonic hedgehog is essential for first pharyngeal arch development. Pediatr Res 2006; 59:349-54. [PMID: 16492970 DOI: 10.1203/01.pdr.0000199911.17287.3e] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The secreted protein sonic hedgehog (Shh) is essential for normal development of many organs. Targeted disruption of Shh in mouse leads to near complete absence of craniofacial skeletal elements at birth, and mutation of SHH in human causes holoprosencephaly (HPE), frequently associated with defects of derivatives of pharyngeal arches. To investigate the role of Shh signaling in early pharyngeal arch development, we analyzed Shh mutant embryos using molecular markers and found that the first pharyngeal arch (PA1) was specifically hypoplastic and fused in the midline, and remaining arches were well formed at embryonic day (E) 9.5. Molecular analyses using specific markers suggested that the growth of the maxillary arch and proximal mandibular arch was severely defective in Shh-null PA1, whereas the distal mandibular arch was less affected. TUNEL assay revealed an increase in the number of apoptotic signals in PA1 of Shh mutant embryos. Ectodermal expression of fibroblast growth factor (Fgf)-8, a cell survival factor for pharyngeal arch mesenchyme, was down-regulated in the PA1 of Shh mutants. Consistent with this observation, downstream transcriptional targets of Fgf8 signaling in neural crest-derived mesenchyme, including Barx1, goosecoid, and Dlx2, were also down-regulated in Shh-null PA1. These results demonstrate that epithelial-mesenchymal signaling and transcriptional events coordinated by Shh, partly via Fgf8, is essential for cell survival and tissue outgrowth of the developing PA1.
Collapse
Affiliation(s)
- Chihiro Yamagishi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
86
|
Richman JM, Buchtová M, Boughner JC. Comparative ontogeny and phylogeny of the upper jaw skeleton in amniotes. Dev Dyn 2006; 235:1230-43. [PMID: 16496291 DOI: 10.1002/dvdy.20716] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The morphology, position, and presence of the upper jaw bones vary greatly across amniote taxa. In this review, we compare the development and anatomy of upper jaw bones from the three living amniote groups: reptiles, birds, and mammals. The study of reptiles is particularly important as comparatively little is known about the embryogenesis of the jaw in this group. Our review covers the ontogeny and phylogeny of membranous bones in the face. The aim is to identify conserved embryonic processes that may exist among the three major amniote groups. Finally, we discuss how temporal and spatial regulation of preosseous condensations and ossification centers can lead to variation in the morphology of amniote upper jaw bones.
Collapse
Affiliation(s)
- Joy M Richman
- Cellular Mechanisms of Development Group and Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, B.C., Canada.
| | | | | |
Collapse
|
87
|
Evans DJR, Noden DM. Spatial relations between avian craniofacial neural crest and paraxial mesoderm cells. Dev Dyn 2006; 235:1310-25. [PMID: 16395689 DOI: 10.1002/dvdy.20663] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fate maps based on quail-chick grafting of avian cephalic neural crest precursors and paraxial mesoderm cells have identified the majority of derivatives from each population but have not unequivocally resolved the precise locations of and population dynamics at the interface between them. The relation between these two mesenchymal tissues is especially critical for the development of skeletal muscles, because crest cells play an essential role in their differentiation and subsequent spatial organization. It is not known whether myogenic mesoderm and skeletogenic neural crest cells establish permanent relations while en route to their final destinations, or later at the sites where musculoskeletal morphogenesis is completed. We applied beta-galactosidase-encoding, replication-incompetent retroviruses to paraxial mesoderm, to crest progenitors, or at the interface between mesodermal and overlying neural crest as both were en route to branchial or periocular regions in chick embryos. With respect to skeletal structures, the results identify the avian neural crest:mesoderm boundary at the junction of the supraorbital and calvarial regions of the frontal bone, lateral to the hypophyseal foramen, and rostral to laryngeal cartilages. Therefore, in the chick embryo, most of the frontal and the entire parietal bone are of mesodermal, not neural crest, origin. Within paraxial mesoderm, the progenitors of each lineage display different behaviors. Chondrogenic cells are relatively stationary and intramembranous osteogenic cells move only in transverse planes around the brain. Angioblasts migrate invasively in all directions. Extraocular muscle precursors form tightly aggregated masses that en masse cross the crest:mesoderm interface to enter periocular territories, while branchial myogenic lineages shift ventrally coincidental with the movements of corresponding neural crest cells. En route to the branchial arches, myogenic mesoderm cells do not maintain constant, nearest-neighbor relations with adjacent, overlying neural crest cells. Thus, progenitors of individual muscles do not establish stable, permanent relations with their connective tissues until both populations reach the sites of their morphogenesis within branchial arches or orbital regions.
Collapse
Affiliation(s)
- Darrell J R Evans
- Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, United Kingdom
| | | |
Collapse
|
88
|
Abstract
The prevailing approach within the field of craniofacial development is focused on finding a balance between tissues (e.g., facial epithelia, neuroectoderm, and neural crest) and molecules (e.g., bone morphogenetic proteins, fibroblast growth factors, Wnts) that play a role in sculpting the face. We are rapidly learning that neither these tissues nor molecular signals are able to act in isolation; in fact, molecular cues are constantly reciprocating signals between the epithelia and the neural crest in order to pattern and mold facial structures. More recently, it has been proposed that this crosstalk is often mediated and organized by discrete organizing centers within the tissues that are able to act as a self-contained unit of developmental potential (e.g., the rhombomere and perhaps the ectomere). Whatever the molecules are and however they are interpreted by these tissues, it appears that there is a remarkably conserved mechanism for setting up the initial organization of the facial prominences between species. Regardless of species, all vertebrates appear to have the same basic bauplan. However, sometime during mid-gestation, the vertebrate face begins to exhibit species-specific variations, in large part due to differences in the rates of growth and differentiation of cells comprising the facial prominences. How do these differences arise? Are they due to late changes in molecular signaling within the facial prominences themselves? Or are these late changes a reflection of earlier, more subtle alterations in boundaries and fields that are established at the earliest stages of head formation? We do not have clear answers to these questions yet, but in this chapter we present new studies that shed light on this age-old question. This chapter aims to present the known signals, both on a molecular and cellular level, responsible for craniofacial development while bringing to light the events that may serve to create difference in facial morphology seen from species to species.
Collapse
Affiliation(s)
- Samantha A Brugmann
- Department of Plastic and Reconstructive Surgery, Stanford University, California 94305, USA
| | | | | |
Collapse
|
89
|
Abstract
Unraveling the complex tissue interactions necessary to generate the structural and functional diversity present among craniofacial muscles is challenging. These muscles initiate their development within a mesenchymal population bounded by the brain, pharyngeal endoderm, surface ectoderm, and neural crest cells. This set of spatial relations, and in particular the segmental properties of these adjacent tissues, are unique to the head. Additionally, the lack of early epithelialization in head mesoderm necessitates strategies for generating discrete myogenic foci that may differ from those operating in the trunk. Molecular data indeed indicate dissimilar methods of regulation, yet transplantation studies suggest that some head and trunk myogenic populations are interchangeable. The first goal of this review is to present key features of these diversities, identifying and comparing tissue and molecular interactions regulating myogenesis in the head and trunk. Our second focus is on the diverse morphogenetic movements exhibited by craniofacial muscles. Precursors of tongue muscles partly mimic migrations of appendicular myoblasts, whereas myoblasts destined to form extraocular muscles condense within paraxial mesoderm, then as large cohorts they cross the mesoderm:neural crest interface en route to periocular regions. Branchial muscle precursors exhibit yet another strategy, establishing contacts with neural crest populations before branchial arch formation and maintaining these relations through subsequent stages of morphogenesis. With many of the prerequisite stepping-stones in our knowledge of craniofacial myogenesis now in place, discovering the cellular and molecular interactions necessary to initiate and sustain the differentiation and morphogenesis of these neglected craniofacial muscles is now an attainable goal.
Collapse
Affiliation(s)
- Drew M Noden
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
| | | |
Collapse
|
90
|
Verreijdt L, Debiais-Thibaud M, Borday-Birraux V, Van der Heyden C, Sire JY, Huysseune A. Expression of thedlx gene family during formation of the cranial bones in the zebrafish (Danio rerio): Differential involvement in the visceral skeleton and braincase. Dev Dyn 2006; 235:1371-89. [PMID: 16534783 DOI: 10.1002/dvdy.20734] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We have used dlx genes to test the hypothesis of a separate developmental program for dermal and cartilage bones within the neuro- and splanchnocranium by comparing expression patterns of all eight dlx genes during cranial bone formation in zebrafish from 1 day postfertilization (dPF) to 15 dPF. dlx genes are expressed in the visceral skeleton but not during the formation of dermal or cartilage bones of the braincase. The spatiotemporal expression pattern of all the members of the dlx gene family, support the view that dlx genes impart cellular identity to the different arches, required to make arch-specific dermal bones. Expression patterns seemingly associated with cartilage (perichondral) bones of the arches, in contrast, are probably related to ongoing differentiation of the underlying cartilage rather than with differentiation of perichondral bones themselves. Whether dlx genes originally functioned in the visceral skeleton only, and whether their involvement in the formation of neurocranial bones (as in mammals) is secondary, awaits clarification.
Collapse
Affiliation(s)
- L Verreijdt
- Ghent University, Biology Department, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
91
|
Olsson L, Ericsson R, Cerny R. Vertebrate head development: segmentation, novelties, and homology. Theory Biosci 2005; 124:145-63. [PMID: 17046353 DOI: 10.1007/bf02814481] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 06/30/2005] [Indexed: 11/26/2022]
Abstract
Vertebrate head development is a classical topic lately invigorated by methodological as well as conceptual advances. In contrast to the classical segmentalist views going back to idealistic morphology, the head is now seen not as simply an extension of the trunk, but as a structure patterned by different mechanisms and tissues. Whereas the trunk paraxial mesoderm imposes its segmental pattern on adjacent tissues such as the neural crest derivatives, in the head the neural crest cells carry pattern information needed for proper morphogenesis of mesodermal derivatives, such as the cranial muscles. Neural crest cells make connective tissue components which attach the muscle fiber to the skeletal elements. These crest cells take their origin from the same visceral arch as the muscle cells, even when the skeletal elements to which the muscle attaches are from another arch. The neural crest itself receives important patterning influences from the pharyngeal endoderm. The origin of jaws can be seen as an exaptation in which a heterotopic shift of the expression domains of regulatory genes was a necessary step that enabled this key innovation. The jaws are patterned by Dlx genes expressed in a nested pattern along the proximo-distal axis, analogous to the anterior-posterior specification governed by Hox genes. Knocking out Dlx 5 and 6 transforms the lower jaw homeotically into an upper jaw. New data indicate that both upper and lower jaw cartilages are derived from one, common anlage traditionally labelled the "mandibular" condensation, and that the "maxillary" condensation gives rise to other structures such as the trabecula. We propose that the main contribution from evolutionary developmental biology to solving homology questions lies in deepening our biological understanding of characters and character states.
Collapse
Affiliation(s)
- Lennart Olsson
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität, D-07743 Jena, Germany.
| | | | | |
Collapse
|
92
|
Wada N, Javidan Y, Nelson S, Carney TJ, Kelsh RN, Schilling TF. Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull. Development 2005; 132:3977-88. [PMID: 16049113 DOI: 10.1242/dev.01943] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural crest cells that form the vertebrate head skeleton migrate and interact with surrounding tissues to shape the skull, and defects in these processes underlie many human craniofacial syndromes. Signals at the midline play a crucial role in the development of the anterior neurocranium, which forms the ventral braincase and palate, and here we explore the role of Hedgehog (Hh) signaling in this process. Using sox10:egfp transgenics to follow neural crest cell movements in the living embryo, and vital dye labeling to generate a fate map, we show that distinct populations of neural crest form the two main cartilage elements of the larval anterior neurocranium: the paired trabeculae and the midline ethmoid. By analyzing zebrafish mutants that disrupt sonic hedgehog (shh) expression, we demonstrate that shh is required to specify the movements of progenitors of these elements at the midline, and to induce them to form cartilage. Treatments with cyclopamine, to block Hh signaling at different stages, suggest that although requirements in morphogenesis occur during neural crest migration beneath the brain, requirements in chondrogenesis occur later, as cells form separate trabecular and ethmoid condensations. Cell transplantations indicate that these also reflect different sources of Shh, one from the ventral neural tube that controls trabecular morphogenesis and one from the oral ectoderm that promotes chondrogenesis. Our results suggest a novel role for Shh in the movements of neural crest cells at the midline, as well as in their differentiation into cartilage, and help to explain why both skeletal fusions and palatal clefting are associated with the loss of Hh signaling in holoprosencephalic humans.
Collapse
Affiliation(s)
- Naoyuki Wada
- Department of Developmental and Cell Biology, University of California, Irvine, 5210 McGaugh Hall, Irvine, CA 92697-2300, USA
| | | | | | | | | | | |
Collapse
|
93
|
Abstract
No region of our anatomy more powerfully conveys our emotions nor elicits more profound reactions when disease or genetic disorders disfigure it than the face. Recent progress has been made towards defining the tissue interactions and molecular mechanisms that control craniofacial morphogenesis. Some insights have come from genetic manipulations and others from tissue recombinations and biochemical approaches, which have revealed the molecular underpinnings of facial morphogenesis. Changes in craniofacial architecture also lie at the heart of evolutionary adaptation, as new studies in fish and fowl attest. Together, these findings reveal much about molecular and tissue interactions behind craniofacial development.
Collapse
Affiliation(s)
- Jill A Helms
- Department of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
94
|
MAISEY JOHNG. BRAINCASE OF THE UPPER DEVONIAN SHARK CLADODOIDES WILDUNGENSIS (CHONDRICHTHYES, ELASMOBRANCHII), WITH OBSERVATIONS ON THE BRAINCASE IN EARLY CHONDRICHTHYANS. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2005. [DOI: 10.1206/0003-0090(2005)288<0001:botuds>2.0.co;2] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
95
|
Kuratani S. Cephalic neural crest cells and the evolution of craniofacial structures in vertebrates: morphological and embryological significance of the premandibular-mandibular boundary. ZOOLOGY 2005; 108:13-25. [PMID: 16351951 DOI: 10.1016/j.zool.2004.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 11/01/2004] [Indexed: 11/17/2022]
Abstract
The vertebrate head characteristically has two types of mesenchyme: the neural crest-derived ectomesenchyme and the mesoderm derived mesenchyme. Conserved patterns of development in various animal taxa imply the presence of shared inductive events for cephalic mesenchyme. These developmental programs can serve as developmental constraints that emerge as morphological homology of embryonic patterns. To understand the evolutionary changes in the developmental programs that shape the skull, we need to separate ancestral and derived patterns of vertebrate craniogenesis. This review deals with the terminology for neural crest cell subpopulations at each developmental stage, based on the topographical relationships and possible mechanisms for specification. The aim is to identify the changes that could have occurred in the evolutionary history of vertebrates. From comparisons of a lamprey species, Lethenteron japonicum, with gnathostomes it is clear that the initial distribution of cephalic crest cells is identical in the two animal lineages. In all vertebrate embryos, the trigeminal crest (TC) cells of an early pharyngula are subdivided into three subpopulations. At this stage, only the posterior subpopulation of the TC cells is specified as the mandibular arch, as compared to the more rostral components, the 'premandibular crest cells'. Later in development, the local specification patterns of the lamprey and the gnathostomes differ, so that homology cannot be established in the craniofacial primordia, including the oral apparatus. Therefore, embryological terminology should reflect these hierarchical patterns in developmental stages and phylogeny.
Collapse
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, Center for Developmental Biology CDB, Riken, 2-2-3 Minatojima-minami, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
96
|
Lee SH, Bédard O, Buchtová M, Fu K, Richman JM. A new origin for the maxillary jaw. Dev Biol 2005; 276:207-24. [PMID: 15531375 DOI: 10.1016/j.ydbio.2004.08.045] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 08/05/2004] [Accepted: 08/31/2004] [Indexed: 10/26/2022]
Abstract
One conserved feature of craniofacial development is that the first pharyngeal arch has two components, the maxillary and mandibular, which then form the upper and lower jaws, respectively. However, until now, there have been no tests of whether the maxillary cells originate entirely within the first pharyngeal arch or whether they originate in a separate condensation, cranial to the first arch. We therefore constructed a fate map of the pharyngeal arches and environs with a series of dye injections into stage 13-17 chicken embryos. We found that from the earliest stage examined, the major contribution to the maxillary bud is from post-optic mesenchyme with a relatively minor contribution from the maxillo-mandibular cleft. Cells labeled within the first pharyngeal arch contributed exclusively to the mandibular prominence. Gene expression data showed that there were different molecular codes for the cranial and caudal maxillary prominence. Two of the genes examined, Rarbeta (retinoic acid receptor beta) and Bmp4 (bone morphogenetic protein) were expressed in the post-optic mesenchyme and epithelium prior to formation of the maxillary prominence and then were restricted to the cranial half of the maxillary prominence. In order to determine the derivatives of the maxillary prominence, we performed focal injections of CM-DiI into the stage 24 maxillary prominence. Labeled cells contributed to the maxillary, palatine, and jugal bones, but not the other elements of the upper beak, the premaxilla and prenasal cartilage. We also determined that the cranial cells give rise to more distal parts of the upper beak, whereas caudal cells form proximal structures. Grafts of stage 24 maxillary prominences were also analyzed to determine skeletal derivatives and these results concurred with the DiI maps. These early and later fate maps indicate that the maxillary prominence and its skeletal derivatives are not derived from the first pharyngeal arch but rather from a separate maxillary condensation that occurs between the eye and the maxillo-mandibular cleft. These data also suggest that during evolution, recession of the first pharyngeal arch-derived palatoquadrate cartilage to a more proximal position gave way to the bony upper jaw of amniotes.
Collapse
Affiliation(s)
- Sang-Hwy Lee
- Department of Oral, Maxillofacial Surgery and Oral Science Research Center, Medical Science and Engineering Research Center, BK 21 Project for Medical Science, College of Dentistry Yonsei University, Seoul, Korea
| | | | | | | | | |
Collapse
|
97
|
Kuratani S. Craniofacial Development and the Evolution of the Vertebrates: the Old Problems on a New Background. Zoolog Sci 2005; 22:1-19. [PMID: 15684579 DOI: 10.2108/zsj.22.1] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Based on recent advances in experimental embryology and molecular genetics, the morphogenetic program for the vertebrate cranium is summarized and several unanswered classical problems are reviewed. In particular, the presence of mesodermal segmentation in the head, the homology of the trabecular cartilage, and the origin of the dermal skull roof are discussed. The discovery of the neural-crest-derived ectomesenchyme and the roles of the homeobox genes have allowed the classical concept of head segmentation unchanged since Goethe to be re-interpreted in terms of developmental mechanisms at the molecular and cellular levels. In the context of evolutionary developmental biology, the importance of generative constraints is stressed as the developmental factor that generates the homologous morphological patterns apparent in various groups of vertebrates. Furthermore, a modern version of the germ-layer theory is defined in terms of the conserved differentiation of cell lineages, which is again questioned from the vantage of evolutionary developmental biology.
Collapse
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan.
| |
Collapse
|