51
|
Ferrer-Buitrago M, Dhaenens L, Lu Y, Bonte D, Vanden Meerschaut F, De Sutter P, Leybaert L, Heindryckx B. Human oocyte calcium analysis predicts the response to assisted oocyte activation in patients experiencing fertilization failure after ICSI. Hum Reprod 2019; 33:416-425. [PMID: 29329390 DOI: 10.1093/humrep/dex376] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/12/2017] [Indexed: 11/15/2022] Open
Abstract
STUDY QUESTION Can human oocyte calcium analysis predict fertilization success after assisted oocyte activation (AOA) in patients experiencing fertilization failure after ICSI? SUMMARY ANSWER ICSI-AOA restores the fertilization rate only in patients displaying abnormal Ca2+ oscillations during human oocyte activation. WHAT IS KNOWN ALREADY Patients capable of activating mouse oocytes and who showed abnormal Ca2+ profiles after mouse oocyte Ca2+ analysis (M-OCA), have variable responses to ICSI-AOA. It remains unsettled whether human oocyte Ca2+ analysis (H-OCA) would yield an improved accuracy to predict fertilization success after ICSI-AOA. STUDY DESIGN, SIZE, DURATION Sperm activation potential was first evaluated by MOAT. Subsequently, Ca2+ oscillatory patterns were determined with sperm from patients showing moderate to normal activation potential based on the capacity of human sperm to generate Ca2+ responses upon microinjection in mouse and human oocytes. Altogether, this study includes a total of 255 mouse and 122 human oocytes. M-OCA was performed with 16 different sperm samples before undergoing ICSI-AOA treatment. H-OCA was performed for 11 patients who finally underwent ICSI-AOA treatment. The diagnostic accuracy to predict fertilization success was calculated based on the response to ICSI-AOA. PARTICIPANTS/MATERIALS, SETTING, METHODS Patients experiencing low or total failed fertilization after conventional ICSI were included in the study. All participants showed moderate to high rates of activation after MOAT. Metaphase II (MII) oocytes from B6D2F1 mice were used for M-OCA. Control fertile sperm samples were used to obtain a reference Ca2+ oscillation profile elicited in human oocytes. Donated human oocytes, non-suitable for IVF treatments, were collected and vitrified at MII stage for further analysis by H-OCA. MAIN RESULTS AND THE ROLE OF CHANCE M-OCA and H-OCA predicted the response to ICSI-AOA in 8 out of 11 (73%) patients. Compared to M-OCA, H-OCA detected the presence of sperm activation deficiencies with greater sensitivity (75 vs 100%, respectively). ICSI-AOA never showed benefit to overcome fertilization failure in patients showing normal capacity to generate Ca2+ oscillations in H-OCA and was likely to be beneficial in cases displaying abnormal H-OCA Ca2+ oscillations patterns. LIMITATIONS, REASONS FOR CAUTION The scarce availability of human oocytes donated for research purposes is a limiting factor to perform H-OCA. Ca2+ imaging requires specific equipment to monitor fluorescence changes over time. WIDER IMPLICATIONS OF THE FINDINGS H-OCA is a sensitive test to diagnose gamete-linked fertilization failure. H-OCA allows treatment counseling for couples experiencing ICSI failures to either undergo ICSI-AOA or to participate in gamete donation programs. The present data provide an important template of the Ca2+ signature observed during human fertilization in cases with normal, low and failed fertilization after conventional ICSI. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Flemish fund for scientific research (FWO-Vlaanderen, G060615N). The authors have no conflict of interest to declare.
Collapse
Affiliation(s)
- M Ferrer-Buitrago
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - L Dhaenens
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Y Lu
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - D Bonte
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - F Vanden Meerschaut
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - P De Sutter
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - L Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - B Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
52
|
Que EL, Duncan FE, Lee HC, Hornick JE, Vogt S, Fissore RA, O'Halloran TV, Woodruff TK. Bovine eggs release zinc in response to parthenogenetic and sperm-induced egg activation. Theriogenology 2018; 127:41-48. [PMID: 30639695 DOI: 10.1016/j.theriogenology.2018.12.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022]
Abstract
Upon fertilization or parthenogenesis, zinc is released into the extracellular space through a series of exocytic events termed zinc sparks, which are tightly coordinated with intracellular calcium transients. The zinc spark reduces the total amount of intracellular zinc, and this reduction is necessary and sufficient to induce egg activation even in the absence of calcium transients. In addition, this zinc release contributes to the block to polyspermy through modification of the zona pellucida. The zinc spark has been documented in all organisms examined to date including the mouse, two species of nonhuman primates, and human. Here we determined whether zinc sparks occur in the bovine, an important model of gamete development in mono-ovulatory mammalian species. We obtained metaphase II-arrested (MII) bovine eggs following in vitro maturation. Total zinc, assessed in single cells using X-Ray Fluorescence Microscopy, was significantly more abundant in the bovine egg compared to iron and copper. Studies with intracellular fluorescent probes revealed that labile zinc pools are localized to discrete cytoplasmic punctae enriched at the cortex. To determine whether zinc undergoes dynamic fluxes during egg activation, we parthenogenetically activated bovine eggs using two approaches: ionomycin or bovine phospholipase C zeta (bPlcζ). Both these methods induced zinc sparks coordinately with intracellular calcium transients. The zinc spark was also observed in bovine eggs following intracytoplasmic sperm injection. These results establish that zinc is the most abundant transition metal in the bovine egg, and zinc flux during egg activation - induced by chemical activation or sperm - is a highly conserved event across mammalian species.
Collapse
Affiliation(s)
- Emily L Que
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Hoi Chang Lee
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jessica E Hornick
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Stefan Vogt
- X-ray Sciences Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Thomas V O'Halloran
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| | - Teresa K Woodruff
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
53
|
TRPM7 and Ca V3.2 channels mediate Ca 2+ influx required for egg activation at fertilization. Proc Natl Acad Sci U S A 2018; 115:E10370-E10378. [PMID: 30322909 DOI: 10.1073/pnas.1810422115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The success of mammalian development following fertilization depends on a series of transient increases in egg cytoplasmic Ca2+, referred to as Ca2+ oscillations. Maintenance of these oscillations requires Ca2+ influx across the plasma membrane, which is mediated in part by T-type, CaV3.2 channels. Here we show using genetic mouse models that TRPM7 channels are required to support this Ca2+ influx. Eggs lacking both TRPM7 and CaV3.2 stop oscillating prematurely, indicating that together they are responsible for the majority of Ca2+ influx immediately following fertilization. Fertilized eggs lacking both channels also frequently display delayed resumption of Ca2+ oscillations, which appears to require sperm-egg fusion. TRPM7 and CaV3.2 channels almost completely account for Ca2+ influx observed following store depletion, a process previously attributed to canonical store-operated Ca2+ entry mediated by STIM/ORAI interactions. TRPM7 serves as a membrane sensor of extracellular Mg2+ and Ca2+ concentrations and mediates the effects of these ions on Ca2+ oscillation frequency. When bred to wild-type males, female mice carrying eggs lacking TRPM7 and CaV3.2 are subfertile, and their offspring have increased variance in postnatal weight. These in vivo findings confirm previous observations linking in vitro experimental alterations in Ca2+ oscillatory patterns with developmental potential and offspring growth. The identification of TRPM7 and CaV3.2 as key mediators of Ca2+ influx following fertilization provides a mechanistic basis for the rational design of culture media that optimize developmental potential in research animals, domestic animals, and humans.
Collapse
|
54
|
De Clercq K, Vriens J. Establishing life is a calcium-dependent TRiP: Transient receptor potential channels in reproduction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1815-1829. [PMID: 30798946 DOI: 10.1016/j.bbamcr.2018.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/21/2022]
Abstract
Calcium plays a key role in many different steps of the reproduction process, from germ cell maturation to placental development. However, the exact function and regulation of calcium throughout subsequent reproductive events remains rather enigmatic. Successful pregnancy requires the establishment of a complex dialogue between the implanting embryo and the endometrium. On the one hand, endometrial cell will undergo massive changes to support an implanting embryo, including stromal cell decidualization. On the other hand, trophoblast cells from the trophectoderm surrounding the inner cell mass will differentiate and acquire new functions such as hormone secretion, invasion and migration. The need for calcium in the different gestational processes implicates the presence of specialized ion channels to regulate calcium homeostasis. The superfamily of transient receptor potential (TRP) channels is a class of calcium permeable ion channels that is involved in the transformation of extracellular stimuli into the influx of calcium, inducing and coordinating underlying signaling pathways. Although the necessity of calcium throughout reproduction cannot be negated, the expression and functionality of TRP channels throughout gestation remains elusive. This review provides an overview of the current evidence regarding the expression and function of TRP channels in reproduction.
Collapse
Affiliation(s)
- Katrien De Clercq
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, KU Leuven, G-PURE, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Centre for Brain & Disease Research, Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, KU Leuven, G-PURE, Leuven, Belgium.
| |
Collapse
|
55
|
Wang F, Yuan RY, Li L, Meng TG, Fan LH, Jing Y, Zhang RR, Li YY, Liang QX, Dong F, Hou Y, Schatten H, Sun QY, Ou XH. Mitochondrial regulation of [Ca 2+]i oscillations during cell cycle resumption of the second meiosis of oocyte. Cell Cycle 2018; 17:1471-1486. [PMID: 29965788 DOI: 10.1080/15384101.2018.1489179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Oocyte is arrested at metaphase of the second meiosis until fertilization switching on [Ca2+]i oscillations. Oocyte activation inefficiency is the most challenging problem for failed fertilization and embryonic development. Mitochondrial function and intracellular [Ca2+]i oscillations are two critical factors for the oocyte's developmental potential. We aimed to understand the possible correlation between mitochondrial function and [Ca2+]i oscillations in oocytes. To this end, mitochondrial uncoupler CCCP which damages mitochondrial function and two small molecule mitochondrial agonists, L-carnitine (LC) and BGP-15, were used to examine the regulation of [Ca2+]i by mitochondrial functions. With increasing CCCP concentrations, [Ca2+]i oscillations were gradually diminished and high concentrations of CCCP led to oocyte death. LC enhanced mitochondrial membrane potential and [Ca2+]i oscillations and even improved the damage induced by CCCP, however, BGP-15 had no beneficial effect on oocyte activation. We have found that mitochondrial function plays a vital role in the generation of [Ca2+]i oscillations in oocytes, and thus mitochondria may interact with the ER to generate [Ca2+]i oscillations during oocyte activation. Improvement of mitochondrial functions with small molecules can be expected to improve oocyte activation and embryonic development in infertile patients without invasive micromanipulation.
Collapse
Affiliation(s)
- Feng Wang
- a Fertility Preservation Lab , Reproductive Medicine Center, Guangdong Second Provincial General Hospital , Guangzhou , China.,b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Rui-Ying Yuan
- a Fertility Preservation Lab , Reproductive Medicine Center, Guangdong Second Provincial General Hospital , Guangzhou , China
| | - Li Li
- b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Tie-Gang Meng
- b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Li-Hua Fan
- b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Ying Jing
- b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Ren-Ren Zhang
- b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Yuna-Yuan Li
- b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Qiu-Xia Liang
- b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Feng Dong
- b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Yi Hou
- b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Heide Schatten
- c Department of Veterinary Pathobiology , University of Missouri , Columbia , MO , USA
| | - Qing-Yuan Sun
- b State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,d University of Chinese Academy of Sciences , Beijing , China
| | - Xiang-Hong Ou
- a Fertility Preservation Lab , Reproductive Medicine Center, Guangdong Second Provincial General Hospital , Guangzhou , China
| |
Collapse
|
56
|
Swann K. The role of Ca 2+ in oocyte activation during In Vitro fertilization: Insights into potential therapies for rescuing failed fertilization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1830-1837. [PMID: 29746897 DOI: 10.1016/j.bbamcr.2018.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022]
Abstract
At fertilization the mature mammalian oocyte is activated to begin development by a sperm-induced series of increases in the cytosolic free Ca2+ concentration. These so called Ca2+ oscillations, or repetitive Ca2+ spikes, are also seen after intracytoplasmic sperm injection (ICSI) and are primarily triggered by a sperm protein called phospholipase Czeta (PLCζ). Whilst ICSI is generally an effective way to fertilizing human oocytes, there are cases where oocyte activation fails to occur after sperm injection. Many such cases appear to be associated with a PLCζ deficiency. Some IVF clinics are now attempting to rescue such cases of failed fertilization by using artificial means of oocyte activation such as the application of Ca2+ ionophores. This review presents the scientific background for these therapies and also considers ways to improve artificial oocyte activation after failed fertilization.
Collapse
Affiliation(s)
- Karl Swann
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| |
Collapse
|
57
|
Dehydroepiandrosterone (DHEA) and Its Sulfate (DHEA-S) in Mammalian Reproduction: Known Roles and Novel Paradigms. VITAMINS AND HORMONES 2018; 108:223-250. [PMID: 30029728 DOI: 10.1016/bs.vh.2018.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Steroid hormones form an integral part of normal development in mammalian organisms. Cholesterol is the parent compound from which all steroid hormones are synthesized. The product pregnenolone formed from cholesterol serves as precursor for mineralocorticoids, glucocorticoids, as well as dehydroepiandrosterone (DHEA) and its derived sexual hormones. DHEA assumes the prohormone status of a predominant endogenous precursor and a metabolic intermediate in ovarian follicular steroidogenesis. DHEA supplementation has been used to enhance ovarian reserve. Steroids like estradiol and testosterone have long been contemplated to play important roles in regulating meiotic maturation of oocytes in conjunction with gonadotropins. It is known that oocyte priming with estrogen is necessary to develop calcium (Ca2+) oscillations during maturation. Accruing evidence from diverse studies suggests that DHEA and its sulfate (dehydroepiandrosterone sulfate, DHEA-S) play significantly vital role not only as intermediates in androgen and estrogen formation, but may also be the probable 'oocyte factor' and behave as endogenous agonists triggering calcium oscillations for oocyte activation. DHEA/DHEA-S have been reported to regulate calcium channels for the passage of Ca2+ through the oocyte cytoplasm and for maintaining required threshold of Ca2+ oscillations. This role of DHEA/DHEA-S assumes critical significance in assisted reproductive technology and in-vitro fertilization treatment cycles where physical, chemical, and mechanical methods are employed for artificial oocyte activation to enhance fertilization rates. However, since these methods are invasive and may also cause adverse epigenetic modifications; oral or culture-media supplementation with DHEA/DHEA-S provides a noninvasive innate mechanism of in-vitro oocyte activation based on physiological metabolic pathway.
Collapse
|
58
|
Obstetric and neonatal outcome following ICSI with assisted oocyte activation by calcium ionophore treatment. J Assist Reprod Genet 2018; 35:1005-1010. [PMID: 29392515 DOI: 10.1007/s10815-018-1124-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/18/2018] [Indexed: 10/18/2022] Open
Abstract
PURPOSE Calcium ionophore treatment is being used in assisted reproductive technology (ART) for cases with previous low fertilization rate or total absence of fertilization after insemination by intracytoplasmic sperm injection or when a specific indication such as globozoospermia is present. As this technique is more invasive and differs from the physiological process of fertilization, a thorough investigation of the health of the children born following this procedure is required. We intent to report the medical outcome of all children conceived following calcium ionophore treatment in our IVF center. METHODS One-armed descriptive study is performed to report the obstetrical and neonatal outcome of children born after using calcium ionophore treatment during the intracytoplasmic sperm injection procedure in our center. RESULTS A number of 237 cycles were included in this study, with 74 pregnancies reported, from which 47 children (31 singletons and 16 twin children) were born. No major malformations were detected in singletons. In twins, three children were diagnosed with major malformations. Minor malformations were present in seven singletons and in one twin. CONCLUSIONS In conclusion, our results regarding birth characteristics and congenital malformations are within the expected range but, although reassuring, should be interpreted with caution due to the small number of children included.
Collapse
|
59
|
Roychoudhury S, Maldonado-Rosas I, Agarwal A, Esteves SC, Henkel R, Sharma R. Human sperm handling in intracytoplasmic sperm injection processes: In vitro studies on mouse oocyte activation, embryo development competence and sperm oxidation-reduction potential. Andrologia 2018; 50:e12943. [PMID: 29315724 DOI: 10.1111/and.12943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2017] [Indexed: 02/28/2024] Open
Abstract
Polyvinylpyrrolidone (PVP) and hyaluronic acid (HA) are routinely used in handling spermatozoa for intracytoplasmic sperm injection (ICSI). As there are still concerns about possible adverse effects on the embryo, this study investigated sperm handling in a mouse ICSI model to (i) evaluate oocyte activation after injection of spermatozoa selected for rotational or linear motion in PVP; (ii) assess the effect of sperm selection in PVP, HA and medium on oocyte activation; (iii) examine the effects of PVP and HA on parthenogenetic oocyte activation and embryo development; and (iv) assess the oxidation-reduction potential (ORP) of spermatozoa exposed to PVP, HA or medium. Oocyte activation was higher when spermatozoa exhibited rotational motion rather than linear motion (79% vs. 52%; p = .05). There was no difference in oocyte activation and embryo development after parthenogenetic oocyte activation after sperm injection using PVP, HA or medium-incubated spermatozoa. PVP-selected spermatozoa exhibited lower (p < .0001) ORP levels than using HA. Thus, results indicate that the sperm handling method and the type of medium used impact ICSI outcomes. Overall, sperm incubation in PVP, HA and medium yields similar outcomes with regard to oocyte activation and embryo development. However, PVP provides more antioxidative protection than HA and should therefore be preferred for sperm manipulation.
Collapse
Affiliation(s)
- S Roychoudhury
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | | | - A Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - S C Esteves
- ANDROFERT, Center for Male Reproduction, Campinas, Brazil
| | - R Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| | - R Sharma
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
60
|
Salamone DF, Canel NG, Rodríguez MB. Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction 2017; 154:F111-F124. [PMID: 29196493 DOI: 10.1530/rep-17-0357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 11/08/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) has become a useful technique for clinical applications in the horse-breeding industry. However, both ICSI blastocyst and offspring production continues to be limited for most farm and wild species. This article reviews technical differences of ICSI performance among species, possible biological and methodological reasons for the variable efficiency and potential strategies to improve the outcomes. One of the major applications of ICSI in animal production is the reproduction of high-value specimens. Unfortunately, some domestic species like the bovine show low rates of pronuclei formation after sperm injection, which led to the development of various artificial activation protocols and sperm pre-treatments that are discussed in this article. The impact of ICSI technique on equine breeding programs is considered in detail, since in contrast to other species, its use for elite horse reproduction has increased in recent years. ICSI has also been used to produce genetically modified animals; however, despite numerous attempts in several domestic species, only transgenic pigs have been consistently produced. Finally, the ICSI is a promising tool for genetic rescue of endangered and wild species. In conclusion, while ICSI has become a consistent ART for some species, it needs further development for others. The low results obtained for some domestic species, the high training needed and the equipment required have limited this technique to the production of elite specimens or for research purposes.
Collapse
Affiliation(s)
- Daniel F Salamone
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - Natalia G Canel
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - María Belén Rodríguez
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| |
Collapse
|
61
|
Ferrer-Buitrago M, Bonte D, De Sutter P, Leybaert L, Heindryckx B. Single Ca 2+ transients vs oscillatory Ca 2+ signaling for assisted oocyte activation: limitations and benefits. Reproduction 2017; 155:R105-R119. [PMID: 29122969 DOI: 10.1530/rep-17-0098] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 11/08/2022]
Abstract
Oocyte activation is a calcium (Ca2+)-dependent process that has been investigated in depth, in particular, regarding its impact on assisted reproduction technology (ART). Following a standard model of signal transduction, Ca2+ drives the meiotic progression upon fertilization in all species studied to date. However, Ca2+ changes during oocyte activation are species specific, and they can be classified in two modalities based on the pattern defined by the Ca2+ signature: a single Ca2+ transient (e.g. amphibians) or repetitive Ca2+ transients called Ca2+ oscillations (e.g. mammals). Interestingly, assisted oocyte activation (AOA) methods have highlighted the ability of mammalian oocytes to respond to single Ca2+ transients with normal embryonic development. In this regard, there is evidence supporting that cellular events during the process of oocyte activation are initiated by different number of Ca2+ oscillations. Moreover, it was proposed that oocyte activation and subsequent embryonic development are dependent on the total summation of the Ca2+ peaks, rather than to a specific frequency pattern of Ca2+ oscillations. The present review aims to demonstrate the complexity of mammalian oocyte activation by describing the series of Ca2+-linked physiological events involved in mediating the egg-to-embryo transition. Furthermore, mechanisms of AOA and the limitations and benefits associated with the application of different activation agents are discussed.
Collapse
Affiliation(s)
- Minerva Ferrer-Buitrago
- Ghent-Fertility and Stem Cell Team (G-FaST)Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Davina Bonte
- Ghent-Fertility and Stem Cell Team (G-FaST)Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Petra De Sutter
- Ghent-Fertility and Stem Cell Team (G-FaST)Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Luc Leybaert
- Physiology GroupDepartment of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST)Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
62
|
Milewski R, Szpila M, Ajduk A. Dynamics of cytoplasm and cleavage divisions correlates with preimplantation embryo development. Reproduction 2017; 155:1-14. [PMID: 28993454 DOI: 10.1530/rep-17-0230] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 01/27/2023]
Abstract
In vitro fertilization has become increasingly popular as an infertility treatment. In order to improve efficiency of this procedure, there is a strong need for a refinement of existing embryo assessment methods and development of novel, robust and non-invasive selection protocols. Studies conducted on animal models can be extremely helpful here, as they allow for more extensive research on the potential biomarkers of embryo quality. In the present paper, we subjected mouse embryos to non-invasive time-lapse imaging and combined the Particle Image Velocimetry analysis of cytoplasmic dynamics in freshly fertilized oocytes with the morphokinetic analysis of recordings covering 5 days of preimplantation development. Our results indicate that parameters describing cytoplasmic dynamics and cleavage divisions independently correspond to mouse embryo's capacity to form a high-quality blastocyst. We also showed for the first time that these parameters are associated with the percentage of abnormal embryonic cells with fragmented nuclei and with embryo's ability to form primitive endoderm, one of the cell lineages differentiated during preimplantation development. Finally, we present a model that links selected cytoplasmic and morphokinetic parameters reflecting frequency of fertilization-induced Ca2+-oscillations and timing of 4-cell stage and compaction with viability of the embryo assessed as the total number of cells at the end of its preimplantation development. Our results indicate that a combined analysis of cytoplasmic dynamics and morphokinetics may facilitate the assessment of embryo's ability to form high-quality blastocysts.
Collapse
Affiliation(s)
- Robert Milewski
- Department of Statistics and Medical InformaticsMedical University of Bialystok, Bialystok, Poland
| | - Marcin Szpila
- Department of EmbryologyFaculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Ajduk
- Department of EmbryologyFaculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
63
|
Ozil JP, Sainte-Beuve T, Banrezes B. [Mg 2+] o/[Ca 2+] o determines Ca 2+ response at fertilization: tuning of adult phenotype? Reproduction 2017; 154:675-693. [PMID: 28851827 DOI: 10.1530/rep-16-0057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/15/2017] [Accepted: 08/29/2017] [Indexed: 01/09/2023]
Abstract
Alteration of the postnatal phenotype has sparked great concern about the developmental impact of culture media used at fertilization. However, the mechanisms and compounds involved are yet to be determined. Here, we used the Ca2+ responses from mouse eggs fertilized by ICSI as a dynamic and quantitative marker to understand the role of compounds in egg functioning and establish possible correlations with adult phenotypes. We computed 134 Ca2+ responses from the first to the last oscillation in media with specific formulations. Analyses demonstrate that eggs generated two times as many Ca2+ oscillations in KSOM as in M16 media (18.8 ± 7.0 vs 9.2 ± 2.5). Moreover, the time increment of the delay between two consecutive oscillations, named TIbO, is the most sensitive coefficient characterizing the mechanism that paces Ca2+ oscillations once the egg has been fertilized. Neither doubling external free Ca2+ nor dispermic fertilization increased significantly the total number of Ca2+ oscillations. In contrast, removing Mg2+ from the M16 boosted Ca2+ oscillations to 54.0 ± 35.2. Hence, [Mg2+]o/[Ca2+]o appears to determine the number, duration and frequency of the Ca2+ oscillations. These changes were correlated with long-term effects. The rate of female's growth was impacted with the 'KSOM' females having only half the fat deposit of 'M16' females. Moreover, adult animals issued from M16 had significantly smaller brain weight vs 'KSOM' and 'control' animals. TIbO is a new Ca2+ coefficient that gauges the very early functional impact of culture media. It offers the possibility of establishing correlations with postnatal consequences according to IVF medium formulation.Free French abstract: A French translation of this abstract is freely available at http://www.reproduction-online.org/content/154/5/675/suppl/DC2.
Collapse
Affiliation(s)
- Jean-Pierre Ozil
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | | | | |
Collapse
|
64
|
Milewski R, Ajduk A. Time-lapse imaging of cleavage divisions in embryo quality assessment. Reproduction 2017; 154:R37-R53. [PMID: 28408705 DOI: 10.1530/rep-17-0004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/04/2017] [Accepted: 04/13/2017] [Indexed: 11/08/2022]
Abstract
In vitro fertilization (IVF) is one of the most important procedures for treating infertility. As several embryos are usually produced in a single IVF cycle, it is crucial to select only the most viable ones for transfer to the patient. Morphokinetics, i.e. analysis of the dynamics of cleavage divisions and processes such as compaction and cavitation, has provided both biologists and clinicians with a new set of data regarding embryonic behaviour during preimplantation development and its association with embryo quality. In the current review, we focus on biological significance of morphokinetic parameters and show how they can be used to predict a reproductive outcome. We also explain the statistics behind the predictive algorithms and discuss the future perspectives of morphokinetics.
Collapse
Affiliation(s)
- Robert Milewski
- Department of Statistics and Medical InformaticsMedical University of Bialystok, Bialystok, Poland
| | - Anna Ajduk
- Department of EmbryologyFaculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
65
|
Yanez LZ, Camarillo DB. Microfluidic analysis of oocyte and embryo biomechanical properties to improve outcomes in assisted reproductive technologies. Mol Hum Reprod 2017; 23:235-247. [PMID: 27932552 PMCID: PMC5909856 DOI: 10.1093/molehr/gaw071] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/28/2016] [Indexed: 01/03/2023] Open
Abstract
Measurement of oocyte and embryo biomechanical properties has recently emerged as an exciting new approach to obtain a quantitative, objective estimate of developmental potential. However, many traditional methods for probing cell mechanical properties are time consuming, labor intensive and require expensive equipment. Microfluidic technology is currently making its way into many aspects of assisted reproductive technologies (ART), and is particularly well suited to measure embryo biomechanics due to the potential for robust, automated single-cell analysis at a low cost. This review will highlight microfluidic approaches to measure oocyte and embryo mechanics along with their ability to predict developmental potential and find practical application in the clinic. Although these new devices must be extensively validated before they can be integrated into the existing clinical workflow, they could eventually be used to constantly monitor oocyte and embryo developmental progress and enable more optimal decision making in ART.
Collapse
Affiliation(s)
- Livia Z. Yanez
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
| | - David B. Camarillo
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
| |
Collapse
|
66
|
Tavalaee M, Kiani-Esfahani A, Nasr-Esfahani MH. Relationship between phospholipase C-zeta, semen parameters, and chromatin status. Syst Biol Reprod Med 2017; 63:259-268. [PMID: 28345968 DOI: 10.1080/19396368.2017.1298006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The need for additional tests to complement basic sperm analysis in clinics is well appreciated. In this regard, a number of tests such as sperm DNA integrity test as a tool in diagnosis and treatment of infertility are suggested. But recent studies have focused on main sperm factors involved in oocyte activation such as phospholipase C-zeta (PLCζ) that initiate intracellular Ca2+ signaling and embryogenesis. Therefore, this study aimed to investigate the relationship between PLCζ, basic semen parameters, sperm DNA fragmentation (SDF), and protamine deficiency in men with normal (n=32) and abnormal (n=23) semen parameters. Unlike SDF and protamine deficiency, as negative factors related to fertility, the mean value of PLCζ as positive factor related to infertility was significantly lower in men with abnormal semen parameters compared to men with normal semen parameters. Significant correlations were also observed between sperm concentration, motility, and abnormal morphology with the percentage of PLCζ positive spermatozoa. In addition, logistic regression analysis revealed that sperm morphology is more predictive than sperm motility and concentration for PLCζ presence. In addition, a statistically significant negative relationship was observed between the percentage of PLCζ positive spermatozoa and SDF. These findings suggested during ICSI, selection of sperm based on morphology has a profound effect on its ability to induce oocyte activation based on the likelihood of PLCζ expression. Therefore, assessment of PLCζ as an index for fertilization potential of a semen sample in men with severe teratozoospermia may define individuals who are candidates for artificial oocyte activation (AOA) and may avoid failed fertilization post ICSI.
Collapse
Affiliation(s)
- Marziyeh Tavalaee
- a Department of Reproductive Biotechnology , Reproductive Biomedicine Research Center, Royan Institute for Biotechnology , ACECR , Isfahan , Iran
| | - Abbas Kiani-Esfahani
- a Department of Reproductive Biotechnology , Reproductive Biomedicine Research Center, Royan Institute for Biotechnology , ACECR , Isfahan , Iran
| | - Mohammad H Nasr-Esfahani
- a Department of Reproductive Biotechnology , Reproductive Biomedicine Research Center, Royan Institute for Biotechnology , ACECR , Isfahan , Iran.,b Isfahan Fertility and Infertility Center , Isfahan , Iran
| |
Collapse
|
67
|
Yamaguchi T, Ito M, Kuroda K, Takeda S, Tanaka A. The establishment of appropriate methods for egg-activation by human PLCZ1 RNA injection into human oocyte. Cell Calcium 2017; 65:22-30. [PMID: 28320563 DOI: 10.1016/j.ceca.2017.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 01/29/2023]
Abstract
Phospholipase C-zeta (PLCZ1), a strong candidate of egg-activating sperm factor, can induce Ca2+ oscillations and cause egg activation. For the application of PLCZ1 to clinical use, we examined the pattern of Ca2+ responses and developmental rate by comparing PLCZ1 RNA injection methods with the other current methods, such as cytosolic aspiration, electrical stimulation and ionomycin treatment in human oocytes. We found that the pattern of Ca2+ oscillations after PLCZ1 RNA injection exhibited similar characteristics to that after ICSI treatment. We also determined the optimal concentration of human PLCZ1 RNA to activate the human oocytes. Our findings suggest that human PLCZ1 RNA is a better therapeutic agent to rescue human oocytes from failed activation, leading to normal and efficient development.
Collapse
Affiliation(s)
- Takashi Yamaguchi
- Saint Mother Obstetrics and Gynecology Clinic, Institute for ART, Fukuoka 807-0825, Japan; Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo 113-0033, Japan
| | - Masahiko Ito
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Keiji Kuroda
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo 113-0033, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo 113-0033, Japan
| | - Atsushi Tanaka
- Saint Mother Obstetrics and Gynecology Clinic, Institute for ART, Fukuoka 807-0825, Japan
| |
Collapse
|
68
|
Martin JH, Bromfield EG, Aitken RJ, Nixon B. Biochemical alterations in the oocyte in support of early embryonic development. Cell Mol Life Sci 2017; 74:469-485. [PMID: 27604868 PMCID: PMC11107538 DOI: 10.1007/s00018-016-2356-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/28/2016] [Accepted: 09/01/2016] [Indexed: 01/01/2023]
Abstract
Notwithstanding the enormous reproductive potential encapsulated within a mature mammalian oocyte, these cells present only a limited window for fertilization before defaulting to an apoptotic cascade known as post-ovulatory oocyte aging. The only cell with the capacity to rescue this potential is the fertilizing spermatozoon. Indeed, the union of these cells sets in train a remarkable series of events that endows the oocyte with the capacity to divide and differentiate into the trillions of cells that comprise a new individual. Traditional paradigms hold that, beyond the initial stimulation of fluctuating calcium (Ca2+) required for oocyte activation, the fertilizing spermatozoon plays limited additional roles in the early embryo. While this model has now been drawn into question in view of the recent discovery that spermatozoa deliver developmentally important classes of small noncoding RNAs and other epigenetic modulators to oocytes during fertilization, it is nevertheless apparent that the primary responsibility for oocyte activation rests with a modest store of maternally derived proteins and mRNA accumulated during oogenesis. It is, therefore, not surprising that widespread post-translational modifications, in particular phosphorylation, hold a central role in endowing these proteins with sufficient functional diversity to initiate embryonic development. Indeed, proteins targeted for such modifications have been linked to oocyte activation, recruitment of maternal mRNAs, DNA repair and resumption of the cell cycle. This review, therefore, seeks to explore the intimate relationship between Ca2+ release and the suite of molecular modifications that sweep through the oocyte to ensure the successful union of the parental germlines and ensure embryogenic fidelity.
Collapse
Affiliation(s)
- Jacinta H Martin
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| | - Elizabeth G Bromfield
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - R John Aitken
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Brett Nixon
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
69
|
Félix LM, Antunes LM, Coimbra AM, Valentim AM. Behavioral alterations of zebrafish larvae after early embryonic exposure to ketamine. Psychopharmacology (Berl) 2017; 234:549-558. [PMID: 27933364 DOI: 10.1007/s00213-016-4491-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/15/2016] [Indexed: 12/28/2022]
Abstract
RATIONALE Ketamine has been associated with pediatric risks that include neurocognitive impairment and long-term behavioral disorders. However, the neurobehavioral effects of ketamine exposure in early development remain uncertain. OBJECTIVES This study aimed to test stage- and dose-dependent effects of ketamine exposure on certain brain functions by evaluating alterations in locomotion, anxiety-like and avoidance behaviors, as well as socialization. METHODS Embryos were exposed to different concentrations of ketamine (0, 0.2, 0.4, and 0.8 mg mL-1) for 20 min during the 256-cell (2.5 h post fertilization-hpf), 50% epiboly (5.5 hpf), and 1-4 somites (10.5 hpf) stages. General exploratory activities, natural escape-like responses, and social interactions were analyzed under continuous light or under a moving light stimulus. RESULTS A dose-dependent decrease in the overall mean speed was perceived in the embryos exposed during the 256-cell stage. These results were related to previously observed head and eye malformations, following ketamine exposure at this stage and may indicate possible neurobehavioral disorders when ketamine exposure is performed at this stage. Results also showed that ketamine exposure during the 50% epiboly and 1-4 somites stages induced a significant increment of the anxiety-like behavior and a decrease in avoidance behavior in all exposed groups. CONCLUSIONS Overall, the results validate the neurodevelopmental risks of early-life exposure to ketamine.
Collapse
Affiliation(s)
- Luís M Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto (UP), Porto, Portugal.
- Laboratory Animal Science (LAS), Institute for Molecular and Cell Biology (IBMC), University of Porto (UP), Porto, Portugal.
| | - Luís M Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto (UP), Porto, Portugal
- Laboratory Animal Science (LAS), Institute for Molecular and Cell Biology (IBMC), University of Porto (UP), Porto, Portugal
- School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Valentim
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto (UP), Porto, Portugal
- Laboratory Animal Science (LAS), Institute for Molecular and Cell Biology (IBMC), University of Porto (UP), Porto, Portugal
| |
Collapse
|
70
|
|
71
|
Nakai M, Ito J, Suzuki SI, Fuchimoto DI, Sembon S, Suzuki M, Noguchi J, Kaneko H, Onishi A, Kashiwazaki N, Kikuchi K. Lack of calcium oscillation causes failure of oocyte activation after intracytoplasmic sperm injection in pigs. J Reprod Dev 2016; 62:615-621. [PMID: 27725347 PMCID: PMC5177980 DOI: 10.1262/jrd.2016-113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In pigs, the efficiency of embryo production after intracytoplasmic sperm injection (ICSI) is still low because of frequent failure of normal fertilization,
which involves formation of two polar bodies and two pronuclei. To clarify the reasons for this, we hypothesized that ICSI does not properly trigger
sperm-induced fertilization events, especially intracellular Ca2+ signaling, also known as Ca2+ oscillation. We also suspected that the
use of in vitro-matured oocytes might negatively affect fertilization events and embryonic development of sperm-injected oocytes. Therefore, we
compared the patterns of Ca2+ oscillation, the efficiency of oocyte activation and normal fertilization, and embryo development to the blastocyst
stage among in vivo- or in vitro-matured oocytes after ICSI or in vitro fertilization (IVF). Unexpectedly, we
found that the pattern of Ca2+ oscillation, such as the frequency and amplitude of Ca2+ rises, in oocytes after ICSI was similar to that
in oocytes after IVF, irrespective of the oocyte source. However, half of the oocytes failed to become activated after ICSI and showed no Ca2+
oscillation. Moreover, the embryonic development of normal fertilized oocytes was reduced when in vitro-matured oocytes were used, irrespective
of the fertilization method employed. These findings suggest that low embryo production efficiency after ICSI is attributable mainly to poor developmental
ability of in vitro-matured oocytes and a lack of Ca2+ oscillation, rather than the pattern of oscillation.
Collapse
Affiliation(s)
- Michiko Nakai
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Carvacho I, Ardestani G, Lee HC, McGarvey K, Fissore RA, Lykke-Hartmann K. TRPM7-like channels are functionally expressed in oocytes and modulate post-fertilization embryo development in mouse. Sci Rep 2016; 6:34236. [PMID: 27681336 PMCID: PMC5041074 DOI: 10.1038/srep34236] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/05/2016] [Indexed: 01/16/2023] Open
Abstract
The Transient Receptor Potential (TRP) channels are a family of cationic ion channels widely distributed in mammalian tissues. In general, the global genetic disruption of individual TRP channels result in phenotypes associated with impairment of a particular tissue and/or organ function. An exception is the genetic ablation of the TRP channel TRPM7, which results in early embryonic lethality. Nevertheless, the function of TRPM7 in oocytes, eggs and pre-implantation embryos remains unknown. Here, we described an outward rectifying non-selective current mediated by a TRP ion channel in immature oocytes (germinal vesicle stage), matured oocytes (metaphase II eggs) and 2-cell stage embryos. The current is activated by specific agonists and inhibited by distinct blockers consistent with the functional expression of TRPM7 channels. We demonstrated that the TRPM7-like channels are homo-tetramers and their activation mediates calcium influx in oocytes and eggs, which is fundamental to support fertilization and egg activation. Lastly, we showed that pharmacological inhibition of the channel function delays pre-implantation embryo development and reduces progression to the blastocyst stage. Our data demonstrate functional expression of TRPM7-like channels in mouse oocytes, eggs and embryos that may play an essential role in the initiation of embryo development.
Collapse
Affiliation(s)
- Ingrid Carvacho
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, 3480112 Talca, Chile
| | - Goli Ardestani
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Hoi Chang Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Kaitlyn McGarvey
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
73
|
Félix LM, Serafim C, Valentim AM, Antunes LM, Campos S, Matos M, Coimbra AM. Embryonic Stage-Dependent Teratogenicity of Ketamine in Zebrafish (Danio rerio). Chem Res Toxicol 2016; 29:1298-309. [DOI: 10.1021/acs.chemrestox.6b00122] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Luís M. Félix
- Centre
for the Research and Technology of Agro-Environmental and Biological
Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Laboratory
Animal Science (LAS), Institute for Molecular and Cell Biology (IBMC), University of Porto (UP), Porto, Portugal
- Institute
for Research and Innovation in Health (i3S), University of Porto (UP), Porto, Portugal
| | - Cindy Serafim
- Life
Sciences and Environment School (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M. Valentim
- Centre
for the Research and Technology of Agro-Environmental and Biological
Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Laboratory
Animal Science (LAS), Institute for Molecular and Cell Biology (IBMC), University of Porto (UP), Porto, Portugal
- Institute
for Research and Innovation in Health (i3S), University of Porto (UP), Porto, Portugal
| | - Luís M. Antunes
- Centre
for the Research and Technology of Agro-Environmental and Biological
Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Laboratory
Animal Science (LAS), Institute for Molecular and Cell Biology (IBMC), University of Porto (UP), Porto, Portugal
- Institute
for Research and Innovation in Health (i3S), University of Porto (UP), Porto, Portugal
- School
of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Sónia Campos
- Centre
for the Research and Technology of Agro-Environmental and Biological
Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Laboratory
Animal Science (LAS), Institute for Molecular and Cell Biology (IBMC), University of Porto (UP), Porto, Portugal
- Institute
for Research and Innovation in Health (i3S), University of Porto (UP), Porto, Portugal
| | - Manuela Matos
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
- Department
of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M. Coimbra
- Centre
for the Research and Technology of Agro-Environmental and Biological
Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
74
|
The zinc spark is an inorganic signature of human egg activation. Sci Rep 2016; 6:24737. [PMID: 27113677 PMCID: PMC4845039 DOI: 10.1038/srep24737] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/01/2016] [Indexed: 12/04/2022] Open
Abstract
Egg activation refers to events required for transition of a gamete into an embryo, including establishment of the polyspermy block, completion of meiosis, entry into mitosis, selective recruitment and degradation of maternal mRNA, and pronuclear development. Here we show that zinc fluxes accompany human egg activation. We monitored calcium and zinc dynamics in individual human eggs using selective fluorophores following activation with calcium-ionomycin, ionomycin, or hPLCζ cRNA microinjection. These egg activation methods, as expected, induced rises in intracellular calcium levels and also triggered the coordinated release of zinc into the extracellular space in a prominent “zinc spark.” The ability of the gamete to mount a zinc spark response was meiotic-stage dependent. Moreover, chelation of intracellular zinc alone was sufficient to induce cell cycle resumption and transition of a meiotic cell into a mitotic one. Together, these results demonstrate critical functions for zinc dynamics and establish the zinc spark as an extracellular marker of early human development.
Collapse
|
75
|
Nikiforaki D, Vanden Meerschaut F, de Roo C, Lu Y, Ferrer-Buitrago M, de Sutter P, Heindryckx B. Effect of two assisted oocyte activation protocols used to overcome fertilization failure on the activation potential and calcium releasing pattern. Fertil Steril 2016; 105:798-806.e2. [DOI: 10.1016/j.fertnstert.2015.11.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/21/2015] [Accepted: 11/02/2015] [Indexed: 12/22/2022]
|
76
|
Haverfield J, Nakagawa S, Love D, Tsichlaki E, Nomikos M, Lai FA, Swann K, FitzHarris G. Ca(2+) dynamics in oocytes from naturally-aged mice. Sci Rep 2016; 6:19357. [PMID: 26785810 PMCID: PMC4726220 DOI: 10.1038/srep19357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/11/2015] [Indexed: 12/18/2022] Open
Abstract
The ability of human metaphase-II arrested eggs to activate following fertilisation declines with advancing maternal age. Egg activation is triggered by repetitive increases in intracellular Ca2+ concentration ([Ca2+]i) in the ooplasm as a result of sperm-egg fusion. We therefore hypothesised that eggs from older females feature a reduced ability to mount appropriate Ca2+ responses at fertilisation. To test this hypothesis we performed the first examination of Ca2+ dynamics in eggs from young and naturally-aged mice. Strikingly, we find that Ca2+ stores and resting [Ca2+]i are unchanged with age. Although eggs from aged mice feature a reduced ability to replenish intracellular Ca2+ stores following depletion, this difference had no effect on the duration, number, or amplitude of Ca2+ oscillations following intracytoplasmic sperm injection or expression of phospholipase C zeta. In contrast, we describe a substantial reduction in the frequency and duration of oscillations in aged eggs upon parthenogenetic activation with SrCl2. We conclude that the ability to mount and respond to an appropriate Ca2+ signal at fertilisation is largely unchanged by advancing maternal age, but subtle changes in Ca2+ handling occur that may have more substantial impacts upon commonly used means of parthenogenetic activation.
Collapse
Affiliation(s)
- Jenna Haverfield
- Centre Recherche Centre Hospitalier Université de Montréal, Montreal, Québec, Canada, H2X 0A9.,Department of Obstetrics and Gynaecology, University of Montréal, Montréal, Québec, Canada, H3T 1J4
| | - Shoma Nakagawa
- Centre Recherche Centre Hospitalier Université de Montréal, Montreal, Québec, Canada, H2X 0A9
| | - Daniel Love
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, UK, CF14 4XN
| | - Elina Tsichlaki
- Department of Cell and Developmental Biology, University College London, London, UK, WC1E 6BT
| | - Michail Nomikos
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, UK, CF14 4XN
| | - F Anthony Lai
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, UK, CF14 4XN
| | - Karl Swann
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, UK, CF14 4XN
| | - Greg FitzHarris
- Centre Recherche Centre Hospitalier Université de Montréal, Montreal, Québec, Canada, H2X 0A9.,Department of Obstetrics and Gynaecology, University of Montréal, Montréal, Québec, Canada, H3T 1J4.,Department of Cell and Developmental Biology, University College London, London, UK, WC1E 6BT
| |
Collapse
|
77
|
Machaty Z. Signal transduction in mammalian oocytes during fertilization. Cell Tissue Res 2016; 363:169-183. [PMID: 26453398 PMCID: PMC4700098 DOI: 10.1007/s00441-015-2291-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/28/2015] [Indexed: 01/22/2023]
Abstract
Mammalian embryo development begins when the fertilizing sperm triggers a series of elevations in the oocyte's intracellular free Ca(2+) concentration. The elevations are the result of repeated release and re-uptake of Ca(2+) stored in the smooth endoplasmic reticulum. Ca(2+) release is primarily mediated by the phosphoinositide signaling system of the oocyte. The system is stimulated when the sperm causes the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG); IP3 then binds its receptor on the surface of the endoplasmic reticulum that induces Ca(2+) release. The manner in which the sperm generates IP3, the Ca(2+) mobilizing second messenger, has been the subject of extensive research for a long time. The sperm factor hypothesis has eventually gained general acceptance, according to which it is a molecule from the sperm that diffuses into the ooplasm and stimulates the phosphoinositide cascade. Much evidence now indicates that the sperm-derived factor is phospholipase C-zeta (PLCζ) that cleaves PIP2 and generates IP3, eventually leading to oocyte activation. A recent addition to the candidate sperm factor list is the post-acrosomal sheath WW domain-binding protein (PAWP), whose role at fertilization is currently under debate. Ca(2+) influx across the plasma membrane is also important as, in the absence of extracellular Ca(2+), the oscillations run down prematurely. In pig oocytes, the influx that sustains the oscillations seems to be regulated by the filling status of the stores, whereas in the mouse other mechanisms might be involved. This work summarizes the current understanding of Ca(2+) signaling in mammalian oocytes.
Collapse
Affiliation(s)
- Zoltan Machaty
- Department of Animal Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
78
|
Abstract
In mammalian species, including human, fertilization is characterized by the triggering of long-lasting calcium (Ca(2+)) oscillations in the egg cytoplasm. The monitoring of these Ca(2+) oscillations is a valuable technique to demonstrate that fertilization has occurred, to study egg activation events elicited downstream of the Ca(2+) signal, as well as to evaluate sperm quality. This chapter describes our protocol to monitor sperm-induced Ca(2+) oscillations in mouse eggs, using fluorescence microscopy techniques and the Fura-2-AM ratiometric Ca(2+) indicator.
Collapse
Affiliation(s)
- Guillaume Halet
- CNRS UMR6290, Institut de Génétique et Développement de Rennes, Université Rennes 1, 2 Avenue du Professeur LéonBernard, Rennes Cedex, 35043, France.
| |
Collapse
|
79
|
Lee HC, Yoon SY, Lykke-Hartmann K, Fissore RA, Carvacho I. TRPV3 channels mediate Ca2+ influx induced by 2-APB in mouse eggs. Cell Calcium 2016; 59:21-31. [DOI: 10.1016/j.ceca.2015.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 11/29/2022]
|
80
|
Fourteen babies born after round spermatid injection into human oocytes. Proc Natl Acad Sci U S A 2015; 112:14629-34. [PMID: 26575628 DOI: 10.1073/pnas.1517466112] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the human in vitro fertilization procedure in the assisted reproductive technology, intracytoplasmic sperm injection is routinely used to inject a spermatozoon or a less mature elongating spermatid into the oocyte. In some infertile men, round spermatids (haploid male germ cells that have completed meiosis) are the most mature cells visible during testicular biopsy. The microsurgical injection of a round spermatid into an oocyte as a substitute is commonly referred to as round spermatid injection (ROSI). Currently, human ROSI is considered a very inefficient procedure and of no clinical value. Herein, we report the birth and development of 14 children born to 12 women following ROSI of 734 oocytes previously activated by an electric current. The round spermatids came from men who had been diagnosed as not having spermatozoa or elongated spermatids by andrologists at other hospitals after a first Micro-TESE. A key to our success was our ability to identify round spermatids accurately before oocyte injection. As of today, all children born after ROSI in our clinic are without any unusual physical, mental, or epigenetic problems. Thus, for men whose germ cells are unable to develop beyond the round spermatid stage, ROSI can, as a last resort, enable them to have their own genetic offspring.
Collapse
|
81
|
Deficiencies in extrusion of the second polar body due to high calcium concentrations during in vitro fertilization in inbred C3H/He mice. ZYGOTE 2015; 24:603-16. [DOI: 10.1017/s096719941500060x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummarySuccessful in vitro fertilization (IVF) of all inbred strains of laboratory mice has not yet been accomplished. We have previously shown that a high calcium concentration improved IVF in various inbred mice. However, we also found that in cumulus-free ova of C3H/He mice such IVF conditions significantly increased the deficiency of extrusion of the second polar body (PBII) in a dose-dependent manner (2% at 1.71 mM and 29% at 6.84 mM, P < 0.05) and that PBII extrusion was affected by high calcium levels at 2–3 h post-insemination. While developmental competence of ova without PBII extrusion to blastocysts after 96 h culture was not affected, a significant reduction in the nuclear number of the inner cell mass was observed in blastocyst fertilized under high calcium condition. We also examined how high calcium concentration during IVF affects PBII extrusion in C3H/He mice. Cumulus cells cultured under high calcium conditions showed a significantly alleviated deficient PBII extrusion. This phenomenon is likely to be specific to C3H/He ova because deficient PBII extrusion in reciprocal fertilization between C3H and BDF1 gametes was observed only in C3H/He ova. Sperm factor(s) was still involved in deficient PBII extrusion due to high calcium concentrations, as this phenomenon was not observed in ova activated by ethanol. The cytoskeletal organization of ova without PBII extrusion showed disturbed spindle rotation, incomplete formation of contractile ring and disturbed localization of actin, suggesting that high calcium levels affect the anchoring machinery of the meiotic spindle. These results indicate that in C3H/He mice high calcium levels induce abnormal fertilization, i.e. deficient PBII extrusion by affecting the cytoskeletal organization, resulting in disturbed cytokinesis during the second meiotic division. Thus, use of high calcium media for IVF should be avoided for this strain.
Collapse
|
82
|
Bernhardt ML, Zhang Y, Erxleben CF, Padilla-Banks E, McDonough CE, Miao YL, Armstrong DL, Williams CJ. CaV3.2 T-type channels mediate Ca²⁺ entry during oocyte maturation and following fertilization. J Cell Sci 2015; 128:4442-52. [PMID: 26483387 DOI: 10.1242/jcs.180026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/12/2015] [Indexed: 01/05/2023] Open
Abstract
Initiation of mouse embryonic development depends upon a series of fertilization-induced rises in intracellular Ca(2+). Complete egg activation requires influx of extracellular Ca(2+); however, the channels that mediate this influx remain unknown. Here, we tested whether the α1 subunit of the T-type channel CaV3.2, encoded by Cacna1h, mediates Ca(2+) entry into oocytes. We show that mouse eggs express a robust voltage-activated Ca(2+) current that is completely absent in Cacna1h(-/-) eggs. Cacna1h(-/-) females have reduced litter sizes, and careful analysis of Ca(2+) oscillation patterns in Cacna1h(-/-) eggs following in vitro fertilization (IVF) revealed reductions in first transient length and oscillation persistence. Total and endoplasmic reticulum (ER) Ca(2+) stores were also reduced in Cacna1h(-/-) eggs. Pharmacological inhibition of CaV3.2 in wild-type CF-1 strain eggs using mibefradil or pimozide reduced Ca(2+) store accumulation during oocyte maturation and reduced Ca(2+) oscillation persistence, frequency and number following IVF. Overall, these data show that CaV3.2 T-type channels have prev8iously unrecognized roles in supporting the meiotic-maturation-associated increase in ER Ca(2+) stores and mediating Ca(2+) influx required for the activation of development.
Collapse
Affiliation(s)
- Miranda L Bernhardt
- Reproductive and Developmental Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yingpei Zhang
- Reproductive and Developmental Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Christian F Erxleben
- Neurobiology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Caitlin E McDonough
- Reproductive and Developmental Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yi-Liang Miao
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - David L Armstrong
- Neurobiology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
83
|
Case reports to suggest an algorithm for management of total fertilisation failure prior to use of donor gametes. J Assist Reprod Genet 2015; 32:1679-84. [PMID: 26347343 DOI: 10.1007/s10815-015-0564-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022] Open
Abstract
PURPOSE Total fertilisation failure (TFF), even with intracytoplasmic sperm injection (ICSI), occurs in approximately 3 % of cycles, can be recurrent and the exact cause is difficult to elucidate. Differentiation between oocyte and sperm-related cause of TFF is possible using mouse oocyte-activation techniques, but is not an option within most clinical settings. Therefore, the management of these couples is clinically driven, and the endpoint, if recurrent, is often the use of donor gametes. However, with the invariable lack of a definitive cause of TFF, any decision between the use of donor sperm or oocytes remains an emotive one. We present two case reports demonstrating the importance of appropriate investigation, activation techniques (mechanical and chemical) and clinical management options to develop a clinical algorithm prior to the use of donor gametes. METHODS This study is composed of two case reports of assisted reproduction investigation and treatment within an assisted conception unit for couples with recurrent total fertilisation failure. RESULTS Using appropriate investigation (endocrine, urological and embryological) and treatments (ICSI, IMSI, oocyte-activation techniques), a fertilisation rate of 48 % was achieved in two cycles in couples following a total of nine previous cycles (and 200 previously collected eggs) with TFF. CONCLUSIONS Oocyte activation requires the triggering of intracellular calcium oscillations by the release of a sperm-specific factor (phospholipase C zeta (PLCζ)) into the oocyte cytoplasm. Although, PLCζ deficiencies have been demonstrated as putative causes of failed activation, impaired oocyte responsiveness may also be a factor. The use of donor gametes is often recommended and is often the required endpoint of treatment. However, these reports outline a clinical algorithm that potentially offers success without donation, and also offers a systematic approach to help decide whether donor oocytes or sperm should be recommended.
Collapse
|
84
|
Yeste M, Jones C, Amdani SN, Patel S, Coward K. Oocyte activation deficiency: a role for an oocyte contribution? Hum Reprod Update 2015; 22:23-47. [DOI: 10.1093/humupd/dmv040] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/13/2015] [Indexed: 12/11/2022] Open
|
85
|
Darwish E, Magdi Y. A preliminary report of successful cleavage after calcium ionophore activation at ICSI in cases with previous arrest at the pronuclear stage. Reprod Biomed Online 2015; 31:799-804. [PMID: 26507280 DOI: 10.1016/j.rbmo.2015.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
Abstract
Artificial oocyte activation (AOA) has been previously suggested as a means to overcome the problem of total fertilization failure, which affects about 1-3% of the intracytoplasmic sperm injection (ICSI) cycles. A preliminary study on the application of chemical AOA was conducted using A23187 Ca(2+) ionophore to improve embryonic development in four women with a history of complete fertilization arrest and inability to transit to cleavage stage during previous ICSI trials. Data indicated that activated oocytes resulted in better fertilization, embryonic development and clinical pregnancy in one of the four couples. Therefore, ICSI combined with AOA using Ca(2+) ionophore may be useful in selected patients with cleavage failure, and may help the zygotes to reach more advanced developmental stages.
Collapse
Affiliation(s)
- Ehab Darwish
- El Nada Fertility and Gynecology Center, 9 Alkobry street, Banha, Qalubeiya, Egypt
| | - Yasmin Magdi
- El Nada Fertility and Gynecology Center, 9 Alkobry street, Banha, Qalubeiya, Egypt.
| |
Collapse
|
86
|
Sfontouris IA, Nastri CO, Lima ML, Tahmasbpourmarzouni E, Raine-Fenning N, Martins WP. Artificial oocyte activation to improve reproductive outcomes in women with previous fertilization failure: a systematic review and meta-analysis of RCTs. Hum Reprod 2015; 30:1831-1841. [DOI: 10.1093/humrep/dev136] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
87
|
Svoboda P, Franke V, Schultz RM. Sculpting the Transcriptome During the Oocyte-to-Embryo Transition in Mouse. Curr Top Dev Biol 2015; 113:305-49. [PMID: 26358877 DOI: 10.1016/bs.ctdb.2015.06.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In mouse, the oocyte-to-embryo transition entails converting a highly differentiated oocyte to totipotent blastomeres. This transition is driven by degradation of maternal mRNAs, which results in loss of oocyte identity, and reprogramming of gene expression during the course of zygotic gene activation, which occurs primarily during the two-cell stage and confers blastomere totipotency. Full-grown oocytes are transcriptionally quiescent and mRNAs are remarkably stable in oocytes due to the RNA-binding protein MSY2, which stabilizes mRNAs, and low activity of the 5' and 3' RNA degradation machinery. Oocyte maturation initiates a transition from mRNA stability to instability due to phosphorylation of MSY2, which makes mRNAs more susceptible to the RNA degradation machinery, and recruitment of dormant maternal mRNAs that encode for critical components of the 5' and 3' RNA degradation machinery. Small RNAs (miRNA, siRNA, and piRNA) play little, if any, role in mRNA degradation that occurs during maturation. Many mRNAs are totally degraded but a substantial fraction is only partially degraded, their degradation completed by the end of the two-cell stage. Genome activation initiates during the one-cell stage, is promiscuous, low level, and genome wide (and includes both inter- and intragenic regions) and produces transcripts that are inefficiently spliced and polyadenylated. The major wave of genome activation in two-cell embryos involves expression of thousands of new genes. This unique pattern of gene expression is the product of maternal mRNAs recruited during maturation that encode for transcription factors and chromatin remodelers, as well as dramatic changes in chromatin structure due to incorporation of histone variants and modified histones.
Collapse
Affiliation(s)
- Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Vedran Franke
- Bioinformatics Group, Division of Biology, Faculty of Science, Zagreb University, Zagreb, Croatia
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
88
|
Kang HJ, Lee SH, Park YS, Lim CK, Ko DS, Yang KM, Park DW. Artificial oocyte activation in intracytoplasmic sperm injection cycles using testicular sperm in human in vitro fertilization. Clin Exp Reprod Med 2015; 42:45-50. [PMID: 26161332 PMCID: PMC4496430 DOI: 10.5653/cerm.2015.42.2.45] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/23/2015] [Accepted: 05/27/2015] [Indexed: 11/17/2022] Open
Abstract
Objective Artificial oocyte activation (AOA) is an effective method to avoid total fertilization failure in human in vitro fertilization-embryo transfer (IVF-ET) cycles. AOA performed using a calcium ionophore can induce calcium oscillation in oocytes and initiate the fertilization process. We evaluated the usefulness of AOA with a calcium ionophore in cases of total fertilization failure in previous cycles and in cases of severe male factor infertility patients with non-motile spermatozoa after pentoxifylline (PF) treatment. Methods The present study describes 29 intracytoplasmic sperm injection (ICSI)-AOA cycles involving male factor infertility at Cheil General Hospital from January 2006 to June 2013. Patients were divided into two groups (control, n=480; AOA, n=29) depending on whether or not AOA using a calcium ionophore (A23187) was performed after testicular sperm extraction-ICSI (TESE-ICSI). The AOA group was further split into subgroups according to sperm motility after PF treatment: i.e., motile sperm-injected (n=12) and non-motile sperm-injected (n=17) groups (total n=29 cycles). Results The good embryo rate (52.3% vs. 66.9%), pregnancy rate (20.7% vs. 52.1%), and delivery rate (10.3% vs. 40.8%) were lower in the PF/AOA group than in the control group. When evaluating the effects of restoration of sperm motility after PF treatment on clinical outcomes there was no difference in fertilization rate (66.6% vs. 64.7% in non-motile and motile sperm, respectively), pregnancy rate (17.6% vs. 33.3%), or delivery rate (5.9% vs. 16.7%) between the two groups. Conclusion We suggest that oocyte activation is a useful method to ensure fertilization in TESE-ICSI cycles regardless of restoration of sperm motility after PF treatment. AOA may be useful in selected patients who have a low fertilization rate or total fertilization failure.
Collapse
Affiliation(s)
- Hee Jung Kang
- Laboratory of Reproductive Biology and Infertility, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | - Sun-Hee Lee
- Laboratory of Reproductive Biology and Infertility, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | - Yong-Seog Park
- Laboratory of Reproductive Biology and Infertility, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | - Chun Kyu Lim
- Laboratory of Reproductive Biology and Infertility, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | - Duck Sung Ko
- Laboratory of Reproductive Biology and Infertility, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | - Kwang Moon Yang
- Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | - Dong-Wook Park
- Laboratory of Reproductive Biology and Infertility, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| |
Collapse
|
89
|
Wang C, Zhang L, Jaeger LA, Machaty Z. Store-Operated Ca2+ Entry Sustains the Fertilization Ca2+ Signal in Pig Eggs. Biol Reprod 2015; 93:25. [PMID: 26063872 DOI: 10.1095/biolreprod.114.126151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 06/01/2015] [Indexed: 11/01/2022] Open
Abstract
The role of store-operated Ca(2+) entry (SOCE) in the maintenance of sperm-induced Ca(2+) oscillations was investigated in porcine eggs. We found that 10 μM gadolinium (Gd(3+)), which is known to inhibit SOCE, blocked Ca(2+) entry that was triggered by thapsigargin-induced store depletion and also caused an abrupt cessation of the fertilization Ca(2+) signal. In a similar manner 3,5-bis(trifluoromethyl)pyrazole 2 (20 μM), and tetrapandin-2 (10 μM), potent SOCE inhibitors, also blocked thapsigargin-stimulated Ca(2+) entry and disrupted the Ca(2+) oscillations after sperm-egg fusion. The downregulation of Stim1 or Orai1 in the eggs did not alter the Ca(2+) content of the intracellular stores, whereas co-overexpression of these proteins led to the generation of irregular Ca(2+) transients after fertilization that stopped prematurely. We also found that thapsigargin completely emptied the endoplasmic reticulum, and that the series of Ca(2+) transients stopped abruptly after the addition of thapsigargin to the fertilized eggs, indicating that the proper reloading of the intracellular stores is a prerequisite for the maintenance of the Ca(2+) oscillations. These data strengthen our previous findings that in porcine eggs SOCE is a major signaling cascade that is responsible for sustaining the repetitive Ca(2+) signal at fertilization.
Collapse
Affiliation(s)
- Chunmin Wang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Lu Zhang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Laurie A Jaeger
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana
| | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
90
|
Abstract
Egg activation is the first step of embryonic development and in mammals is triggered by a series of cytoplasmic calcium (Ca2+) oscillations. Sperm–egg fusion initiates these Ca2+ oscillations by introducing a sperm-specific protein factor into the egg cytoplasm. Substantial evidence indicates that this protein is a sperm-specific phospholipase C (PLC), termed PLC-zeta (PLCζ). PLCζ stimulates cytoplasmic Ca2+ oscillations matching those at fertilization triggering early embryonic development in several mammalian species. Structurally, PLCζ is comprised of four EF-hands, a C2 domain, and X and Y catalytic domains. PLCζ is an unusual PLC since it lacks a pleckstrin homology (PH) domain. It is also distinctive in that its X–Y linker is not involved in auto-inhibition of catalytic activity, but instead binds to phosphatidylinositol 4,5-bisphosphate (PIP2). Moreover, relative to other PLC isoforms, PLCζ possesses unique potency in stimulating Ca2+ oscillations in eggs, although it does not appear to bind to plasma membrane PIP2. In contrast, PLCζ appears to interact with intracellular vesicles in eggs that contain PIP2. I discuss the recent advances in our knowledge of the intriguing biochemical and physiological properties of sperm PLCζ and postulate potential roles for PLCζ in terms of clinical diagnosis and therapy for certain forms of male infertility.
Collapse
|
91
|
Oocyte aging underlies female reproductive aging: biological mechanisms and therapeutic strategies. Reprod Med Biol 2015; 14:159-169. [PMID: 29259413 DOI: 10.1007/s12522-015-0209-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/23/2015] [Indexed: 01/22/2023] Open
Abstract
In recent years, postponement of marriage and childbearing in women of reproductive age has led to an increase in the incidence of age-related infertility. The reproductive aging process in women is assumed to occur due to a decrease in both the quantity and quality of the oocytes, with the ultimate result being a decline in fecundity. This age-related decline in fecundity is strongly dependent on oocyte quality, which is critical for fertilization and subsequent embryo development. Aged oocytes display increased chromosomal abnormality and dysfunction of cellular organelles, both of which factor into oocyte quality. In particular, mitochondrial dysfunction has been suggested as a major contributor to the reduction in oocyte quality as well as to chromosomal abnormalities in aged oocytes and embryos. Participation of oxidative stress in the oocyte aging process has been proposed because oxidative stress has the capacity to induce mitochondrial dysfunction and directly damage many intracellular components of the oocytes such as lipids, protein, and DNA. In an attempt to improve mitochondrial function in aged oocytes, several therapeutic strategies have been investigated using both animal models and assisted reproductive technology. Here, we review the biological mechanisms and present status of therapeutic strategies in the female reproductive aging field and indicate possible future therapeutic strategies.
Collapse
|
92
|
Anifandis G, Messini CI, Dafopoulos K, Messinis IE. Genes and Conditions Controlling Mammalian Pre- and Post-implantation Embryo Development. Curr Genomics 2015; 16:32-46. [PMID: 25937812 PMCID: PMC4412963 DOI: 10.2174/1389202916666141224205025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/20/2014] [Accepted: 12/23/2014] [Indexed: 01/06/2023] Open
Abstract
Embryo quality during the in vitro developmental period is of great clinical importance. Experimental genetic studies during this period have demonstrated the association between specific gene expression profiles and the production of healthy blastocysts. Although the quality of the oocyte may play a major role in embryo development, it has been well established that the post - fertilization period also has an important and crucial role in the determination of blastocyst quality. A variety of genes (such as OCT, SOX2, NANOG) and their related signaling pathways as well as transcription molecules (such as TGF-β, BMP) have been implicated in the pre- and post-implantation period. Furthermore, DNA methylation has been lately characterized as an epigenetic mark since it is one of the most important processes involved in the maintenance of genome stability. Physiological embryo development appears to depend upon the correct DNA methylation pattern. Due to the fact that soon after fertilization the zygote undergoes several morphogenetic and developmental events including activation of embryonic genome through the transition of the maternal genome, a diverse gene expression pattern may lead to clinically important conditions, such as apoptosis or the production of a chromosomically abnormal embryo. The present review focused on genes and their role during pre-implantation embryo development, giving emphasis on the various parameters that may alter gene expression or DNA methylation patterns. The pre-implantation embryos derived from in vitro culture systems (in vitro fertilization) and the possible effects on gene expression after the prolonged culture conditions are also discussed.
Collapse
Affiliation(s)
- G Anifandis
- Department of Obstetrics and Gynaecology ; Embryology Lab, University of Thessalia, School of Health Sciences, Faculty of Medicine, Larisa, Greece
| | | | | | | |
Collapse
|
93
|
Involvement of mouse and porcine PLCζ-induced calcium oscillations in preimplantation development of mouse embryos. Biochem Biophys Res Commun 2015; 460:476-81. [DOI: 10.1016/j.bbrc.2015.03.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/10/2015] [Indexed: 11/23/2022]
|
94
|
Ebner T, Oppelt P, Wöber M, Staples P, Mayer RB, Sonnleitner U, Bulfon-Vogl S, Gruber I, Haid AE, Shebl O. Treatment with Ca2+ ionophore improves embryo development and outcome in cases with previous developmental problems: a prospective multicenter study. Hum Reprod 2014; 30:97-102. [PMID: 25376461 DOI: 10.1093/humrep/deu285] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Does calcium ionophore treatment (A23187, calcimycin) improve embryo development and outcome in patients with a history of developmental problems/arrest? SUMMARY ANSWER Application of A23187 leads to increased rates of cleavage to 2-cell stage, blastocyst formation and clinical pregnancy/live birth. WHAT IS KNOWN ALREADY Studies on lower animals indicate that changes in intracellular free calcium trigger and regulate the events of cell division. In humans, calcium fluctuations were detected with a peak shortly before cell division. Interestingly, these calcium oscillations disappeared in arrested embryos. Mitotic division blocked with a Ca(2+) chelator could be restored by means of ionophores in an animal model. STUDY DESIGN, SIZE, DURATION This prospective, multicenter (five Austrian centers), uncontrolled intervention study (duration 1 year) includes 57 patients who provided informed consent. PARTICIPANTS/MATERIALS, SETTING, METHODS Inclusion criteria were complete embryo developmental arrest in a previous cycle (no transfer), complete developmental delay (no morula/blastocyst on Day 5), or reduced blastocyst formation on Day 5 (≤15%). Severe male factor patients and patients with <30% fertilization rate after ICSI were excluded because these would be routine indications for ionophore usage. The total of the 57 immediately preceding cycles in the same patients constituted the control cycles/control group. In the treatment cycles, all metaphase II-oocytes were exposed to a commercially available ready-to-use ionophore for 15 min immediately after ICSI. After a three-step washing procedure, in vitro culture was performed as in the control cycles, up to blastocyst stage when achievable. MAIN RESULTS AND THE ROLE OF CHANCE Fertilization rate did not differ (75.4 versus 73.2%); however, further cleavage to 2-cell stage was significantly higher (P < 0.001) in the ionophore group (98.5%) when compared with the control cycles (91.9%). In addition, significantly more (P < 0.05) blastocysts formed on Day 5 in the study compared with the control group (47.6 versus 5.5%, respectively) and this was associated with a significant increase (P < 0.01) in the rates of implantation (44.4 versus 12.5%), clinical pregnancy (45.1 versus 12.8%) and live birth (45.1 versus 12.8%). All babies born at the time of writing (22/28) were healthy. LIMITATIONS, REASONS FOR CAUTION The frequency of patients showing embryo developmental problems was expected to be low; therefore, a multicenter approach was chosen in order to increase sample size. In one-third of the cycles, the clinician or patient requested a change of stimulation protocol; however, this did not influence the developmental rate of embryos. WIDER IMPLICATIONS OF THE FINDINGS This is the first evidence that developmental incompetence of embryos is an additional indication for ionophore treatment. The present approach is exclusively for overcoming cleavage arrest. STUDY FUNDING/COMPETING INTERESTS No funding received. T.E. reports fees from Gynemed, outside the submitted work. All co-authors have no interest to declare.
Collapse
Affiliation(s)
- T Ebner
- Department of Gynecological Endocrinology and Kinderwunsch Zentrum, Landes-Frauen-und Kinderklinik, Krankenhausstr. 26-30, A-4020 Linz, Austria Faculty of Medicine, Johannes Kepler University, 4020 Linz, Austria
| | - P Oppelt
- Department of Gynecological Endocrinology and Kinderwunsch Zentrum, Landes-Frauen-und Kinderklinik, Krankenhausstr. 26-30, A-4020 Linz, Austria Faculty of Medicine, Johannes Kepler University, 4020 Linz, Austria
| | - M Wöber
- Kinderwunschzentrum Goldenes Kreuz, 1090 Vienna, Austria
| | - P Staples
- Medical University, 8010 Graz, Austria
| | - R B Mayer
- Department of Gynecological Endocrinology and Kinderwunsch Zentrum, Landes-Frauen-und Kinderklinik, Krankenhausstr. 26-30, A-4020 Linz, Austria Faculty of Medicine, Johannes Kepler University, 4020 Linz, Austria
| | | | - S Bulfon-Vogl
- Sterignost, Institut für Kinderwunschbehandlung, 9020 Klagenfurt, Austria
| | - I Gruber
- Kinderwunschambulanz im Landesklinikum St Pölten, 3100 St Pölten, Austria
| | - A E Haid
- Department of Gynecological Endocrinology and Kinderwunsch Zentrum, Landes-Frauen-und Kinderklinik, Krankenhausstr. 26-30, A-4020 Linz, Austria Faculty of Medicine, Johannes Kepler University, 4020 Linz, Austria
| | - O Shebl
- Department of Gynecological Endocrinology and Kinderwunsch Zentrum, Landes-Frauen-und Kinderklinik, Krankenhausstr. 26-30, A-4020 Linz, Austria Faculty of Medicine, Johannes Kepler University, 4020 Linz, Austria
| |
Collapse
|
95
|
Newman SA. Why are there eggs? Biochem Biophys Res Commun 2014; 450:1225-30. [DOI: 10.1016/j.bbrc.2014.03.132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/19/2023]
|
96
|
Morbeck DE, Krisher RL, Herrick JR, Baumann NA, Matern D, Moyer T. Composition of commercial media used for human embryo culture. Fertil Steril 2014; 102:759-766.e9. [PMID: 24998366 DOI: 10.1016/j.fertnstert.2014.05.043] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To determine the composition of commercially available culture media and test whether differences in composition are biologically relevant in a murine model. DESIGN Experimental laboratory study. SETTING University-based laboratory. ANIMAL(S) Cryopreserved hybrid mouse one-cell embryos were used in experiments. INTERVENTION(S) Amino acid, organic acid, ions, and metal content were determined for two different lots of media from Cook, In Vitro Care, Origio, Sage, Vitrolife, Irvine CSC, and Global. To determine whether differences in the composition of these media are biologically relevant, mouse one-cell embryos were thawed and cultured for 120 hours in each culture media at 5% and 20% oxygen in the presence or absence of protein in an EmbryoScope time-lapse incubator. MAIN OUTCOME MEASURE(S) The compositions of seven culture media were analyzed for concentrations of 39 individual amino acids, organic acids, ions, and elements. Blastocyst rates and cell cycle timings were calculated at 96 hours of culture, and the experiments were repeated in triplicate. RESULT(S) Of the 39 analytes, concentrations of glucose, lactate, pyruvate, amino acids, phosphate, calcium, and magnesium were present in variable concentrations, likely reflecting differences in the interpretation of animal studies. Essential trace elements, such as copper and zinc, were not detected. Mouse embryos failed to develop in one culture medium and were differentially affected by oxygen in two other media. CONCLUSION(S) Culture media composition varies widely, with differences in pyruvate, lactate, and amino acids especially notable. Blastocyst development was culture media dependent and showed an interaction with oxygen concentration and presence of protein.
Collapse
Affiliation(s)
- Dean E Morbeck
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| | | | - Jason R Herrick
- National Foundation for Fertility Research, Lone Tree, Colorado
| | - Nikola A Baumann
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Dietrich Matern
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Thomas Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
97
|
Lee K, Wang C, Spate L, Murphy CN, Prather RS, Machaty Z. Gynogenetic Activation of Porcine Oocytes. Cell Reprogram 2014; 16:121-9. [DOI: 10.1089/cell.2013.0074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kiho Lee
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65201
- These authors contributed equally to this work
| | - Chunmin Wang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907
- These authors contributed equally to this work
| | - Lee Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65201
| | - Clifton N. Murphy
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65201
| | - Randall S. Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65201
| | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907
| |
Collapse
|
98
|
Nakai M, Ozawa M, Maedomari N, Noguchi J, Kaneko H, Ito J, Onishi A, Kashiwazaki N, Kikuchi K. Delay in cleavage of porcine embryos after intracytoplasmic sperm injection (ICSI) shows poorer embryonic development. J Reprod Dev 2014; 60:256-9. [PMID: 24694523 PMCID: PMC4085392 DOI: 10.1262/jrd.2013-100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In pigs, the embryonic developmental ability after intracytoplasmic sperm injection (ICSI) is inferior to that resulting from in vitro fertilization (IVF). We evaluated the timing of cell division up to blastocyst formation on embryonic development after ICSI using either whole sperm (w-ICSI) or the sperm head alone (h-ICSI) and IVF as a control. At 10 h after ICSI or IVF, we selected only zygotes, and each of the zygotes/embryos was evaluated for cleavage every 24 h until 168 h. We then observed a delay in the 1st and 2nd cleavages of h-ICSI embryos and also in blastocoele formation by w-ICSI embryos in comparison with IVF embryos. The rate of blastocyst formation and the quality of blastocysts in both ICSI groups were inferior to those in the IVF group. In conclusion, the delay in cleavage of porcine ICSI embryos shows poorer embryonic development.
Collapse
Affiliation(s)
- Michiko Nakai
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Ibaraki 305-0901, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Vanden Meerschaut F, Nikiforaki D, Heindryckx B, De Sutter P. Assisted oocyte activation following ICSI fertilization failure. Reprod Biomed Online 2014; 28:560-71. [PMID: 24656559 DOI: 10.1016/j.rbmo.2014.01.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 01/12/2014] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
The capacity of intracytoplasmic sperm injection (ICSI) to permit almost any type of spermatozoa to fertilize oocytes has made it the most successful treatment for male factor infertility. Despite its high success rates, fertilization failure following ICSI still occurs in 1-3% of couples. Assisted oocyte activation (AOA) is being increasingly applied in human assisted reproduction to restore fertilization and pregnancy rates in couples with a history of ICSI fertilization failure. However, controversy still exists mainly because the artificial activating agents do not mimic precisely the initial physiological processes of mammalian oocyte activation, which has led to safety concerns. This review addresses the mechanism of human oocyte activation and the relatively rare phenomenon of fertilization failure after ICSI. Next, it describes the current diagnostic approaches and focuses on the application, efficiency and safety of AOA in human assisted reproduction.
Collapse
Affiliation(s)
- Frauke Vanden Meerschaut
- Department for Reproductive Medicine, University Hospital Ghent, De Pintelaan 185 - 1P4, 9000 Ghent, Belgium
| | - Dimitra Nikiforaki
- Department for Reproductive Medicine, University Hospital Ghent, De Pintelaan 185 - 1P4, 9000 Ghent, Belgium
| | - Björn Heindryckx
- Department for Reproductive Medicine, University Hospital Ghent, De Pintelaan 185 - 1P4, 9000 Ghent, Belgium.
| | - Petra De Sutter
- Department for Reproductive Medicine, University Hospital Ghent, De Pintelaan 185 - 1P4, 9000 Ghent, Belgium
| |
Collapse
|
100
|
Neri QV, Lee B, Rosenwaks Z, Machaca K, Palermo GD. Understanding fertilization through intracytoplasmic sperm injection (ICSI). Cell Calcium 2013; 55:24-37. [PMID: 24290744 DOI: 10.1016/j.ceca.2013.10.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 01/21/2023]
Abstract
Since the establishment of in vitro fertilization, it became evident that almost half of the couples failed to achieve fertilization and this phenomenon was attributed to a male gamete dysfunction. The adoption of assisted fertilization techniques particularly ICSI has been able to alleviate male factor infertility by granting the consistent ability of a viable spermatozoon to activate an oocyte. Single sperm injection, by pinpointing the beginning of fertilization, has been an invaluable tool in clarifying the different aspects of early fertilization and syngamy. However, even with ICSI some couples fail to fertilize due to ooplasmic dysmaturity in relation to the achieved nuclear maturation marked by the extrusion of the first polar body. More uncommon are cases where the spermatozoa partially or completely lack the specific oocyte activating factor. In this work, we review the most relevant aspects of fertilization and its failure through assisted reproductive technologies. Attempts at diagnosing and treating clinical fertilization failure are described.
Collapse
Affiliation(s)
- Queenie V Neri
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Bora Lee
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Doha, Qatar
| | - Gianpiero D Palermo
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|