51
|
Amini R, Chartier NT, Labbé JC. Syncytium biogenesis: It's all about maintaining good connections. WORM 2015; 4:e992665. [PMID: 26430559 PMCID: PMC4588388 DOI: 10.4161/21624054.2014.992665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022]
Abstract
At the end of mitosis, cells typically complete their division with cytokinesis. In certain tissues however, incomplete cytokinesis can give rise to cells that remain connected by intercellular bridges, thus forming a syncytium. Examples include the germline of many species, from fruitfly to humans, yet the mechanisms regulating syncytial formation and maintenance is unclear, and the biological relevance of syncytial organization remains largely speculative. To better understand these processes, we recently used the germline of Caenorhabditis elegans as a model for syncytium development. Analysis of the germline syncytial architecture throughout development revealed that it arises progressively during larval growth and that it relies on the activity of 2 actomyosin scaffold proteins of the Anillin family. Our work also showed that the gonad can sustain elastic deformation when under mechanical stress and that this property may be conferred by the malleability of syncytial openings. We suggest that elasticity and resistance to mechanical stress constitutes a general property of syncytial tissues.
Collapse
Affiliation(s)
- Rana Amini
- Institute of Research in Immunology and Cancer; Department of Pathology and Cell Biology ; University of Montréal ; Montréal, QC, Canada
| | - Nicolas T Chartier
- Biotechnology Center; Dresden University of Technology ; Tatzberg, Dresden, Germany
| | - Jean-Claude Labbé
- Institute of Research in Immunology and Cancer; Department of Pathology and Cell Biology ; University of Montréal ; Montréal, QC, Canada
| |
Collapse
|
52
|
Haglund K, Nezis IP, Stenmark H. Structure and functions of stable intercellular bridges formed by incomplete cytokinesis during development. Commun Integr Biol 2014. [DOI: 10.4161/cib.13550] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
53
|
Abstract
Animals evolved in seas teeming with bacteria, yet the influences of bacteria on animal origins are poorly understood. Comparisons among modern animals and their closest living relatives, the choanoflagellates, suggest that the first animals used flagellated collar cells to capture bacterial prey. The cell biology of prey capture, such as cell adhesion between predator and prey, involves mechanisms that may have been co-opted to mediate intercellular interactions during the evolution of animal multicellularity. Moreover, a history of bacterivory may have influenced the evolution of animal genomes by driving the evolution of genetic pathways for immunity and facilitating lateral gene transfer. Understanding the interactions between bacteria and the progenitors of animals may help to explain the myriad ways in which bacteria shape the biology of modern animals, including ourselves.
Collapse
Affiliation(s)
- Rosanna A Alegado
- Department of Oceanography, Center for Microbial Oceanography: Research and Education, Sea Grant College, University of Hawai'i Mānoa, Honolulu, Hawaii 96822
| | - Nicole King
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
54
|
Lorès P, Vernet N, Kurosaki T, Van de Putte T, Huylebroeck D, Hikida M, Gacon G, Touré A. Deletion of MgcRacGAP in the male germ cells impairs spermatogenesis and causes male sterility in the mouse. Dev Biol 2013; 386:419-27. [PMID: 24355749 DOI: 10.1016/j.ydbio.2013.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 11/06/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
MgcRacGAP (RACGAP1) is a GTPase Activating Protein (GAP), highly produced in the mouse embryonic brain and in the human and mouse post-natal testis. MgcRacGAP negatively controls the activity of Rac and Cdc42, which are key molecular switches acting on the microtubule and actin cytoskeleton and controlling various cell processes such as proliferation, adhesion and motility. Previous studies demonstrated that MgcRacGAP plays a critical role in the cytokinesis of somatic cells; hence homozygous inactivation of the gene in the mouse and mutation in Caenorhabditis elegans led to embryonic lethality due to the inability of MgcRacGAP-null embryos to assemble the central spindle and to complete cytokinesis. In the testis, the germ cells do not complete cytokinesis and remain connected as a syncytium throughout the entire process of spermatogenesis. Interestingly, MgcRacGAP was shown to locate to the intercellular bridges, connecting these germ cells. In order to determine the function(s) of MgcRacGAP in the male germline, we generated a conditional knock-out mouse using Stra8 promoter driven Cre recombinase to induce the specific deletion of MgcRacGAP in the pre-meiotic germ cells. We found that the absence of MgcRacGAP induced a germline depletion and male sterility. Consistent with the role of MgcRacGAP in the establishment of the cytoplasm constriction during cytokinesis of the somatic cells, we observed that MgcRacGAP deletion in the germ cells prevented the formation of the intercellular bridges and induced a proliferation arrest. While we assume that inherited homozygous loss of function mutations in MgcRacGAP would be lethal in human, de novo mutations in the testis might account for some cases of non-obstructive oligo- and/or azoo-spermia syndromes, whose genetic causes are altogether still poorly defined.
Collapse
Affiliation(s)
- Patrick Lorès
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75014 Paris, France
| | - Nadège Vernet
- Department of functional genomics and cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, France
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Japan; Laboratory for Lymphocyte Differentiation, RIKEN Research Center for Allergy and Immunology, Japan
| | - Tom Van de Putte
- Laboratory of Molecular Biology (Celgen), Department Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Danny Huylebroeck
- Laboratory of Molecular Biology (Celgen), Department Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Masaki Hikida
- Center for Innovation in Immunoregulative Technology and Therapeutics, AK Project, 606-8501 Kyoto, Japan
| | - Gérard Gacon
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75014 Paris, France
| | - Aminata Touré
- INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS UMR8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75014 Paris, France.
| |
Collapse
|
55
|
SEPT12-microtubule complexes are required for sperm head and tail formation. Int J Mol Sci 2013; 14:22102-16. [PMID: 24213608 PMCID: PMC3856054 DOI: 10.3390/ijms141122102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/26/2013] [Accepted: 09/26/2013] [Indexed: 11/17/2022] Open
Abstract
The septin gene belongs to a highly conserved family of polymerizing GTP-binding cytoskeletal proteins. SEPTs perform cytoskeletal remodeling, cell polarity, mitosis, and vesicle trafficking by interacting with various cytoskeletons. Our previous studies have indicated that SEPTIN12+/+/+/- chimeras with a SEPTIN12 mutant allele were infertile. Spermatozoa from the vas deferens of chimeric mice indicated an abnormal sperm morphology, decreased sperm count, and immotile sperm. Mutations and genetic variants of SEPTIN12 in infertility cases also caused oligozoospermia and teratozoospermia. We suggest that a loss of SEPT12 affects the biological function of microtublin functions and causes spermiogenesis defects. In the cell model, SEPT12 interacts with α- and β-tubulins by co-immunoprecipitation (co-IP). To determine the precise localization and interactions between SEPT12 and α- and β-tubulins in vivo, we created SEPTIN12-transgene mice. We demonstrate how SEPT12 interacts and co-localizes with α- and β-tubulins during spermiogenesis in these mice. By using shRNA, the loss of SEPT12 transcripts disrupts α- and β-tubulin organization. In addition, losing or decreasing SEPT12 disturbs the morphogenesis of sperm heads and the elongation of sperm tails, the steps of which are coordinated and constructed by α- and β-tubulins, in SEPTIN12+/+/+/- chimeras. In this study, we discovered that the SEPTIN12-microtubule complexes are critical for sperm formation during spermiogenesis.
Collapse
|
56
|
Lafaurie-Janvore J. [Temporal regulation of abscission, the last step of cell division]. Biol Aujourdhui 2013; 207:133-148. [PMID: 24103343 DOI: 10.1051/jbio/2013010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Indexed: 06/02/2023]
Abstract
Cell division is one of the most tightly controlled steps of the cell cycle. Indeed, the many steps of cell division have to be perfectly coordinated both in time and space in order to ensure an error-free division and an accurate transmission of the genome from the mother cell to the two daughter cells. Abscission, the last step of cytokinesis, consists in the severing of the intercellular bridge that connects the two daughter cells after the contraction of the acto-myosin ring. As is the case for any other step of cell division, abscission has to be precisely regulated in order to take place at the right time and the proper place. Whereas the spatial regulation of abscission is quite well understood, the study of temporal regulation is in its infancy. This review begins by describing the formation of the intercellular bridge, its organization, and its composition. Next the different models of abscission are discussed. Finally, the current understanding of the temporal regulation of abscission is detailed. In particular, I present my recent results on the role of forces exerted by the daughter cells on the intercellular bridge.
Collapse
|
57
|
Yamamoto S, Bayat V, Bellen HJ, Tan C. Protein phosphatase 1ß limits ring canal constriction during Drosophila germline cyst formation. PLoS One 2013; 8:e70502. [PMID: 23936219 PMCID: PMC3723691 DOI: 10.1371/journal.pone.0070502] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 06/20/2013] [Indexed: 12/15/2022] Open
Abstract
Germline cyst formation is essential for the propagation of many organisms including humans and flies. The cytoplasm of germline cyst cells communicate with each other directly via large intercellular bridges called ring canals. Ring canals are often derived from arrested contractile rings during incomplete cytokinesis. However how ring canal formation, maintenance and growth are regulated remains unclear. To better understand this process, we carried out an unbiased genetic screen in Drosophila melanogaster germ cells and identified multiple alleles of flapwing (flw), a conserved serine/threonine-specific protein phosphatase. Flw had previously been reported to be unnecessary for early D. melanogaster oogenesis using a hypomorphic allele. We found that loss of Flw leads to over-constricted nascent ring canals and subsequently tiny mature ring canals, through which cytoplasmic transfer from nurse cells to the oocyte is impaired, resulting in small, non-functional eggs. Flw is expressed in germ cells undergoing incomplete cytokinesis, completely colocalized with the Drosophila myosin binding subunit of myosin phosphatase (DMYPT). This colocalization, together with genetic interaction studies, suggests that Flw functions together with DMYPT to negatively regulate myosin activity during ring canal formation. The identification of two subunits of the tripartite myosin phosphatase as the first two main players required for ring canal constriction indicates that tight regulation of myosin activity is essential for germline cyst formation and reproduction in D. melanogaster and probably other species as well.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, United States of America
| | - Vafa Bayat
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hugo J. Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Change Tan
- Division of Biological Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
58
|
Merrifield M, Kovalchuk O. Epigenetics in radiation biology: a new research frontier. Front Genet 2013; 4:40. [PMID: 23577019 PMCID: PMC3616258 DOI: 10.3389/fgene.2013.00040] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 03/06/2013] [Indexed: 11/13/2022] Open
Abstract
The number of people that receive exposure to ionizing radiation (IR) via occupational, diagnostic, or treatment-related modalities is progressively rising. It is now accepted that the negative consequences of radiation exposure are not isolated to exposed cells or individuals. Exposure to IR can induce genome instability in the germline, and is further associated with transgenerational genomic instability in the offspring of exposed males. The exact molecular mechanisms of transgenerational genome instability have yet to be elucidated, although there is support for it being an epigenetically induced phenomenon. This review is centered on the long-term biological effects associated with IR exposure, mainly focusing on the epigenetic mechanisms (DNA methylation and small RNAs) involved in the molecular etiology of IR-induced genome instability, bystander and transgenerational effects. Here, we present evidence that IR-mediated effects are maintained by epigenetic mechanisms, and demonstrate how a novel, male germline-specific, small RNA pathway is posited to play a major role in the epigenetic inheritance of genome instability.
Collapse
Affiliation(s)
- Matt Merrifield
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| | | |
Collapse
|
59
|
Basten SG, Davis EE, Gillis AJM, van Rooijen E, Stoop H, Babala N, Logister I, Heath ZG, Jonges TN, Katsanis N, Voest EE, van Eeden FJ, Medema RH, Ketting RF, Schulte-Merker S, Looijenga LHJ, Giles RH. Mutations in LRRC50 predispose zebrafish and humans to seminomas. PLoS Genet 2013; 9:e1003384. [PMID: 23599692 PMCID: PMC3627517 DOI: 10.1371/journal.pgen.1003384] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/29/2013] [Indexed: 01/07/2023] Open
Abstract
Seminoma is a subclass of human testicular germ cell tumors (TGCT), the most frequently observed cancer in young men with a rising incidence. Here we describe the identification of a novel gene predisposing specifically to seminoma formation in a vertebrate model organism. Zebrafish carrying a heterozygous nonsense mutation in Leucine-Rich Repeat Containing protein 50 (lrrc50 also called dnaaf1), associated previously with ciliary function, are found to be highly susceptible to the formation of seminomas. Genotyping of these zebrafish tumors shows loss of heterozygosity (LOH) of the wild-type lrrc50 allele in 44.4% of tumor samples, correlating with tumor progression. In humans we identified heterozygous germline LRRC50 mutations in two different pedigrees with a family history of seminomas, resulting in a nonsense Arg488* change and a missense Thr590Met change, which show reduced expression of the wild-type allele in seminomas. Zebrafish in vivo complementation studies indicate the Thr590Met to be a loss-of-function mutation. Moreover, we show that a pathogenic Gln307Glu change is significantly enriched in individuals with seminoma tumors (13% of our cohort). Together, our study introduces an animal model for seminoma and suggests LRRC50 to be a novel tumor suppressor implicated in human seminoma pathogenesis.
Collapse
Affiliation(s)
- Sander G. Basten
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Erica E. Davis
- Center for Human Disease Modeling, Department of Pediatrics, and Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ad J. M. Gillis
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Daniel den Hoed Cancer Center, Josephine Nefkens Institute, Rotterdam, The Netherlands
| | - Ellen van Rooijen
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans Stoop
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Daniel den Hoed Cancer Center, Josephine Nefkens Institute, Rotterdam, The Netherlands
| | - Nikolina Babala
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ive Logister
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zachary G. Heath
- Center for Human Disease Modeling, Department of Pediatrics, and Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Trudy N. Jonges
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Department of Pediatrics, and Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Emile E. Voest
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Freek J. van Eeden
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rene H. Medema
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - René F. Ketting
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefan Schulte-Merker
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Rachel H. Giles
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
60
|
Zhou K, Rolls MM, Hanna-Rose W. A postmitotic function and distinct localization mechanism for centralspindlin at a stable intercellular bridge. Dev Biol 2013; 376:13-22. [PMID: 23370148 DOI: 10.1016/j.ydbio.2013.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/17/2013] [Accepted: 01/19/2013] [Indexed: 10/27/2022]
Abstract
Centralspindlin, a complex composed of the subunits ZEN-4 and CYK-4, recruits and regulates proteins that modulate the actin cytoskeleton to promote cleavage furrow formation and progression during cytokinesis. The ZEN-4 subunit is a kinesin that is proposed to function primarily by bundling microtubules and promoting transport of the complex to the midzone. ZEN-4 and CYK-4 are mutually dependent for localization to the midzone during cytokinesis. Once at the midzone, the CYK-4 subunit functions to recruit actin regulators and the scaffold anillin as well as to regulate RhoA and Rac via its intrinsic GAP domain, ultimately promoting actomyosin contractile ring assembly. We have revealed a distinct mechanism for centralspindlin localization and function at a stable, postmitotic intercellular bridge in the Caenorhabditis elegans gonad. Loss of zen-4 or cyk-4 function disrupts germ cell progression postmitotically. In contrast to the localization and recruitment relationships during mitosis, centralspindlin is maintained at the intercellular bridge by anillin, and CYK-4 is localized independently of ZEN-4 but not vice versa. We present evidence that centralspindlin function at the rachis bridge involves ZEN-4 action on the microtubules as opposed to the regulation of the actin cytoskeleton mediated by CYK-4 during cytokinesis.
Collapse
Affiliation(s)
- Kang Zhou
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
61
|
Yang F, Wei Q, Adelstein RS, Wang PJ. Non-muscle myosin IIB is essential for cytokinesis during male meiotic cell divisions. Dev Biol 2012; 369:356-61. [PMID: 22820068 DOI: 10.1016/j.ydbio.2012.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 12/26/2022]
Abstract
Cytokinesis, the final stage of cell division, bisects the cytoplasm into two daughter cells. In mitotic cells, this process depends on the activity of non-muscle myosin II (NMII), a family of actin-binding motor-proteins that participate in the formation of the cleavage furrow. The relevance of NMII for meiotic cell division, however, is poorly understood. The NMII family consists of three members, NMIIA, NMIIB, and NMIIC, containing different myosin heavy chains (MYH9, MYH10, and MYH14, respectively). We find that a single non-muscle myosin II, NMIIB, is required for meiotic cytokinesis in male but not female mice. Specifically, NMIIB-deficient spermatocytes exhibit cytokinetic failure in meiosis I, resulting in bi-nucleated secondary spermatocytes. Additionally, cytokinetic failure at meiosis II gives rise to bi-nucleated or even tetra-nucleated spermatids. These multi-nucleated spermatids fail to undergo normal differentiation, leading to male infertility. In spite of the presence of multiple non-muscle myosin II isoforms, we demonstrate that a single member, NMIIB, plays an essential and non-redundant role in cytokinesis during meiotic cell divisions of the male germline.
Collapse
Affiliation(s)
- Fang Yang
- Center for Animal Transgenesis and Germ Cell Research, Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, 19104, USA
| | | | | | | |
Collapse
|
62
|
Iwamori N, Iwamori T, Matzuk MM. Characterization of spermatogonial stem cells lacking intercellular bridges and genetic replacement of a mutation in spermatogonial stem cells. PLoS One 2012; 7:e38914. [PMID: 22719986 PMCID: PMC3374785 DOI: 10.1371/journal.pone.0038914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/15/2012] [Indexed: 01/15/2023] Open
Abstract
Stem cells have a potential of gene therapy for regenerative medicine. Among various stem cells, spermatogonial stem cells have a unique characteristic in which neighboring cells can be connected by intercellular bridges. However, the roles of intercellular bridges for stem cell self-renewal, differentiation, and proliferation remain to be elucidated. Here, we show not only the characteristics of testis-expressed gene 14 (TEX14) null spermatogonial stem cells lacking intercellular bridges but also a trial application of genetic correction of a mutation in spermatogonial stem cells as a model for future gene therapy. In TEX14 null testes, some genes important for undifferentiated spermatogonia as well as some differentiation-related genes were activated. TEX14 null spermatogonial stem cells, surprisingly, could form chain-like structures even though they do not form stable intercellular bridges. TEX14 null spermatogonial stem cells in culture possessed both characteristics of undifferentiated and differentiated spermatogonia. Long-term culture of TEX14 null spermatogonial stem cells could not be established likely secondary to up-regulation of CDK4 inhibitors and down-regulation of cyclin E. These results suggest that intercellular bridges are essential for both maintenance of spermatogonial stem cells and their proliferation. Lastly, a mutation in Tex14+/− spermatogonial stem cells was successfully replaced by homologous recombination in vitro. Our study provides a therapeutic potential of spermatogonial stem cells for reproductive medicine if they can be cultured long-term.
Collapse
Affiliation(s)
- Naoki Iwamori
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (NI); (MMM)
| | - Tokuko Iwamori
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Martin M. Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (NI); (MMM)
| |
Collapse
|
63
|
Lin YH, Wang YY, Chen HI, Kuo YC, Chiou YW, Lin HH, Wu CM, Hsu CC, Chiang HS, Kuo PL. SEPTIN12 genetic variants confer susceptibility to teratozoospermia. PLoS One 2012; 7:e34011. [PMID: 22479503 PMCID: PMC3316533 DOI: 10.1371/journal.pone.0034011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 02/21/2012] [Indexed: 12/16/2022] Open
Abstract
It is estimated that 10-15% of couples are infertile and male factors account for about half of these cases. With the advent of intracytoplasmic sperm injection (ICSI), many infertile men have been able to father offspring. However, teratozoospermia still remains a big challenge to tackle. Septins belong to a family of cytoskeletal proteins with GTPase activity and are involved in various biological processes e.g. morphogenesis, compartmentalization, apoptosis and cytokinesis. SEPTIN12, identified by c-DNA microarray analysis of infertile men, is exclusively expressed in the post meiotic male germ cells. Septin12(+/+)/Septin12(+/-) chimeric mice have multiple reproductive defects including the presence of immature sperm in the semen, and sperm with bent neck (defect of the annulus) and nuclear DNA damage. These facts make SEPTIN12 a potential sterile gene in humans. In this study, we sequenced the entire coding region of SEPTIN12 in infertile men (n = 160) and fertile controls (n = 200) and identified ten variants. Among them is the c.474 G>A variant within exon 5 that encodes part of the GTP binding domain. The variant creates a novel splice donor site that causes skipping of a portion of exon 5, resulting in a truncated protein lacking the C-terminal half of SEPTIN12. Most individuals homozygous for the c.474 A allele had teratozoospermia (abnormal sperm <14%) and their sperm showed bent tail and de-condensed nucleus with significant DNA damage. Ex vivo experiment showed truncated SEPT12 inhibits filament formation in a dose-dependent manner. This study provides the first causal link between SEPTIN12 genetic variant and male infertility with distinctive sperm pathology. Our finding also suggests vital roles of SEPT12 in sperm nuclear integrity and tail development.
Collapse
Affiliation(s)
- Ying-Hung Lin
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, College of Medicine, Taipei, Taiwan
| | - Ya-Yun Wang
- Department of Obstetrics & Gynecology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
- Institute of Molecular Medicine, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Hau-Inh Chen
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Yung-Che Kuo
- Graduate Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Yu-Wei Chiou
- Department of Biomedical Engineering, National Cheng Kung University, College of Engineering, Tainan, Taiwan
| | - Hsi-Hui Lin
- Department of Physiology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Ching-Ming Wu
- Department of Cell Biology & Anatomy, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Chao-Chin Hsu
- Department of Obstetrics and Gynecology, China Medical University, Taichung, Taiwan
| | - Han-Sun Chiang
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, College of Medicine, Taipei, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics & Gynecology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
- Graduate Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
64
|
Mouse germ cell clusters form by aggregation as well as clonal divisions. Mech Dev 2012; 128:591-6. [PMID: 22245112 DOI: 10.1016/j.mod.2011.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 11/20/2022]
Abstract
After their arrival in the fetal gonad, mammalian germ cells express E-cadherin and are found in large clusters, similar to germ cell cysts in Drosophila. In Drosophila, germ cells in cysts are connected by ring canals. Several molecular components of intercellular bridges in mammalian cells have been identified, including TEX14, a protein required for the stabilization of intercellular bridges, and several associated proteins that are components of the cytokinesis complex. This has led to the hypothesis that germ cell clusters in the mammalian gonad arise through incomplete cell divisions. We tested this hypothesis by generating chimeras between GFP-positive and GFP-negative mice. We show that germ cell clusters in the fetal gonad arise through aggregation as well as cell division. Intercellular bridges, however, are likely restricted to cells of the same genotype.
Collapse
|
65
|
Sironen A, Uimari P, Venhoranta H, Andersson M, Vilkki J. An exonic insertion within Tex14 gene causes spermatogenic arrest in pigs. BMC Genomics 2011; 12:591. [PMID: 22136159 PMCID: PMC3248578 DOI: 10.1186/1471-2164-12-591] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/02/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Male infertility is an increasing problem in all domestic species including man. Localization and identification of genes involved in defects causing male infertility provide valuable information of specific events in sperm development. Sperm development is a complex process, where diploid spermatogonia develop into haploid, highly specialized spermatozoa. Correct expression and function of various genes and their protein products are required for production of fertile sperm. We have identified an infertility defect in Finnish Yorkshire boars caused by spermatogenic arrest. The aim of this study was to locate the disease associated region using genome wide screen with the PorcineSNP60 Beadchip and identify the causal mutation by candidate gene approach. RESULTS In the Finnish Yorkshire pig population the spermatogenic arrest (SA) defect appears to be of genetic origin and causes severe degeneration of germ cells and total absence of spermatozoa. Genome wide scan with the PorcineSNP60 Beadchip localized the SA defect to porcine chromosome 12 in a 2 Mbp region. Sequencing of a candidate gene Tex14 revealed a 51 bp insertion within exon 27, which caused differential splicing of the exon and created a premature translation stop codon. The expression of Tex14 was markedly down regulated in the testis of a SA affected boar compared to control boars and no protein product was identified by Western blotting. The SA insertion sequence was also found within intron 27 in all analyzed animals, thus the insertion appears to be a possible duplication event. CONCLUSION In this study we report the identification of a causal mutation for infertility caused by spermatogenic arrest at an early meiotic phase. Our results highlight the role of TEX14 specifically in spermatogenesis and the importance of specific genomic remodeling events as causes for inherited defects.
Collapse
Affiliation(s)
- Anu Sironen
- Agrifood Research Finland, MTT, Biotechnology and Food Research, Genomics, FI-36100 Jokioinen, Finland.
| | | | | | | | | |
Collapse
|
66
|
Lacroix B, Maddox AS. Cytokinesis, ploidy and aneuploidy. J Pathol 2011; 226:338-51. [DOI: 10.1002/path.3013] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/22/2011] [Accepted: 09/24/2011] [Indexed: 12/21/2022]
|
67
|
Lin YH, Kuo YC, Chiang HS, Kuo PL. The role of the septin family in spermiogenesis. SPERMATOGENESIS 2011; 1:298-302. [PMID: 22332113 DOI: 10.4161/spmg.1.4.18326] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 01/08/2023]
Abstract
SEPTINS (FULL NAME: Septin; symbol name: SEPT) belong to a family of polymerizing GTP-binding proteins that are required for many cellular functions, including membrane compartmentalization, vesicle trafficking, mitosis and cytoskeletal remodeling. Two of the 14 family members in the mammalian species, Septin12 and 14 are expressed specifically in the testis. In the mouse, knockout of Septin4 and Septin12 leads to male sterility with distinctive sperm pathology (defective annulus or bent neck). In humans, sperm with abnormal expression patterns of SEPT4, 7 and 12 are more prevalent in infertile men. How septin filament is assembled/dissembled and how the SEPT-related complex regulates spermatogenesis still await further investigation.
Collapse
Affiliation(s)
- Ying-Hung Lin
- Graduate Institute of Basic Medicine; Fu Jen Catholic University; Taipei, Taiwan
| | | | | | | |
Collapse
|
68
|
Kuo TC, Chen CT, Baron D, Onder TT, Loewer S, Almeida S, Weismann CM, Xu P, Houghton JM, Gao FB, Daley GQ, Doxsey S. Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat Cell Biol 2011; 13:1214-23. [PMID: 21909099 DOI: 10.1038/ncb2332] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 08/03/2011] [Indexed: 02/07/2023]
Abstract
The midbody is a singular organelle formed between daughter cells during cytokinesis and required for their final separation. Midbodies persist in cells long after division as midbody derivatives (MB(d)s), but their fate is unclear. Here we show that MB(d)s are inherited asymmetrically by the daughter cell with the older centrosome. They selectively accumulate in stem cells, induced pluripotent stem cells and potential cancer 'stem cells' in vivo and in vitro. MB(d) loss accompanies stem-cell differentiation, and involves autophagic degradation mediated by binding of the autophagic receptor NBR1 to the midbody protein CEP55. Differentiating cells and normal dividing cells do not accumulate MB(d)s and possess high autophagic activity. Stem cells and cancer cells accumulate MB(d)s by evading autophagosome encapsulation and exhibit low autophagic activity. MB(d) enrichment enhances reprogramming to induced pluripotent stem cells and increases the in vitro tumorigenicity of cancer cells. These results indicate unexpected roles for MB(d)s in stem cells and cancer 'stem cells'.
Collapse
Affiliation(s)
- Tse-Chun Kuo
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Greenbaum MP, Iwamori T, Buchold GM, Matzuk MM. Germ cell intercellular bridges. Cold Spring Harb Perspect Biol 2011; 3:a005850. [PMID: 21669984 DOI: 10.1101/cshperspect.a005850] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Stable intercellular bridges are a conserved feature of gametogenesis in multicellular animals observed more than 100 years ago, but their function was unknown. Many of the components necessary for this structure have been identified through the study of cytokinesis in Drosophila; however, mammalian intercellular bridges have distinct properties from those of insects. Mammalian germ cell intercellular bridges are composed of general cytokinesis components with additional germ cell-specific factors including TEX14. TEX14 is an inactive kinase essential for the maintenance of stable intercellular bridges in gametes of both sexes but whose loss specifically impairs male meiosis. TEX14 acts to impede the terminal steps of abscission by competing for essential component CEP55, blocking its interaction in nongerm cells with ALIX and TSG101. Additionally, TEX14-interacting protein RBM44, whose localization in stabile intercellular bridges is limited to pachytene and secondary spermatocytes, may participate in processes such as RNA transport but is nonessential to the maintenance of intercellular bridge stability.
Collapse
Affiliation(s)
- Michael P Greenbaum
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
70
|
Haglund K, Nezis IP, Stenmark H. Structure and functions of stable intercellular bridges formed by incomplete cytokinesis during development. Commun Integr Biol 2011; 4:1-9. [PMID: 21509167 DOI: 10.4161/cib.4.1.13550] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 09/08/2010] [Indexed: 01/12/2023] Open
Abstract
Cytokinesis, the final step of cell division, normally proceeds to completion in living organisms, so that daughter cells physically separate by abscission. In certain tissues and developmental stages, on the other hand, the cytokinesis process is incomplete, giving rise to cells interconnected in syncytia by stable intercellular bridges. This evolutionarily conserved physiological process occurs in the female and male germline in species ranging from insects to humans, and has also been observed in some somatic tissues in invertebrates. Stable intercellular bridges have fascinated cell biologists ever since they were first described more than 50 years ago, and even though substantial progress has been made concerning their ultrastructure and molecular composition, much remains to be understood about their biological functions. Another major question is by which mechanisms complete versus incomplete cytokinesis is determined. In this mini-review we will try to give an overview of the current knowledge about the structure, composition and functions of stable intercellular bridges, and discuss recent insights into the molecular control of the incomplete cytokinesis process.
Collapse
Affiliation(s)
- Kaisa Haglund
- Department of Biochemistry; Institute for Cancer Research; Oslo University Hospital; Centre for Cancer Biomedicine; Faculty of Medicine; University of Oslo; Montebello, Oslo, Norway
| | | | | |
Collapse
|
71
|
Dayel MJ, Alegado RA, Fairclough SR, Levin TC, Nichols SA, McDonald K, King N. Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Dev Biol 2011; 357:73-82. [PMID: 21699890 DOI: 10.1016/j.ydbio.2011.06.003] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/03/2011] [Accepted: 06/03/2011] [Indexed: 12/24/2022]
Abstract
It has been posited that animal development evolved from pre-existing mechanisms for regulating cell differentiation in the single celled and colonial ancestors of animals. Although the progenitors of animals cannot be studied directly, insights into their cell biology may be gleaned from comparisons between animals and their closest living relatives, the choanoflagellates. We report here on the life history, cell differentiation and intercellular interactions in the colony-forming choanoflagellate Salpingoeca rosetta. In response to diverse environmental cues, S. rosetta differentiates into at least five distinct cell types, including three solitary cell types (slow swimmers, fast swimmers, and thecate cells) and two colonial forms (rosettes and chains). Electron microscopy reveals that cells within colonies are held together by a combination of fine intercellular bridges, a shared extracellular matrix, and filopodia. In addition, we have discovered that the carbohydrate-binding protein wheat germ agglutinin specifically stains colonies and the slow swimmers from which they form, showing that molecular differentiation precedes multicellular development. Together, these results help establish S. rosetta as a model system for studying simple multicellularity in choanoflagellates and provide an experimental framework for investigating the origin of animal multicellularity and development.
Collapse
Affiliation(s)
- Mark J Dayel
- Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, Center for Integrative Genomics, University of California, Berkeley, 94720, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Iwamori T, Lin YN, Ma L, Iwamori N, Matzuk MM. Identification and characterization of RBM44 as a novel intercellular bridge protein. PLoS One 2011; 6:e17066. [PMID: 21364893 PMCID: PMC3045441 DOI: 10.1371/journal.pone.0017066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 01/15/2011] [Indexed: 12/19/2022] Open
Abstract
Intercellular bridges are evolutionarily conserved structures that connect differentiating germ cells. We previously reported the identification of TEX14 as the first essential intercellular bridge protein, the demonstration that intercellular bridges are required for male fertility, and the finding that intercellular bridges utilize components of the cytokinesis machinery to form. Herein, we report the identification of RNA binding motif protein 44 (RBM44) as a novel germ cell intercellular bridge protein. RBM44 was identified by proteomic analysis after intercellular bridge enrichment using TEX14 as a marker protein. RBM44 is highly conserved between mouse and human and contains an RNA recognition motif of unknown function. RBM44 mRNA is enriched in testis, and immunofluorescence confirms that RBM44 is an intercellular bridge component. However, RBM44 only partially localizes to TEX14-positive intercellular bridges. RBM44 is expressed most highly in pachytene and secondary spermatocytes, but disappears abruptly in spermatids. We discovered that RBM44 interacts with itself and TEX14 using yeast two-hybrid, mammalian two-hybrid, and immunoprecipitation. To define the in vivo function of RBM44, we generated a targeted deletion of Rbm44 in mice. Rbm44 null male mice produce somewhat increased sperm, and show enhanced fertility of unknown etiology. Thus, although RBM44 localizes to intercellular bridges during meiosis, RBM44 is not required for fertility in contrast to TEX14.
Collapse
Affiliation(s)
- Tokuko Iwamori
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yi-Nan Lin
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lang Ma
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Naoki Iwamori
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Martin M. Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
73
|
Montembault E, Zhang W, Przewloka MR, Archambault V, Sevin EW, Laue ED, Glover DM, D'Avino PP. Nessun Dorma, a novel centralspindlin partner, is required for cytokinesis in Drosophila spermatocytes. ACTA ACUST UNITED AC 2011; 191:1351-65. [PMID: 21187330 PMCID: PMC3010078 DOI: 10.1083/jcb.201007060] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nessun Dorma is a component of the ring canal with a polysaccharide-binding domain, which is important for cytokinesis during male meiosis. Cytokinesis, the final step of cell division, usually ends with the abscission of the two daughter cells. In some tissues, however, daughter cells never completely separate and remain interconnected by intercellular bridges or ring canals. In this paper, we report the identification and analysis of a novel ring canal component, Nessun Dorma (Nesd), isolated as an evolutionarily conserved partner of the centralspindlin complex, a key regulator of cytokinesis. Nesd contains a pectin lyase–like domain found in proteins that bind to polysaccharides, and we present evidence that it has high affinity for β-galactosides in vitro. Moreover, nesd is an essential gene in Drosophila melanogaster, in which it is required for completion of cytokinesis during male meiosis and possibly in female germline cells. Our findings indicate that Nesd is a novel carbohydrate-binding protein that functions together with centralspindlin in late cytokinesis, thus highlighting the importance of glycosylation in this process.
Collapse
Affiliation(s)
- Emilie Montembault
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Ong S, Foote C, Tan C. Mutations of DMYPT cause over constriction of contractile rings and ring canals during Drosophila germline cyst formation. Dev Biol 2010; 346:161-9. [DOI: 10.1016/j.ydbio.2010.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 06/03/2010] [Indexed: 12/30/2022]
|
75
|
Guizetti J, Gerlich DW. Cytokinetic abscission in animal cells. Semin Cell Dev Biol 2010; 21:909-16. [PMID: 20708087 DOI: 10.1016/j.semcdb.2010.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/27/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
Cytokinesis leads to the separation of dividing cells, which in animal cells involves the contraction of an actin-myosin ring and subsequent fission during abscission. Abscission requires a series of dynamic events, including midbody-targeted vesicle secretion, specialization of plasma membrane domains, disassembly of midbody-associated microtubule bundles and plasma membrane fission. A large number of molecular factors required for abscission have been identified through localization, loss-of-function and proteomics studies, but their coordinate function in abscission is still poorly understood. Here, we review the structural elements and molecular factors known to contribute to abscission, and discuss their potential role in the context of proposed models for the abscission mechanism.
Collapse
Affiliation(s)
- Julien Guizetti
- Institute of Biochemistry, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland
| | | |
Collapse
|
76
|
Shah C, VanGompel MJW, Naeem V, Chen Y, Lee T, Angeloni N, Wang Y, Xu EY. Widespread presence of human BOULE homologs among animals and conservation of their ancient reproductive function. PLoS Genet 2010; 6:e1001022. [PMID: 20657660 PMCID: PMC2904765 DOI: 10.1371/journal.pgen.1001022] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 06/14/2010] [Indexed: 11/18/2022] Open
Abstract
Sex-specific traits that lead to the production of dimorphic gametes, sperm in males and eggs in females, are fundamental for sexual reproduction and accordingly widespread among animals. Yet the sex-biased genes that underlie these sex-specific traits are under strong selective pressure, and as a result of adaptive evolution they often become divergent. Indeed out of hundreds of male or female fertility genes identified in diverse organisms, only a very small number of them are implicated specifically in reproduction in more than one lineage. Few genes have exhibited a sex-biased, reproductive-specific requirement beyond a given phylum, raising the question of whether any sex-specific gametogenesis factors could be conserved and whether gametogenesis might have evolved multiple times. Here we describe a metazoan origin of a conserved human reproductive protein, BOULE, and its prevalence from primitive basal metazoans to chordates. We found that BOULE homologs are present in the genomes of representative species of each of the major lineages of metazoans and exhibit reproductive-specific expression in all species examined, with a preponderance of male-biased expression. Examination of Boule evolution within insect and mammalian lineages revealed little evidence for accelerated evolution, unlike most reproductive genes. Instead, purifying selection was the major force behind Boule evolution. Furthermore, loss of function of mammalian Boule resulted in male-specific infertility and a global arrest of sperm development remarkably similar to the phenotype in an insect boule mutation. This work demonstrates the conservation of a reproductive protein throughout eumetazoa, its predominant testis-biased expression in diverse bilaterian species, and conservation of a male gametogenic requirement in mice. This shows an ancient gametogenesis requirement for Boule among Bilateria and supports a model of a common origin of spermatogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Eugene Yujun Xu
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
77
|
Chang YC, Chen YJ, Wu CH, Wu YC, Yen TC, Ouyang P. Characterization of centrosomal proteins Cep55 and pericentrin in intercellular bridges of mouse testes. J Cell Biochem 2010; 109:1274-85. [PMID: 20186884 DOI: 10.1002/jcb.22517] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Centrosomal protein 55 (Cep55), located in the centrosome in interphase cells and recruited to the midbody during cytokinesis, is essential for completion of cell abscission. Northern blot previously showed that a high level of Cep55 is predominantly expressed in the testis. In the present study, we examined the spatial and temporal expression patterns of Cep55 during mouse testis maturation. We found that Cep55, together with pericentrin, another centrosomal protein, were localized to the intercellular bridges (IBs) interconnecting spermatogenic cells in a syncytium. The IBs were elaborated as a double ring structure formed by an inner ring decorated by Cep55 or pericentrin and an outer ring of mitotic kinesin-like protein 1 (MKLP1) in the male germ cell in early postnatal stages and adulthood. In addition, Cep55 and pericentrin were also localized to the acrosome region and flagellum neck and middle piece in elongated spermatids, respectively. These results suggest that Cep55 and pericentrin are required for the stable bridge between germ cells during spermatogenesis and spermiogenesis.
Collapse
Affiliation(s)
- Yu-Chen Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
78
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 4: intercellular bridges, mitochondria, nuclear envelope, apoptosis, ubiquitination, membrane/voltage-gated channels, methylation/acetylation, and transcription factors. Microsc Res Tech 2010; 73:364-408. [PMID: 19941288 DOI: 10.1002/jemt.20785] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As germ cells divide and differentiate from spermatogonia to spermatozoa, they share a number of structural and functional features that are common to all generations of germ cells and these features are discussed herein. Germ cells are linked to one another by large intercellular bridges which serve to move molecules and even large organelles from the cytoplasm of one cell to another. Mitochondria take on different shapes and features and topographical arrangements to accommodate their specific needs during spermatogenesis. The nuclear envelope and pore complex also undergo extensive modifications concomitant with the development of germ cell generations. Apoptosis is an event that is normally triggered by germ cells and involves many proteins. It occurs to limit the germ cell pool and acts as a quality control mechanism. The ubiquitin pathway comprises enzymes that ubiquitinate as well as deubiquitinate target proteins and this pathway is present and functional in germ cells. Germ cells express many proteins involved in water balance and pH control as well as voltage-gated ion channel movement. In the nucleus, proteins undergo epigenetic modifications which include methylation, acetylation, and phosphorylation, with each of these modifications signaling changes in chromatin structure. Germ cells contain specialized transcription complexes that coordinate the differentiation program of spermatogenesis, and there are many male germ cell-specific differences in the components of this machinery. All of the above features of germ cells will be discussed along with the specific proteins/genes and abnormalities to fertility related to each topic.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, 3640 University Street, Montreal, QC Canada H3A 2B2.
| | | | | | | |
Collapse
|
79
|
Iwamori T, Iwamori N, Ma L, Edson MA, Greenbaum MP, Matzuk MM. TEX14 interacts with CEP55 to block cell abscission. Mol Cell Biol 2010; 30:2280-92. [PMID: 20176808 PMCID: PMC2863583 DOI: 10.1128/mcb.01392-09] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 12/22/2009] [Accepted: 02/13/2010] [Indexed: 01/07/2023] Open
Abstract
In somatic cells, abscission, the physical separation of daughter cells at the completion of cytokinesis, requires CEP55, ALIX, and TSG101. In contrast, cytokinesis is arrested prior to abscission in differentiating male germ cells that are interconnected by TEX14-positive intercellular bridges. We have previously shown that targeted deletion of TEX14 disrupts intercellular bridges in all germ cells and causes male sterility. Although these findings demonstrate that intercellular bridges are essential for spermatogenesis, it remains to be shown how TEX14 and other proteins come together to prevent abscission and form stable intercellular bridges. Using a biochemical enrichment of male germ cell intercellular bridges, we identified additional bridge proteins, including CEP55. Although CEP55 is highly expressed in testes at the RNA level, there is no report of the presence of CEP55 in germ cells. We show here that CEP55 becomes a stable component of the intercellular bridge and that an evolutionarily conserved GPPX3Y motif of TEX14 binds strongly to CEP55 to block similar GPPX3Y motifs of ALIX and TSG101 from interacting and localizing to the midbody. Thus, TEX14 prevents the completion of cytokinesis by altering the destiny of CEP55 from a nidus for abscission to an integral component of the intercellular bridge.
Collapse
Affiliation(s)
- Tokuko Iwamori
- Departments of Pathology, Molecular and Cellular Biology, Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030
| | - Naoki Iwamori
- Departments of Pathology, Molecular and Cellular Biology, Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030
| | - Lang Ma
- Departments of Pathology, Molecular and Cellular Biology, Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030
| | - Mark A. Edson
- Departments of Pathology, Molecular and Cellular Biology, Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030
| | - Michael P. Greenbaum
- Departments of Pathology, Molecular and Cellular Biology, Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030
| | - Martin M. Matzuk
- Departments of Pathology, Molecular and Cellular Biology, Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030
| |
Collapse
|
80
|
Chao HCA, Lin YH, Kuo YC, Shen CJ, Pan HA, Kuo PL. The expression pattern of SEPT7 correlates with sperm morphology. J Assist Reprod Genet 2010; 27:299-307. [PMID: 20352323 DOI: 10.1007/s10815-010-9409-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 03/11/2010] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To investigate the expression pattern of the SEPT7 protein during spermatogenesis and its potential role in sperm function. METHODS We first investigated the expression pattern of SEPT7 during different steps of mouse spermiogenesis using an immunofluorescence assay (IFA). IFA was also applied to study the expression pattern of SEPT7 in human ejaculated spermatozoa. Nine fertile men with normal semen parameters were used as the control group, and 21 infertile men with asthenozoospermia were recruited as the patient group. We assessed the frequency of the SEPT7 signal in the various morphological subgroups. RESULTS In humans, the frequency of a defective SEPT7 signal was significantly increased in men with asthenozoospermia. The absence of a SEPT7 signal was more prevalent in sperm containing morphological defects of various types. CONCLUSIONS The expression pattern of SEPT7 suggested that this protein may be involved in the regulation of subcellular-compartment formation during spermiogenesis in the mouse. The absence of a SEPT7 signal correlated with multiple sperm defects.
Collapse
Affiliation(s)
- Hsin-Chih Albert Chao
- Division of Obstetrics and Gynecology, National Cheng Kung University College of Medicine and Hospital, Dou-Liou Branch, Yunlin, Taiwan.
| | | | | | | | | | | |
Collapse
|
81
|
Zani BG, Indolfi L, Edelman ER. Tubular bridges for bronchial epithelial cell migration and communication. PLoS One 2010; 5:e8930. [PMID: 20126618 PMCID: PMC2812493 DOI: 10.1371/journal.pone.0008930] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 01/11/2010] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Biological processes from embryogenesis to tumorigenesis rely on the coordinated coalescence of cells and synchronized cell-to-cell communication. Intercellular signaling enables cell masses to communicate through endocrine pathways at a distance or by direct contact over shorter dimensions. Cellular bridges, the longest direct connections between cells, facilitate transfer of cellular signals and components over hundreds of microns in vitro and in vivo. METHODOLOGY/PRINCIPAL FINDINGS Using various cellular imaging techniques on human tissue cultures, we identified two types of tubular, bronchial epithelial (EP) connections, up to a millimeter in length, designated EP bridges. Structurally distinct from other cellular connections, the first type of EP bridge may mediate transport of cellular material between cells, while the second type of EP bridge is functionally distinct from all other cellular connections by mediating migration of epithelial cells between EP masses. Morphological and biochemical interactions with other cell types differentially regulated the nuclear factor-kappaB and cyclooxygenase inflammatory pathways, resulting in increased levels of inflammatory molecules that impeded EP bridge formation. Pharmacologic inhibition of these inflammatory pathways caused increased morphological and mobility changes stimulating the biogenesis of EP bridges, in part through the upregulation of reactive oxygen species pathways. CONCLUSIONS/SIGNIFICANCE EP bridge formation appears to be a normal response of EP physiology in vitro, which is differentially inhibited by inflammatory cellular pathways depending upon the morphological and biochemical interactions between EP cells and other cell types. These tubular EP conduits may represent an ultra long-range form of direct intercellular communication and a completely new mechanism of tissue-mediated cell migration.
Collapse
Affiliation(s)
- Brett G Zani
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
| | | | | |
Collapse
|
82
|
Abstract
Cytokinesis is the final step in cell division. The process begins during chromosome segregation, when the ingressing cleavage furrow begins to partition the cytoplasm between the nascent daughter cells. The process is not completed until much later, however, when the final cytoplasmic bridge connecting the two daughter cells is severed. Cytokinesis is a highly ordered process, requiring an intricate interplay between cytoskeletal, chromosomal and cell cycle regulatory pathways. A surprisingly broad range of additional cellular processes are also important for cytokinesis, including protein and membrane trafficking, lipid metabolism, protein synthesis and signaling pathways. As a highly regulated, complex process, it is not surprising that cytokinesis can sometimes fail. Cytokinesis failure leads to both centrosome amplification and production of tetraploid cells, which may set the stage for the development of tumor cells. However, tetraploid cells are abundant components of some normal tissues including liver and heart, indicating that cytokinesis is physiologically regulated. In this chapter, we summarize our current understanding of the mechanisms of cytokinesis, emphasizing steps in the pathway that may be regulated or prone to failure. Our discussion emphasizes findings in vertebrate cells although we have attempted to highlight important contributions from other model systems.
Collapse
|
83
|
Yatsenko AN, Iwamori N, Iwamori T, Matzuk MM. The power of mouse genetics to study spermatogenesis. JOURNAL OF ANDROLOGY 2010; 31:34-44. [PMID: 19875488 PMCID: PMC2895970 DOI: 10.2164/jandrol.109.008227] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Approximately 80 million people worldwide are infertile, and nearly half of all infertility cases are attributed to a male factor. Therefore, progress in reproductive genetics becomes crucial for future diagnosis and treatment of infertility. In recent years, enormous progress has been made in this field. More than 400 mutant mouse models with specific reproductive abnormalities have been produced, and numerous human association studies have been discovered. However, the translation of basic science findings to clinical practice remains protracted, with only modest progress in the application of novel findings to clinical genetic testing and cures. To date, the most significant findings in male infertility remain numeric and structural chromosomal abnormalities and Y-chromosome microdeletions in infertile men. Thus, we anticipate that future genetic investigations will focus on infertile men with a normal somatic karyotype but with various spermatozoal defects, like insufficient production of spermatozoa (oligozoospermia), inadequate motility (asthenozoospermia), abnormal morphology (teratozoospermia), or combinations of these defects. Ultimately, basic advances in mammalian nonhuman reproduction will translate to clinical advances in human reproduction and testing for infertile humans, thereby helping to improve diagnostics and health care for infertile patients.
Collapse
Affiliation(s)
- A N Yatsenko
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
84
|
Harper MJK. Family planning: today and in the future. Handb Exp Pharmacol 2010:225-258. [PMID: 20839094 DOI: 10.1007/978-3-642-02062-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This review covers the state of contraceptive development noting new entries in the clinic (mainly steroidal and different delivery methods) and novel leads for nonsteroidal female- and male-methods in the pipeline. The time taken to market and the absence of partnerships with industry are stressed as major factors for the slow progress in their development.
Collapse
Affiliation(s)
- Michael J K Harper
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, 1911 N. Fort Meyer Drive, Suite 900, Arlington, VA 22209, USA.
| |
Collapse
|
85
|
Wu Z, Luby-Phelps K, Bugde A, Molyneux LA, Denard B, Li WH, Süel GM, Garbers DL. Capacity for stochastic self-renewal and differentiation in mammalian spermatogonial stem cells. ACTA ACUST UNITED AC 2009; 187:513-24. [PMID: 19948499 PMCID: PMC2779229 DOI: 10.1083/jcb.200907047] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian spermatogenesis is initiated and sustained by spermatogonial stem cells (SSCs) through self-renewal and differentiation. The basic question of whether SSCs have the potential to specify self-renewal and differentiation in a cell-autonomous manner has yet to be addressed. Here, we show that rat SSCs in ex vivo culture conditions consistently give rise to two distinct types of progeny: new SSCs and differentiating germ cells, even when they have been exposed to virtually identical microenvironments. Quantitative experimental measurements and mathematical modeling indicates that fate decision is stochastic, with constant probability. These results reveal an unexpected ability in a mammalian SSC to specify both self-renewal and differentiation through a self-directed mechanism, and further suggest that this mechanism operates according to stochastic principles. These findings provide an experimental basis for autonomous and stochastic fate choice as an alternative strategy for SSC fate bifurcation, which may also be relevant to other stem cell types.
Collapse
Affiliation(s)
- Zhuoru Wu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Kelemen LE, Wang X, Fredericksen ZS, Pankratz VS, Pharoah PDP, Ahmed S, Dunning AM, Easton DF, Vierkant RA, Cerhan JR, Goode EL, Olson JE, Couch FJ. Genetic variation in the chromosome 17q23 amplicon and breast cancer risk. Cancer Epidemiol Biomarkers Prev 2009; 18:1864-8. [PMID: 19454617 DOI: 10.1158/1055-9965.epi-08-0486] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Gene amplification leading to overexpression is a common event in breast tumors that is linked to tumor development and progression. The 17q23 region is amplified in >40% of breast tumors and contains several candidate oncogenes. Because common genetic variation in several oncogenes has been associated with cancer risk, we assessed the relevance of common variants in the 17q23 candidate oncogenes to breast cancer. METHODS We investigated 60 polymorphisms in the TUBD1, SEPT4, PRKCA, TBX2, TBX4, TEX14, TLK2, YPEL2, and PPM1E genes from this amplicon for association with breast cancer risk among 798 Caucasian breast cancer cases and 843 unaffected Caucasian controls from the Mayo Clinic. RESULTS Eight polymorphisms in PRKCA, TBX4, TLK2, and YPEL2 displayed significant dose-response associations with breast cancer risk (P(trend) < 0.05). Of these, PRKCA rs7342847 and TLK2 rs2245092 and rs733025 were also associated with hormone receptor-positive breast cancer: PRKCA rs7342847 (odds ratio, 0.7; 95% confidence interval, 0.6-0.9; P(trend) = 0.002) and TLK2 rs733025 and rs2245092 (both: odds ratio, 0.8; 95% confidence interval, 0.7-1.0; P(trend) = 0.03). Interactions between SEPT4 rs758377 and TEX14 rs302864 (P(interaction) = 0.0003) and between TLK2 rs733025 and YPEL2 rs16943468 (P(interaction) = 0.05) for risk of breast cancer were also observed. CONCLUSION These findings suggest that single polymorphisms and combinations of polymorphisms within candidate oncogenes from the 17q23 amplicon may influence risk of breast cancer overall and possibly specific molecular subtypes of breast tumors. The findings are discussed within the context of the results from two independent data sets.
Collapse
Affiliation(s)
- Linda E Kelemen
- Division of Population Health, Alberta Cancer Board, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Lin YH, Lin YM, Wang YY, Yu IS, Lin YW, Wang YH, Wu CM, Pan HA, Chao SC, Yen PH, Lin SW, Kuo PL. The expression level of septin12 is critical for spermiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1857-68. [PMID: 19359518 DOI: 10.2353/ajpath.2009.080955] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Septins belong to a family of polymerizing GTP-binding proteins that are required for many cellular functions, such as membrane compartmentalization, vesicular trafficking, mitosis, and cytoskeletal remodeling. One family member, septin12, is expressed specifically in the testis. In this study, we found septin12 expressed in multiple subcellular compartments during terminal differentiation of mouse germ cells. In humans, the testicular tissues of men with either hypospermatogenesis or maturation arrest had lower levels of SEPTIN12 transcripts than normal men. In addition, increased numbers of spermatozoa with abnormal head, neck, and tail morphologies lacked SEPT12 immunostaining signals, as compared with normal spermatozoa. To elucidate the role of septin12, we generated 129 embryonic stem cells containing a septin12 mutant allele with a deletion in the exons that encode the N-terminal GTP-binding domain. Most chimeras derived from the targeted embryonic stem cells were infertile, and the few fertile chimeras only produced offspring with a C57BL/6 background. Semen analysis of the infertile chimeras showed a decreased sperm count, decreased sperm motility, and spermatozoa with defects involving all subcellular compartments. The testicular phenotypes included maturation arrest of germ cells at the spermatid stage, sloughing of round spermatids, and increased apoptosis of germ cells. Electron microscopic examination of spermatozoa showed misshapen nuclei, disorganized mitochondria, and broken acrosomes. Our data indicate that Septin12 expression levels are critical for mammalian spermiogenesis.
Collapse
Affiliation(s)
- Ying-Hung Lin
- Graduate Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Greenbaum MP, Iwamori N, Agno JE, Matzuk MM. Mouse TEX14 is required for embryonic germ cell intercellular bridges but not female fertility. Biol Reprod 2008; 80:449-57. [PMID: 19020301 DOI: 10.1095/biolreprod.108.070649] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A conserved feature of germ cell cytokinesis is the formation of stable intercellular bridges between daughter cells. These intercellular bridges are seen in diverse species from Drosophila melanogaster to Homo sapiens and have been shown to have roles in communication of large numbers of germ cells. In testis expressed gene 14 (Tex14) knockout mice, intercellular bridges do not form during spermatogenesis, and male mice are sterile, demonstrating an essential role for intercellular bridges in postnatal spermatogenesis in mammals. Intercellular bridges also form between dividing germ cells in both male and female embryos. However, little is known about the formation or role of the embryonic intercellular bridges in mammals. In females, embryonic intercellular bridges have been proposed to have a role in development of the presumptive oocyte. Herein, we show that TEX14 is an essential component of male and female embryonic intercellular bridges. In addition, we demonstrate that mitotic kinesin-like protein 1 (MKLP1, official symbol KIF23), which we have discovered is a component of intercellular bridges during spermatogenesis, is also a component of male and female embryonic intercellular bridges. Germ cell intercellular bridges are readily identified by KIF23 immunofluorescence between the gonocytes and oogonia of control mice but are absent between germ cells of Tex14-null mice. Furthermore, by electron microscopy, intercellular bridges are present in all control newborn ovaries but are absent in the Tex14 knockout ovaries. Despite the absence of embryonic intercellular bridges in the Tex14-null mice, male mice initiate spermatogenesis, and female mice are fertile. Although fewer oocytes were present in Tex14-null neonatal ovaries, folliculogenesis was still active at 1 yr of age. Thus, while TEX14 and intercellular bridges have an essential role in postnatal spermatogenesis, they are not required in the embryo.
Collapse
Affiliation(s)
- Michael P Greenbaum
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
89
|
Abstract
Reproduction is required for the survival of all mammalian species, and thousands of essential 'sex' genes are conserved through evolution. Basic research helps to define these genes and the mechanisms responsible for the development, function and regulation of the male and female reproductive systems. However, many infertile couples continue to be labeled with the diagnosis of idiopathic infertility or given descriptive diagnoses that do not provide a cause for their defect. For other individuals with a known etiology, effective cures are lacking, although their infertility is often bypassed with assisted reproductive technologies (ART), some accompanied by safety or ethical concerns. Certainly, progress in the field of reproduction has been realized in the twenty-first century with advances in the understanding of the regulation of fertility, with the production of over 400 mutant mouse models with a reproductive phenotype and with the promise of regenerative gonadal stem cells. Indeed, the past six years have witnessed a virtual explosion in the identification of gene mutations or polymorphisms that cause or are linked to human infertility. Translation of these findings to the clinic remains slow, however, as do new methods to diagnose and treat infertile couples. Additionally, new approaches to contraception remain elusive. Nevertheless, the basic and clinical advances in the understanding of the molecular controls of reproduction are impressive and will ultimately improve patient care.
Collapse
Affiliation(s)
- Martin M Matzuk
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA.
| | | |
Collapse
|
90
|
Staiber W. Centrosome hyperamplification with the formation of multiple asters and programmed chromosome inactivation in aberrant spermatocytes during male meiosis in Acricotopus. Cell Tissue Res 2008; 334:81-91. [PMID: 18696114 DOI: 10.1007/s00441-008-0671-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 07/14/2008] [Indexed: 11/24/2022]
Abstract
In the germ line of the midge Acricotopus lucidus, an unequal chromosome segregation occurs in the last gonial mitosis prior to meiosis. This results in one daughter cell receiving only somatic chromosomes (Ss), whereas the other cell is given all the so-called germ line limited chromosomes (Ks) in addition to the Ss. The cytokinesis following this differential mitosis is incomplete and the daughter cells remain connected by a permanent cytoplasmic bridge. The cell with the Ss and Ks develops into a primary oocyte or spermatocyte, whereas the cell containing only Ss differentiates as a nurse cell in the female or as an aberrant spermatocyte in the male. When the primary spermatocyte enters meiosis, the Ss in the connected aberrant spermatocyte undergo chromosome condensation but the aberrant spermatocyte remains undivided, with the condensed metaphase status and inactivation of the Ss persisting during both meiotic divisions. These events indicate a programmed inactivation of all chromosomes in the aberrant spermatocyte at the beginning of meiosis. The alterations in the microtubule arrangements and of the distribution of mitochondria in the spermatocytes during meiosis have been followed via live-cell fluorescence labelling with the TubulinTracker and MitoTracker reagents and by transmission electron microscopy. The observations reveal a hyperamplification of the centrosomes and the formation of tetrapolar asters in the non-dividing aberrant spermatocytes containing the condensed Ss. The programmed inactivation of the Ss in the aberrant spermatocyte is suggested to have developed during evolution to inhibit the entry of the aberrant spermatocytes into meiosis, thereby preventing the formation of sperms containing only Ss but no Ks.
Collapse
Affiliation(s)
- Wolfgang Staiber
- Institute of Genetics, University of Hohenheim, Garbenstrasse 30, 70599, Stuttgart, Germany.
| |
Collapse
|
91
|
Aitken RJ, Baker MA, Doncel GF, Matzuk MM, Mauck CK, Harper MJ. As the world grows: contraception in the 21st century. J Clin Invest 2008; 118:1330-43. [PMID: 18382745 PMCID: PMC2276786 DOI: 10.1172/jci33873] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Contraceptives that are readily available and acceptable are required in many poorer countries to reduce population growth and in all countries to prevent maternal morbidity and mortality arising from unintended pregnancies. Most available methods use hormonal steroids or are variations of barrier methods. Reports from several fora over the last 12 years have emphasized the number of unwanted pregnancies and resultant abortions, which indicate an unmet need for safe, acceptable, and inexpensive contraceptive methods. This unmet need can be assuaged, in part, by development of new nonhormonal contraceptive methods. This Review addresses the contribution that the "omic" revolution can make to the identification of novel contraceptive targets, as well as the progress that has been made for different target molecules under development.
Collapse
Affiliation(s)
- R. John Aitken
- Discipline of Biological Sciences and ARC Centre of Excellence in Biotechnology and Development, University of Newcastle, Callaghan, New South Wales, Australia.
CONRAD, Eastern Virginia Medical School, Arlington, Virginia, USA.
Departments of Pathology, Molecular and Cellular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Mark A. Baker
- Discipline of Biological Sciences and ARC Centre of Excellence in Biotechnology and Development, University of Newcastle, Callaghan, New South Wales, Australia.
CONRAD, Eastern Virginia Medical School, Arlington, Virginia, USA.
Departments of Pathology, Molecular and Cellular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Gustavo F. Doncel
- Discipline of Biological Sciences and ARC Centre of Excellence in Biotechnology and Development, University of Newcastle, Callaghan, New South Wales, Australia.
CONRAD, Eastern Virginia Medical School, Arlington, Virginia, USA.
Departments of Pathology, Molecular and Cellular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Martin M. Matzuk
- Discipline of Biological Sciences and ARC Centre of Excellence in Biotechnology and Development, University of Newcastle, Callaghan, New South Wales, Australia.
CONRAD, Eastern Virginia Medical School, Arlington, Virginia, USA.
Departments of Pathology, Molecular and Cellular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Christine K. Mauck
- Discipline of Biological Sciences and ARC Centre of Excellence in Biotechnology and Development, University of Newcastle, Callaghan, New South Wales, Australia.
CONRAD, Eastern Virginia Medical School, Arlington, Virginia, USA.
Departments of Pathology, Molecular and Cellular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Michael J.K. Harper
- Discipline of Biological Sciences and ARC Centre of Excellence in Biotechnology and Development, University of Newcastle, Callaghan, New South Wales, Australia.
CONRAD, Eastern Virginia Medical School, Arlington, Virginia, USA.
Departments of Pathology, Molecular and Cellular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
92
|
Sreenivasan R, Cai M, Bartfai R, Wang X, Christoffels A, Orban L. Transcriptomic analyses reveal novel genes with sexually dimorphic expression in the zebrafish gonad and brain. PLoS One 2008; 3:e1791. [PMID: 18335061 PMCID: PMC2262149 DOI: 10.1371/journal.pone.0001791] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 02/07/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Our knowledge on zebrafish reproduction is very limited. We generated a gonad-derived cDNA microarray from zebrafish and used it to analyze large-scale gene expression profiles in adult gonads and other organs. METHODOLOGY/PRINCIPAL FINDINGS We have identified 116638 gonad-derived zebrafish expressed sequence tags (ESTs), 21% of which were isolated in our lab. Following in silico normalization, we constructed a gonad-derived microarray comprising 6370 unique, full-length cDNAs from differentiating and adult gonads. Labeled targets from adult gonad, brain, kidney and 'rest-of-body' from both sexes were hybridized onto the microarray. Our analyses revealed 1366, 881 and 656 differentially expressed transcripts (34.7% novel) that showed highest expression in ovary, testis and both gonads respectively. Hierarchical clustering showed correlation of the two gonadal transcriptomes and their similarities to those of the brains. In addition, we have identified 276 genes showing sexually dimorphic expression both between the brains and between the gonads. By in situ hybridization, we showed that the gonadal transcripts with the strongest array signal intensities were germline-expressed. We found that five members of the GTP-binding septin gene family, from which only one member (septin 4) has previously been implicated in reproduction in mice, were all strongly expressed in the gonads. CONCLUSIONS/SIGNIFICANCE We have generated a gonad-derived zebrafish cDNA microarray and demonstrated its usefulness in identifying genes with sexually dimorphic co-expression in both the gonads and the brains. We have also provided the first evidence of large-scale differential gene expression between female and male brains of a teleost. Our microarray would be useful for studying gonad development, differentiation and function not only in zebrafish but also in related teleosts via cross-species hybridizations. Since several genes have been shown to play similar roles in gonadogenesis in zebrafish and other vertebrates, our array may even provide information on genetic disorders affecting gonadal phenotypes and fertility in mammals.
Collapse
Affiliation(s)
- Rajini Sreenivasan
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Minnie Cai
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Richard Bartfai
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Xingang Wang
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Alan Christoffels
- Computational Biology, Temasek Life Sciences Laboratory, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Laszlo Orban
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
93
|
Roy A, Matzuk MM. Society for Reproductive Biology Founders' Lecture 2007. Insights into germ cell biology: from the bench to the clinic. Reprod Fertil Dev 2007; 19:783-91. [PMID: 17897580 DOI: 10.1071/rd07090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 07/18/2007] [Indexed: 12/22/2022] Open
Abstract
The germline is unique among tissues in being the only lineage that is transmitted through generations. The gonadal somatic cells that interact with male and female germ cells are equally important for their juxtacrine and paracrine signalling pathways that lead to the formation of functionally mature gametes and healthy progeny. The present review summarises exciting new studies that our group and others have achieved at the frontier of male and female germ cell biology and in studying transforming growth factor-beta signalling pathways in oocyte-somatic cell interactions and gonadal growth and differentiation. In the process, we have produced over 70 transgenic and knockout models to study reproduction in vivo. These models have helped us identify novel and unexplored areas of germ cell biology and translate this work into the fertility clinic.
Collapse
Affiliation(s)
- Angshumoy Roy
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | | |
Collapse
|