51
|
Abstract
In this review, Ng and Shyh-Chang review recent metabolomic studies of stem cell metabolism that have revealed how metabolic pathways can convey changes in the extrinsic environment or their niche to program stem cell fates. Advances in metabolomics have deepened our understanding of the roles that specific modes of metabolism play in programming stem cell fates. Here, we review recent metabolomic studies of stem cell metabolism that have revealed how metabolic pathways can convey changes in the extrinsic environment or their niche to program stem cell fates. The metabolic programming of stem cells represents a fine balance between the intrinsic needs of a cellular state and the constraints imposed by extrinsic conditions. A more complete understanding of these needs and constraints will afford us greater mastery over our control of stem cell fates.
Collapse
Affiliation(s)
| | - Huck-Hui Ng
- Genome Institute of Singapore, Singapore 138675
| |
Collapse
|
52
|
Hsu HJ, Drummond-Barbosa D. A visual screen for diet-regulated proteins in the Drosophila ovary using GFP protein trap lines. Gene Expr Patterns 2017; 23-24:13-21. [PMID: 28093350 DOI: 10.1016/j.gep.2017.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/06/2017] [Accepted: 01/12/2017] [Indexed: 02/06/2023]
Abstract
The effect of diet on reproduction is well documented in a large number of organisms; however, much remains to be learned about the molecular mechanisms underlying this connection. The Drosophila ovary has a well described, fast and largely reversible response to diet. Ovarian stem cells and their progeny proliferate and grow faster on a yeast-rich diet than on a yeast-free (poor) diet, and death of early germline cysts, degeneration of early vitellogenic follicles and partial block in ovulation further contribute to the ∼60-fold decrease in egg laying observed on a poor diet. Multiple diet-dependent factors, including insulin-like peptides, the steroid ecdysone, the nutrient sensor Target of Rapamycin, AMP-dependent kinase, and adipocyte factors mediate this complex response. Here, we describe the results of a visual screen using a collection of green fluorescent protein (GFP) protein trap lines to identify additional factors potentially involved in this response. In each GFP protein trap line, an artificial GFP exon is fused in frame to an endogenous protein, such that the GFP fusion pattern parallels the levels and subcellular localization of the corresponding native protein. We identified 53 GFP-tagged proteins that exhibit changes in levels and/or subcellular localization in the ovary at 12-16 hours after switching females from rich to poor diets, suggesting them as potential candidates for future functional studies.
Collapse
Affiliation(s)
- Hwei-Jan Hsu
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
53
|
Laws KM, Drummond-Barbosa D. Control of Germline Stem Cell Lineages by Diet and Physiology. Results Probl Cell Differ 2017; 59:67-99. [PMID: 28247046 DOI: 10.1007/978-3-319-44820-6_3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tight coupling of reproduction to environmental factors and physiological status is key to long-term species survival. In particular, highly conserved pathways modulate germline stem cell lineages according to nutrient availability. This chapter focuses on recent in vivo studies in genetic model organisms that shed light on how diet-dependent signals control the proliferation, maintenance, and survival of adult germline stem cells and their progeny. These signaling pathways can operate intrinsically in the germ line, modulate the niche, or act through intermediate organs to influence stem cells and their differentiating progeny. In addition to illustrating the extent of dietary regulation of reproduction, findings from these studies have implications for fertility during aging or disease states.
Collapse
Affiliation(s)
- Kaitlin M Laws
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA. .,Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
54
|
Singh R, Hansen D. Regulation of the Balance Between Proliferation and Differentiation in Germ Line Stem Cells. Results Probl Cell Differ 2017; 59:31-66. [PMID: 28247045 DOI: 10.1007/978-3-319-44820-6_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In many animals, reproductive fitness is dependent upon the production of large numbers of gametes over an extended period of time. This level of gamete production is possible due to the continued presence of germ line stem cells. These cells can produce two types of daughter cells, self-renewing daughter cells that will maintain the stem cell population and differentiating daughter cells that will become gametes. A balance must be maintained between the proliferating self-renewing cells and those that differentiate for long-term gamete production to be maintained. Too little proliferation can result in depletion of the stem cell population, while too little differentiation can lead to a lack of gamete formation and possible tumor formation. In this chapter, we discuss our current understanding of how the balance between proliferation and differentiation is achieved in three well-studied germ line model systems: the Drosophila female, the mouse male, and the C. elegans hermaphrodite. While these three systems have significant differences in how this balance is regulated, including differences in stem cell population size, signaling pathways utilized, and the use of symmetric and/or asymmetric cell divisions, there are also similarities found between them. These similarities include the reliance on a predominant signaling pathway to promote proliferation, negative feedback loops to rapidly shutoff proliferation-promoting cues, close association of the germ line stem cells with a somatic niche, cytoplasmic connections between cells, projections emanating from the niche cell, and multiple mechanisms to limit the spatial influence of the niche. A comparison between different systems may help to identify elements that are essential for a proper balance between proliferation and differentiation to be achieved and elements that may be achieved through various mechanisms.
Collapse
Affiliation(s)
- Ramya Singh
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada, T2N 1N4.
| |
Collapse
|
55
|
Blake AJ, Finger DS, Hardy VL, Ables ET. RNAi-Based Techniques for the Analysis of Gene Function in Drosophila Germline Stem Cells. Methods Mol Biol 2017; 1622:161-184. [PMID: 28674809 DOI: 10.1007/978-1-4939-7108-4_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Elucidating the full repertoire of molecular mechanisms that promote stem cell maintenance requires sophisticated techniques for identifying and characterizing gene function in stem cells in their native environment. Ovarian germline stem cells in the fruit fly, Drosophila melanogaster, are an ideal model to study the complex molecular mechanisms driving stem cell function in vivo. A variety of new genetic tools make RNAi a useful complement to traditional genetic mutants for the investigation of the molecular mechanisms guiding ovarian germline stem cell function. Here, we provide a detailed guide for using targeted RNAi knockdown for the discovery of gene function in ovarian germline stem cells and their progeny.
Collapse
Affiliation(s)
- Amelia J Blake
- East Carolina University, 1001 E. 10th Street, Mailstop 551, Greenville, NC, 27858, USA
| | - Danielle S Finger
- East Carolina University, 1001 E. 10th Street, Mailstop 551, Greenville, NC, 27858, USA
| | - Victoria L Hardy
- East Carolina University, 1001 E. 10th Street, Mailstop 551, Greenville, NC, 27858, USA
| | - Elizabeth T Ables
- East Carolina University, 1001 E. 10th Street, Mailstop 551, Greenville, NC, 27858, USA.
| |
Collapse
|
56
|
Brookheart RT, Duncan JG. Drosophila melanogaster: An emerging model of transgenerational effects of maternal obesity. Mol Cell Endocrinol 2016; 435:20-28. [PMID: 26687062 PMCID: PMC4903087 DOI: 10.1016/j.mce.2015.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/25/2015] [Accepted: 12/07/2015] [Indexed: 12/17/2022]
Abstract
The prevalence of obesity in the world is endemic with one rapidly growing health concern being maternal obesity. Obesity during pregnancy increases the risk of gestational diabetes, miscarriage, and preeclampsia, while rendering offspring susceptible to developmental anomalies and long-term metabolic complications including type 2 diabetes and cardiovascular disease. Several studies in humans and rodents demonstrate a correlation between the risks of maternal overnutrition and factors such as epigenetics, mitochondrial dysfunction, insulin resistance, ER stress, and immune system disruption. At present, the molecular mechanisms connecting these factors to maternal obesity are unknown. This review focuses on the use of Drosophila melanogaster to study human metabolic diseases, including obesity, and its emerging use to elucidate the mechanisms of maternal overnutrition and the impact on offspring.
Collapse
Affiliation(s)
- Rita T Brookheart
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer G Duncan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
57
|
Laws KM, Drummond-Barbosa D. AMP-activated protein kinase has diet-dependent and -independent roles in Drosophila oogenesis. Dev Biol 2016; 420:90-99. [PMID: 27729213 DOI: 10.1016/j.ydbio.2016.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/16/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022]
Abstract
Multiple aspects of organismal physiology influence the number and activity of stem cells and their progeny, including nutritional status. Previous studies demonstrated that Drosophila germline stem cells (GSCs), follicle stem cells (FSCs), and their progeny sense and respond to diet via complex mechanisms involving many systemic and local signals. AMP-activated protein kinase, or AMPK, is a highly conserved regulator of energy homeostasis known to be activated under low cellular energy conditions; however, its role in the ovarian response to diet has not been investigated. Here, we describe nutrient-dependent and -independent requirements for AMPK in Drosophila oogenesis. We found that AMPK is cell autonomously required for the slow down in GSC and follicle cell proliferation that occurs on a poor diet. Similarly, AMPK activity is necessary in the germline for the degeneration of vitellogenic stages in response to nutrient deprivation. In contrast, AMPK activity is not required within the germline to modulate its growth. Instead, AMPK acts in follicle cells to negatively regulate their growth and proliferation, thereby indirectly limiting the size of the underlying germline cyst within developing follicles. Paradoxically, AMPK is required for GSC maintenance in well-fed flies (when AMPK activity is presumably at its lowest), suggesting potentially important roles for basal AMPK activity in specific cell types. Finally, we identified a nutrient-independent, developmental role for AMPK in cyst encapsulation by follicle cells. These results uncover specific AMPK requirements in multiple cell types in the ovary and suggest that AMPK can function outside of its canonical nutrient-sensing role in specific developmental contexts.
Collapse
Affiliation(s)
- Kaitlin M Laws
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room W3118, Baltimore, MD 21205, USA.
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room W3118, Baltimore, MD 21205, USA; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room W3118, Baltimore, MD 21205, USA.
| |
Collapse
|
58
|
Amoyel M, Hillion KH, Margolis SR, Bach EA. Somatic stem cell differentiation is regulated by PI3K/Tor signaling in response to local cues. Development 2016; 143:3914-3925. [PMID: 27633989 DOI: 10.1242/dev.139782] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/06/2016] [Indexed: 12/25/2022]
Abstract
Stem cells reside in niches that provide signals to maintain self-renewal, and differentiation is viewed as a passive process that depends on loss of access to these signals. Here, we demonstrate that the differentiation of somatic cyst stem cells (CySCs) in the Drosophila testis is actively promoted by PI3K/Tor signaling, as CySCs lacking PI3K/Tor activity cannot differentiate properly. We find that an insulin peptide produced by somatic cells immediately outside of the stem cell niche acts locally to promote somatic differentiation through Insulin-like receptor (InR) activation. These results indicate that there is a local 'differentiation' niche that upregulates PI3K/Tor signaling in the early daughters of CySCs. Finally, we demonstrate that CySCs secrete the Dilp-binding protein ImpL2, the Drosophila homolog of IGFBP7, into the stem cell niche, which blocks InR activation in CySCs. Thus, we show that somatic cell differentiation is controlled by PI3K/Tor signaling downstream of InR and that the local production of positive and negative InR signals regulates the differentiation niche. These results support a model in which leaving the stem cell niche and initiating differentiation are actively induced by signaling.
Collapse
Affiliation(s)
- Marc Amoyel
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 550 1st Avenue, New York, NY 10016, USA .,Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| | - Kenzo-Hugo Hillion
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| | - Shally R Margolis
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| | - Erika A Bach
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 550 1st Avenue, New York, NY 10016, USA .,Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| |
Collapse
|
59
|
Solovyov IA, Dobrovol’skaya EV, Moskalev AA. Genetic control of circadian rhythms and aging. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416040104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
60
|
Barton LJ, Lovander KE, Pinto BS, Geyer PK. Drosophila male and female germline stem cell niches require the nuclear lamina protein Otefin. Dev Biol 2016; 415:75-86. [PMID: 27174470 DOI: 10.1016/j.ydbio.2016.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Abstract
The nuclear lamina is an extensive protein network that underlies the inner nuclear envelope. This network includes the LAP2-emerin-MAN1-domain (LEM-D) protein family, proteins that share an association with the chromatin binding protein Barrier-to-autointegration factor (BAF). Loss of individual LEM-D proteins causes progressive, tissue-restricted diseases, known as laminopathies. Mechanisms associated with laminopathies are not yet understood. Here we present our studies of one of the Drosophila nuclear lamina LEM-D proteins, Otefin (Ote), a homologue of emerin. Previous studies have shown that Ote is autonomously required for the survival of female germline stem cells (GSCs). We demonstrate that Ote is also required for survival of somatic cells in the ovarian niche, with loss of Ote causing a decrease in cap cell number and altered signal transduction. We show germ cell-restricted expression of Ote rescues these defects, revealing a non-autonomous function for Ote in niche maintenance and emphasizing that GSCs contribute to the maintenance of their own niches. Further, we investigate the requirement of Ote in the male fertility. We show that ote mutant males become prematurely sterile as they age. Parallel to observations in females, this sterility is associated with GSC loss and changes in somatic cells of the niche, phenotypes that are largely rescued by germ cell-restricted Ote expression. Taken together, our studies demonstrate that Ote is required autonomously for survival of two stem cell populations, as well as non-autonomously for maintenance of two somatic niches. Finally, our data add to growing evidence that LEM-D proteins have critical roles in stem cell survival and tissue homeostasis.
Collapse
Affiliation(s)
- Lacy J Barton
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Kaylee E Lovander
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Belinda S Pinto
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Pamela K Geyer
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
61
|
Zhao X, Bergland AO, Behrman EL, Gregory BD, Petrov DA, Schmidt PS. Global Transcriptional Profiling of Diapause and Climatic Adaptation in Drosophila melanogaster. Mol Biol Evol 2016; 33:707-20. [PMID: 26568616 PMCID: PMC5009998 DOI: 10.1093/molbev/msv263] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Wild populations of the model organism Drosophila melanogaster experience highly heterogeneous environments over broad geographical ranges as well as over seasonal and annual timescales. Diapause is a primary adaptation to environmental heterogeneity, and in D. melanogaster the propensity to enter diapause varies predictably with latitude and season. Here we performed global transcriptomic profiling of naturally occurring variation in diapause expression elicited by short day photoperiod and moderately low temperature in two tissue types associated with neuroendocrine and endocrine signaling, heads, and ovaries. We show that diapause in D. melanogaster is an actively regulated phenotype at the transcriptional level, suggesting that diapause is not a simple physiological or reproductive quiescence. Differentially expressed genes and pathways are highly distinct in heads and ovaries, demonstrating that the diapause response is not uniform throughout the soma and suggesting that it may be comprised of functional modules associated with specific tissues. Genes downregulated in heads of diapausing flies are significantly enriched for clinally varying single nucleotide polymorphism (SNPs) and seasonally oscillating SNPs, consistent with the hypothesis that diapause is a driving phenotype of climatic adaptation. We also show that chromosome location-based coregulation of gene expression is present in the transcriptional regulation of diapause. Taken together, these results demonstrate that diapause is a complex phenotype actively regulated in multiple tissues, and support the hypothesis that natural variation in diapause propensity underlies adaptation to spatially and temporally varying selective pressures.
Collapse
Affiliation(s)
- Xiaqing Zhao
- Department of Biology, University of Pennsylvania
| | | | | | | | | | | |
Collapse
|
62
|
Liu Z, Zhong G, Chai PC, Luo L, Liu S, Yang Y, Baeg GH, Cai Y. Coordinated niche-associated signals promote germline homeostasis in the Drosophila ovary. J Cell Biol 2016; 211:469-84. [PMID: 26504174 PMCID: PMC4621830 DOI: 10.1083/jcb.201503033] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Stem cell niches provide localized signaling molecules to promote stem cell fate and to suppress differentiation. The Drosophila melanogaster ovarian niche is established by several types of stromal cells, including terminal filament cells, cap cells, and escort cells (ECs). Here, we show that, in addition to its well-known function as a niche factor expressed in cap cells, the Drosophila transforming growth factor β molecule Decapentaplegic (Dpp) is expressed at a low level in ECs to maintain a pool of partially differentiated germline cells that may dedifferentiate to replenish germline stem cells upon their depletion under normal and stress conditions. Our study further reveals that the Dpp level in ECs is modulated by Hedgehog (Hh) ligands, which originate from both cap cells and ECs. We also demonstrate that Hh signaling exerts its function by suppressing Janus kinase/signal transducer activity, which promotes Dpp expression in ECs. Collectively, our data suggest a complex interplay of niche-associated signals that controls the development of a stem cell lineage.
Collapse
Affiliation(s)
- Zhong Liu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | - Guohua Zhong
- Laboratory of Insect Toxicology, South China Agriculture University, Guangzhou, PR China 510642
| | - Phing Chian Chai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | - Lichao Luo
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604 Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Sen Liu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | - Ying Yang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604 Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Gyeong-Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604 Department of Biological Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
63
|
Sanchez CG, Teixeira FK, Czech B, Preall JB, Zamparini AL, Seifert JRK, Malone CD, Hannon GJ, Lehmann R. Regulation of Ribosome Biogenesis and Protein Synthesis Controls Germline Stem Cell Differentiation. Cell Stem Cell 2016; 18:276-90. [PMID: 26669894 PMCID: PMC4744108 DOI: 10.1016/j.stem.2015.11.004] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/01/2015] [Accepted: 11/06/2015] [Indexed: 12/18/2022]
Abstract
Complex regulatory networks regulate stem cell behavior and contributions to tissue growth, repair, and homeostasis. A full understanding of the networks controlling stem cell self-renewal and differentiation, however, has not yet been realized. To systematically dissect these networks and identify their components, we performed an unbiased, transcriptome-wide in vivo RNAi screen in female Drosophila germline stem cells (GSCs). Based on characterized cellular defects, we classified 646 identified genes into phenotypic and functional groups and unveiled a comprehensive set of networks regulating GSC maintenance, survival, and differentiation. This analysis revealed an unexpected role for ribosomal assembly factors in controlling stem cell cytokinesis. Moreover, our data show that the transition from self-renewal to differentiation relies on enhanced ribosome biogenesis accompanied by increased protein synthesis. Collectively, these results detail the extensive genetic networks that control stem cell homeostasis and highlight the intricate regulation of protein synthesis during differentiation.
Collapse
Affiliation(s)
- Carlos G Sanchez
- Howard Hughes Medical Institute and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Felipe Karam Teixeira
- Howard Hughes Medical Institute and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| | - Benjamin Czech
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jonathan B Preall
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Andrea L Zamparini
- Howard Hughes Medical Institute and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Jessica R K Seifert
- Howard Hughes Medical Institute and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA; Department of Biology, Farmingdale State College, State University of New York, Farmingdale, NY 11735, USA
| | - Colin D Malone
- Howard Hughes Medical Institute and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Gregory J Hannon
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ruth Lehmann
- Howard Hughes Medical Institute and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
64
|
Min-Wen JC, Jun-Hao ET, Shyh-Chang N. Stem cell mitochondria during aging. Semin Cell Dev Biol 2016; 52:110-8. [PMID: 26851627 DOI: 10.1016/j.semcdb.2016.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 01/06/2023]
Abstract
Mitochondria are the central hubs of cellular metabolism, equipped with their own mitochondrial DNA (mtDNA) blueprints to direct part of the programming of mitochondrial oxidative metabolism and thus reactive oxygen species (ROS) levels. In stem cells, many stem cell factors governing the intricate balance between self-renewal and differentiation have been found to directly regulate mitochondrial processes to control stem cell behaviors during tissue regeneration and aging. Moreover, numerous nutrient-sensitive signaling pathways controlling organismal longevity in an evolutionarily conserved fashion also influence stem cell-mediated tissue homeostasis during aging via regulation of stem cell mitochondria. At the genomic level, it has been demonstrated that heritable mtDNA mutations and variants affect mammalian stem cell homeostasis and influence the risk for human degenerative diseases during aging. Because such a multitude of stem cell factors and signaling pathways ultimately converge on the mitochondria as the primary mechanism to modulate cellular and organismal longevity, it would be most efficacious to develop technologies to therapeutically target and direct mitochondrial repair in stem cells, as a unified strategy to combat aging-related degenerative diseases in the future.
Collapse
Affiliation(s)
- Jason Chua Min-Wen
- Stem Cell & Regenerative Biology, Genome Institute of Singapore, 60 Biopolis St, S138672, Singapore
| | - Elwin Tan Jun-Hao
- Stem Cell & Regenerative Biology, Genome Institute of Singapore, 60 Biopolis St, S138672, Singapore
| | - Ng Shyh-Chang
- Stem Cell & Regenerative Biology, Genome Institute of Singapore, 60 Biopolis St, S138672, Singapore.
| |
Collapse
|
65
|
Seidel HS, Kimble J. Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/Notch. eLife 2015; 4. [PMID: 26551561 PMCID: PMC4718729 DOI: 10.7554/elife.10832] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/07/2015] [Indexed: 12/13/2022] Open
Abstract
Many types of adult stem cells exist in a state of cell-cycle quiescence, yet it has remained unclear whether quiescence plays a role in maintaining the stem cell fate. Here we establish the adult germline of Caenorhabditis elegans as a model for facultative stem cell quiescence. We find that mitotically dividing germ cells--including germline stem cells--become quiescent in the absence of food. This quiescence is characterized by a slowing of S phase, a block to M-phase entry, and the ability to re-enter M phase rapidly in response to re-feeding. Further, we demonstrate that cell-cycle quiescence alters the genetic requirements for stem cell maintenance: The signaling pathway required for stem cell maintenance under fed conditions--GLP-1/Notch signaling--becomes dispensable under conditions of quiescence. Thus, cell-cycle quiescence can itself maintain stem cells, independent of the signaling pathway otherwise essential for such maintenance.
Collapse
Affiliation(s)
- Hannah S Seidel
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States.,The Ellison Medical Foundation Fellow of the Life Sciences Research Foundation, The Lawrence Ellison Foundation, Mount Airy, United States
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States.,Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
66
|
Subramaniam G, Campsteijn C, Thompson EM. Co-expressed Cyclin D variants cooperate to regulate proliferation of germline nuclei in a syncytium. Cell Cycle 2015; 14:2129-41. [PMID: 25928155 DOI: 10.1080/15384101.2015.1041690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The role of the G1-phase Cyclin D-CDK 4/6 regulatory module in linking germline stem cell (GSC) proliferation to nutrition is evolutionarily variable. In invertebrate Drosophila and C. elegans GSC models, G1 is nearly absent and Cyclin E is expressed throughout the cell cycle, whereas vertebrate spermatogonial stem cells have a distinct G1 and Cyclin D1 plays an important role in GSC renewal. In the invertebrate, chordate, Oikopleura, where germline nuclei proliferate asynchronously in a syncytium, we show a distinct G1-phase in which 2 Cyclin D variants are co-expressed. Cyclin Dd, present in both somatic endocycling cells and the germline, localized to germline nuclei during G1 before declining at G1/S. Cyclin Db, restricted to the germline, remained cytoplasmic, co-localizing in foci with the Cyclin-dependent Kinase Inhibitor, CKIa. These foci showed a preferential spatial distribution adjacent to syncytial germline nuclei at G1/S. During nutrient-restricted growth arrest, upregulated CKIa accumulated in arrested somatic endoreduplicative nuclei but did not do so in germline nuclei. In the latter context, Cyclin Dd levels gradually decreased. In contrast, the Cyclin Dbβ splice variant, lacking the Rb-interaction domain and phosphodegron, was specifically upregulated and the number of cytoplasmic foci containing this variant increased. This upregulation was dependent on stress response MAPK p38 signaling. We conclude that under favorable conditions, Cyclin Dbβ-CDK6 sequesters CKIa in the cytoplasm to cooperate with Cyclin Dd-CDK6 in promoting germline nuclear proliferation. Under nutrient-restriction, this sequestration function is enhanced to permit continued, though reduced, cycling of the germline during somatic growth arrest.
Collapse
Key Words
- CAK, CDK Activating Kinase
- CDK, Cyclin-Dependent Kinase
- CKI, CDK inhibitor
- CREB, CRE Binding protein
- CRM, Chromosome Region Maintenance
- ERK, Extracellular signal-regulated kinases
- G-phase, Gap phase
- GA, Growth Arrest
- GFP, Green Fluorescent Protein
- GSC, Germline Stem Cell
- IdU, 5-Iodo-2′-deoxyuridine.
- M-phase, Mitotic phase
- MAPK p38
- MAPK, Mitogen Activated Protein Kinase
- MSK, Mitogen and Stress activating Kinase
- NLS, Nuclear Localization Sequence
- PCNA, Proliferating cell nuclear antigen
- Rb, Retinoblastoma protein
- S-phase, DNA Synthesis phase
- SCF complex, Skp, Cullin, F-box containing complex
- TOR signaling
- TOR:Target Of Rapamycin
- cyclin D splice variants
- cyclin-dependent kinase inhibitor
- cytoplasmic sequestration
- growth arrest
- niche
- stem cell
- syncytium
- urochordate
Collapse
Affiliation(s)
- Gunasekaran Subramaniam
- a Sars International Center for Marine Molecular Biology; University of Bergen ; Bergen , Norway
| | | | | |
Collapse
|
67
|
Abstract
Retinal degenerative diseases, including retinitis pigmentosa, age-related macular degeneration, and glaucoma, still lack effective medical treatments. The stem cell-based regenerative approach has been proposed to treat these degenerative diseases. The major challenge for regenerative ophthalmology is to produce enough desirable retinal neurons in vitro from various stem cell types. Extracellular matrix proteins are important for stem cell self-renewal and differentiation in various systems. They have also been used in combination with various growth factors to expand retinal stem cells and produce desirable retinal neuronal types. This review summarizes our current understanding of how extracellular matrix proteins regulate stem cell function and discusses their application in regenerative ophthalmology.
Collapse
|
68
|
Serbus LR, White PM, Silva JP, Rabe A, Teixeira L, Albertson R, Sullivan W. The impact of host diet on Wolbachia titer in Drosophila. PLoS Pathog 2015; 11:e1004777. [PMID: 25826386 PMCID: PMC4380406 DOI: 10.1371/journal.ppat.1004777] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 03/03/2015] [Indexed: 12/31/2022] Open
Abstract
While a number of studies have identified host factors that influence endosymbiont titer, little is known concerning environmental influences on titer. Here we examined nutrient impact on maternally transmitted Wolbachia endosymbionts in Drosophila. We demonstrate that Drosophila reared on sucrose- and yeast-enriched diets exhibit increased and reduced Wolbachia titers in oogenesis, respectively. The yeast-induced Wolbachia depletion is mediated in large part by the somatic TOR and insulin signaling pathways. Disrupting TORC1 with the small molecule rapamycin dramatically increases oocyte Wolbachia titer, whereas hyper-activating somatic TORC1 suppresses oocyte titer. Furthermore, genetic ablation of insulin-producing cells located in the Drosophila brain abolished the yeast impact on oocyte titer. Exposure to yeast-enriched diets altered Wolbachia nucleoid morphology in oogenesis. Furthermore, dietary yeast increased somatic Wolbachia titer overall, though not in the central nervous system. These findings highlight the interactions between Wolbachia and germline cells as strongly nutrient-sensitive, and implicate conserved host signaling pathways by which nutrients influence Wolbachia titer.
Collapse
Affiliation(s)
- Laura R. Serbus
- Department of Biological Sciences, Florida International University Modesto A. Maidique Campus, Miami, Florida, United States of America
- Biomolecular Sciences Institute, Florida International University Modesto A. Maidique Campus, Miami, Florida, United States of America
| | - Pamela M. White
- Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jessica Pintado Silva
- Department of Biological Sciences, Florida International University Modesto A. Maidique Campus, Miami, Florida, United States of America
- Biomolecular Sciences Institute, Florida International University Modesto A. Maidique Campus, Miami, Florida, United States of America
| | - Amanda Rabe
- Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | | | - Roger Albertson
- Biology Department, Albion College, Albion, Michigan, United States of America
| | - William Sullivan
- Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
69
|
Abstract
Stem cells give rise to tissues and organs during development and maintain their integrity during adulthood. They have the potential to self-renew or differentiate at each division. To ensure proper organ growth and homeostasis, self-renewal versus differentiation decisions need to be tightly controlled. Systematic genetic studies in Drosophila melanogaster are revealing extensive regulatory networks that control the switch between stem cell self-renewal and differentiation in the germline. These networks, which are based primarily on mutual translational repression, act via interlocked feedback loops to provide robustness to this important fate decision.
Collapse
Affiliation(s)
- Maija Slaidina
- Howard Hughes Medical Institute and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016 Howard Hughes Medical Institute and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Ruth Lehmann
- Howard Hughes Medical Institute and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016 Howard Hughes Medical Institute and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
70
|
Kao S, Tseng C, Wan C, Su Y, Hsieh C, Pi H, Hsu H. Aging and insulin signaling differentially control normal and tumorous germline stem cells. Aging Cell 2015; 14:25-34. [PMID: 25470527 PMCID: PMC4326914 DOI: 10.1111/acel.12288] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2014] [Indexed: 01/01/2023] Open
Abstract
Aging influences stem cells, but the processes involved remain unclear. Insulin signaling, which controls cellular nutrient sensing and organismal aging, regulates the G2 phase of Drosophila female germ line stem cell (GSC) division cycle in response to diet; furthermore, this signaling pathway is attenuated with age. The role of insulin signaling in GSCs as organisms age, however, is also unclear. Here, we report that aging results in the accumulation of tumorous GSCs, accompanied by a decline in GSC number and proliferation rate. Intriguingly, GSC loss with age is hastened by either accelerating (through eliminating expression of Myt1, a cell cycle inhibitory regulator) or delaying (through mutation of insulin receptor (dinR) GSC division, implying that disrupted cell cycle progression and insulin signaling contribute to age-dependent GSC loss. As flies age, DNA damage accumulates in GSCs, and the S phase of the GSC cell cycle is prolonged. In addition, GSC tumors (which escape the normal stem cell regulatory microenvironment, known as the niche) still respond to aging in a similar manner to normal GSCs, suggesting that niche signals are not required for GSCs to sense or respond to aging. Finally, we show that GSCs from mated and unmated females behave similarly, indicating that female GSC–male communication does not affect GSCs with age. Our results indicate the differential effects of aging and diet mediated by insulin signaling on the stem cell division cycle, highlight the complexity of the regulation of stem cell aging, and describe a link between ovarian cancer and aging.
Collapse
Affiliation(s)
- Shih‐Han Kao
- Institute of Cellular and Organismic Biology Academia Sinica Taipei 11529 Taiwan
| | - Chen‐Yuan Tseng
- Institute of Cellular and Organismic Biology Academia Sinica Taipei 11529 Taiwan
- Graduate Institute of Life Sciences National Defense Medical Center Taipei 11490 Taiwan
| | - Chih‐Ling Wan
- Institute of Cellular and Organismic Biology Academia Sinica Taipei 11529 Taiwan
| | - Yu‐Han Su
- Institute of Cellular and Organismic Biology Academia Sinica Taipei 11529 Taiwan
| | - Chang‐Che Hsieh
- Department of Biomedical Science College of Medicine Chang Gung University Tao‐Yuan 333 Taiwan
| | - Haiwei Pi
- Department of Biomedical Science College of Medicine Chang Gung University Tao‐Yuan 333 Taiwan
| | - Hwei‐Jan Hsu
- Institute of Cellular and Organismic Biology Academia Sinica Taipei 11529 Taiwan
- Graduate Institute of Life Sciences National Defense Medical Center Taipei 11490 Taiwan
| |
Collapse
|
71
|
Eikenes ÅH, Malerød L, Christensen AL, Steen CB, Mathieu J, Nezis IP, Liestøl K, Huynh JR, Stenmark H, Haglund K. ALIX and ESCRT-III coordinately control cytokinetic abscission during germline stem cell division in vivo. PLoS Genet 2015; 11:e1004904. [PMID: 25635693 PMCID: PMC4312039 DOI: 10.1371/journal.pgen.1004904] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/18/2014] [Indexed: 12/21/2022] Open
Abstract
Abscission is the final step of cytokinesis that involves the cleavage of the intercellular bridge connecting the two daughter cells. Recent studies have given novel insight into the spatiotemporal regulation and molecular mechanisms controlling abscission in cultured yeast and human cells. The mechanisms of abscission in living metazoan tissues are however not well understood. Here we show that ALIX and the ESCRT-III component Shrub are required for completion of abscission during Drosophila female germline stem cell (fGSC) division. Loss of ALIX or Shrub function in fGSCs leads to delayed abscission and the consequent formation of stem cysts in which chains of daughter cells remain interconnected to the fGSC via midbody rings and fusome. We demonstrate that ALIX and Shrub interact and that they co-localize at midbody rings and midbodies during cytokinetic abscission in fGSCs. Mechanistically, we show that the direct interaction between ALIX and Shrub is required to ensure cytokinesis completion with normal kinetics in fGSCs. We conclude that ALIX and ESCRT-III coordinately control abscission in Drosophila fGSCs and that their complex formation is required for accurate abscission timing in GSCs in vivo. Cytokinesis, the final step of cell division, concludes with a process termed abscission, during which the two daughter cells physically separate. In spite of their importance, the molecular machineries controlling abscission are poorly characterized especially in the context of living metazoan tissues. Here we provide molecular insight into the mechanism of abscission using the fruit fly Drosophila melanogaster as a model organism. We show that the scaffold protein ALIX and the ESCRT-III component Shrub are required for completion of abscission in Drosophila female germline stem cells (fGSCs). ESCRT-III has been implicated in topologically similar membrane scission events as abscission, namely intraluminal vesicle formation at endosomes and virus budding. Here we demonstrate that ALIX and Shrub co-localize and interact to promote abscission with correct timing in Drosophila fGSCs. We thus show that ALIX and ESCRT-III coordinately control abscission in Drosophila fGSCs cells and report an evolutionarily conserved function of the ALIX/ESCRT-III pathway during cytokinesis in a multi-cellular organism.
Collapse
Affiliation(s)
- Åsmund H. Eikenes
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lene Malerød
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anette Lie Christensen
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Chloé B. Steen
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Juliette Mathieu
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
- CNRS UMR3215, Inserm U934 F-75248, Paris, France
| | - Ioannis P. Nezis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Knut Liestøl
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Jean-René Huynh
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
- CNRS UMR3215, Inserm U934 F-75248, Paris, France
| | - Harald Stenmark
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kaisa Haglund
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
72
|
Laws KM, Sampson LL, Drummond-Barbosa D. Insulin-independent role of adiponectin receptor signaling in Drosophila germline stem cell maintenance. Dev Biol 2015; 399:226-36. [PMID: 25576925 DOI: 10.1016/j.ydbio.2014.12.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/02/2014] [Accepted: 12/29/2014] [Indexed: 10/24/2022]
Abstract
Adipocytes have key endocrine roles, mediated in large part by secreted protein hormones termed adipokines. The adipokine adiponectin is well known for its role in sensitizing peripheral tissues to insulin, and several lines of evidence suggest that adiponectin might also modulate stem cells/precursors. It remains unclear, however, how adiponectin signaling controls stem cells and whether this role is secondary to its insulin-sensitizing effects or distinct. Drosophila adipocytes also function as an endocrine organ and, although no obvious adiponectin homolog has been identified, Drosophila AdipoR encodes a well-conserved homolog of mammalian adiponectin receptors. Here, we generate a null AdipoR allele and use clonal analysis to demonstrate an intrinsic requirement for AdipoR in germline stem cell (GSC) maintenance in the Drosophila ovary. AdipoR null GSCs are not fully responsive to bone morphogenetic protein ligands from the niche and have a slight reduction in E-cadherin levels at the GSC-niche junction. Conversely, germline-specific overexpression of AdipoR inhibits natural GSC loss, suggesting that reduction in adiponectin signaling might contribute to the normal decline in GSC numbers observed over time in wild-type females. Surprisingly, AdipoR is not required for insulin sensitization of the germline, leading us to speculate that insulin sensitization is a more recently acquired function than stem cell regulation in the evolutionary history of adiponectin signaling. Our findings establish Drosophila female GSCs as a new system for future studies addressing the molecular mechanisms whereby adiponectin receptor signaling modulates stem cell fate.
Collapse
Affiliation(s)
- Kaitlin M Laws
- Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, Baltimore, MD, USA
| | - Leesa L Sampson
- Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, Baltimore, MD, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, Baltimore, MD, USA; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
73
|
Laws KM, Drummond-Barbosa D. Genetic Mosaic Analysis of Stem Cell Lineages in the Drosophila Ovary. Methods Mol Biol 2015; 1328:57-72. [PMID: 26324429 DOI: 10.1007/978-1-4939-2851-4_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genetic mosaic analyses represent an invaluable approach for the study of stem cell lineages in the Drosophila ovary. The generation of readily identifiable, homozygous mutant cells in the context of wild-type ovarian tissues within intact organisms allows the pinpointing of cellular requirements for gene function, which is particularly important for understanding the physiological control of stem cells and their progeny. Here, we provide a step-by-step guide to the generation and analysis of genetically mosaic ovaries using flippase (FLP)/FLP recognition target (FRT)-mediated recombination in adult Drosophila melanogaster, with a focus on the processes of oogenesis that are controlled by diet-dependent factors.
Collapse
Affiliation(s)
- Kaitlin M Laws
- Division of Reproductive Biology, Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | | |
Collapse
|
74
|
Tseng CY, Kao SH, Wan CL, Cho Y, Tung SY, Hsu HJ. Notch signaling mediates the age-associated decrease in adhesion of germline stem cells to the niche. PLoS Genet 2014; 10:e1004888. [PMID: 25521289 PMCID: PMC4270478 DOI: 10.1371/journal.pgen.1004888] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/12/2014] [Indexed: 11/18/2022] Open
Abstract
Stem cells have an innate ability to occupy their stem cell niche, which in turn, is optimized to house stem cells. Organ aging is associated with reduced stem cell occupancy in the niche, but the mechanisms involved are poorly understood. Here, we report that Notch signaling is increased with age in Drosophila female germline stem cells (GSCs), and this results in their removal from the niche. Clonal analysis revealed that GSCs with low levels of Notch signaling exhibit increased adhesiveness to the niche, thereby out-competing their neighbors with higher levels of Notch; adhesiveness is altered through regulation of E-cadherin expression. Experimental enhancement of Notch signaling in GSCs hastens their age-dependent loss from the niche, and such loss is at least partially mediated by Sex lethal. However, disruption of Notch signaling in GSCs does not delay GSC loss during aging, and nor does it affect BMP signaling, which promotes self-renewal of GSCs. Finally, we show that in contrast to GSCs, Notch activation in the niche (which maintains niche integrity, and thus mediates GSC retention) is reduced with age, indicating that Notch signaling regulates GSC niche occupancy both intrinsically and extrinsically. Our findings expose a novel role of Notch signaling in controlling GSC-niche adhesion in response to aging, and are also of relevance to metastatic cancer cells, in which Notch signaling suppresses cell adhesion. Aging is frequently associated with a decline in the size of stem cell pools, but little is known regarding the molecular mechanisms underlying this process. Here, we report that Notch signaling is increased in GSCs as they age, and this promotes their removal from the niche in an E-cadherin dependent manner. In contrast to GSCs, niche cells exhibit decreased Notch signaling with age; Notch signaling in these cells controls niche integrity, and consequently GSC retention. While Notch signaling in the niche is regulated by insulin signaling, Notch signaling in GSCs is controlled by Sex lethal, an RNA-binding protein. These results imply that Notch signaling is regulated in a cell-type-dependent manner, and coordination between GSCs and their niche facilitates the removal of cells from the niche during the aging process.
Collapse
Affiliation(s)
- Chen-Yuan Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Han Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Ling Wan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yueh Cho
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Yun Tung
- Genomic Core Facility, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
75
|
Armstrong AR, Laws KM, Drummond-Barbosa D. Adipocyte amino acid sensing controls adult germline stem cell number via the amino acid response pathway and independently of Target of Rapamycin signaling in Drosophila. Development 2014; 141:4479-88. [PMID: 25359724 DOI: 10.1242/dev.116467] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
How adipocytes contribute to the physiological control of stem cells is a critical question towards understanding the link between obesity and multiple diseases, including cancers. Previous studies have revealed that adult stem cells are influenced by whole-body physiology through multiple diet-dependent factors. For example, nutrient-dependent pathways acting within the Drosophila ovary control the number and proliferation of germline stem cells (GSCs). The potential role of nutrient sensing by adipocytes in modulating stem cells in other organs, however, remains largely unexplored. Here, we report that amino acid sensing by adult adipocytes specifically modulates the maintenance of GSCs through a Target of Rapamycin-independent mechanism. Instead, reduced amino acid levels and the consequent increase in uncoupled tRNAs trigger activation of the GCN2-dependent amino acid response pathway within adipocytes, causing increased rates of GSC loss. These studies reveal a new step in adipocyte-stem cell crosstalk.
Collapse
Affiliation(s)
- Alissa R Armstrong
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA Division of Reproductive Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kaitlin M Laws
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA Division of Reproductive Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA Division of Reproductive Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
76
|
Zoller R, Schulz C. The Drosophila cyst stem cell lineage: Partners behind the scenes? SPERMATOGENESIS 2014; 2:145-157. [PMID: 23087834 PMCID: PMC3469438 DOI: 10.4161/spmg.21380] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In all animals, germline cells differentiate in intimate contact with somatic cells and interactions between germline and soma are particularly important for germline development and function. In the male gonad of Drosophila melanogaster, the developing germline cells are enclosed by somatic cyst cells. The cyst cells are derived from cyst stem cells (CySCs) of somatic origin and codifferentiate with the germline cells. The fast generation cycle and the genetic tractability of Drosophila has made the Drosophila testis an excellent model for studying both the roles of somatic cells in guiding germline development and the interdependence of two separate stem cell lineages. This review focuses on our current understanding of CySC specification, CySC self-renewing divisions, cyst cell differentiation, and soma-germline interactions. Many of the mechanisms guiding these processes in Drosophila testes are similarly essential for the development and function of tissues in other organisms, most importantly for gametogenesis in mammals.
Collapse
Affiliation(s)
- Richard Zoller
- Department of Cellular Biology; University of Georgia; Athens, GA USA
| | | |
Collapse
|
77
|
Steroid signaling promotes stem cell maintenance in the Drosophila testis. Dev Biol 2014; 394:129-41. [PMID: 25093968 DOI: 10.1016/j.ydbio.2014.07.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/22/2022]
Abstract
Stem cell regulation by local signals is intensely studied, but less is known about the effects of hormonal signals on stem cells. In Drosophila, the primary steroid twenty-hydroxyecdysone (20E) regulates ovarian germline stem cells (GSCs) but was considered dispensable for testis GSC maintenance. Male GSCs reside in a microenvironment (niche) generated by somatic hub cells and adjacent cyst stem cells (CySCs). Here, we show that depletion of 20E from adult males by overexpressing a dominant negative form of the Ecdysone receptor (EcR) or its heterodimeric partner ultraspiracle (usp) causes GSC and CySC loss that is rescued by 20E feeding, uncovering a requirement for 20E in stem cell maintenance. EcR and USP are expressed, activated and autonomously required in the CySC lineage to promote CySC maintenance, as are downstream genes ftz-f1 and E75. In contrast, GSCs non-autonomously require ecdysone signaling. Global inactivation of EcR increases cell death in the testis that is rescued by expression of EcR-B2 in the CySC lineage, indicating that ecdysone signaling supports stem cell viability primarily through a specific receptor isoform. Finally, EcR genetically interacts with the NURF chromatin-remodeling complex, which we previously showed maintains CySCs. Thus, although 20E levels are lower in males than females, ecdysone signaling acts through distinct cell types and effectors to ensure both ovarian and testis stem cell maintenance.
Collapse
|
78
|
Jouandin P, Ghiglione C, Noselli S. Starvation induces FoxO-dependent mitotic-to-endocycle switch pausing during Drosophila oogenesis. Development 2014; 141:3013-21. [PMID: 24993942 DOI: 10.1242/dev.108399] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
When exposed to nutrient challenge, organisms have to adapt their physiology in order to balance reproduction with adult fitness. In mammals, ovarian follicles enter a massive growth phase during which they become highly dependent on gonadotrophic factors and nutrients. Somatic tissues play a crucial role in integrating these signals, controlling ovarian follicle atresia and eventually leading to the selection of a single follicle for ovulation. We used Drosophila follicles as a model to study the effect of starvation on follicle maturation. Upon starvation, Drosophila vitellogenic follicles adopt an 'atresia-like' behavior, in which some slow down their development whereas others enter degeneration. The mitotic-to-endocycle (M/E) transition is a critical step during Drosophila oogenesis, allowing the entry of egg chambers into vitellogenesis. Here, we describe a specific and transient phase during M/E switching that is paused upon starvation. The Insulin pathway induces the pausing of the M/E switch, blocking the entry of egg chambers into vitellogenesis. Pausing of the M/E switch involves a previously unknown crosstalk between FoxO, Cut and Notch that ensures full reversion of the process and rapid resumption of oogenesis upon refeeding. Our work reveals a novel genetic mechanism controlling the extent of the M/E switch upon starvation, thus integrating metabolic cues with development, growth and reproduction.
Collapse
Affiliation(s)
- Patrick Jouandin
- Université Nice Sophia Antipolis, Institut de Biologie Valrose, iBV, Nice 06100, France CNRS, Institut de Biologie Valrose, iBV, UMR 7277, Nice 06100, France INSERM, Institut de Biologie Valrose, iBV, U1091, Nice 06100, France
| | - Christian Ghiglione
- Université Nice Sophia Antipolis, Institut de Biologie Valrose, iBV, Nice 06100, France CNRS, Institut de Biologie Valrose, iBV, UMR 7277, Nice 06100, France INSERM, Institut de Biologie Valrose, iBV, U1091, Nice 06100, France
| | - Stéphane Noselli
- Université Nice Sophia Antipolis, Institut de Biologie Valrose, iBV, Nice 06100, France CNRS, Institut de Biologie Valrose, iBV, UMR 7277, Nice 06100, France INSERM, Institut de Biologie Valrose, iBV, U1091, Nice 06100, France
| |
Collapse
|
79
|
Shim J, Gururaja-Rao S, Banerjee U. Nutritional regulation of stem and progenitor cells in Drosophila. Development 2014; 140:4647-56. [PMID: 24255094 DOI: 10.1242/dev.079087] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stem cells and their progenitors are maintained within a microenvironment, termed the niche, through local cell-cell communication. Systemic signals originating outside the niche also affect stem cell and progenitor behavior. This review summarizes studies that pertain to nutritional effects on stem and progenitor cell maintenance and proliferation in Drosophila. Multiple tissue types are discussed that utilize the insulin-related signaling pathway to convey nutritional information either directly to these progenitors or via other cell types within the niche. The concept of systemic control of these cell types is not limited to Drosophila and may be functional in vertebrate systems, including mammals.
Collapse
Affiliation(s)
- Jiwon Shim
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
80
|
Li CR, Guo D, Pick L. Independent signaling by Drosophila insulin receptor for axon guidance and growth. Front Physiol 2014; 4:385. [PMID: 24478707 PMCID: PMC3895810 DOI: 10.3389/fphys.2013.00385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/09/2013] [Indexed: 12/29/2022] Open
Abstract
The Drosophila insulin receptor (DInR) regulates a diverse array of biological processes including growth, axon guidance, and sugar homeostasis. Growth regulation by DInR is mediated by Chico, the Drosophila homolog of vertebrate insulin receptor substrate proteins IRS1-4. In contrast, DInR regulation of photoreceptor axon guidance in the developing visual system is mediated by the SH2-SH3 domain adaptor protein Dreadlocks (Dock). In vitro studies by others identified five NPXY motifs, one in the juxtamembrane region and four in the signaling C-terminal tail (C-tail), important for interaction with Chico. Here we used yeast two-hybrid assays to identify regions in the DInR C-tail that interact with Dock. These Dock binding sites were in separate portions of the C-tail from the previously identified Chico binding sites. To test whether these sites are required for growth or axon guidance in whole animals, a panel of DInR proteins, in which the putative Chico and Dock interaction sites had been mutated individually or in combination, were tested for their ability to rescue viability, growth and axon guidance defects of dinr mutant flies. Sites required for viability were identified. Unexpectedly, mutation of both putative Dock binding sites, either individually or in combination, did not lead to defects in photoreceptor axon guidance. Thus, either sites also required for viability are necessary for DInR function in axon guidance and/or there is redundancy built into the DInR/Dock interaction such that Dock is able to interact with multiple regions of DInR. We also found that simultaneous mutation of all five NPXY motifs implicated in Chico interaction drastically decreased growth in both male and female adult flies. These animals resembled chico mutants, supporting the notion that DInR interacts directly with Chico in vivo to control body size. Mutation of these five NPXY motifs did not affect photoreceptor axon guidance, segregating the roles of DInR in the processes of growth and axon guidance.
Collapse
Affiliation(s)
- Caroline R Li
- Department of Entomology and Program in Molecular and Cell Biology, University of Maryland College Park, MD, USA
| | - Dongyu Guo
- Department of Entomology and Program in Molecular and Cell Biology, University of Maryland College Park, MD, USA
| | - Leslie Pick
- Department of Entomology and Program in Molecular and Cell Biology, University of Maryland College Park, MD, USA
| |
Collapse
|
81
|
Salzmann V, Chen C, Chiang CYA, Tiyaboonchai A, Mayer M, Yamashita YM. Centrosome-dependent asymmetric inheritance of the midbody ring in Drosophila germline stem cell division. Mol Biol Cell 2013; 25:267-75. [PMID: 24227883 PMCID: PMC3890347 DOI: 10.1091/mbc.e13-09-0541] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The midbody ring (MR) is asymmetrically segregated during asymmetric divisions of germline stem cells (GSCs) in Drosophila. Male GSCs, which inherit the mother centrosome, exclude the MR, whereas female GSCs, which inherit the daughter centrosome, inherit the MR. Moreover, stem cell identity correlates with the mode of MR inheritance. Many stem cells, including Drosophila germline stem cells (GSCs), divide asymmetrically, producing one stem cell and one differentiating daughter. Cytokinesis is often asymmetric, in that only one daughter cell inherits the midbody ring (MR) upon completion of abscission even in apparently symmetrically dividing cells. However, whether the asymmetry in cytokinesis correlates with cell fate or has functional relevance has been poorly explored. Here we show that the MR is asymmetrically segregated during GSC divisions in a centrosome age–dependent manner: male GSCs, which inherit the mother centrosome, exclude the MR, whereas female GSCs, which we here show inherit the daughter centrosome, inherit the MR. We further show that stem cell identity correlates with the mode of MR inheritance. Together our data suggest that the MR does not inherently dictate stem cell identity, although its stereotypical inheritance is under the control of stemness and potentially provides a platform for asymmetric segregation of certain factors.
Collapse
Affiliation(s)
- Viktoria Salzmann
- Life Sciences Institute, Center for Stem Cell Biology, University of Michigan, Ann Arbor, MI 48109 Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109
| | | | | | | | | | | |
Collapse
|
82
|
Badisco L, Van Wielendaele P, Vanden Broeck J. Eat to reproduce: a key role for the insulin signaling pathway in adult insects. Front Physiol 2013; 4:202. [PMID: 23966944 PMCID: PMC3735985 DOI: 10.3389/fphys.2013.00202] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/17/2013] [Indexed: 01/25/2023] Open
Abstract
Insects, like all heterotrophic organisms, acquire from their food the nutrients that are essential for anabolic processes that lead to growth (larval stages) or reproduction (adult stage). In adult females, this nutritional input is processed and results in a very specific output, i.e., the production of fully developed eggs ready for fertilization and deposition. An important role in this input-output transition is attributed to the insulin signaling pathway (ISP). The ISP is considered to act as a sensor of the organism's nutritional status and to stimulate the progression of anabolic events when the status is positive. In several insect species belonging to different orders, the ISP has been demonstrated to positively control vitellogenesis and oocyte growth. Whether or not ISP acts herein via a mediator action of lipophilic insect hormones (ecdysteroids and juvenile hormone) remains debatable and might be differently controlled in different insect orders. Most likely, insulin-related peptides, ecdysteroids and juvenile hormone are involved in a complex regulatory network, in which they mutually influence each other and in which the insect's nutritional status is a crucial determinant of the network's output. The current review will present an overview of the regulatory role of the ISP in female insect reproduction and its interaction with other pathways involving nutrients, lipophilic hormones and neuropeptides.
Collapse
Affiliation(s)
- Liesbeth Badisco
- Department of Animal Physiology and Neurobiology, Research Group of Molecular Developmental Physiology and Signal Transduction KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
83
|
Shyh-Chang N, Daley GQ, Cantley LC. Stem cell metabolism in tissue development and aging. Development 2013; 140:2535-47. [PMID: 23715547 DOI: 10.1242/dev.091777] [Citation(s) in RCA: 419] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in metabolomics and computational analysis have deepened our appreciation for the role of specific metabolic pathways in dictating cell fate. Once thought to be a mere consequence of the state of a cell, metabolism is now known to play a pivotal role in dictating whether a cell proliferates, differentiates or remains quiescent. Here, we review recent studies of metabolism in stem cells that have revealed a shift in the balance between glycolysis, mitochondrial oxidative phosphorylation and oxidative stress during the maturation of adult stem cells, and during the reprogramming of somatic cells to pluripotency. These insights promise to inform strategies for the directed differentiation of stem cells and to offer the potential for novel metabolic or pharmacological therapies to enhance regeneration and the treatment of degenerative disease.
Collapse
Affiliation(s)
- Ng Shyh-Chang
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
84
|
Yang SA, Wang WD, Chen CT, Tseng CY, Chen YN, Hsu HJ. FOXO/Fringe is necessary for maintenance of the germline stem cell niche in response to insulin insufficiency. Dev Biol 2013; 382:124-35. [PMID: 23895933 DOI: 10.1016/j.ydbio.2013.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 12/27/2022]
Abstract
The stem cell niche houses and regulates stem cells by providing both physical contact and local factors that regulate stem cell identity. The stem cell niche also plays a role in integrating niche-local and systemic signals, thereby ensuring that the balance of stem cells meets the needs of the organism. However, it is not clear how these signals are merged within the niche. Nutrient-sensing insulin/FOXO signaling has been previously shown to directly control Notch activation in the Drosophila female germline stem cell (GSC) niche, which maintains the niche and GSC identity. Here, we demonstrate that FOXO directly activates transcription of fringe, a gene encoding a glycosyltransferase that modulates Notch glycosylation. Fringe facilitates Notch inactivation in the GSC niche when insulin signaling is low. We also show that the Notch ligand predominantly involved is GSC niche-derived Delta. These results reveal that FOXO-mediated regulation of fringe links the insulin and Notch signaling pathways in the GSC niche in response to nutrition, and emphasize that stem cells are regulated by complex interactions between niche-local and systemic signals.
Collapse
Affiliation(s)
- Sheng-An Yang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | |
Collapse
|
85
|
Sim C, Denlinger DL. Insulin signaling and the regulation of insect diapause. Front Physiol 2013; 4:189. [PMID: 23885240 PMCID: PMC3717507 DOI: 10.3389/fphys.2013.00189] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/30/2013] [Indexed: 01/22/2023] Open
Abstract
A rich chapter in the history of insect endocrinology has focused on hormonal control of diapause, especially the major roles played by juvenile hormones (JHs), ecdysteroids, and the neuropeptides that govern JH and ecdysteroid synthesis. More recently, experiments with adult diapause in Drosophila melanogaster and the mosquito Culex pipiens, and pupal diapause in the flesh fly Sarcophaga crassipalpis provide strong evidence that insulin signaling is also an important component of the regulatory pathway leading to the diapause phenotype. Insects produce many different insulin-like peptides (ILPs), and not all are involved in the diapause response; ILP-1 appears to be the one most closely linked to diapause in C. pipiens. Many steps in the pathway leading from perception of daylength (the primary environmental cue used to program diapause) to generation of the diapause phenotype remain unknown, but the role for insulin signaling in mosquito diapause appears to be upstream of JH, as evidenced by the fact that application of exogenous JH can rescue the effects of knocking down expression of ILP-1 or the Insulin Receptor. Fat accumulation, enhancement of stress tolerance, and other features of the diapause phenotype are likely linked to the insulin pathway through the action of a key transcription factor, FOXO. This review highlights many parallels for the role of insulin signaling as a regulator in insect diapause and dauer formation in the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Cheolho Sim
- Department of Biology, Baylor University Waco, TX, USA
| | | |
Collapse
|
86
|
Abstract
Many organs respond to physiological challenges by changing tissue size or composition. Such changes may originate from tissue-specific stem cells and their supportive environment (niche). The endocrine system is a major effector and conveyor of physiological changes and as such could alter stem cell behavior in various ways. In this review, we examine how hormones affect stem cell biology in four different organs: the ovary, intestine, hematopoietic system, and mammary gland. Hormones control every stage of stem cell life, including establishment, expansion, maintenance, and differentiation. The effects can be cell autonomous or non-cell autonomous through the niche. Moreover, a single hormone can affect different stem cells in different ways or affect the same stem cell differently at various developmental times. The vast complexity and diversity of stem cell responses to hormonal cues allow hormones to coordinate the body's reaction to physiological challenges.
Collapse
Affiliation(s)
- Dana Gancz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100 Israel; ,
| | | |
Collapse
|
87
|
Lee WC, Micchelli CA. Development and characterization of a chemically defined food for Drosophila. PLoS One 2013; 8:e67308. [PMID: 23844001 PMCID: PMC3699577 DOI: 10.1371/journal.pone.0067308] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/16/2013] [Indexed: 11/19/2022] Open
Abstract
Diet can affect a spectrum of biological processes ranging from behavior to cellular metabolism. Yet, the precise role of an individual dietary constituent can be a difficult variable to isolate experimentally. A chemically defined food (CDF) permits the systematic evaluation of individual macro- and micronutrients. In addition, CDF facilitates the direct comparison of data obtained independently from different laboratories. Here, we report the development and characterization of a CDF for Drosophila. We show that CDF can support the long-term culture of laboratory strains and demonstrate that this formulation has utility in isolating macronutrient from caloric density requirements in studies of development, longevity and reproduction.
Collapse
Affiliation(s)
- Wen-Chih Lee
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Craig A. Micchelli
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
88
|
Abstract
Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases.
Collapse
Affiliation(s)
- Richelle Sopko
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
89
|
Hartman TR, Strochlic TI, Ji Y, Zinshteyn D, O'Reilly AM. Diet controls Drosophila follicle stem cell proliferation via Hedgehog sequestration and release. ACTA ACUST UNITED AC 2013; 201:741-57. [PMID: 23690177 PMCID: PMC3664720 DOI: 10.1083/jcb.201212094] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dietary cholesterol levels control follicle stem cell proliferation in the Drosophila ovary via regulation of Hedgehog protein localization. A healthy diet improves adult stem cell function and delays diseases such as cancer, heart disease, and neurodegeneration. Defining molecular mechanisms by which nutrients dictate stem cell behavior is a key step toward understanding the role of diet in tissue homeostasis. In this paper, we elucidate the mechanism by which dietary cholesterol controls epithelial follicle stem cell (FSC) proliferation in the fly ovary. In nutrient-restricted flies, the transmembrane protein Boi sequesters Hedgehog (Hh) ligand at the surface of Hh-producing cells within the ovary, limiting FSC proliferation. Upon feeding, dietary cholesterol stimulates S6 kinase–mediated phosphorylation of the Boi cytoplasmic domain, triggering Hh release and FSC proliferation. This mechanism enables a rapid, tissue-specific response to nutritional changes, tailoring stem cell divisions and egg production to environmental conditions sufficient for progeny survival. If conserved in other systems, this mechanism will likely have important implications for studies on molecular control of stem cell function, in which the benefits of low calorie and low cholesterol diets are beginning to emerge.
Collapse
Affiliation(s)
- Tiffiney R Hartman
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | |
Collapse
|
90
|
Alcedo J, Flatt T, Pasyukova EG. Neuronal inputs and outputs of aging and longevity. Front Genet 2013; 4:71. [PMID: 23653632 PMCID: PMC3644678 DOI: 10.3389/fgene.2013.00071] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/13/2013] [Indexed: 12/14/2022] Open
Abstract
An animal’s survival strongly depends on its ability to maintain homeostasis in response to the changing quality of its external and internal environment. This is achieved through intracellular and intercellular communication within and among different tissues. One of the organ systems that plays a major role in this communication and the maintenance of homeostasis is the nervous system. Here we highlight different aspects of the neuronal inputs and outputs of pathways that affect aging and longevity. Accordingly, we discuss how sensory inputs influence homeostasis and lifespan through the modulation of different types of neuronal signals, which reflects the complexity of the environmental cues that affect physiology. We also describe feedback, compensatory, and feed-forward mechanisms in these longevity-modulating pathways that are necessary for homeostasis. Finally, we consider the temporal requirements for these neuronal processes and the potential role of natural genetic variation in shaping the neurobiology of aging.
Collapse
Affiliation(s)
- Joy Alcedo
- Friedrich Miescher Institute for Biomedical Research Basel, Switzerland ; Department of Biological Sciences, Wayne State University Detroit, MI, USA
| | | | | |
Collapse
|
91
|
Tarnawa ED, Baker MD, Aloisio GM, Carr BR, Castrillon DH. Gonadal expression of Foxo1, but not Foxo3, is conserved in diverse Mammalian species. Biol Reprod 2013; 88:103. [PMID: 23486915 DOI: 10.1095/biolreprod.112.105791] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Foxos are key effectors of the PI3K/Akt signaling pathway and regulate diverse physiologic processes. Two of these factors, Foxo1 and Foxo3, serve specific roles in reproduction in the mouse. Foxo3 is required for suppression of primordial follicle activation in females, while Foxo1 regulates spermatogonial stem cell maintenance in males. In the mouse ovary, Foxo1 is highly expressed in somatic cells (but not in oocytes), suggesting an important functional role for Foxo1 in these cells. Given that invertebrate model species such as Caenorhabditis elegans and Drosophila melanogaster harbor a single ancestral Foxo homolog, these observations suggest that gene duplication conferred a selective advantage by permitting the Foxos to adopt distinct roles in oogenesis and spermatogenesis. Our objective was to determine if the remarkably specific expression patterns of Foxo1 and Foxo3 in mouse gonads (and, by inference, Foxo function) are conserved in diverse mammalian species. Western blotting was used to validate isoform-specific antibodies in rodents, companion animals, farm animals, nonhuman primates, and humans. Following validation of each antibody, immunohistochemistry was performed to ascertain Foxo1 and Foxo3 gonadal expression patterns. While Foxo1 expression in spermatogonia and granulosa cells was conserved in each species evaluated, Foxo3 expression in oocytes was not. Our findings suggest that Foxo3 is not uniquely required for primordial follicle maintenance in nonrodent species and that other Foxos, particularly Foxo1, may contribute to oocyte maintenance in a functionally redundant manner.
Collapse
Affiliation(s)
- Edward D Tarnawa
- Department of Obstetrics & Gynecology, Division of Reproductive Endocrinology & Infertility, University of Texas Southwestern Medical Center, Dallas, TX 75390-9072, USA
| | | | | | | | | |
Collapse
|
92
|
Ables ET, Drummond-Barbosa D. Cyclin E controls Drosophila female germline stem cell maintenance independently of its role in proliferation by modulating responsiveness to niche signals. Development 2013; 140:530-40. [PMID: 23293285 DOI: 10.1242/dev.088583] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Stem cells must proliferate while maintaining 'stemness'; however, much remains to be learned about how factors that control the division of stem cells influence their identity. Multiple stem cell types display cell cycles with short G1 phases, thought to minimize susceptibility to differentiation factors. Drosophila female germline stem cells (GSCs) have short G1 and long G2 phases, and diet-dependent systemic factors often modulate G2. We previously observed that Cyclin E (CycE), a known G1/S regulator, is atypically expressed in GSCs during G2/M; however, it remained unclear whether CycE has cell cycle-independent roles in GSCs or whether it acts exclusively by modulating the cell cycle. In this study, we detected CycE activity during G2/M, reflecting its altered expression pattern, and showed that CycE and its canonical partner, Cyclin-dependent kinase 2 (Cdk2), are required not only for GSC proliferation, but also for GSC maintenance. In genetic mosaics, CycE- and Cdk2-deficient GSCs are rapidly lost from the niche, remain arrested in a G1-like state, and undergo excessive growth and incomplete differentiation. However, we found that CycE controls GSC maintenance independently of its role in the cell cycle; GSCs harboring specific hypomorphic CycE mutations are not efficiently maintained despite normal proliferation rates. Finally, CycE-deficient GSCs have an impaired response to niche bone morphogenetic protein signals that are required for GSC self-renewal, suggesting that CycE modulates niche-GSC communication. Taken together, these results show unequivocally that the roles of CycE/Cdk2 in GSC division cycle regulation and GSC maintenance are separable, and thus potentially involve distinct sets of phosphorylation targets.
Collapse
Affiliation(s)
- Elizabeth T Ables
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
93
|
A mosaic genetic screen for genes involved in the early steps of Drosophila oogenesis. G3-GENES GENOMES GENETICS 2013; 3:409-25. [PMID: 23450845 PMCID: PMC3583450 DOI: 10.1534/g3.112.004747] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/27/2012] [Indexed: 12/15/2022]
Abstract
The first hours of Drosophila embryogenesis rely exclusively on maternal information stored within the egg during oogenesis. The formation of the egg chamber is thus a crucial step for the development of the future adult. It has emerged that many key developmental decisions are made during the very first stages of oogenesis. We performed a clonal genetic screen on the left arm of chromosome 2 for mutations affecting early oogenesis. During the first round of screening, we scored for defects in egg chambers morphology as an easy read-out of early abnormalities. In a second round of screening, we analyzed the localization of centrosomes and Orb protein within the oocyte, the position of the oocyte within the egg chamber, and the progression through meiosis. We have generated a collection of 71 EMS-induced mutants that affect oocyte determination, polarization, or localization. We also recovered mutants affecting the number of germline cyst divisions or the differentiation of follicle cells. Here, we describe the analysis of nine complementation groups and eight single alleles. We mapped several mutations and identified alleles of Bicaudal-D, lethal(2) giant larvae, kuzbanian, GDP-mannose 4,6-dehydratase, tho2, and eiF4A. We further report the molecular identification of two alleles of the Drosophila homolog of Che-1/AATF and demonstrate its antiapoptotic activity in vivo. This collection of mutants will be useful to investigate further the early steps of Drosophila oogenesis at a genetic level.
Collapse
|
94
|
Physiological control of germline development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:101-31. [PMID: 22872476 DOI: 10.1007/978-1-4614-4015-4_5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The intersection between developmental programs and environmental conditions that alter physiology is a growing area of research interest. The C. elegans germ line is emerging as a particularly sensitive and powerful model for these studies. The germ line is subject to environmentally regulated diapause points that allow worms to withstand harsh conditions both prior to and after reproduction commences. It also responds to more subtle changes in physiological conditions. Recent studies demonstrate that different aspects of germ line development are sensitive to environmental and physiological changes and that conserved signaling pathways such as the AMPK, Insulin/IGF, TGFβ, and TOR-S6K, and nuclear hormone receptor pathways mediate this sensitivity. Some of these pathways genetically interact with but appear distinct from previously characterized mechanisms of germline cell fate control such as Notch signaling. Here, we review several aspects of hermaphrodite germline development in the context of "feasting," "food-limited," and "fasting" conditions. We also consider connections between lifespan, metabolism and the germ line, and we comment on special considerations for examining germline development under altered environmental and physiological conditions. Finally, we summarize the major outstanding questions in the field.
Collapse
|
95
|
Xie T. Control of germline stem cell self-renewal and differentiation in the Drosophila ovary: concerted actions of niche signals and intrinsic factors. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:261-73. [PMID: 24009036 DOI: 10.1002/wdev.60] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the Drosophila ovary, germline stem cells (GSCs) physically interact with their niche composed of terminal filament cells, cap cells, and possibly GSC-contacting escort cells (ECs). A GSC divides to generate a self-renewing stem cell that remains in the niche and a differentiating daughter that moves away from the niche. The GSC niche provides a bone morphogenetic protein (BMP) signal that maintains GSC self-renewal by preventing stem cell differentiation via repression of the differentiation-promoting gene bag of marbles (bam). In addition, it expresses E-cadherin, which mediates cell adhesion for anchoring GSCs in the niche, enabling continuous self-renewal. GSCs themselves also express different classes of intrinsic factors, including signal transducers, transcription factors, chromatin remodeling factors, translation regulators, and miRNAs, which control self-renewal by strengthening interactions with the niche and repressing various differentiation pathways. Differentiated GSC daughters, known as cystoblasts (CBs), also express distinct classes of intrinsic factors to inhibit self-renewal and promote germ cell differentiation. Surprisingly, GSC progeny are also dependent on their surrounding ECs for proper differentiation at least partly by preventing BMP from diffusing to the differentiated germ cell zone and by repressing ectopic BMP expression. Therefore, both GSC self-renewal and CB differentiation are controlled by collaborative actions of extrinsic signals and intrinsic factors.
Collapse
Affiliation(s)
- Ting Xie
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, USA.
| |
Collapse
|
96
|
Parrott BB, Hudson A, Brady R, Schulz C. Control of germline stem cell division frequency--a novel, developmentally regulated role for epidermal growth factor signaling. PLoS One 2012; 7:e36460. [PMID: 22586473 PMCID: PMC3346724 DOI: 10.1371/journal.pone.0036460] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/06/2012] [Indexed: 01/02/2023] Open
Abstract
Exploring adult stem cell dynamics in normal and disease states is crucial to both better understanding their in vivo role and better realizing their therapeutic potential. Here we address the division frequency of Germline Stem Cells (GSCs) in testes of Drosophila melanogaster. We show that GSC division frequency is under genetic control of the highly conserved Epidermal Growth Factor (EGF) signaling pathway. When EGF signaling was attenuated, we detected a two-fold increase in the percentage of GSCs in mitotic division compared to GSCs in control animals. Ex vivo and in vivo experiments using a marker for cells in S-phase of the cell cycle showed that the GSCs in EGF mutant testes divide faster than GSCs in control testes. The increased mitotic activity of GSCs in EGF mutants was rescued by restoring EGF signaling in the GSCs, and reproduced in testes from animals with soma-depleted EGF-Receptor (EGFR). Interestingly, EGF attenuation specifically increased the GSC division frequency in adult testes, but not in larval testes. Furthermore, GSCs in testes with tumors resulting from the perturbation of other conserved signaling pathways divided at normal frequencies. We conclude that EGF signaling from the GSCs to the CySCs normally regulates GSC division frequency. The EGF signaling pathway is bifurcated and acts differently in adult compared to larval testes. In addition, regulation of GSC division frequency is a specific role for EGF signaling as it is not affected in all tumor models. These data advance our understanding concerning stem cell dynamics in normal tissues and in a tumor model.
Collapse
Affiliation(s)
- Benjamin B. Parrott
- Hollings Marine Laboratory, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Alicia Hudson
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Regina Brady
- Mercer Medical School, Macon, Georgia, United States of America
| | - Cordula Schulz
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
97
|
Ables ET, Laws KM, Drummond-Barbosa D. Control of adult stem cells in vivo by a dynamic physiological environment: diet-dependent systemic factors in Drosophila and beyond. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:657-74. [PMID: 23799567 DOI: 10.1002/wdev.48] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adult stem cells are inextricably linked to whole-body physiology and nutrient availability through complex systemic signaling networks. A full understanding of how stem cells sense and respond to dietary fluctuations will require identifying key systemic mediators, as well as elucidating how they are regulated and integrated with local and intrinsic factors across multiple tissues. Studies focused on the Drosophila germline have generated valuable insights into how stem cells are controlled by diet-dependent pathways, and increasing evidence suggests that diverse adult stem cell populations respond to nutrients through similar mechanisms. Systemic signals, including nutrients themselves and diet-regulated hormones such as Insulin/Insulin-like growth factor or steroid hormones, can directly or indirectly affect stem cell behavior by modifying local cell-cell communication or intrinsic factors. The physiological regulation of stem cells in response to nutritional status not only is a fascinating biological problem, but also has clinical implications, as research in this field holds the key to noninvasive approaches for manipulating stem cells in vivo. In addition, given the known associations between diet, stem cells, and cancer risk, this research may inspire novel anticancer therapies.
Collapse
Affiliation(s)
- Elizabeth T Ables
- Division of Reproductive Biology, Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
98
|
Jouaux A, Franco A, Heude-Berthelin C, Sourdaine P, Blin JL, Mathieu M, Kellner K. Identification of Ras, Pten and p70S6K homologs in the Pacific oyster Crassostrea gigas and diet control of insulin pathway. Gen Comp Endocrinol 2012; 176:28-38. [PMID: 22202600 DOI: 10.1016/j.ygcen.2011.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/05/2011] [Accepted: 12/11/2011] [Indexed: 11/23/2022]
Abstract
Insulin pathways were demonstrated from invertebrates to vertebrates to be involved in the regulation of numerous processes including storage metabolism and reproduction. In addition, insulin system may integrate variations of environmental conditions like dietary restrictions. In the Pacific oyster Crassostrea gigas, reproductive and storage compartments are closely intricated in the gonadal area and their respective development was found to be dependant of trophic conditions. For these reasons, C. gigas is an original and interesting model for investigating the role of insulin control in the balance between storage and reproduction and the integration of environmental parameters. On the basis of sequence conservation, we identified three potential elements of the oyster insulin pathway, Ras, Pten and p70S6K and we investigated their expression levels in various tissues. In the gonadal area, we used laser microdissection in order to precise the targeted contribution of insulin signaling to the restoration of storage tissue and to the control of vitellogenesis. Food deprivation during gametogenesis reinitiation stage led to reduced proliferations of gonia and also to modulate insulin signal by transcriptional activation of insulin pathway elements.
Collapse
Affiliation(s)
- A Jouaux
- CNRS-INEE FRE3484 BioMEA Biologie des Mollusques marins et Ecosystèmes associés IFR146 ICORE, Université de Caen Basse-Normandie, F 14032 Caen Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
99
|
Roth TM, Chiang CYA, Inaba M, Yuan H, Salzmann V, Roth CE, Yamashita YM. Centrosome misorientation mediates slowing of the cell cycle under limited nutrient conditions in Drosophila male germline stem cells. Mol Biol Cell 2012; 23:1524-32. [PMID: 22357619 PMCID: PMC3327310 DOI: 10.1091/mbc.e11-12-0999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A novel mechanism is found by which Drosophila male germline stem cells (GSCs) slow their cell cycle under limited nutrient conditions. Upon culturing in poor media, GSCs misorient their centrosomes with respect to the stem cell niche, activating the centrosome orientation checkpoint and leading to slowdown of the cell cycle. Drosophila male germline stem cells (GSCs) divide asymmetrically, balancing self-renewal and differentiation. Although asymmetric stem cell division balances between self-renewal and differentiation, it does not dictate how frequently differentiating cells must be produced. In male GSCs, asymmetric GSC division is achieved by stereotyped positioning of the centrosome with respect to the stem cell niche. Recently we showed that the centrosome orientation checkpoint monitors the correct centrosome orientation to ensure an asymmetric outcome of the GSC division. When GSC centrosomes are not correctly oriented with respect to the niche, GSC cell cycle is arrested/delayed until the correct centrosome orientation is reacquired. Here we show that induction of centrosome misorientation upon culture in poor nutrient conditions mediates slowing of GSC cell proliferation via activation of the centrosome orientation checkpoint. Consistently, inactivation of the centrosome orientation checkpoint leads to lack of cell cycle slowdown even under poor nutrient conditions. We propose that centrosome misorientation serves as a mediator that transduces nutrient information into stem cell proliferation, providing a previously unappreciated mechanism of stem cell regulation in response to nutrient conditions.
Collapse
Affiliation(s)
- Therese M Roth
- Life Sciences Institute, Center for Stem Cell Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Ferguson SB, Blundon MA, Klovstad MS, Schüpbach T. Modulation of gurken translation by insulin and TOR signaling in Drosophila. J Cell Sci 2012; 125:1407-19. [PMID: 22328499 DOI: 10.1242/jcs.090381] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Localized Gurken (Grk) translation specifies the anterior-posterior and dorsal-ventral axes of the developing Drosophila oocyte; spindle-class females lay ventralized eggs resulting from inefficient grk translation. This phenotype is thought to result from inhibition of the Vasa RNA helicase. In a screen for modifiers of the eggshell phenotype in spn-B flies, we identified a mutation in the lnk gene. We show that lnk mutations restore Grk expression but do not suppress the persistence of double-strand breaks nor other spn-B phenotypes. This suppression does not affect Egfr directly, but rather overcomes the translational block of grk messages seen in spindle mutants. Lnk was recently identified as a component of the insulin/insulin-like growth factor signaling (IIS) and TOR pathway. Interestingly, direct inhibition of TOR with rapamycin in spn-B or vas mutant mothers can also suppress the ventralized eggshell phenotype. When dietary protein is inadequate, reduced IIS-TOR activity inhibits cap-dependent translation by promoting the activity of the translation inhibitor eIF4E-binding protein (4EBP). We hypothesize that reduced TOR activity promotes grk translation independent of the canonical Vasa- and cap-dependent mechanism. This model might explain how flies can maintain the translation of developmentally important transcripts during periods of nutrient limitation when bulk cap-dependent translation is repressed.
Collapse
|