51
|
Tao C, Zhang X. Development of astrocytes in the vertebrate eye. Dev Dyn 2014; 243:1501-10. [PMID: 25236977 DOI: 10.1002/dvdy.24190] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/22/2014] [Accepted: 09/12/2014] [Indexed: 02/04/2023] Open
Abstract
Astrocytes represent the earliest glial population in the embryonic optic nerve, contributing critically to retinal angiogenesis and formation of brain-retinal-barrier. Despite of many developmental and clinical implications of astrocytes, answers to some of the most fundamental questions of this unique type of glial cells remain elusive. This review provides an overview of the current knowledge about the origination, proliferation, and differentiation of astrocytes, their journey from the optic nerve toward the neuroretina, and their involvement in physiological and pathological development of the visual system.
Collapse
Affiliation(s)
- Chenqi Tao
- Stark Neuroscience Institute, Indiana University School of Medicine, Indianapolis, Indiana; Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, New York
| | | |
Collapse
|
52
|
Cai Z, Grobe K, Zhang X. Role of heparan sulfate proteoglycans in optic disc and stalk morphogenesis. Dev Dyn 2014; 243:1310-6. [PMID: 24753163 DOI: 10.1002/dvdy.24142] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Heparan sulfate proteoglycans (HSPG) are important for embryonic development by means of the regulation of gradient formation and signaling of multiple growth factors and morphogens. Previous studies have shown that Bmp/Shh/Fgf signaling are required for the regionalization of the optic vesicle (OV) and for the closure of the optic fissure (OF), the disturbance of which underlie ocular anomalies such as microphthalmia, coloboma, and optic nerve hypoplasia. RESULTS To study HSPG-dependent coordination of these signaling pathways during mammalian visual system development, we have generated a series of OV-specific mutations in the heparan sulfate (HS) N-sulfotransferase genes (Ndst1 and Ndst2) and HS O-sulfotransferase genes (Hs2st, Hs6st1, and Hs6st2) in mice. Of interest, the resulting HS undersulfation still allowed for normal retinal neurogenesis and optic fissure closure, but led to defective optic disc and stalk development. The adult mutant animals further developed optic nerve aplasia/hypoplasia and displayed retinal degeneration. We observed that MAPK/ERK signaling was down-regulated in Ndst mutants, and consistent with this, HS-related optic nerve morphogenesis defects in mutant mice could partially be rescued by constitutive Kras activation. CONCLUSIONS These results suggest that HSPGs, depending on their HS sulfation pattern, regulate multiple signaling pathways in optic disc and stalk morphogenesis.
Collapse
Affiliation(s)
- Zhigang Cai
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | |
Collapse
|
53
|
Atkinson-Leadbeater K, Hehr CL, Mcfarlane S. Fgfr signaling is required as the early eye field forms to promote later patterning and morphogenesis of the eye. Dev Dyn 2014; 243:663-75. [PMID: 24478172 DOI: 10.1002/dvdy.24113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/08/2014] [Accepted: 01/21/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND A major step in eye morphogenesis is the transition from optic vesicle to optic cup, which occurs as a ventral groove forms along the base of the optic vesicle. A ventral gap in the eye, or coloboma, results when this groove fails to close. Extrinsic signals, such as fibroblast growth factors (Fgfs), play a critical role in the development and morphogenesis of the vertebrate eye. Whether these extrinsic signals are required throughout eye development, or within a defined critical period remains an unanswered question. RESULTS Here we show that an early Fgf signal, required as the eye field is first emerging, drives eye morphogenesis. In addition to triggering coloboma, inhibition of this early Fgf signal results in defects in dorsal-ventral patterning of the neural retina, particularly in the nasal retina, and development of the periocular mesenchyme (POM). These processes are unaffected by inhibition of Fgfr signaling at later time points. CONCLUSIONS We propose that Fgfs act within an early critical period as the eye field forms to promote development of the neural retina and POM, which subsequently drive eye morphogenesis.
Collapse
|
54
|
Fuhrmann S, Zou C, Levine EM. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res 2013; 123:141-50. [PMID: 24060344 DOI: 10.1016/j.exer.2013.09.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/05/2013] [Accepted: 09/07/2013] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium (RPE) is a simple epithelium interposed between the neural retina and the choroid. Although only 1 cell-layer in thickness, the RPE is a virtual workhorse, acting in several capacities that are essential for visual function and preserving the structural and physiological integrities of neighboring tissues. Defects in RPE function, whether through chronic dysfunction or age-related decline, are associated with retinal degenerative diseases including age-related macular degeneration. As such, investigations are focused on developing techniques to replace RPE through stem cell-based methods, motivated primarily because of the seemingly limited regeneration or self-repair properties of mature RPE. Despite this, RPE cells have an unusual capacity to transdifferentiate into various cell types, with the particular fate choices being highly context-dependent. In this review, we describe recent findings elucidating the mechanisms and steps of RPE development and propose a developmental framework for understanding the apparent contradiction in the capacity for low self-repair versus high transdifferentiation.
Collapse
Affiliation(s)
- Sabine Fuhrmann
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - ChangJiang Zou
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Edward M Levine
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
55
|
Cai Z, Tao C, Li H, Ladher R, Gotoh N, Feng GS, Wang F, Zhang X. Deficient FGF signaling causes optic nerve dysgenesis and ocular coloboma. Development 2013; 140:2711-23. [PMID: 23720040 DOI: 10.1242/dev.089987] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
FGF signaling plays a pivotal role in eye development. Previous studies using in vitro chick models and systemic zebrafish mutants have suggested that FGF signaling is required for the patterning and specification of the optic vesicle, but due to a lack of genetic models, its role in mammalian retinal development remains elusive. In this study, we show that specific deletion of Fgfr1 and Fgfr2 in the optic vesicle disrupts ERK signaling, which results in optic disc and nerve dysgenesis and, ultimately, ocular coloboma. Defective FGF signaling does not abrogate Shh or BMP signaling, nor does it affect axial patterning of the optic vesicle. Instead, FGF signaling regulates Mitf and Pax2 in coordinating the closure of the optic fissure and optic disc specification, which is necessary for the outgrowth of the optic nerve. Genetic evidence further supports that the formation of an Frs2α-Shp2 complex and its recruitment to FGF receptors are crucial for downstream ERK signaling in this process, whereas constitutively active Ras signaling can rescue ocular coloboma in the FGF signaling mutants. Our results thus reveal a previously unappreciated role of FGF-Frs2α-Shp2-Ras-ERK signaling axis in preventing ocular coloboma. These findings suggest that components of FGF signaling pathway may be novel targets in the diagnosis of and the therapeutic interventions for congenital ocular anomalies.
Collapse
Affiliation(s)
- Zhigang Cai
- Department of Medical and Molecular Genetics, Stark Neuroscience Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Bloom S, Ledon-Rettig C, Infante C, Everly A, Hanken J, Nascone-Yoder N. Developmental origins of a novel gut morphology in frogs. Evol Dev 2013; 15:213-23. [PMID: 23607305 PMCID: PMC3870478 DOI: 10.1111/ede.12035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phenotypic variation is a prerequisite for evolution by natural selection, yet the processes that give rise to the novel morphologies upon which selection acts are poorly understood. We employed a chemical genetic screen to identify developmental changes capable of generating ecologically relevant morphological variation as observed among extant species. Specifically, we assayed for exogenously applied small molecules capable of transforming the ancestral larval foregut of the herbivorous Xenopus laevis to resemble the derived larval foregut of the carnivorous Lepidobatrachus laevis. Appropriately, the small molecules that demonstrate this capacity modulate conserved morphogenetic pathways involved in gut development, including downregulation of retinoic acid (RA) signaling. Identical manipulation of RA signaling in a species that is more closely related to Lepidobatrachus, Ceratophrys cranwelli, yielded even more similar transformations, corroborating the relevance of RA signaling variation in interspecific morphological change. Finally, we were able to recover the ancestral gut phenotype in Lepidobatrachus by performing a reverse chemical manipulation to upregulate RA signaling, providing strong evidence that modifications to this specific pathway promoted the emergence of a lineage-specific phenotypic novelty. Interestingly, our screen also revealed pathways that have not yet been implicated in early gut morphogenesis, such as thyroid hormone signaling. In general, the chemical genetic screen may be a valuable tool for identifying developmental mechanisms that underlie ecologically and evolutionarily relevant phenotypic variation.
Collapse
Affiliation(s)
- Stephanie Bloom
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606 USA
| | - Cris Ledon-Rettig
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606 USA
| | - Carlos Infante
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138 USA
| | - Anne Everly
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138 USA
| | - James Hanken
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138 USA
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606 USA
| |
Collapse
|
57
|
Zavala J, López Jaime GR, Rodríguez Barrientos CA, Valdez-Garcia J. Corneal endothelium: developmental strategies for regeneration. Eye (Lond) 2013; 27:579-88. [PMID: 23470788 DOI: 10.1038/eye.2013.15] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The main treatment available for restoration of the corneal endothelium is keratoplasty. This procedure is faced with several difficulties, including the shortage of donor tissue, post-surgical complications associated with the use of drugs to prevent immune rejection, and a significant increase in the occurrence of glaucoma. Recently, surgical procedures such as Descemet's stripping endothelial keratoplasty have focused on the transplant of corneal endothelium, yielding better visual results but still facing the need for donor tissue. The emergent strategies in the field of cell biology and tissue cultivation of corneal endothelial cells aim at the production of transplantable endothelial cell sheets. Cell therapy focuses on the culture of corneal endothelial cells retrieved from the donor, in the donor's cornea, followed by transplantation into the recipient. Recently, research has focused on overcoming the challenge of harvesting human corneal endothelial cells and the generation of new biomembranes to be used as cell scaffolds in surgical procedures. The use of corneal endothelial precursors from the peripheral cornea has also demonstrated to be effective and represents a valuable tool for reducing the risk of rejection in allogeneic transplants. Several animal model reports also support the use of adult stem cells as therapy for corneal diseases. Current results represent important progresses in the development of new strategies based on alternative sources of tissue for the treatment of corneal endotheliopathies. Different databases were used to search literature: PubMed, Google Books, MD Consult, Google Scholar, Gene Cards, and NCBI Books. The main search terms used were: 'cornea AND embryology AND transcription factors', 'human endothelial keratoplasty AND risk factors', '(cornea OR corneal) AND (endothelium OR endothelial) AND cell culture', 'mesenchymal stem cells AND cell therapy', 'mesenchymal stem cells AND cornea', and 'stem cells AND (cornea OR corneal) AND (endothelial OR endothelium)'.
Collapse
Affiliation(s)
- J Zavala
- Ophthalmology Research Chair, Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, México
| | | | | | | |
Collapse
|
58
|
Bohnsack BL, Kahana A. Thyroid hormone and retinoic acid interact to regulate zebrafish craniofacial neural crest development. Dev Biol 2013; 373:300-9. [PMID: 23165295 PMCID: PMC3534885 DOI: 10.1016/j.ydbio.2012.11.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 01/17/2023]
Abstract
Craniofacial and ocular morphogenesis require proper regulation of cranial neural crest migration, proliferation, survival and differentiation. Although alterations in maternal thyroid hormone (TH) are associated with congenital craniofacial anomalies, the role of TH on the neural crest has not been previously described. Using zebrafish, we demonstrate that pharmacologic and genetic alterations in TH signaling disrupt cranial neural crest migration, proliferation, and survival, leading to craniofacial, extraocular muscle, and ocular developmental abnormalities. In the rostral cranial neural crest that gives rise to the periocular mesenchyme and the frontonasal process, retinoic acid (RA) rescued migratory defects induced by decreased TH signaling. In the caudal cranial neural crest, TH and RA had reciprocal effects on anterior and posterior pharyngeal arch development. The interactions between TH and RA signaling were partially mediated by the retinoid X receptor. We conclude that TH regulates both rostral and caudal cranial neural crest. Further, coordinated interactions of TH and RA are required for proper craniofacial and ocular development.
Collapse
Affiliation(s)
- Brenda L. Bohnsack
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor MI
| | - Alon Kahana
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor MI
| |
Collapse
|
59
|
|
60
|
Gregory-Evans CY, Wallace VA, Gregory-Evans K. Gene networks: dissecting pathways in retinal development and disease. Prog Retin Eye Res 2012; 33:40-66. [PMID: 23128416 DOI: 10.1016/j.preteyeres.2012.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 01/21/2023]
Abstract
During retinal neurogenesis, diverse cellular subtypes originate from multipotent neural progenitors in a spatiotemporal order leading to a highly specialized laminar structure combined with a distinct mosaic architecture. This is driven by the combinatorial action of transcription factors and signaling molecules which specify cell fate and differentiation. The emerging approach of gene network analysis has allowed a better understanding of the functional relationships between genes expressed in the developing retina. For instance, these gene networks have identified transcriptional hubs that have revealed potential targets and pathways for the development of therapeutic options for retinal diseases. Much of the current knowledge has been informed by targeted gene deletion experiments and gain-of-functional analysis. In this review we will provide an update on retinal development gene networks and address the wider implications for future disease therapeutics.
Collapse
Affiliation(s)
- Cheryl Y Gregory-Evans
- Department of Ophthalmology, University of British Columbia, Vancouver, BC V5Z 3N9, Canada.
| | | | | |
Collapse
|
61
|
Gestri G, Link BA, Neuhauss SCF. The visual system of zebrafish and its use to model human ocular diseases. Dev Neurobiol 2012; 72:302-27. [PMID: 21595048 DOI: 10.1002/dneu.20919] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Free swimming zebrafish larvae depend mainly on their sense of vision to evade predation and to catch prey. Hence, there is strong selective pressure on the fast maturation of visual function and indeed the visual system already supports a number of visually driven behaviors in the newly hatched larvae.The ability to exploit the genetic and embryonic accessibility of the zebrafish in combination with a behavioral assessment of visual system function has made the zebrafish a popular model to study vision and its diseases.Here, we review the anatomy, physiology, and development of the zebrafish eye as the basis to relate the contributions of the zebrafish to our understanding of human ocular diseases.
Collapse
Affiliation(s)
- Gaia Gestri
- Department of Cell and Developmental Biology, University College, London,UK.
| | | | | |
Collapse
|
62
|
Vandenberg LN, Adams DS, Levin M. Normalized shape and location of perturbed craniofacial structures in the Xenopus tadpole reveal an innate ability to achieve correct morphology. Dev Dyn 2012; 241:863-78. [PMID: 22411736 DOI: 10.1002/dvdy.23770] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2012] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Embryonic development can often adjust its morphogenetic processes to counteract external perturbation. The existence of self-monitoring responses during pattern formation is of considerable importance to the biomedicine of birth defects, but has not been quantitatively addressed. To understand the computational capabilities of biological tissues in a molecularly tractable model system, we induced craniofacial defects in Xenopus embryos, then tracked tadpoles with craniofacial deformities and used geometric morphometric techniques to characterize changes in the shape and position of the craniofacial structures. RESULTS Canonical variate analysis revealed that the shapes and relative positions of perturbed jaws and branchial arches were corrected during the first few months of tadpole development. Analysis of the relative movements of the anterior-most structures indicates that misplaced structures move along the anterior-posterior and left-right axes in ways that are significantly different from their normal movements. CONCLUSIONS Our data suggest a model in which craniofacial structures use a measuring mechanism to assess and adjust their location relative to other local organs. Understanding the correction mechanisms at work in this system could lead to the better understanding of the adaptive decision-making capabilities of living tissues and suggest new approaches to correct birth defects in humans.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Center for Regenerative and Developmental Biology, and Biology Department, Tufts University, Medford, MA 02155, USA
| | | | | |
Collapse
|
63
|
Morris AC. The genetics of ocular disorders: insights from the zebrafish. ACTA ACUST UNITED AC 2012; 93:215-28. [PMID: 21932431 DOI: 10.1002/bdrc.20211] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Proper formation of the vertebrate eye requires a precisely coordinated sequence of morphogenetic events that integrate the developmental contributions of the skin ectoderm, neuroectoderm, and head mesenchyme. Disruptions in this process result in ocular malformations or retinal degeneration and can cause significant visual impairment. The zebrafish is an excellent vertebrate model for the study of eye development and disease due to the transparency of the embryo, its ex utero development, and its amenability to forward genetic screens. This review will present an overview of the genetic methodologies utilized in the zebrafish, a description of several zebrafish models of congenital ocular diseases, and a discussion of the utility of the zebrafish for assessing the pathogenicity of candidate disease alleles.
Collapse
Affiliation(s)
- Ann C Morris
- Department of Biology, University of Kentucky, Lexington, USA.
| |
Collapse
|
64
|
Bohnsack BL, Kasprick DS, Kish PE, Goldman D, Kahana A. A zebrafish model of axenfeld-rieger syndrome reveals that pitx2 regulation by retinoic acid is essential for ocular and craniofacial development. Invest Ophthalmol Vis Sci 2012; 53:7-22. [PMID: 22125274 PMCID: PMC3292384 DOI: 10.1167/iovs.11-8494] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/09/2011] [Accepted: 11/10/2011] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The homeobox transcription factor PITX2 is a known regulator of mammalian ocular development, and human PITX2 mutations are associated with Axenfeld-Rieger syndrome (ARS). However, the treatment of patients with ARS remains mostly supportive and palliative. METHODS The authors used molecular genetic, pharmacologic, and embryologic techniques to study the biology of ARS in a zebrafish model that uses transgenes to mark neural crest and muscle cells in the head. RESULTS The authors demonstrated in vivo that pitx2 is a key downstream target of retinoic acid (RA) in craniofacial development, and this pathway is required for coordinating neural crest, mesoderm, and ocular development. pitx2a knockdown using morpholino oligonucleotides disrupts jaw and pharyngeal arch formation and recapitulates ocular characteristics of ARS, including corneal and iris stroma maldevelopment. These phenotypes could be rescued with human PITX2A mRNA, demonstrating the specificity of the knockdown and evolutionary conservation of pitx2a function. Expression of the ARS dominant negative human PITX2A K50E allele also caused ARS-like phenotypes. Similarly, inhibition of RA synthesis in the developing eye (genetic or pharmacologic) disrupted craniofacial and ocular development, and human PITX2A mRNA partially rescued these defects. CONCLUSIONS RA regulation of pitx2 is essential for coordinating interactions among neural crest, mesoderm, and developing eye. The marked evolutionary conservation of Pitx2 function in eye and craniofacial development makes zebrafish a potentially powerful model of ARS, amenable to in vivo experimentation and development of potential therapies.
Collapse
Affiliation(s)
- Brenda L Bohnsack
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
65
|
McLoon LK. What experimental embryology can teach us about the development of the extraocular muscles in anophthalmia: at the interface of basic and clinical sciences. ACTA ACUST UNITED AC 2011; 129:1077-9. [PMID: 21825193 DOI: 10.1001/archophthalmol.2011.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
66
|
Stevens CB, Cameron DA, Stenkamp DL. Plasticity of photoreceptor-generating retinal progenitors revealed by prolonged retinoic acid exposure. BMC DEVELOPMENTAL BIOLOGY 2011; 11:51. [PMID: 21878117 PMCID: PMC3189157 DOI: 10.1186/1471-213x-11-51] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 08/30/2011] [Indexed: 12/02/2022]
Abstract
Background Retinoic acid (RA) is important for vertebrate eye morphogenesis and is a regulator of photoreceptor development in the retina. In the zebrafish, RA treatment of postmitotic photoreceptor precursors has been shown to promote the differentiation of rods and red-sensitive cones while inhibiting the differentiation of blue- and UV-sensitive cones. The roles played by RA and its receptors in modifying photoreceptor fate remain to be determined. Results Treatment of zebrafish embryos with RA, beginning at the time of retinal progenitor cell proliferation and prior to photoreceptor terminal mitosis, resulted in a significant alteration of rod and cone mosaic patterns, suggesting an increase in the production of rods at the expense of red cones. Quantitative pattern analyses documented increased density of rod photoreceptors and reduced local spacing between rod cells, suggesting rods were appearing in locations normally occupied by cone photoreceptors. Cone densities were correspondingly reduced and cone photoreceptor mosaics displayed expanded and less regular spacing. These results were consistent with replacement of approximately 25% of positions normally occupied by red-sensitive cones, with additional rods. Analysis of embryos from a RA-signaling reporter line determined that multiple retinal cell types, including mitotic cells and differentiating rods and cones, are capable of directly responding to RA. The RA receptors RXRγ and RARαb are expressed in patterns consistent with mediating the effects of RA on photoreceptors. Selective knockdown of RARαb expression resulted in a reduction in endogenous RA signaling in the retina. Knockdown of RARαb also caused a reduced production of rods that was not restored by simultaneous treatments with RA. Conclusions These data suggest that developing retinal cells have a dynamic sensitivity to RA during retinal neurogenesis. In zebrafish RA may influence the rod vs. cone cell fate decision. The RARαb receptor mediates the effects of endogenous, as well as exogenous RA, on rod development.
Collapse
Affiliation(s)
- Craig B Stevens
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | | | | |
Collapse
|
67
|
Sambasivan R, Kuratani S, Tajbakhsh S. An eye on the head: the development and evolution of craniofacial muscles. Development 2011; 138:2401-15. [DOI: 10.1242/dev.040972] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Skeletal muscles exert diverse functions, enabling both crushing with great force and movement with exquisite precision. A remarkably distinct repertoire of genes and ontological features characterise this tissue, and recent evidence has shown that skeletal muscles of the head, the craniofacial muscles, are evolutionarily, morphologically and molecularly distinct from those of the trunk. Here, we review the molecular basis of craniofacial muscle development and discuss how this process is different to trunk and limb muscle development. Through evolutionary comparisons of primitive chordates (such as amphioxus) and jawless vertebrates (such as lampreys) with jawed vertebrates, we also provide some clues as to how this dichotomy arose.
Collapse
Affiliation(s)
- Ramkumar Sambasivan
- Institut Pasteur, Stem Cells and Development, Paris, F-75015, France
- CNRS URA 2578, 25 rue du Dr Roux, Paris, F-75015, France
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shahragim Tajbakhsh
- Institut Pasteur, Stem Cells and Development, Paris, F-75015, France
- CNRS URA 2578, 25 rue du Dr Roux, Paris, F-75015, France
| |
Collapse
|
68
|
Retinoic acid receptor signaling regulates choroid fissure closure through independent mechanisms in the ventral optic cup and periocular mesenchyme. Proc Natl Acad Sci U S A 2011; 108:8698-703. [PMID: 21555593 DOI: 10.1073/pnas.1103802108] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retinoic acid receptor (RAR) signaling is required for morphogenesis of the ventral optic cup and closure of the choroid fissure, but the mechanisms by which this pathway regulates ventral eye development remain controversial and poorly understood. Although previous studies have implicated neural crest-derived periocular mesenchyme (POM) as the critical target of RA action in the eye, we show here that RAR signaling regulates choroid fissure closure in zebrafish by acting on both the ventral optic cup and the POM. We describe RAR-dependent regulation of eight genes in the neuroepithelial cells of the ventral retina and optic stalk and of six genes in the POM and show that these ventral retina/optic stalk and POM genes function independently of each other. Consequently, RAR signaling regulates ventral eye development through two independent, nonredundant mechanisms in different ocular tissues. Furthermore, the identification of two cohorts of genes implicated in ventral eye morphogenesis may help to elucidate the genetic basis of ocular coloboma in humans.
Collapse
|
69
|
Clagett-Dame M, Knutson D. Vitamin A in reproduction and development. Nutrients 2011; 3:385-428. [PMID: 22254103 PMCID: PMC3257687 DOI: 10.3390/nu3040385] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/28/2011] [Accepted: 03/22/2011] [Indexed: 12/12/2022] Open
Abstract
The requirement for vitamin A in reproduction was first recognized in the early 1900's, and its importance in the eyes of developing embryos was realized shortly after. A greater understanding of the large number of developmental processes that require vitamin A emerged first from nutritional deficiency studies in rat embryos, and later from genetic studies in mice. It is now generally believed that all-trans retinoic acid (RA) is the form of vitamin A that supports both male and female reproduction as well as embryonic development. This conclusion is based on the ability to reverse most reproductive and developmental blocks found in vitamin A deficiency induced either by nutritional or genetic means with RA, and the ability to recapitulate the majority of embryonic defects in retinoic acid receptor compound null mutants. The activity of the catabolic CYP26 enzymes in determining what tissues have access to RA has emerged as a key regulatory mechanism, and helps to explain why exogenous RA can rescue many vitamin A deficiency defects. In severely vitamin A-deficient (VAD) female rats, reproduction fails prior to implantation, whereas in VAD pregnant rats given small amounts of carotene or supported on limiting quantities of RA early in organogenesis, embryos form but show a collection of defects called the vitamin A deficiency syndrome or late vitamin A deficiency. Vitamin A is also essential for the maintenance of the male genital tract and spermatogenesis. Recent studies show that vitamin A participates in a signaling mechanism to initiate meiosis in the female gonad during embryogenesis, and in the male gonad postnatally. Both nutritional and genetic approaches are being used to elucidate the vitamin A-dependent pathways upon which these processes depend.
Collapse
Affiliation(s)
- Margaret Clagett-Dame
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA;
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
| | - Danielle Knutson
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA;
| |
Collapse
|
70
|
Kish PE, Bohnsack BL, Gallina DD, Kasprick DS, Kahana A. The eye as an organizer of craniofacial development. Genesis 2011; 49:222-30. [PMID: 21309065 PMCID: PMC3690320 DOI: 10.1002/dvg.20716] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/03/2011] [Accepted: 01/06/2011] [Indexed: 01/01/2023]
Abstract
The formation and invagination of the optic stalk coincides with the migration of cranial neural crest (CNC) cells, and a growing body of data reveals that the optic stalk and CNC cells communicate to lay the foundations for periocular and craniofacial development. Following migration, the interaction between the developing eye and surrounding periocular mesenchyme (POM) continues, leading to induction of transcriptional regulatory cascades that regulate craniofacial morphogenesis. Studies in chick, mice, and zebrafish have revealed a remarkable level of genetic and mechanistic conservation, affirming the power of each animal model to shed light on the broader morphogenic process. This review will focus on the role of the developing eye in orchestrating craniofacial morphogenesis, utilizing morphogenic gradients, paracrine signaling, and transcriptional regulatory cascades to establish an evolutionarily-conserved facial architecture. We propose that in addition to the forebrain, the eye functions during early craniofacial morphogenesis as a key organizer of facial development, independent of its role in vision.
Collapse
Affiliation(s)
- Phillip E. Kish
- University of Michigan, Ophthalmology and Visual Sciences, Ann Arbor, Michigan, United States,
| | - Brenda L Bohnsack
- University of Michigan, Ophthalmology and Visual Sciences, Ann Arbor, Michigan, United States,
| | - Donika D. Gallina
- University of Michigan, Ophthalmology and Visual Sciences, Ann Arbor, Michigan, United States,
| | - Daniel S. Kasprick
- University of Michigan, Ophthalmology and Visual Sciences, Ann Arbor, Michigan, United States,
| | - Alon Kahana
- University of Michigan, Ophthalmology and Visual Sciences,
| |
Collapse
|
71
|
Volkmann BA, Zinkevich NS, Mustonen A, Schilter KF, Bosenko DV, Reis LM, Broeckel U, Link BA, Semina EV. Potential novel mechanism for Axenfeld-Rieger syndrome: deletion of a distant region containing regulatory elements of PITX2. Invest Ophthalmol Vis Sci 2011; 52:1450-9. [PMID: 20881290 PMCID: PMC3101680 DOI: 10.1167/iovs.10-6060] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/23/2010] [Accepted: 09/07/2010] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mutations in PITX2 are associated with Axenfeld-Rieger syndrome (ARS), which involves ocular, dental, and umbilical abnormalities. Identification of cis-regulatory elements of PITX2 is important to better understand the mechanisms of disease. METHODS Conserved noncoding elements surrounding PITX2/pitx2 were identified and examined through transgenic analysis in zebrafish; expression pattern was studied by in situ hybridization. Patient samples were screened for deletion/duplication of the PITX2 upstream region using arrays and probes. RESULTS Zebrafish pitx2 demonstrates conserved expression during ocular and craniofacial development. Thirteen conserved noncoding sequences positioned within a gene desert as far as 1.1 Mb upstream of the human PITX2 gene were identified; 11 have enhancer activities consistent with pitx2 expression. Ten elements mediated expression in the developing brain, four regions were active during eye formation, and two sequences were associated with craniofacial expression. One region, CE4, located approximately 111 kb upstream of PITX2, directed a complex pattern including expression in the developing eye and craniofacial region, the classic sites affected in ARS. Screening of ARS patients identified an approximately 7600-kb deletion that began 106 to 108 kb upstream of the PITX2 gene, leaving PITX2 intact while removing regulatory elements CE4 to CE13. CONCLUSIONS These data suggest the presence of a complex distant regulatory matrix within the gene desert located upstream of PITX2 with an essential role in its activity and provides a possible mechanism for the previous reports of ARS in patients with balanced translocations involving the 4q25 region upstream of PITX2 and the current patient with an upstream deletion.
Collapse
Affiliation(s)
- Bethany A. Volkmann
- From the Department of Pediatrics and Children's Research Institute and
- the Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | | | - Aki Mustonen
- the Department of Clinical Genetics, Oulu University Hospital, OYS, Finland
| | - Kala F. Schilter
- From the Department of Pediatrics and Children's Research Institute and
- the Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Dmitry V. Bosenko
- From the Department of Pediatrics and Children's Research Institute and
| | - Linda M. Reis
- From the Department of Pediatrics and Children's Research Institute and
| | - Ulrich Broeckel
- From the Department of Pediatrics and Children's Research Institute and
| | - Brian A. Link
- the Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Elena V. Semina
- From the Department of Pediatrics and Children's Research Institute and
- the Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| |
Collapse
|
72
|
Bibliowicz J, Tittle RK, Gross JM. Toward a better understanding of human eye disease insights from the zebrafish, Danio rerio. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:287-330. [PMID: 21377629 DOI: 10.1016/b978-0-12-384878-9.00007-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Visual impairment and blindness is widespread across the human population, and the development of therapies for ocular pathologies is of high priority. The zebrafish represents a valuable model organism for studying human ocular disease; it is utilized in eye research to understand underlying developmental processes, to identify potential causative genes for human disorders, and to develop therapies. Zebrafish eyes are similar in morphology, physiology, gene expression, and function to human eyes. Furthermore, zebrafish are highly amenable to laboratory research. This review outlines the use of zebrafish as a model for human ocular diseases such as colobomas, glaucoma, cataracts, photoreceptor degeneration, as well as dystrophies of the cornea and retinal pigmented epithelium.
Collapse
Affiliation(s)
- Jonathan Bibliowicz
- University of Texas at Austin, Section of Molecular Cell and Developmental Biology, Austin, Texas, USA
| | | | | |
Collapse
|
73
|
Zacharias AL, Gage PJ. Canonical Wnt/β-catenin signaling is required for maintenance but not activation of Pitx2 expression in neural crest during eye development. Dev Dyn 2010; 239:3215-25. [PMID: 20960542 PMCID: PMC3073314 DOI: 10.1002/dvdy.22459] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2010] [Indexed: 12/28/2022] Open
Abstract
Pitx2 is a paired-like homeodomain gene that acts as a key regulator of eye development. Despite its significance, upstream regulation of Pitx2 expression during eye development remains incompletely understood. We use neural crest-specific ablation of Ctnnb1 to demonstrate that canonical Wnt signaling is not required for initial activation of Pitx2 in neural crest. However, canonical Wnt signaling is subsequently required to maintain Pitx2 expression in the neural crest. Eye development in Ctnnb1-null mice appears grossly normal early but significant phenotypes emerge following loss of Pitx2 expression. LEF-1 and β-catenin bind Pitx2 promoter sequences in ocular neural crest, indicating a likely direct effect of canonical Wnt signaling on Pitx2 expression. Combining our data with previous reports, we propose a model wherein a sequential code of retinoic acid followed by canonical Wnt signaling are required for activation and maintenance of Pitx2 expression, respectively. Other key transcription factors in the neural crest, including Foxc1, do not require intact canonical Wnt signaling.
Collapse
Affiliation(s)
- Amanda L. Zacharias
- Departments of Ophthalmology & Visual Sciences, and Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Philip J. Gage
- Departments of Ophthalmology & Visual Sciences, and Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48105
| |
Collapse
|
74
|
Liu P, Johnson RL. Lmx1b is required for murine trabecular meshwork formation and for maintenance of corneal transparency. Dev Dyn 2010; 239:2161-71. [PMID: 20568247 PMCID: PMC5863528 DOI: 10.1002/dvdy.22347] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Studies of Lmx1b have shown that it is required for anterior segment formation during embryonic development and that reduction of Lmx1b may contribute to elevated intraocular pressure in the adult. However, whether Lmx1b is required for formation of anterior segment tissues that are associated with regulation of intraocular pressure has not been addressed due to the perinatal lethality of Lmx1b null allele. Here we use conditional deletion strategies to circumvent perinatal lethality. Our results indicate that Lmx1b is required in neural crest-derived periocular mesenchyme for formation of anterior segment tissues, including trabecular meshwork, a critical regulator of intraocular pressure. Furthermore, we show that Lmx1b is essential to maintain proper functioning of those tissues in the adult. Taken together, our results are the first to link a specific transcription factor to trabecular meshwork formation and the first to demonstrate specific requirements for Lmx1b in maintaining the integrity of adult anterior segment.
Collapse
Affiliation(s)
- Pu Liu
- Department of Biochemistry and Molecular Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030
,Program in Genes and Development, Graduate School of Biomedical Sciences, University of Texas Health Sciences Center, Houston, TX, 77030
| | - Randy L. Johnson
- Department of Biochemistry and Molecular Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030
,Program in Genes and Development, Graduate School of Biomedical Sciences, University of Texas Health Sciences Center, Houston, TX, 77030
,To whom correspondence should be addressed. Department of Biochemistry and Molecular Biology University of Texas, MD Anderson Cancer Center 1515 Holcombe Blvd. Houston, TX 77030 Tel: 713-834-6287 Fax: 713-792-0346
| |
Collapse
|
75
|
Kumar S, Duester G. Retinoic acid signaling in perioptic mesenchyme represses Wnt signaling via induction of Pitx2 and Dkk2. Dev Biol 2010; 340:67-74. [PMID: 20122913 PMCID: PMC2834877 DOI: 10.1016/j.ydbio.2010.01.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 12/20/2009] [Accepted: 01/21/2010] [Indexed: 01/01/2023]
Abstract
Morphogenesis during eye development requires retinoic acid (RA) receptors plus RA-synthesizing enzymes, and loss of RA signaling leads to ocular disorders associated with loss of Pitx2 expression in perioptic mesenchyme. Several Wnt signaling components are expressed in ocular tissues during eye development including Dkk2, encoding an inhibitor of Wnt/beta-catenin signaling, which was previously shown to be induced by Pitx2 in the perioptic mesenchyme. Here, we investigated potential cross-talk between RA and Wnt signaling during ocular development. Genetic studies using Raldh1/Raldh3 double null mice deficient for ocular RA synthesis demonstrated that Pitx2 and Dkk2 were both down-regulated in perioptic mesenchyme. Chromatin immunoprecipitation and gel mobility shift studies demonstrated the existence of a DR5 RA response element upstream of Pitx2 that binds all three RA receptors in embryonic eye. Axin2, an endogenous readout of Wnt/beta-catenin signaling, was up-regulated in cornea and perioptic mesenchyme of RA deficient embryos. Also, expression of Wnt5a was expanded in perioptic mesenchyme of RA deficient eyes. Our findings demonstrate excessive activation of Wnt signaling in the perioptic mesenchyme of RA deficient mice which may be responsible for abnormal development leading to defective optic cup, cornea, and eyelid morphogenesis.
Collapse
Affiliation(s)
- Sandeep Kumar
- Burnham Institute for Medical Research, Development and Aging Program, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Gregg Duester
- Burnham Institute for Medical Research, Development and Aging Program, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
76
|
Bassett EA, Williams T, Zacharias AL, Gage PJ, Fuhrmann S, West-Mays JA. AP-2alpha knockout mice exhibit optic cup patterning defects and failure of optic stalk morphogenesis. Hum Mol Genet 2010; 19:1791-804. [PMID: 20150232 DOI: 10.1093/hmg/ddq060] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Appropriate development of the retina and optic nerve requires that the forebrain-derived optic neuroepithelium undergoes a precisely coordinated sequence of patterning and morphogenetic events, processes which are highly influenced by signals from adjacent tissues. Our previous work has suggested that transcription factor activating protein-2 alpha (AP-2alpha; Tcfap2a) has a non-cell autonomous role in optic cup (OC) development; however, it remained unclear how OC abnormalities in AP-2alpha knockout (KO) mice arise at the morphological and molecular level. In this study, we show that patterning and morphogenetic defects in the AP-2alpha KO optic neuroepithelium begin at the optic vesicle stage. During subsequent OC formation, ectopic neural retina and optic stalk-like tissue replaced regions of retinal pigment epithelium. AP-2alpha KO eyes also displayed coloboma in the ventral retina, and a rare phenotype in which the optic stalk completely failed to extend, causing the OCs to be drawn inward to the midline. We detected evidence of increased sonic hedgehog signaling in the AP-2alpha KO forebrain neuroepithelium, which likely contributed to multiple aspects of the ocular phenotype, including expansion of PAX2-positive optic stalk-like tissue into the OC. Our data suggest that loss of AP-2alpha in multiple tissues in the craniofacial region leads to severe OC and optic stalk abnormalities by disturbing the tissue-tissue interactions required for ocular development. In view of recent data showing that mutations in human TFAP2A result in similar eye defects, the current findings demonstrate that AP-2alpha KO mice provide a valuable model for human ocular disease.
Collapse
Affiliation(s)
- Erin A Bassett
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
77
|
Dupé V, Pellerin I. Retinoic acid receptors exhibit cell-autonomous functions in cranial neural crest cells. Dev Dyn 2010; 238:2701-11. [PMID: 19777591 DOI: 10.1002/dvdy.22087] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Previous work has emphasized the crucial role of retinoic acid (RA) in the ontogenesis of the vast majority of mesenchymal structures derived from the neural crest cells (NCC), which migrate through, or populate, the frontonasal process and branchial arches. Using somatic mutagenesis in the mouse, we have selectively ablated two or three retinoic acid receptors (i.e., RARalpha/RARbeta, RARalpha/RARgamma and RARalpha/RARbeta/RARgamma) in NCC. By rigorously analyzing these mutant mice, we found that survival and migration of NCC is normal until gestational day 10.5, suggesting that RAR-dependent signaling is not intrinsically required for the early steps of NCC development. However, ablation of Rara and Rarg genes in NCC yields an agenesis of the median portion of the face, demonstrating that RARalpha and RARgamma act cell-autonomously in postmigratory NCC to control the development of structures derived from the frontonasal process. In contrast, ablation of the three Rar genes in NCC leads to less severe defects of the branchial arches derived structures compared with Rar compound null mutants. Therefore, RARs exert a function in the NCC as well as in a separated cell population. This work demonstrates that RARs use distinct mechanisms to pattern cranial NCC.
Collapse
Affiliation(s)
- Valérie Dupé
- Faculté de Médecine, Institut de Génétique et Développement, Université de Rennes 1, Rennes Cedex, France.
| | | |
Collapse
|
78
|
|
79
|
Abstract
Organogenesis of the eye is a multistep process that starts with the formation of optic vesicles followed by invagination of the distal domain of the vesicles and the overlying lens placode resulting in morphogenesis of the optic cup. The late optic vesicle becomes patterned into distinct ocular tissues: the neural retina, retinal pigment epithelium (RPE), and optic stalk. Multiple congenital eye disorders, including anophthalmia or microphthalmia, aniridia, coloboma, and retinal dysplasia, stem from disruptions in embryonic eye development. Thus, it is critical to understand the mechanisms that lead to initial specification and differentiation of ocular tissues. An accumulating number of studies demonstrate that a complex interplay between inductive signals provided by tissue-tissue interactions and cell-intrinsic factors is critical to ensuring proper specification of ocular tissues as well as maintenance of RPE cell fate. While several of the extrinsic and intrinsic determinants have been identified, we are just at the beginning in understanding how these signals are integrated. In addition, we know very little about the actual output of these interactions. In this chapter, we provide an update of the mechanisms controlling the early steps of eye development in vertebrates, with emphasis on optic vesicle evagination, specification of neural retina and RPE at the optic vesicle stage, the process of invagination during morphogenesis of the optic cup, and maintenance of the RPE cell fate.
Collapse
Affiliation(s)
- Sabine Fuhrmann
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
80
|
Gage PJ, Zacharias AL. Signaling "cross-talk" is integrated by transcription factors in the development of the anterior segment in the eye. Dev Dyn 2009; 238:2149-62. [PMID: 19623614 DOI: 10.1002/dvdy.22033] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Extracellular signaling "cross-talk" between tissues is an important requirement for development of many organs yet the underlying mechanisms generally remain poorly understood. The anterior segment of the eye, which is constructed from four embryonic lineages, provides a unique opportunity to genetically dissect developmental processes such as signaling "cross-talk" without fear of inducing lethality. In the current review, we summarize recent data showing that PITX2, a homeodomain transcription factor, integrates retinoic acid and canonical Wnt/beta-catenin signaling during anterior segment development. Because the requirements for retinoic acid signaling, canonical Wnt/beta-catenin signaling, and PITX2 are not unique to the eye, this newly identified pathway may have relevance elsewhere during development and in tissue homeostasis.
Collapse
Affiliation(s)
- Philip J Gage
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA.
| | | |
Collapse
|
81
|
McMahon C, Gestri G, Wilson SW, Link BA. Lmx1b is essential for survival of periocular mesenchymal cells and influences Fgf-mediated retinal patterning in zebrafish. Dev Biol 2009; 332:287-98. [PMID: 19500562 PMCID: PMC2716413 DOI: 10.1016/j.ydbio.2009.05.577] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/27/2009] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
Abstract
To gain insight into the mechanisms of Lmx1b function during ocular morphogenesis, we have studied the roles of lmx1b.1 and lmx1b.2 during zebrafish eye development. In situ hybridization and characterization of transgenic lines in which GFP is expressed under lmx1b.1 regulatory sequence show that these genes are expressed in periocular tissues and in a pattern conserved with other vertebrates. Anti-sense morpholinos against lmx1b.1 and lmx1b.2 result in defective migration of periocular mesenchymal cells around the eye and lead to apoptosis of these cells. These defects in the periocular mesenchyme are correlated with a failure in fusion of the choroid fissure or in some instances, more severe ventral optic cup morphogenesis phenotypes. Indeed, by blocking the death of the periocular mesenchyme in Lmx1b morphants, optic vesicle morphogenesis is largely restored. Within the retina of lmx1b morphants, Fgf activity is transiently up-regulated and these morphants show defective naso-temporal patterning. Epistasis experiments indicate that the increase in Fgf activity is partially responsible for the ocular anomalies caused by loss of Lmx1b function. Overall, we propose zebrafish lmx1b.1 and lmx1b.2 promote the survival of periocular mesenchymal cells that influence multiple signaling events required for proper ocular development.
Collapse
Affiliation(s)
- Carrie McMahon
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
82
|
Cvekl A, Wang WL. Retinoic acid signaling in mammalian eye development. Exp Eye Res 2009; 89:280-91. [PMID: 19427305 DOI: 10.1016/j.exer.2009.04.012] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 12/20/2022]
Abstract
Retinoic acid (RA) is a biologically active metabolite of vitamin A (retinol) that serves as a signaling molecule during a number of developmental and physiological processes. RA signaling plays multiple roles during embryonic eye development. RA signaling is initially required for reciprocal interactions between the optic vesicle and invaginating lens placode. RA signaling promotes normal development of the ventral retina and optic nerve through its activities in the neural crest cell-derived periocular mesenchyme. RA coordinates these processes by regulating biological activities of a family of non-steroid hormone receptors, RARalpha/beta/gamma, and RXRalpha/beta/gamma. These DNA-binding transcription factors recognize DNA as RAR/RXR heterodimers and recruit multiprotein transcriptional co-repressor complexes. RA-binding to RAR receptors induces a conformational change in the receptor, followed by the replacement of co-repressor with co-activator complexes. Inactivation of RARalpha/beta/gamma receptors in the periocular mesenchyme abrogates anterior eye segment formation. This review summarizes recent genetic studies of RA signaling and progress in understanding the molecular mechanism of transcriptional co-activators that function with RAR/RXR.
Collapse
Affiliation(s)
- Ales Cvekl
- The Department Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
83
|
Mark M, Ghyselinck NB, Chambon P. Function of retinoic acid receptors during embryonic development. NUCLEAR RECEPTOR SIGNALING 2009; 7:e002. [PMID: 19381305 PMCID: PMC2670431 DOI: 10.1621/nrs.07002] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 03/13/2009] [Indexed: 12/31/2022]
Abstract
Retinoids, the active metabolites of vitamin A, regulate complex gene networks involved in vertebrate morphogenesis, growth, cellular differentiation and homeostasis. Studies performed in vitro, using either acellular systems or transfected cells, have shown that retinoid actions are mediated through heterodimers between the RAR and RXR nuclear receptors. However, in vitro studies indicate what is possible, but not necessarily what is actually occurring in vivo, because they are performed under non-physiological conditions. Therefore, genetic approaches in the animal have been be used to determine the physiological functions of retinoid receptors. Homologous recombination in embryonic stem cells has been used to generate germline null mutations of the RAR- and RXR-coding genes in the mouse. As reviewed here, the generation of such germline mutations, combined with pharmacological approaches to block the RA signalling pathway, has provided genetic evidence that RAR/RXR heterodimers are indeed the functional units transducing the RA signal during prenatal development. However, due to (i) the complexity in “hormonal” signalling through transduction by the multiple RARs and RXRs, (ii) the functional redundancies (possibly artefactually generated by the mutations) within receptor isotypes belonging to a given family, and (iii) in utero or early postnatal lethality of certain germline null mutations, these genetic studies have failed to reveal all the physiological functions of RARs and RXRs, notably in adults. Spatio-temporally-controlled somatic mutations generated in given cell types/tissues and at chosen times during postnatal life, will be required to reveal all the functions of RAR and RXR throughout the lifetime of the mouse.
Collapse
Affiliation(s)
- Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Biologie Cellulaire and Développement, Strasbourg, France
| | | | | |
Collapse
|