51
|
Melik W, Ellencrona K, Wigerius M, Hedström C, Elväng A, Johansson M. Two PDZ binding motifs within NS5 have roles in Tick-borne encephalitis virus replication. Virus Res 2012; 169:54-62. [PMID: 22796133 DOI: 10.1016/j.virusres.2012.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 11/16/2022]
Abstract
The flavivirus genus includes important human neurotropic pathogens like Tick-borne encephalitis virus (TBEV) and West-Nile virus (WNV). Flavivirus replication occurs at replication complexes, where the NS5 protein provides both RNA cap methyltransferase and RNA-dependent RNA polymerase activities. TBEVNS5 contains two PDZ binding motifs (PBMs) important for specific targeting of human PDZ proteins including Scribble, an association important for viral down regulation of cellular defense systems and neurite outgrowth. To determine whether the PBMs of TBEVNS5 affects virus replication we constructed a DNA based sub-genomic TBEV replicon expressing firefly luciferase. The PBMs within NS5 were mutated individually and in concert and the replicons were assayed in cell culture. Our results show that the replication rate was impaired in all mutants, which indicates that PDZ dependent host interactions influence TBEV replication. We also find that the C-terminal PBMs present in TBEVNS5 and WNVNS5 are targeting various human PDZ domain proteins. TBEVNS5 has affinity to Zonula occludens-2 (ZO-2), GIAP C-terminus interacting protein (GIPC), calcium/calmodulin-dependent serine protein kinase (CASK), glutamate receptor interacting protein 2, (GRIP2) and Interleukin 16 (IL-16). A different pattern was observed for WNVNS5 as it associate with a broader repertoire of putative host PDZ proteins.
Collapse
Affiliation(s)
- Wessam Melik
- School of Life Sciences, Södertörn University, S-141 89 Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
52
|
Linares GR, Brommage R, Powell DR, Xing W, Chen ST, Alshbool FZ, Lau KHW, Wergedal JE, Mohan S. Claudin 18 is a novel negative regulator of bone resorption and osteoclast differentiation. J Bone Miner Res 2012; 27:1553-65. [PMID: 22437732 PMCID: PMC3377820 DOI: 10.1002/jbmr.1600] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Claudin 18 (Cldn-18) belongs to a large family of transmembrane proteins that are important components of tight junction strands. Although several claudin members are expressed in bone, the functional role for any claudin member in bone is unknown. Here we demonstrate that disruption of Cldn-18 in mice markedly decreased total body bone mineral density, trabecular bone volume, and cortical thickness in Cldn-18(-/-) mice. Histomorphometric studies revealed that bone resorption parameters were increased significantly in Cldn-18(-/-) mice without changes in bone formation. Serum levels of tartrate-resistant acid phosphatase 5b (TRAP5b) and mRNA expression levels of osteoclast specific markers and signaling molecules were also increased. Loss of Cldn-18 further exacerbated calcium deficiency induced bone loss by influencing bone resorption, thereby resulting in mechanically weaker bone. In vitro studies with bone marrow macrophages revealed Cldn-18 disruption markedly enhanced receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation but not macrophage colony-stimulating factor (MCSF)-induced bone marrow macrophage (BMM) proliferation. Consistent with a direct role for Cldn-18 in regulating osteoclast differentiation, overexpression of wild type but not PDZ binding motif deleted Cldn-18 inhibited RANKL-induced osteoclast differentiation. Furthermore, our findings indicate that Cldn-18 interacts with Zonula occludens 2 (ZO-2) to modulate RANKL signaling in osteoclasts. In conclusion, we demonstrate that Cldn-18 is a novel negative regulator of bone resorption and osteoclast differentiation.
Collapse
Affiliation(s)
- Gabriel R. Linares
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, CA 92357, USA
- Department of Physiology, Loma Linda University, Loma Linda, CA 92354, USA
| | | | | | - Weirong Xing
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Shin-Tai Chen
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, CA 92357, USA
- Department of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Microbiology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Fatima Z. Alshbool
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, CA 92357, USA
- Department of Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | - KH William Lau
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jon E. Wergedal
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, CA 92357, USA
- Department of Physiology, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
53
|
Nuclear import of LASP-1 is regulated by phosphorylation and dynamic protein-protein interactions. Oncogene 2012; 32:2107-13. [PMID: 22665060 DOI: 10.1038/onc.2012.216] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
LASP-1 is a multidomain protein predominantly localized at focal contacts, where it regulates cytoskeleton dynamics and cell migration. However, in different tumor entities, a nuclear LASP-1 accumulation is observed, thought to have an important role in cancer progression. Until now, the molecular mechanisms that control LASP-1 nuclear import were not elucidated. Here, we identified a novel LASP-1-binding partner, zona occludens protein 2 (ZO-2), and established its role in the signal transduction pathway of LASP-1 nucleo-cytoplasmatic shuttling. Phosphorylation of LASP-1 by PKA at serine 146 induces translocation of the LASP-1/ZO-2 complex from the cytoplasm to the nucleus. Interaction occurs within the carboxyterminal proline-rich motif of ZO-2 and the SH3 domain in LASP-1. In situ proximity ligation assay confirmed the direct binding between LASP-1 and ZO-2 and visualized the shuttling. Nuclear export is mediated by Crm-1 and a newly identified nuclear export signal in LASP-1. Finally, dephosphorylation of LASP-1 by phosphatase PP2B is suggested to relocalize the protein back to focal contacts. In summary, we define a new pathway for LASP-1 in tumor progression.
Collapse
|
54
|
Cong X, Zhang Y, Shi L, Yang NY, Ding C, Li J, Ding QW, Su YC, Xiang RL, Wu LL, Yu GY. Activation of transient receptor potential vanilloid subtype 1 increases expression and permeability of tight junction in normal and hyposecretory submandibular gland. J Transl Med 2012; 92:753-68. [PMID: 22391958 DOI: 10.1038/labinvest.2012.12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tight junction (TJ) is an important structure that regulates material transport through the paracellular pathway across the epithelium, but its significance in salivary physiology and pathogenesis of salivary dysfunctional diseases is not fully understood. We previously demonstrated that a functional transient receptor potential vanilloid subtype 1 (TRPV1) expresses in submandibular gland (SMG). However, association of TRPV1-induced saliva secretion with TJ remains unknown. Here we explored the effect of TRPV1 activation on expression and function of TJ of rabbit SMG in vitro and in vivo. RT-PCR and western blot analysis revealed that capsaicin upregulated expression of zonula occludin-1 (ZO-1), claudin (Cldn)-3, and -11, but not Cldn-1, -2, -4, -5, and -7 in cultured SMG cells. Capsaicin also increased the entering of 4 kDa FITC-dextran into the acinar lumen, induced redistribution of cytoskeleton F-actin under confocal microscope, and these effects were abolished by preincubation of capsazepine, a TRPV1 antagonist, indicating that activation of TRPV1 increases expression and permeability of TJ in SMG. Additionally, in a hyposecretory model induced by rabbit SMG transplantation, the expression of ZO-1, Cldn-3, and -11 was decreased, whereas other TJs remained unaltered. The structure of TJ was impaired and the width of apical TJs was reduced under transmission electron microscope, concomitant with diminished immunofluorescence of F-actin in peri-apicolateral region, indicating impaired TJ expression and decreased paracellular permeability in the transplanted SMG. Moreover, topical capsaicin cream increased secretion, decreased TJ structural injury, reversed TJ expression levels, and protected F-actin morphology from disarrangement in transplanted SMGs. These data provide the first evidence to demonstrate that TJ components, particularly ZO-1, Cldn-3, and -11 have important roles in secretion of SMG under both physiological and pathophysiological conditions. The injury in TJ integrity was involved in the hypofunctional SMGs, and TRPV1 might be a potential target to improve saliva secretion through modulating expression and function of TJs.
Collapse
Affiliation(s)
- Xin Cong
- Center for Salivary Gland Diseases of Peking University School and Hospital of Stomatology, Department of Physiology and Pathophysiology, Peking University HealthScience Center and Key Laboratory of Molecular Cardiovascular Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
HIV-1 Tat triggers nuclear localization of ZO-1 via Rho signaling and cAMP response element-binding protein activation. J Neurosci 2012; 32:143-50. [PMID: 22219277 DOI: 10.1523/jneurosci.4266-11.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The human immunodeficiency virus (HIV)-specific protein trans-activator of transcription (Tat) can contribute to the dysfunction of brain endothelial cells and HIV trafficking into the brain by disrupting tight junction (TJ) integrity at the blood-brain barrier (BBB) level. Specific TJ proteins, such as zonula occludens (ZO) proteins, localize not only at the cell-cell borders but are also present in the nuclei. The objective of the present study was to evaluate the mechanisms and significance of Tat-induced nuclear localization of ZO-1. Treatment of a brain endothelial cell line (hCMEC/D3 cells) with Tat resulted in a decrease in total levels of ZO-1 but significantly upregulated ZO-1 protein expression in the nuclei. In addition, exposure to Tat stimulated Rho signaling and induced phosphorylation and activity of transcription factor cAMP response element-binding protein (CREB), binding sites that have been identified in the proximal region of the ZO-1 promoter. Interestingly, inhibition of the Rho cascade protected against Tat-induced upregulation of ZO-1 in the nuclei and activation of CREB. Depletion of CREB by infection of cells with specific shRNA lentiviral particles attenuated both Tat-induced Rho signaling and nuclear targeting of ZO-1. A decrease in CREB levels also attenuated Tat-induced endothelial and BBB hyperpermeability as well as transendothelial migration of monocytic cells. The role of CREB in Tat-mediated alterations of ZO-1 was confirmed in brain microvessels in mice with CREB shRNA lentiviral particles injected into the cerebral circulation. The present results indicate the crucial role of Rho signaling and CREB in modulation of nuclear localization of ZO-1 and maintaining the integrity of endothelial monolayers.
Collapse
|
56
|
Lupo J, Conti A, Sueur C, Coly PA, Couté Y, Hunziker W, Burmeister WP, Germi R, Manet E, Gruffat H, Morand P, Boyer V. Identification of new interacting partners of the shuttling protein ubinuclein (Ubn-1). Exp Cell Res 2012; 318:509-20. [PMID: 22245583 DOI: 10.1016/j.yexcr.2011.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 12/21/2011] [Accepted: 12/24/2011] [Indexed: 10/14/2022]
Abstract
We have previously characterized ubinuclein (Ubn-1) as a NACos (Nuclear and Adherent junction Complex components) protein which interacts with viral or cellular transcription factors and the tight junction (TJ) protein ZO-1. The purpose of the present study was to get more insights on the binding partners of Ubn-1, notably those present in the epithelial junctions. Using an in vivo assay of fluorescent protein-complementation assay (PCA), we demonstrated that the N-terminal domains of the Ubn-1 and ZO-1 proteins triggered a functional interaction inside the cell. Indeed, expression of both complementary fragments of venus fused to the N-terminal parts of Ubn-1 and ZO-1 was able to reconstitute a fluorescent venus protein. Furthermore, nuclear expression of the chimeric Ubn-1 triggered nuclear localization of the chimeric ZO-1. We could localize this interaction to the PDZ2 domain of ZO-1 using an in vitro pull-down assay. More precisely, a 184-amino acid region (from amino acids 39 to 223) at the N-terminal region of Ubn-1 was responsible for the interaction with the PDZ2 domain of ZO-1. Co-imunoprecipitation and confocal microscopy experiments also revealed the tight junction protein cingulin as a new interacting partner of Ubn-1. A proteomic approach based on mass spectrometry analysis (MS) was then undertaken to identify further binding partners of GST-Ubn-1 fusion protein in different subcellular fractions of human epithelial HT29 cells. LYRIC (Lysine-rich CEACAM1-associated protein) and RACK-1 (receptor for activated C-kinase) proteins were validated as bona fide interacting partners of Ubn-1. Altogether, these results suggest that Ubn-1 is a scaffold protein influencing protein subcellular localization and is involved in several processes such as cell-cell contact signalling or modulation of gene activity.
Collapse
Affiliation(s)
- Julien Lupo
- Unit of Virus Host Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 6 rue Jules Horowitz, BP 181, F-38042 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Assimakopoulos SF, Papageorgiou I, Charonis A. Enterocytes’ tight junctions: From molecules to diseases. World J Gastrointest Pathophysiol 2011; 2:123-37. [PMID: 22184542 PMCID: PMC3241743 DOI: 10.4291/wjgp.v2.i6.123] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/26/2011] [Accepted: 10/31/2011] [Indexed: 02/06/2023] Open
Abstract
Tight junctions (TJs) are structures between cells where cells appear in the closest possible contact. They are responsible for sealing compartments when epithelial sheets are generated. They regulate the permeability of ions, (macro) molecules and cells via the paracellular pathway. Their structure at the electron microscopic level has been well known since the 1970s; however, only recently has their macromolecular composition been revealed. This review first examines the major macromolecular components of the TJs (occludin, claudins, junctional adhesion molecule and tricellulin) and then the associated macromolecules at the intracellular plaque [zonula occludens (ZO)-1, ZO-2, ZO-3, AF-6, cingulin, 7H6]. Emphasis is given to their interactions in order to begin to understand the mode of assembly of TJs. The functional significance of TJs is detailed and several mechanisms and factors involved are discussed briefly. Emphasis is given to the role of intestinal TJs and the alterations observed or speculated in diverse disease states. Specifically, intestinal TJs may exert a pathogenetic role in intestinal (inflammatory bowel disease, celiac disease) and extraintestinal diseases (diabetes type 1, food allergies, autoimmune diseases). Additionally, intestinal TJs may be secondarily disrupted during the course of diverse diseases, subsequently allowing the bacterial translocation phenomenon and promoting the systemic inflammatory response, which is often associated with clinical deterioration. The major questions in the field are highlighted.
Collapse
|
58
|
Hervé JC, Derangeon M, Sarrouilhe D, Giepmans BNG, Bourmeyster N. Gap junctional channels are parts of multiprotein complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1844-65. [PMID: 22197781 DOI: 10.1016/j.bbamem.2011.12.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 11/28/2011] [Accepted: 12/06/2011] [Indexed: 12/16/2022]
Abstract
Gap junctional channels are a class of membrane channels composed of transmembrane channel-forming integral membrane proteins termed connexins, innexins or pannexins that mediate direct cell-to-cell or cell-to extracellular medium communication in almost all animal tissues. The activity of these channels is tightly regulated, particularly by intramolecular modifications as phosphorylations of proteins and via the formation of multiprotein complexes where pore-forming subunits bind to auxiliary channel subunits and associate with scaffolding proteins that play essential roles in channel localization and activity. Scaffolding proteins link signaling enzymes, substrates, and potential effectors (such as channels) into multiprotein signaling complexes that may be anchored to the cytoskeleton. Protein-protein interactions play essential roles in channel localization and activity and, besides their cell-to-cell channel-forming functions, gap junctional proteins now appear involved in different cellular functions (e.g. transcriptional and cytoskeletal regulations). The present review summarizes the recent progress regarding the proteins capable of interacting with junctional proteins and highlights the function of these protein-protein interactions in cell physiology and aberrant function in diseases. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and functions.
Collapse
Affiliation(s)
- Jean-Claude Hervé
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, Poitiers, France.
| | | | | | | | | |
Collapse
|
59
|
Wang H, Luan L, Ding T, Brown N, Reese J, Paria B. Dynamics of zonula occludens-2 expression during preimplantation embryonic development in the hamster. Theriogenology 2011; 76:678-86. [PMID: 21601268 PMCID: PMC3151312 DOI: 10.1016/j.theriogenology.2011.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/25/2011] [Accepted: 03/27/2011] [Indexed: 01/21/2023]
Abstract
The objective was to study the expression of zonula occludens-2, a tight junction protein, during preimplantation hamster embryonic development, to predict its possible localization, source, and roles in trophectoderm differentiation and blastocyst formation in this species. Comparison of zonula occludens-2 expression pattern between the hamster and mouse preimplantation embryos from the zygote up to the blastocyst stage was also an objective of this study. Zonula occludens-2 localization was noted in nuclei of blastomeres in all stages of hamster and mouse embryonic development. Compared to mice, where zonula occludens-2 was first localized in the interblastomere membrane at the morula stage, hamster embryos had membranous zonula occludens-2 localization from the 2-cell stage onwards. Based on combined results of immunolocalization study in parthenogenic embryos and ovarian and epididymal sections, and quantitative PCR done in oocytes and all developmental stages of preimplantation embryos, perhaps there was a carry-over of zonula occludens-2 proteins or mRNA from the dam to the embryo. Based on these findings, we inferred that maternally derived zonula occludens-2 was involved in nuclear functions, as well as differentiation of blastomeres and blastocoel formation during preimplantation embryonic development in the hamster.
Collapse
Affiliation(s)
- Hehai Wang
- Children Memorial Research Center, Northwestern University, Chicago, IL, USA
| | - Liming Luan
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tianbing Ding
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naoko Brown
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeff Reese
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - B.C. Paria
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
60
|
Lehner C, Gehwolf R, Tempfer H, Krizbai I, Hennig B, Bauer HC, Bauer H. Oxidative stress and blood-brain barrier dysfunction under particular consideration of matrix metalloproteinases. Antioxid Redox Signal 2011; 15:1305-23. [PMID: 21294658 PMCID: PMC6464004 DOI: 10.1089/ars.2011.3923] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A cell's "redox" (oxidation and reduction) state is determined by the sum of all redox processes yielding reactive oxygen species (ROS), reactive nitrogen species (RNS), and other reactive intermediates. Low amounts of ROS/RNS are generated by different mechanisms in every cell and are important regulatory mediators in many signaling processes (redox signaling). When the physiological balance between the generation and elimination of ROS/RNS is disrupted, oxidative/nitrosative stress with persistent oxidative damage of the organism occurs. Oxidative stress has been suggested to act as initiator and/or mediator of many human diseases. The cerebral vasculature is particularly susceptible to oxidative stress, which is critical since cerebral endothelial cells play a major role in the creation and maintenance of the blood-brain barrier (BBB). This article will only contain a focused introduction on the biochemical background of redox signaling, since this has been reported already in a series of excellent recent reviews. The goal of this work is to increase the understanding of basic mechanisms underlying ROS/RNS-induced BBB disruption, with a focus on the role of matrix metalloproteinases, which, after all, appear to be a key mediator in the initiation and progression of BBB damage elicited by oxidative stress.
Collapse
Affiliation(s)
- Christine Lehner
- Department of Organismic Biology, Development Biology Group, University Hospital of Salzburg, Salzburg, Austria
| | | | | | | | | | | | | |
Collapse
|
61
|
González-Mariscal L, Quirós M, Díaz-Coránguez M. ZO proteins and redox-dependent processes. Antioxid Redox Signal 2011; 15:1235-53. [PMID: 21294657 DOI: 10.1089/ars.2011.3913] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE ZO-1, ZO-2, and ZO-3 are scaffold proteins of the tight junction (TJ) that belong to the MAGUK protein family characterized for exhibiting PDZ, SH3, and GuK domains. ZO proteins are present only in multicellular organisms, being the placozoa the first to have them. ZO proteins associate among themselves and with other integral and adaptor proteins of the TJ, of the ZA and of gap junctions, as with numerous signaling proteins and the actin cytoskeleton. ZO proteins are also present at the nucleus of proliferating cells. RECENT ADVANCES Oxidative stress disassembles the TJs of endothelial and epithelial cells. CRITICAL ISSUES Oxidative stress alters ZO proteins expression and localization, in conditions like hypoxia, bacterial and viral infections, vitamin deficiencies, age-related diseases, diabetes and inflammation, alcohol and tobacco consumption. FUTURE DIRECTIONS Molecules present in the signaling pathways triggered by oxidative stress can be targets for therapeutic intervention.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico DF, México.
| | | | | |
Collapse
|
62
|
Ronaldson PT, Davis TP. Targeting blood-brain barrier changes during inflammatory pain: an opportunity for optimizing CNS drug delivery. Ther Deliv 2011; 2:1015-41. [PMID: 22468221 PMCID: PMC3313594 DOI: 10.4155/tde.11.67] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The blood-brain barrier (BBB) is the most significant obstacle to effective CNS drug delivery. It possesses structural and biochemical features (i.e., tight-junction protein complexes and, influx and efflux transporters) that restrict xenobiotic permeation. Pathophysiological stressors (i.e., peripheral inflammatory pain) can alter BBB tight junctions and transporters, which leads to drug-permeation changes. This is especially critical for opioids, which require precise CNS concentrations to be safe and effective analgesics. Recent studies have identified molecular targets (i.e., endogenous transporters and intracellular signaling systems) that can be exploited for optimization of CNS drug delivery. This article summarizes current knowledge in this area and emphasizes those targets that present the greatest opportunity for controlling drug permeation and/or drug transport across the BBB in an effort to achieve optimal CNS opioid delivery.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 N Campbell Avenue, PO Box 245050, Tucso, AZ, USA.
| | | |
Collapse
|
63
|
Raleigh DR, Boe DM, Yu D, Weber CR, Marchiando AM, Bradford EM, Wang Y, Wu L, Schneeberger EE, Shen L, Turner JR. Occludin S408 phosphorylation regulates tight junction protein interactions and barrier function. ACTA ACUST UNITED AC 2011; 193:565-82. [PMID: 21536752 PMCID: PMC3087007 DOI: 10.1083/jcb.201010065] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Occludin S408 phosphorylation regulates interactions between occludin, ZO-1, and select claudins to define tight junction molecular structure and barrier function. Although the C-terminal cytoplasmic tail of the tight junction protein occludin is heavily phosphorylated, the functional impact of most individual sites is undefined. Here, we show that inhibition of CK2-mediated occludin S408 phosphorylation elevates transepithelial resistance by reducing paracellular cation flux. This regulation requires occludin, claudin-1, claudin-2, and ZO-1. S408 dephosphorylation reduces occludin exchange, but increases exchange of ZO-1, claudin-1, and claudin-2, thereby causing the mobile fractions of these proteins to converge. Claudin-4 exchange is not affected. ZO-1 domains that mediate interactions with occludin and claudins are required for increases in claudin-2 exchange, suggesting assembly of a phosphorylation-sensitive protein complex. Consistent with this, binding of claudin-1 and claudin-2, but not claudin-4, to S408A occludin tail is increased relative to S408D. Finally, CK2 inhibition reversed IL-13–induced, claudin-2–dependent barrier loss. Thus, occludin S408 dephosphorylation regulates paracellular permeability by remodeling tight junction protein dynamic behavior and intermolecular interactions between occludin, ZO-1, and select claudins, and may have therapeutic potential in inflammation-associated barrier dysfunction.
Collapse
Affiliation(s)
- David R Raleigh
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Non-channel functions of connexins in cell growth and cell death. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:2002-8. [PMID: 21718687 DOI: 10.1016/j.bbamem.2011.06.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/08/2011] [Accepted: 06/15/2011] [Indexed: 12/12/2022]
Abstract
Cellular communication mediated by gap junction channels and hemichannels, both composed of connexin proteins, constitutes two acknowledged regulatory platforms in the accomplishment of tissue homeostasis. In recent years, an abundance of reports has been published indicating functions for connexin proteins in the control of the cellular life cycle that occur independently of their channel activities. This has yet been most exemplified in the context of cell growth and cell death, and is therefore as such addressed in the current paper. Specific attention is hereby paid to the molecular mechanisms that underpin the cellular non-channel roles of connexin proteins, namely the alteration of the expression of tissue homeostasis determinants and the physical interaction with cell growth and cell death regulators. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
|
65
|
Rizzolo LJ, Peng S, Luo Y, Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Prog Retin Eye Res 2011; 30:296-323. [PMID: 21704180 DOI: 10.1016/j.preteyeres.2011.06.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 02/02/2023]
Abstract
The retinal pigment epithelium (RPE) forms the outer blood-retinal barrier by regulating the movement of solutes between the fenestrated capillaries of the choroid and the photoreceptor layer of the retina. Blood-tissue barriers use various mechanisms to accomplish their tasks including membrane pumps, transporters, and channels, transcytosis, metabolic alteration of solutes in transit, and passive but selective diffusion. The last category includes tight junctions, which regulate transepithelial diffusion through the spaces between neighboring cells of the monolayer. Tight junctions are extraordinarily complex structures that are dynamically regulated. Claudins are a family of tight junctional proteins that lend tissue specificity and selectivity to tight junctions. This review discusses how the claudins and tight junctions of the RPE differ from other epithelia and how its functions are modulated by the neural retina. Studies of RPE-retinal interactions during development lend insight into this modulation. Notably, the characteristics of RPE junctions, such as claudin composition, vary among species, which suggests the physiology of the outer retina may also vary. Comparative studies of barrier functions among species should deepen our understanding of how homeostasis is maintained in the outer retina. Stem cells provide a way to extend these studies of RPE-retinal interactions to human RPE.
Collapse
Affiliation(s)
- Lawrence J Rizzolo
- Department of Surgery and Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208062, New Haven, CT 06520-8062, USA.
| | | | | | | |
Collapse
|
66
|
Abstract
Tight junctions are the most apically localized part of the epithelial junctional complex. They regulate the permeability and polarity of cell layers and create compartments in cell membranes. Claudins are structural molecules of tight junctions. There are 27 claudins known, and expression of different claudins is responsible for changes in the electrolyte and solute permeability in cells layers. Studies have shown that claudins and tight junctions also protect multicellular organisms from infections and that some infectious agents may use claudins as targets to invade and weaken the host's defense. In neoplastic diseases, claudin expression may be up- or downregulated. Since their expression is associated with specific tumor types or with specific locations of tumors to a certain degree, they can, in a restricted sense, also be used as tumor markers. However, the regulation of claudin expression is complex involving growth factors and integrins, protein kinases, proto-oncogens and transcription factors. In this review, the significance of claudins is discussed in lung disease and development.
Collapse
Affiliation(s)
- Ylermi Soini
- Department of Pathology and Forensic Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Cancer Center of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
67
|
Capaldo CT, Koch S, Kwon M, Laur O, Parkos CA, Nusrat A. Tight function zonula occludens-3 regulates cyclin D1-dependent cell proliferation. Mol Biol Cell 2011; 22:1677-85. [PMID: 21411630 PMCID: PMC3093320 DOI: 10.1091/mbc.e10-08-0677] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 02/09/2011] [Accepted: 03/07/2011] [Indexed: 12/16/2022] Open
Abstract
Coordinated regulation of cell proliferation is vital for epithelial tissue homeostasis, and uncontrolled proliferation is a hallmark of carcinogenesis. A growing body of evidence indicates that epithelial tight junctions (TJs) play a role in these processes, although the mechanisms involved are poorly understood. In this study, we identify and characterize a novel plasma membrane pool of cyclin D1 with cell-cycle regulatory functions. We have determined that the zonula occludens (ZO) family of TJ plaque proteins sequesters cyclin D1 at TJs during mitosis, through an evolutionarily conserved class II PSD-95, Dlg, and ZO-1 (PDZ)-binding motif within cyclin D1. Disruption of the cyclin D1/ZO complex through mutagenesis or siRNA-mediated suppression of ZO-3 resulted in increased cyclin D1 proteolysis and G(0)/G(1) cell-cycle retention. This study highlights an important new role for ZO family TJ proteins in regulating epithelial cell proliferation through stabilization of cyclin D1 during mitosis.
Collapse
Affiliation(s)
- Christopher T. Capaldo
- Epithelial Pathobiology Research Unit, Department of Pathology, Emory University, Atlanta, GA 30322
| | - Stefan Koch
- Epithelial Pathobiology Research Unit, Department of Pathology, Emory University, Atlanta, GA 30322
| | - Michael Kwon
- Epithelial Pathobiology Research Unit, Department of Pathology, Emory University, Atlanta, GA 30322
| | - Oskar Laur
- Yerkes-Microbiology, Emory University, Atlanta, GA 30329
| | - Charles A. Parkos
- Epithelial Pathobiology Research Unit, Department of Pathology, Emory University, Atlanta, GA 30322
| | - Asma Nusrat
- Epithelial Pathobiology Research Unit, Department of Pathology, Emory University, Atlanta, GA 30322
| |
Collapse
|
68
|
Functional complexes between YAP2 and ZO-2 are PDZ domain-dependent, and regulate YAP2 nuclear localization and signalling. Biochem J 2011; 432:461-72. [PMID: 20868367 DOI: 10.1042/bj20100870] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Hippo pathway regulates the size of organs by controlling two opposing processes: proliferation and apoptosis. YAP2 (Yes kinase-associated protein 2), one of the three isoforms of YAP, is a WW domain-containing transcriptional co-activator that acts as the effector of the Hippo pathway in mammalian cells. In addition to WW domains, YAP2 has a PDZ-binding motif at its C-terminus. We reported previously that this motif was necessary for YAP2 localization in the nucleus and for promoting cell detachment and apoptosis. In the present study, we show that the tight junction protein ZO (zonula occludens)-2 uses its first PDZ domain to form a complex with YAP2. The endogenous ZO-2 and YAP2 proteins co-localize in the nucleus. We also found that ZO-2 facilitates the nuclear localization and pro-apoptotic function of YAP2, and that this activity of ZO-2 is PDZ-domain-dependent. The present paper is the first report on a PDZ-based nuclear translocation mechanism. Moreover, since the Hippo pathway acts as a tumour suppressor pathway, the YAP2-ZO-2 complex could represent a target for cancer therapy.
Collapse
|
69
|
The nuclear and adherent junction complex component protein ubinuclein negatively regulates the productive cycle of Epstein-Barr virus in epithelial cells. J Virol 2010; 85:784-94. [PMID: 21084479 DOI: 10.1128/jvi.01397-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr Virus (EBV) productive cycle is initiated by the expression of the viral trans-activator EB1 (also called Zebra, Zta, or BZLF1), which belongs to the basic leucine zipper transcription factor family. We have previously identified the cellular NACos (nuclear and adherent junction complex components) protein ubinuclein (Ubn-1) as a partner for EB1, but the function of this complex has never been studied. Here, we have evaluated the consequences of this interaction on the EBV productive cycle and find that Ubn-1 overexpression represses the EBV productive cycle whereas Ubn-1 downregulation by short hairpin RNA (shRNA) increases virus production. By a chromatin immunoprecipitation (ChIP) assay, we show that Ubn-1 blocks EB1-DNA interaction. We also show that in epithelial cells, relocalization and sequestration of Ubn-1 to the tight junctions of nondividing cells allow increased activation of the productive cycle. We propose a model in which Ubn-1 is a modulator of the EBV productive cycle: in proliferating epithelial cells, Ubn-1 is nuclear and inhibits activation of the productive cycle, whereas in differentiated cells, Ubn-1 is sequestrated to tight junctions, thereby allowing EB1 to fully function in the nucleus.
Collapse
|
70
|
McCrea PD, Gu D, Balda MS. Junctional music that the nucleus hears: cell-cell contact signaling and the modulation of gene activity. Cold Spring Harb Perspect Biol 2010; 1:a002923. [PMID: 20066098 DOI: 10.1101/cshperspect.a002923] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell-cell junctions continue to capture the interest of cell and developmental biologists, with an emerging area being the molecular means by which junctional signals relate to gene activity in the nucleus. Although complexities often arise in determining the direct versus indirect nature of such signal transduction, it is clear that such pathways are essential for the function of tissues and that alterations may contribute to many pathological outcomes. This review assesses a variety of cell-cell junction-to-nuclear signaling pathways, and outlines interesting areas for further study.
Collapse
Affiliation(s)
- Pierre D McCrea
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
71
|
New aspects of the molecular constituents of tissue barriers. J Neural Transm (Vienna) 2010; 118:7-21. [PMID: 20865434 DOI: 10.1007/s00702-010-0484-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 08/30/2010] [Indexed: 01/24/2023]
Abstract
Epithelial and endothelial tissue barriers are based on tight intercellular contacts (Tight Junctions, TJs) between neighbouring cells. TJs are multimeric complexes, located at the most apical border of the lateral membrane. So far, a plethora of proteins locating at tight intercellular contacts have been discovered, the role of which has just partly been unraveled. Yet, there is convincing evidence that many TJ proteins exert a dual role: They act as structural components at the junctional site and they are involved in signalling pathways leading to alterations of gene expression and cell behaviour (migration, proliferation). This review will shortly summarize the classical functions of TJs and TJ-related proteins and will introduce a new category, termed the "non-classical" functions of junctional proteins. A particular focus will be directed towards the nuclear targeting of junctional proteins and the downstream effects elicited by their intranuclear activities.
Collapse
|
72
|
Identification of ZASP, a novel protein associated to Zona occludens-2. Exp Cell Res 2010; 316:3124-39. [PMID: 20868680 DOI: 10.1016/j.yexcr.2010.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 09/02/2010] [Accepted: 09/08/2010] [Indexed: 11/20/2022]
Abstract
With the aim of discovering new molecular interactions of the tight junction protein ZO-2, a two-hybrid screen was performed on a human kidney cDNA library using as bait the middle segment of ZO-2. Through this assay we identified a 24-kDa novel protein herein named ZASP for ZO-2 associated speckle protein. ZO-2/ZASP interaction further confirmed by pull down and immunoprecipitation experiments, requires the presence of the intact PDZ binding motif SQV of ZASP and the third PDZ domain of ZO-2. ZASP mRNA and protein are present in the kidney and in several epithelial cell lines. Endogenous ZASP is expressed primarily in nuclear speckles in co-localization with splicing factor SC-35. Nocodazole treatment and wash out reveals that ZASP disappears from the nucleus during mitosis in accordance with speckle disassembly during metaphase. ZASP amino acid sequence exhibits a canonical nuclear exportation signal and in agreement the protein exits the nucleus through a process mediated by exportin/CRM1. ZASP over-expression blocks the inhibitory activity of ZO-2 on cyclin D1 gene transcription and protein expression. The identification of ZASP helps to unfold the complex nuclear molecular arrays that form on ZO-2 scaffolds.
Collapse
|
73
|
TAZ interacts with zonula occludens-1 and -2 proteins in a PDZ-1 dependent manner. FEBS Lett 2010; 584:4175-80. [PMID: 20850437 DOI: 10.1016/j.febslet.2010.09.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 09/07/2010] [Accepted: 09/07/2010] [Indexed: 11/21/2022]
Abstract
The transcriptional coactivator TAZ recognizes L/PPxY motifs in transcription factors like Runx1/2 through its WW domain. We show that the first PDZ domain of zona occludens-1 (ZO-1) and 2 (ZO-2) interacts with the carboxy-terminal PDZ binding motif of TAZ. Deletion of this motif abrogates binding. ZO-2 colocalizes with TAZ in the nucleus of MDCK cells and ZO-2 expression alters TAZ localization in human embryonic kidney cells. Luciferase assays demonstrate ZO-2 inhibition of TAZ-mediated transactivation. We propose that zonula occludens is a negative regulator of TAZ and suggest that selected tight junction proteins control nuclear translocation and activity of TAZ.
Collapse
|
74
|
Vinken M, Decrock E, De Vuyst E, Ponsaerts R, D'hondt C, Bultynck G, Ceelen L, Vanhaecke T, Leybaert L, Rogiers V. Connexins: sensors and regulators of cell cycling. Biochim Biophys Acta Rev Cancer 2010; 1815:13-25. [PMID: 20801193 DOI: 10.1016/j.bbcan.2010.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 12/13/2022]
Abstract
It is nowadays well established that gap junctions are critical gatekeepers of cell proliferation, by controlling the intercellular exchange of essential growth regulators. In recent years, however, it has become clear that the picture is not as simple as originally anticipated, as structural precursors of gap junctions can affect cell cycling by performing actions not related to gap junctional intercellular communication. Indeed, connexin hemichannels also foresee a pathway for cell growth communication, albeit between the intracellular compartment and the extracellular environment, while connexin proteins as such can directly or indirectly influence the production of cell cycle regulators independently of their channel activities. Furthermore, a novel set of connexin-like proteins, the pannexins, have lately joined in as regulators of the cell proliferation process, which they can affect as either single units or as channel entities. In the current paper, these multifaceted aspects of connexin-related signalling in cell cycling are reviewed.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
In the testis, tight junctions (TJs) are found between adjacent Sertoli cells at the level of the blood-testis barrier (BTB) where they coexist with basal ectoplasmic specializations and desmosome-gap junctions. The BTB physically divides the seminiferous epithelium into two distinct compartments: a basal compartment where spermatogonia and early spermatocytes are found, and an adluminal compartment where more developed germ cells are sequestered from the systemic circulation. In order for germ cells (i.e. preleptotene spermatocytes) to enter the adluminal compartment, they must cross the BTB, a cellular event requiring the participation of several molecules and signalling pathways. Still, it is not completely understood how preleptotene spermatocytes traverse the BTB at stage VIII of the seminiferous epithelial cycle. In this review, we discuss largely how TJ proteins are exploited by viruses and cancer cells to cross endothelial and epithelial cells. We also discuss how this information may apply to future studies investigating the movement of preleptotene spermatocytes across the BTB.
Collapse
Affiliation(s)
- Dolores D. Mruk
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10065, USA
| | - C. Y. Cheng
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
76
|
Terry S, Nie M, Matter K, Balda MS. Rho signaling and tight junction functions. Physiology (Bethesda) 2010; 25:16-26. [PMID: 20134025 DOI: 10.1152/physiol.00034.2009] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tight junctions are heteromeric protein complexes that act as signaling centers by mediating the bidirectional transmission of information between the environment and the cell interior to control paracellular permeability and differentiation. Insight into tight junction-associated signaling mechanisms is of fundamental importance for our understanding of the physiology of epithelia and endothelia in health and disease.
Collapse
Affiliation(s)
- Steve Terry
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
77
|
The dual role of zonula occludens (ZO) proteins. J Biomed Biotechnol 2010; 2010:402593. [PMID: 20224657 PMCID: PMC2836178 DOI: 10.1155/2010/402593] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 01/06/2010] [Indexed: 02/07/2023] Open
Abstract
ZO (zonula occludens) proteins are scaffolding proteins providing the structural basis for the assembly of multiprotein complexes at the cytoplasmic surface of intercellular junctions. In addition, they provide a link between the integral membrane proteins and the filamentous cytoskeleton. ZO proteins belong to the large family of membrane-associated guanylate kinase (MAGUK)-like proteins comprising a number of subfamilies based on domain content and sequence similarity. Besides their structural function at cell-cell contacts, ZO proteins appear to participate in the regulation of cell growth and proliferation. Detailed molecular studies have shown that ZO proteins exhibit conserved functional nuclear localization and nuclear export motifs within their amino acid sequence. Further, ZO proteins interact with dual residency proteins localizing to the plasma membrane and the nucleus. Although the nuclear targeting of ZO proteins has well been described, many questions concerning the biological significance of this process have remained open. This review focuses on the dual role of ZO proteins, being indispensable structural components at the junctional site and functioning in signal transduction pathways related to gene expression and cell behavior.
Collapse
|
78
|
Lelièvre SA. Tissue polarity-dependent control of mammary epithelial homeostasis and cancer development: an epigenetic perspective. J Mammary Gland Biol Neoplasia 2010; 15:49-63. [PMID: 20101444 PMCID: PMC2861422 DOI: 10.1007/s10911-010-9168-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 01/11/2010] [Indexed: 11/29/2022] Open
Abstract
The basoapical organization of monolayered epithelia is defined by the presence of hemidesmosomes at the basal cellular pole, where the cell makes contacts with the basement membrane, and tight junctions at the opposite apical pole. In the mammary gland, tight junctions seal cell-cell contacts against the lumen and separate the apical and basolateral cell membranes. This separation is critical to organize intracellular signaling pathways and the cytoskeleton. The study of the impact of the highly organized apical pole, and notably apical polarity regulators (Crb complex, Par complex, and Scrib, Dlg, Lgl proteins) and tight junction proteins on cell phenotype and gene expression has revealed an intricate relationship between apical polarity and the cell nucleus. The goal of this review is to highlight the role of the apical pole of the tissue polarity axis in the epigenetic control of tissue phenotype. The organization of the apical pole and its importance in mammary homeostasis and tumorigenesis will be emphasized before presenting how apical polarity proteins impact gene expression indirectly, by influencing signal transduction and the location of transcription regulators, and directly, by participating in chromatin-associated complexes. The relationship between apical polarity and cell nucleus organizations might explain how apical polarity proteins could switch from nuclear repressors to nuclear promoters of cancerous behavior following alterations in the apical pole. The impact of apical polarity proteins on epigenetic mechanisms of gene expression will be discussed in light of increased evidence supporting a role for apical polarity in the fate of breast neoplasms.
Collapse
Affiliation(s)
- Sophie A Lelièvre
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University, 625 Harrison Street, Lynn Hall, West Lafayette, IN 47907-2026, USA.
| |
Collapse
|
79
|
Steed E, Balda MS, Matter K. Dynamics and functions of tight junctions. Trends Cell Biol 2010; 20:142-9. [PMID: 20061152 DOI: 10.1016/j.tcb.2009.12.002] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 12/02/2009] [Accepted: 12/02/2009] [Indexed: 12/13/2022]
Abstract
Tight junctions are intercellular adhesion complexes in vertebrates that are required for the formation of functional epithelial and endothelial barriers. Their morphological appearance and biochemical composition, that includes large multimeric protein complexes, have long fostered the belief that they are relatively rigid, non-dynamic structures. Recent observations now suggest that at least some junctional elements and proteins can be very dynamic, and that such dynamic properties are important for different tight junction functions ranging from the regulation of paracellular permeability to junction-associated signalling mechanisms that guide cell behaviour. Combining such dynamic properties with existing tight junction models will help us to advance our understanding of the molecular mechanisms that underlie the functional properties of tight junctions.
Collapse
Affiliation(s)
- Emily Steed
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | | | | |
Collapse
|
80
|
Meerschaert K, Tun MP, Remue E, De Ganck A, Boucherie C, Vanloo B, Degeest G, Vandekerckhove J, Zimmermann P, Bhardwaj N, Lu H, Cho W, Gettemans J. The PDZ2 domain of zonula occludens-1 and -2 is a phosphoinositide binding domain. Cell Mol Life Sci 2009; 66:3951-66. [PMID: 19784548 PMCID: PMC3724457 DOI: 10.1007/s00018-009-0156-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 09/02/2009] [Accepted: 09/04/2009] [Indexed: 02/02/2023]
Abstract
Zonula occludens proteins (ZO) are postsynaptic density protein-95 discs large-zonula occludens (PDZ) domain-containing proteins that play a fundamental role in the assembly of tight junctions and establishment of cell polarity. Here, we show that the second PDZ domain of ZO-1 and ZO-2 binds phosphoinositides (PtdInsP) and we identified critical residues involved in the interaction. Furthermore, peptide and PtdInsP binding of ZO PDZ2 domains are mutually exclusive. Although lipid binding does not seem to be required for plasma membrane localisation of ZO-1, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P (2)) binding to the PDZ2 domain of ZO-2 regulates ZO-2 recruitment to nuclear speckles. Knockdown of ZO-2 expression disrupts speckle morphology, indicating that ZO-2 might play an active role in formation and stabilisation of these subnuclear structures. This study shows for the first time that ZO isoforms bind PtdInsPs and offers an alternative regulatory mechanism for the formation and stabilisation of protein complexes in the nucleus.
Collapse
Affiliation(s)
- Kris Meerschaert
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
- Present Address: Ablynx nv, Technologiepark, 9052 Ghent/Zwijnaarde, Belgium
| | - Moe Phyu Tun
- Departments of Chemistry, University of Illinois, Chicago, IL 60607-7061 USA
| | - Eline Remue
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Ariane De Ganck
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Ciska Boucherie
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Berlinda Vanloo
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | | | - Joël Vandekerckhove
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | | | - Nitin Bhardwaj
- Departments of Bioengineering, University of Illinois, Chicago, IL 60607-7061 USA
| | - Hui Lu
- Departments of Bioengineering, University of Illinois, Chicago, IL 60607-7061 USA
| | - Wonhwa Cho
- Departments of Chemistry, University of Illinois, Chicago, IL 60607-7061 USA
- Department of Chemistry (M/C 111), University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607-7061 USA
| | - Jan Gettemans
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
- Department of Medical Protein Research, Faculty of Medicine and Health Sciences, Flanders Interuniversity Institute for Biotechnology, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| |
Collapse
|
81
|
Xu J, Anuar F, Ali SM, Ng MY, Phua DCY, Hunziker W. Zona occludens-2 is critical for blood-testis barrier integrity and male fertility. Mol Biol Cell 2009; 20:4268-77. [PMID: 19692573 DOI: 10.1091/mbc.e08-12-1236] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tight junction integral membrane proteins such as claudins and occludin are tethered to the actin cytoskeleton by adaptor proteins, notably the closely related zonula occludens (ZO) proteins ZO-1, ZO-2, and ZO-3. All three ZO proteins have recently been inactivated in mice. Although ZO-3 knockout mice lack an obvious phenotype, animals deficient in ZO-1 or ZO-2 show early embryonic lethality. Here, we rescue the embryonic lethality of ZO-2 knockout mice by injecting ZO-2(-/-) embryonic stem (ES) cells into wild-type blastocysts to generate viable ZO-2 chimera. ZO-2(-/-) ES cells contribute extensively to different tissues of the chimera, consistent with an extraembryonic requirement for ZO-2 rather than a critical role in epiblast development. Adult chimera present a set of phenotypes in different organs. In particular, male ZO-2 chimeras show reduced fertility and pathological changes in the testis. Lanthanum tracer experiments show a compromised blood-testis barrier. Expression levels of ZO-1, ZO-3, claudin-11, and occludin are not apparently affected. ZO-1 and occludin still localize to the blood-testis barrier region, but claudin-11 is less well restricted and the localization of connexin-43 is perturbed. The critical role of ZO-2 for male fertility and blood-testis barrier integrity thus provides a first example for a nonredundant role of an individual ZO protein in adult mice.
Collapse
Affiliation(s)
- Jianliang Xu
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673
| | | | | | | | | | | |
Collapse
|
82
|
Matsumoto M, Oyamada K, Takahashi H, Sato T, Hatakeyama S, Nakayama KI. Large-scale proteomic analysis of tyrosine-phosphorylation induced by T-cell receptor or B-cell receptor activation reveals new signaling pathways. Proteomics 2009; 9:3549-63. [DOI: 10.1002/pmic.200900011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
83
|
Characterization of the ubinuclein protein as a new member of the nuclear and adhesion complex components (NACos). Biol Cell 2009; 101:319-34. [PMID: 18823282 DOI: 10.1042/bc20080072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND INFORMATION We characterized previously a cellular protein through its interaction with cellular and viral transcription factors from the bZip family. The corresponding mRNA was detected in a wide range of cell types and the protein was highly expressed in the nucleus of human keratinocytes. On the basis of these observations, we named this protein ubinuclein. RESULTS Using a specific monoclonal antibody, we have shown in the present study that, although endogenous ubinuclein was mainly nuclear in sparse MDCK (Madin-Darby canine kidney) cells, it was exclusively present in the cell-cell junctions in confluent MDCK cultures or in polarized HT29 cells, where it co-localized with the tight junction marker ZO-1 (zonula occludens 1). In accordance with this, we have shown that ubinuclein interacted with ZO-1 in vitro and in vivo. In cultures of undifferentiated human keratinocytes, ubinuclein was essentially nuclear, but in differentiated cells, in which involucrin and periplakin reside at the apical cell membrane and at the cell-cell junctions, ubinuclein staining was observed at the lateral cell-cell borders. In human skin, ubinuclein appeared as a thread-like pattern between the upper granular cell layer and the cornified cell layer. In mouse epithelia, including bile canaliculi, bronchioli, salivary gland ducts, and oral and olfactory epithelium, ubinuclein co-localized with tight junction markers. Ubinuclein was, however, not present in endothelial cell-cell junctions. In addition, when overexpressed, ubinuclein localized to the nucleus and prevented MDCK cells from entering cytokinesis, resulting in multinucleated giant cells after several cycles of endoreplication. CONCLUSIONS Ubinuclein mRNA and its corresponding protein are expressed in almost all cell types. Analyses have revealed that in most cells ubinuclein occurred in the nucleoplasm, but in cells forming tight junctions it is recruited to the plaque structure of the zonula occludens. This recruitment appeared to be dependent on cell density. Therefore ubinuclein is a new NACos (nuclear and adhesion complex component) protein.
Collapse
|
84
|
Abstract
Viruses enter host cells in order to complete their life cycles and have evolved to exploit host cell structures, regulatory factors and mechanisms. The virus and host cell interactions have consequences at multiple levels, spanning from evolution through disease to models and tools for scientific discovery and treatment. Virus-induced human cancers arise after a long duration of time and are monoclonal or oligoclonal in origin. Cancer is therefore a side effect rather than an essential part of viral infections in humans. Still, 15-20% of all human cancers are caused by viruses. A review of tumour virology shows its close integration in cancer research. Viral tools and experimental models have been indispensible for the progress of molecular biology. In particular, retroviruses and DNA tumour viruses have played major roles in our present understanding of the molecular biology of both viruses and the host. Recently, additional complex relationships due to virus and host co-evolution have appeared and may lead to a further understanding of the overall regulation of gene expression programmes in cancer.
Collapse
|
85
|
Gonzalez-Mariscal L, Tapia R, Huerta M, Lopez-Bayghen E. The Tight Junction Protein ZO-2 Blocks Cell Cycle Progression and Inhibits Cyclin D1 Expression. Ann N Y Acad Sci 2009; 1165:121-5. [DOI: 10.1111/j.1749-6632.2009.04024.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
86
|
Shao Y, Czymmek KJ, Jones PA, Fomin VP, Akanbi K, Duncan RL, Farach-Carson MC. Dynamic interactions between L-type voltage-sensitive calcium channel Cav1.2 subunits and ahnak in osteoblastic cells. Am J Physiol Cell Physiol 2009; 296:C1067-78. [PMID: 19261907 PMCID: PMC2681378 DOI: 10.1152/ajpcell.00427.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 03/03/2009] [Indexed: 11/22/2022]
Abstract
Voltage-sensitive Ca(2+) channels (VSCCs) mediate Ca(2+) permeability in osteoblasts. Association between VSCC alpha(1)- and beta-subunits targets channel complexes to the plasma membrane and modulates function. In mechanosensitive tissues, a 700-kDa ahnak protein anchors VSCCs to the actin cytoskeleton via the beta(2)-subunit of the L-type Ca(v)1.2 (alpha(1C)) VSCC complex. Ca(v)1.2 is the major alpha(1)-subunit in osteoblasts, but the cytoskeletal complex and subunit composition are unknown. Among the four beta-subtypes, the beta(2)-subunit and, to a lesser extent, the beta(3)-subunit coimmunoprecipitated with the Ca(v)1.2 subunit in MC3T3-E1 preosteoblasts. Fluorescence resonance energy transfer revealed a complex between Ca(v)1.2 and beta(2)-subunits and demonstrated their association in the plasma membrane and secretory pathway. Western blot and immunohistochemistry showed ahnak association with the channel complex in the plasma membrane via the beta(2)-subunit. Cytochalasin D exposure disrupted the actin cytoskeleton but did not disassemble or disrupt the function of the complex of L-type VSCC Ca(v)1.2 and beta(2)-subunits and ahnak. Similarly, small interfering RNA knockdown of ahnak did not disrupt the actin cytoskeleton but significantly impaired Ca(2+) influx. Collectively, we showed that Ca(v)1.2 and beta(2)-subunits and ahnak form a stable complex in osteoblastic cells that permits Ca(2+) signaling independently of association with the actin cytoskeleton.
Collapse
Affiliation(s)
- Ying Shao
- Dept. of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
The gap junction protein connexin36 (Cx36) is widely expressed in neurons and was previously shown to interact with the PDZ domain-containing protein zonula occludens-1 (ZO-1). We investigated whether Cx36 is also able to interact with other members of zonula occludens family of proteins, namely, ZO-2 and ZO-3, the former of which was reported to be co-localized with Cx36 at gap junctions in mouse retina. HeLa cells transfected with Cx36 and cultured betaTC-3 cells were found to express ZO-2 and ZO-3, and both of these ZO proteins were co-localized with Cx36 at gap junctional cell-cell contacts. In lysates of Cx36-transfected HeLa cells, ZO-2 and ZO-3 were shown to co-immunoprecipitate with Cx36, whereas Cx36/ZO-2 association was absent in cells transfected with truncated Cx36 lacking its C-terminus SAYV PDZ interaction motif. In vitro pull-down assays revealed that Cx36 interacts with the PDZ1, but not with the other two PDZ domains in ZO-2 or ZO-3. Truncated Cx36 lacking its PDZ binding motif failed to bind the PDZ1 domain of either ZO-2 or ZO-3. A 14 amino acid peptide corresponding to the C-terminus of Cx36 was also shown to interact with the PDZ1 domains of ZO-2 and ZO-3, and this peptide inhibited the association of Cx36 with the PDZ1 domains of these ZO proteins. These results indicate that Cx36 associates with the first PDZ domain of ZO-2 and ZO-3 and that this association requires the C-terminus SAYV sequence in Cx36. These findings, together with the known association of ZO-2 with a variety of proteins, including transcription factors, suggest that ZO-2 may serve to anchor regulatory proteins at gap junctions composed of Cx36.
Collapse
Affiliation(s)
- Xinbo Li
- Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
88
|
Kusch A, Tkachuk S, Tkachuk N, Patecki M, Park JK, Dietz R, Haller H, Dumler I. The tight junction protein ZO-2 mediates proliferation of vascular smooth muscle cells via regulation of Stat1. Cardiovasc Res 2009; 83:115-22. [PMID: 19380416 DOI: 10.1093/cvr/cvp117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Recent evidence suggests that the zonula occludens protein 2 (ZO-2) might have additional cellular functions, beyond regulation of paracellular permeability of epithelial and endothelial cells. Deregulation of ZO-2 in response to ischaemia, hypertensive stress, and vascular injury implies its involvement in cardiovascular disorders, most likely via regulating the functional behaviour of vascular smooth muscle cells (VSMC). However, a role of ZO-2 in VSMC biology has yet to be established. Our study was designed to understand the specific functions of ZO-2 in human VSMC. METHODS AND RESULTS The expression of ZO-2 and Stat1 upon vascular injury was studied using ex vivo organ culture of coronary arteries combined with immunohistochemistry. ZO-2 silencing in human primary VSMC was achieved by means of lentiviral gene transfer. Cell proliferation was assessed by analysing DNA synthesis and by cell counting. Stat1 expression was examined using immunoblotting, immunocytochemistry, TaqMan, and fluorescence activated cell sorting (FACS) analysis. Functional relevance of Stat1 up-regulation was studied using a Stat1 promoter-luciferase reporter assay and intracellular microinjections of a Stat1 specific antibody. ZO-2 was highly expressed in the media and neointima of dilated but not of control arteries, whereas expression of the transcription factor Stat1 was inversely regulated upon injury. Analysis of VSMC with down-regulated ZO-2 revealed increased expression of Stat1 in these cells, whereas Stat1 phosphorylation was not affected. Stat1 up-regulation in VSMC with ZO-2 silencing resulted in a coordinate activation of Stat1-specific genes and consequently led to inhibition of cell proliferation. This effect was restored by microinjection of a Stat1 neutralising antibody. CONCLUSION Our data suggest that the tight junction protein ZO-2 is involved in regulation of VSMC growth control upon vascular injury that is mediated by the transcription factor Stat1. Our findings point to a novel function of ZO-2 in VSMC and implicate ZO-2 as a novel important molecular target in pathological states of vascular remodelling in cardiovascular diseases.
Collapse
Affiliation(s)
- Angelika Kusch
- Medical Faculty of the Charité, Franz Volhard Klinik/Experimental and Clinical Research Center-ECRC, Max Delbrück Center, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Balda MS, Matter K. Tight junctions and the regulation of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1788:761-7. [PMID: 19121284 DOI: 10.1016/j.bbamem.2008.11.024] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 01/08/2023]
Abstract
Cell adhesion is a key regulator of cell differentiation. Cell interactions with neighboring cells and the extracellular matrix regulate gene expression, cell proliferation, polarity and apoptosis. Apical cell-cell junctions participate in these processes using different types of proteins, some of them exhibit nuclear and junctional localization and are called NACos for Nuclear Adhesion Complexes. Tight junctions are one type of such cell-cell junctions and several signaling complexes have been identified to associate with them. In general, expression of tight junction components suppresses proliferation to allow differentiation in a coordinated manner with adherens junctions and extracellular matrix adhesion. These tight junction components have been shown to affect several signaling and transcriptional pathways, and changes in the expression of tight junction proteins are associated with several disease conditions, such as cancer. Here, we will review how tight junction proteins participate in the regulation of gene expression and cell proliferation, as well as how they are regulated themselves by different mechanisms involved in gene expression and cell differentiation.
Collapse
Affiliation(s)
- Maria S Balda
- Division of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, UK.
| | | |
Collapse
|
90
|
Epithelial cell–cell junctions and plasma membrane domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:820-31. [DOI: 10.1016/j.bbamem.2008.07.015] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 07/10/2008] [Accepted: 07/21/2008] [Indexed: 12/16/2022]
|
91
|
Abstract
Loss of polarity and disruption of cell junctions are common features of epithelial-derived cancer cells, and mounting evidence indicates that such defects have a direct function in the pathology of cancer. Supporting this idea, results with several different human tumor viruses indicate that their oncogenic potential depends in part on a common ability to inactivate key cell polarity proteins. For example, adenovirus (Ad) type 9 is unique among human Ads by causing exclusively estrogen-dependent mammary tumors in experimental animals and in having E4 region-encoded open reading frame 1 (E4-ORF1) as its primary oncogenic determinant. The 125-residue E4-ORF1 protein consists of two separate protein-interaction elements, one of which defines a PDZ domain-binding motif (PBM) required for E4-ORF1 to induce both cellular transformation in vitro and tumorigenesis in vivo. Most notably, the E4-ORF1 PBM mediates interactions with a selected group of cellular PDZ proteins, three of which include the cell polarity proteins Dlg1, PATJ and ZO-2. Data further indicate that these interactions promote disruption of cell junctions and a loss of cell polarity. In addition, one or more of the E4-ORF1-interacting cell polarity proteins, as well as the cell polarity protein Scribble, are common targets for the high-risk human papillomavirus (HPV) E6 or human T-cell leukemia virus type 1 (HTLV-1) Tax oncoproteins. Underscoring the significance of these observations, in humans, high-risk HPV and HTLV-1 are causative agents for cervical cancer and adult T-cell leukemia, respectively. Consequently, human tumor viruses should serve as powerful tools for deciphering mechanisms whereby disruption of cell junctions and loss of cell polarity contribute to the development of many human cancers. This review article discusses evidence supporting this hypothesis, with an emphasis on the human Ad E4-ORF1 oncoprotein.
Collapse
|
92
|
Tapia R, Huerta M, Islas S, Avila-Flores A, Lopez-Bayghen E, Weiske J, Huber O, González-Mariscal L. Zona occludens-2 inhibits cyclin D1 expression and cell proliferation and exhibits changes in localization along the cell cycle. Mol Biol Cell 2008; 20:1102-17. [PMID: 19056685 DOI: 10.1091/mbc.e08-03-0277] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Here, we have studied the effect of the tight junction protein zona occludens (ZO)-2 on cyclin D1 (CD1) protein expression. CD1 is essential for cell progression through the G1 phase of the cell cycle. We have found that in cultures of synchronized Madin-Darby canine kidney cells, ZO-2 inhibits cell proliferation at G0/G1 and decreases CD1 protein level. These effects occur in response to a diminished CD1 translation and an augmented CD1 degradation at the proteosome triggered by ZO-2. ZO-2 overexpression decreases the amount of Glycogen synthase kinase-3beta phosphorylated at Ser9 and represses beta-catenin target gene expression. We have also explored the expression of ZO-2 through the cell cycle and demonstrate that ZO-2 enters the nucleus at the late G1 phase and leaves the nucleus when the cell is in mitosis. These results thus explain why in confluent quiescent epithelia ZO-2 is absent from the nucleus and localizes at the cellular borders, whereas in sparse proliferating cultures ZO-2 is conspicuously present at the nucleus.
Collapse
Affiliation(s)
- Rocio Tapia
- Department of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Mexico, D.F., 07360, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Sheth B, Nowak RL, Anderson R, Kwong WY, Papenbrock T, Fleming TP. Tight junction protein ZO-2 expression and relative function of ZO-1 and ZO-2 during mouse blastocyst formation. Exp Cell Res 2008; 314:3356-68. [PMID: 18817772 DOI: 10.1016/j.yexcr.2008.08.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 08/01/2008] [Accepted: 08/25/2008] [Indexed: 01/02/2023]
Abstract
Apicolateral tight junctions (TJs) between epithelial cells are multiprotein complexes regulating membrane polarity and paracellular transport and also contribute to signalling pathways affecting cell proliferation and gene expression. ZO-2 and other ZO family members form a sub-membranous scaffold for binding TJ constituents. We investigated ZO-2 contribution to TJ biogenesis and function during trophectoderm epithelium differentiation in mouse preimplantation embryos. Our data indicate that ZO-2 is expressed from maternal and embryonic genomes with maternal ZO-2 protein associated with nuclei in zygotes and particularly early cleavage stages. Embryonic ZO-2 assembled at outer blastomere apicolateral junctional sites from the late 16-cell stage. Junctional ZO-2 first co-localised with E-cadherin in a transient complex comprising adherens junction and TJ constituents before segregating to TJs after their separation from the blastocyst stage (32-cell onwards). ZO-2 siRNA microinjection into zygotes or 2-cell embryos resulted in specific knockdown of ZO-2 mRNA and protein within blastocysts. Embryos lacking ZO-2 protein at trophectoderm TJs exhibited delayed blastocoel cavity formation but underwent normal cell proliferation and outgrowth morphogenesis. Quantitative analysis of trophectoderm TJs in ZO-2-deficient embryos revealed increased assembly of ZO-1 but not occludin, indicating ZO protein redundancy as a compensatory mechanism contributing to the mild phenotype observed. In contrast, ZO-1 knockdown, or combined ZO-1 and ZO-2 knockdown, generated a more severe inhibition of blastocoel formation indicating distinct roles for ZO proteins in blastocyst morphogenesis.
Collapse
Affiliation(s)
- Bhavwanti Sheth
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO167PX, UK
| | | | | | | | | | | |
Collapse
|
94
|
Abstract
PURPOSE OF REVIEW An enormous body of research has been focused on exploring the mechanisms through which epithelial cells establish their characteristic polarity. It is clear that under normal circumstances cell-cell contacts mediated by the calcium-dependent adhesion proteins of the intercellular adhesion junctions are required to initiate complete polarization. Furthermore, formation of the tight, or occluding, junctions that limit paracellular permeability has long been thought to help to establish polarity by preventing the diffusion of membrane proteins between the two plasmalemmal domains. This review will discuss several selected kinases and protein complexes and highlight their relevance to transporting epithelial cell polarization. RECENT FINDINGS Recent work has shed new light on the roles of junctional complexes in establishing and maintaining epithelial cell polarity. In addition, work from several laboratories suggests that the formation of these junctions is tied to processes that regulate cellular energy metabolism. SUMMARY Junctional complexes and energy sensing kinases constitute a novel class of machinery whose capacity to generate and modulate epithelial cell polarity is likely to have wide ranging and important physiological ramifications.
Collapse
Affiliation(s)
- Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06525-8026, USA.
| | | | | |
Collapse
|
95
|
Sandoval KE, Witt KA. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 2008; 32:200-19. [PMID: 18790057 DOI: 10.1016/j.nbd.2008.08.005] [Citation(s) in RCA: 765] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/29/2008] [Accepted: 08/10/2008] [Indexed: 01/01/2023] Open
Abstract
The blood-brain barrier (BBB) is formed by the endothelial cells of cerebral microvessels, providing a dynamic interface between the peripheral circulation and the central nervous system. The tight junctions (TJs) between the endothelial cells serve to restrict blood-borne substances from entering the brain. Under ischemic stroke conditions decreased BBB TJ integrity results in increased paracellular permeability, directly contributing to cerebral vasogenic edema, hemorrhagic transformation, and increased mortality. This loss of TJ integrity occurs in a phasic manner, which is contingent on several interdependent mechanisms (ionic dysregulation, inflammation, oxidative and nitrosative stress, enzymatic activity, and angiogenesis). Understanding the inter-relation of these mechanisms is critical for the development of new therapies. This review focuses on those aspects of ischemic stroke impacting BBB TJ integrity and the principle regulatory pathways, respective to the phases of paracellular permeability.
Collapse
Affiliation(s)
- Karin E Sandoval
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, IL 62026, USA
| | | |
Collapse
|
96
|
Bit-Avragim N, Rohr S, Rudolph F, Van der Ven P, Fürst D, Eichhorst J, Wiesner B, Abdelilah-Seyfried S. Nuclear localization of the zebrafish tight junction protein nagie oko. Dev Dyn 2008; 237:83-90. [PMID: 18058913 DOI: 10.1002/dvdy.21389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The tight junctions-associated MAGUK protein nagie oko is closely related to Drosophila Stardust, mouse protein associated with lin-seven 1 (Pals1), and human MAGUK p55 subfamily member 5 (Mpp5). As a component of the evolutionarily conserved Crumbs protein complex, nagie oko is essential for the maintenance of epithelial cell polarity. Here, we show that nagie oko contains a predicted nuclear export and two conserved nuclear localization signals. We find that loss of the predicted nuclear export signal results in nuclear protein accumulation. We show that nagie oko nuclear import is redundantly controlled by the two nuclear localization signals and the evolutionarily conserved region 1 (ECR1), which links nagie oko with Par6-aPKC. Finally, deletion forms of nagie oko that lack nuclear import and export signals complement several nagie oko mutant defects in cell polarity and epithelial integrity. This finding provides an entry point to potentially novel and unknown roles of this important cell polarity regulator.
Collapse
Affiliation(s)
- Nana Bit-Avragim
- Max Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
The formation of stable cell–cell contacts is required for the generation of barrier-forming sheets of epithelial and endothelial cells. During various physiological processes like tissue development, wound healing or tumorigenesis, cellular junctions are reorganized to allow the release or the incorporation of individual cells. Cell–cell contact formation is regulated by multiprotein complexes which are localized at specific structures along the lateral cell junctions like the tight junctions and adherens junctions and which are targeted to these site through their association with cell adhesion molecules. Recent evidence indicates that several major protein complexes exist which have distinct functions during junction formation. However, this evidence also indicates that their composition is dynamic and subject to changes depending on the state of junction maturation. Thus, cell–cell contact formation and integrity is regulated by a complex network of protein complexes. Imbalancing this network by oncogenic proteins or pathogens results in barrier breakdown and eventually in cancer. Here, I will review the molecular organization of the major multiprotein complexes at junctions of epithelial cells and discuss their function in cell–cell contact formation and maintenance.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute of Medical Biochemistry, Center of Molecular Biology of Inflammation, University Münster, Münster, Germany.
| |
Collapse
|
98
|
Eum SY, András IE, Couraud PO, Hennig B, Toborek M. Pcbs and tight junction expression. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 25:234-40. [PMID: 18438464 PMCID: PMC2346445 DOI: 10.1016/j.etap.2007.10.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polychlorinated biphenyl (PCB) congeners exhibit a broad range of adverse biological effects including neurotoxicity. The mechanisms by which PCBs cause neurotoxic effects are still not completely understood. The blood-brain barrier (BBB) is a physical and metabolic barrier separating brain microenvironment from the peripheral circulation and is mainly composed of endothelial cells connected by tight junctions. We examined the effects of several highly-chlorinated PCB congeners on expression of tight junction proteins in human brain endothelial cells. Treatment for 24 h with selective PCB congeners disrupted expression of the cytosolic scaffold proteins of tight junctions, such as zonula occludens (ZO)-1, ZO-2, and AF6. In contrast, PCB exposure did not alter expression of integral membrane proteins, junctional adhesion molecule-A (JAM-A), and claudin-1. Based on these data, we suggest that PCB-mediated selective alterations of tight junction protein expression may contribute to their neurotoxic effects in the central nervous system.
Collapse
Affiliation(s)
- Sung Yong Eum
- Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky, Lexington, KY 40536
| | - Ibolya E. András
- Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky, Lexington, KY 40536
| | | | - Bernhard Hennig
- College of Agriculture, University of Kentucky, Lexington, KY 40536
| | - Michal Toborek
- Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
99
|
Paris L, Tonutti L, Vannini C, Bazzoni G. Structural organization of the tight junctions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:646-59. [DOI: 10.1016/j.bbamem.2007.08.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 02/01/2023]
|
100
|
Ivanova S, Repnik U, Banks L, Turk V, Turk B. Cellular localization of MAGI-1 caspase cleavage products and their role in apoptosis. Biol Chem 2008; 388:1195-8. [PMID: 17976012 DOI: 10.1515/bc.2007.141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
MAGI-1 is a membrane-associated guanylate kinase (MAGUK) protein present at adherent and tight junctions, where it acts as a structural and signaling scaffold. During apoptosis, MAGI-1 is cleaved by caspases at Asp761 into N- and C-terminal cleavage products, allowing further dismantling of the cell junctions, one of the key features of apoptosis. Here, we investigated the cellular distribution and possible proapototic role of MAGI-1 caspase cleavage products. Full-length MAGI-1 exhibited submembrane localization, while the N-terminal caspase cleavage product of MAGI-1 is translocated to the cytosol and the C-terminal caspase cleavage product accumulates in the nucleus. When overexpressed in MDCK cells, both N- and C-terminal MAGI-1 caspase cleavage products exhibited minor proapoptotic activity, although their role in apoptosis is probably more passive.
Collapse
Affiliation(s)
- Saska Ivanova
- Department of Biochemistry, Molecular and Structural Biology, J Stefan Institute, SI-1000, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|