51
|
Ji W, Bi Y, Cheng Z, Liu R, Zhang X, Shu Y, Li X, Bao J, Liu H. Impact of early socialization environment on social behavior, physiology and growth performance of weaned piglets. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
52
|
Li D, Wang Z, Zhang C, Xu C. IL-1R1 deficiency impairs liver regeneration after 2/3 partial hepatectomy in aged mice. ACTA ACUST UNITED AC 2021; 45:225-234. [PMID: 33907503 PMCID: PMC8068764 DOI: 10.3906/biy-2010-51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022]
Abstract
Inflammation has a dual effect: it can protect the body and destroy tissue and cell as well. The purpose of this experiment was to determine the role of IL-1R1 in liver regeneration (LR) after partial hepatectomy (PH) in aged mice. The wild-type (WT, n = 36) and the IL-1R1 knockout (KO, n = 36) 24-month-old C57BL/6J mice underwent two-thirds PH; 33 WT mice underwent sham operation. Liver coefficient was calculated by liver/body weight. The mRNA and protein expressions of genes were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting methods, respectively. Compared with WT mice, liver coefficient was lower in the IL-1R1 KO aged mice at 168 and 192 h (p = 0.039 and p = 0.027). The mRNA transcription of inflammation-related genes and cell cycle-associated genes decreased or delayed. The protein expressions of proliferation-related marker PCNA and proliferation-associated signaling pathway components JNK1, NF-κB and STAT3 reduced or retarded. There was stronger activation of proapoptotic proteins caspase-3, caspase-8 and BAX in the IL-1R1 KO mice at different time points (p < 0.05 or p < 0.01). IL-1R1 KO reduced inflammation and caused impaired liver regeneration after 2/3 partial hepatectomy in aged mice. Maintaining proper inflammation may contribute to regeneration after liver partly surgical resection in the elderly.
Collapse
Affiliation(s)
- Deming Li
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang, Henan China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, Henan China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, Henan China.,College of Life Science, Henan Normal University, Xinxiang, Henan China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, Henan China
| | - Ze Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang, Henan China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, Henan China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, Henan China.,College of Life Science, Henan Normal University, Xinxiang, Henan China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, Henan China
| | - Chunyan Zhang
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang, Henan China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, Henan China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, Henan China.,College of Life Science, Henan Normal University, Xinxiang, Henan China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, Henan China
| | - Cunshuan Xu
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang, Henan China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, Henan China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, Henan China.,College of Life Science, Henan Normal University, Xinxiang, Henan China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, Henan China
| |
Collapse
|
53
|
Yagasaki Y, Katayama Y, Kinoshita Y, Nagata T, Kawakami Y, Miyata M. Macrophages are activated in the rat anterior pituitary under chronic inflammatory conditions. Neurosci Lett 2021; 748:135688. [PMID: 33548409 DOI: 10.1016/j.neulet.2021.135688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/27/2020] [Accepted: 01/26/2021] [Indexed: 11/28/2022]
Abstract
In the anterior lobe of the pituitary gland (AP), non-endocrine cells regulate hormone secretion by endocrine cells. However, the functions of non-endocrine cells in the AP during chronic pain are largely unclear. Here, we show that macrophages, but not folliculostellate (FS) cells, were selectively increased in the AP in the complete Freund's adjuvant (CFA)-induced chronic inflammatory pain model in rats. In addition, IL-1β expression was increased in the AP, and the IL-1β-immunopositive cells were identified as macrophages. On the other hand, increased macrophage density and IL-1β expression were not detected in a neuropathic pain model induced by partial sciatic nerve ligation (PSL). Furthermore, we found c-Fos expression specifically in the somatotrophs under the chronic inflammatory pain condition. Because IL-1β promotes growth hormone (GH) synthesis and release, our results suggest that AP macrophage contributes to GH release through IL-1βduring chronic inflammatory pain. .
Collapse
Affiliation(s)
- Yuki Yagasaki
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoko Katayama
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoko Kinoshita
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan; Department of Anesthesiology, International University of Health and Welfare, Mita Hospital, Japan
| | - Tomonari Nagata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoriko Kawakami
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
54
|
Schott BH, Kronenberg G, Schmidt U, Düsedau HP, Ehrentraut S, Geisel O, von Bohlen Und Halbach O, Gass P, Dunay IR, Hellweg R. Robustly High Hippocampal BDNF levels under Acute Stress in Mice Lacking the Full-length p75 Neurotrophin Receptor. PHARMACOPSYCHIATRY 2021; 54:205-213. [PMID: 33592642 DOI: 10.1055/a-1363-1680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) exerts its effects on neural plasticity via 2 distinct receptor types, the tyrosine kinase TrkB and the p75 neurotrophin receptor (p75NTR). The latter can promote inflammation and cell death while TrkB is critically involved in plasticity and memory, particularly in the hippocampus. Acute and chronic stress have been associated with suppression of hippocampal BDNF expression and impaired hippocampal plasticity. We hypothesized that p75NTR might be involved in the hippocampal stress response, in particular in stress-induced BDNF suppression, which might be accompanied by increased neuroinflammation. METHOD We assessed hippocampal BDNF protein concentrations in wild-type mice compared that in mice lacking the long form of the p75NTR (p75NTRExIII-/-) with or without prior exposure to a 1-hour restraint stress challenge. Hippocampal BDNF concentrations were measured using an optimized ELISA. Furthermore, whole-brain mRNA expression of pro-inflammatory interleukin-6 (Il6) was assessed with RT-PCR. RESULTS Deletion of full-length p75NTR was associated with higher hippocampal BDNF protein concentration in the stress condition, suggesting persistently high hippocampal BDNF levels in p75NTR-deficient mice, even under stress. Stress elicited increased whole-brain Il6 mRNA expression irrespective of genotype; however, p75NTRExIII-/- mice showed elevated baseline Il6 expression and thus a lower relative increase. CONCLUSIONS Our results provide evidence for a role of p75NTR signaling in the regulation of hippocampal BDNF levels, particularly under stress. Furthermore, p75NTR signaling modulates baseline but not stress-related Il6 gene expression in mice. Our findings implicate p75NTR signaling as a potential pathomechanism in BDNF-dependent modulation of risk for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Björn H Schott
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Göttingen, Germany.,Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany.,Leibniz Institute for Neurobiology, Department of Behavioral Neurology, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Golo Kronenberg
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany.,University of Leicester and Leicestershire Partnership NHS Trust, Leicester, United Kingdom
| | - Ulrike Schmidt
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Bonn, Bonn, Germany
| | - Henning P Düsedau
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University, Magdeburg, Germany
| | - Stefanie Ehrentraut
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University, Magdeburg, Germany
| | - Olga Geisel
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Peter Gass
- Central Institute for Mental Health, Department of Psychiatry and Psychotherapy, Heidelberg University, Mannheim Faculty, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University, Magdeburg, Germany
| | - Rainer Hellweg
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
55
|
Barlampa D, Bompoula MS, Bargiota A, Kalantaridou S, Mastorakos G, Valsamakis G. Hypothalamic Inflammation as a Potential Pathophysiologic Basis for the Heterogeneity of Clinical, Hormonal, and Metabolic Presentation in PCOS. Nutrients 2021; 13:520. [PMID: 33562540 PMCID: PMC7915850 DOI: 10.3390/nu13020520] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age. It is a heterogeneous condition characterized by reproductive, endocrine, metabolic, and psychiatric abnormalities. More than one pathogenic mechanism is involved in its development. On the other hand, the hypothalamus plays a crucial role in many important functions of the body, including weight balance, food intake, and reproduction. A high-fat diet with a large amount of long-chain saturated fatty acids can induce inflammation in the hypothalamus. Hypothalamic neurons can sense extracellular glucose concentrations and participate, with a feedback mechanism, in the regulation of whole-body glucose homeostasis. When consumed nutrients are rich in fat and sugar, and these regulatory mechanisms can trigger inflammatory pathways resulting in hypothalamic inflammation. The latter has been correlated with metabolic diseases, obesity, and depression. In this review, we explore whether the pattern and the expansion of hypothalamic inflammation, as a result of a high-fat and -sugar diet, may contribute to the heterogeneity of the clinical, hormonal, and metabolic presentation in PCOS via pathophysiologic mechanisms affecting specific areas of the hypothalamus. These mechanisms could be potential targets for the development of effective therapies for the treatment of PCOS.
Collapse
Affiliation(s)
- Danai Barlampa
- Unit of Endocrinology, Aretaieion University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, Athens, Vasilisis Sofia Avenue 76, 115 28 Athens, Greece; (D.B.); (G.V.)
| | - Maria Sotiria Bompoula
- Reproductive Endocrinology Unit, 3nd University Department of Obs & Gynae, Attikon University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, 12462 Athens, Greece; (M.S.B.); (S.K.)
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Disorders, University Hospital of Larissa, Medical School of Larissa, University of Thessaly, 41334 Larissa, Greece;
| | - Sophia Kalantaridou
- Reproductive Endocrinology Unit, 3nd University Department of Obs & Gynae, Attikon University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, 12462 Athens, Greece; (M.S.B.); (S.K.)
| | - George Mastorakos
- Unit of Endocrinology, Aretaieion University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, Athens, Vasilisis Sofia Avenue 76, 115 28 Athens, Greece; (D.B.); (G.V.)
| | - Georgios Valsamakis
- Unit of Endocrinology, Aretaieion University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, Athens, Vasilisis Sofia Avenue 76, 115 28 Athens, Greece; (D.B.); (G.V.)
- Reproductive Endocrinology Unit, 3nd University Department of Obs & Gynae, Attikon University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, 12462 Athens, Greece; (M.S.B.); (S.K.)
- Department of Endocrinology and Metabolic Disorders, University Hospital of Larissa, Medical School of Larissa, University of Thessaly, 41334 Larissa, Greece;
| |
Collapse
|
56
|
Macedo A, Gómez C, Rebelo MÂ, Poza J, Gomes I, Martins S, Maturana-Candelas A, Pablo VGD, Durães L, Sousa P, Figueruelo M, Rodríguez M, Pita C, Arenas M, Álvarez L, Hornero R, Lopes AM, Pinto N. Risk Variants in Three Alzheimer's Disease Genes Show Association with EEG Endophenotypes. J Alzheimers Dis 2021; 80:209-223. [PMID: 33522999 PMCID: PMC8075394 DOI: 10.3233/jad-200963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Dementia due to Alzheimer’s disease (AD) is a complex neurodegenerative disorder, which much of heritability remains unexplained. At the clinical level, one of the most common physiological alterations is the slowing of oscillatory brain activity, measurable by electroencephalography (EEG). Relative power (RP) at the conventional frequency bands (i.e., delta, theta, alpha, beta-1, and beta-2) can be considered as AD endophenotypes. Objective: The aim of this work is to analyze the association between sixteen genes previously related with AD: APOE, PICALM, CLU, BCHE, CETP, CR1, SLC6A3, GRIN2
β, SORL1, TOMM40, GSK3
β, UNC5C, OPRD1, NAV2, HOMER2, and IL1RAP, and the slowing of the brain activity, assessed by means of RP at the aforementioned frequency bands. Methods: An Iberian cohort of 45 elderly controls, 45 individuals with mild cognitive impairment, and 109 AD patients in the three stages of the disease was considered. Genomic information and brain activity of each subject were analyzed. Results: The slowing of brain activity was observed in carriers of risk alleles in IL1RAP (rs10212109, rs9823517, rs4687150), UNC5C (rs17024131), and NAV2 (rs1425227, rs862785) genes, regardless of the disease status and situation towards the strongest risk factors: age, sex, and APOE ɛ4 presence. Conclusion: Endophenotypes reduce the complexity of the general phenotype and genetic variants with a major effect on those specific traits may be then identified. The found associations in this work are novel and may contribute to the comprehension of AD pathogenesis, each with a different biological role, and influencing multiple factors involved in brain physiology.
Collapse
Affiliation(s)
- Ana Macedo
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,JTA: The Data Scientists, Porto, Portugal
| | - Carlos Gómez
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Miguel Ângelo Rebelo
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Jesús Poza
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.,Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, Valladolid, Spain
| | - Iva Gomes
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Martins
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | | | | | - Luis Durães
- Associação Portuguesa de Familiares e Amigos de Doentes de Alzheimer, Lavra, Portugal
| | - Patrícia Sousa
- Associação Portuguesa de Familiares e Amigos de Doentes de Alzheimer, Lavra, Portugal
| | - Manuel Figueruelo
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, Zamora, Spain
| | - María Rodríguez
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, Zamora, Spain
| | - Carmen Pita
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, Zamora, Spain
| | - Miguel Arenas
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,CINBIO (Biomedical Research Center), University of Vigo, Vigo, Spain.,Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - Luis Álvarez
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Adeneas, Valencia, Spain
| | - Roberto Hornero
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.,Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, Valladolid, Spain
| | - Alexandra M Lopes
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Nádia Pinto
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Centro de Matemática da Universidade do Porto, Porto, Portugal
| |
Collapse
|
57
|
Zefferino R, Di Gioia S, Conese M. Molecular links between endocrine, nervous and immune system during chronic stress. Brain Behav 2021; 11:e01960. [PMID: 33295155 PMCID: PMC7882157 DOI: 10.1002/brb3.1960] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/17/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The stress response is different in various individuals, however, the mechanisms that could explain these distinct effects are not well known and the molecular correlates have been considered one at the time. Particular harmful conditions occur if the subject, instead to cope the stressful events, succumb to them, in this case, a cascade reaction happens that through different signaling causes a specific reaction named "sickness behaviour." The aim of this article is to review the complex relations among important molecules belonging to Central nervous system (CNS), immune system (IS), and endocrine system (ES) during the chronic stress response. METHODS After having verified the state of art concerning the function of cortisol, norepinephrine (NE), interleukin (IL)-1β and melatonin, we describe as they work together. RESULTS We propose a speculative hypothesis concerning the complex interplay of these signaling molecules during chronic stress, highlighting the role of IL-1β as main biomarker of this effects, indeed, during chronic stress its increment transforms this inflammatory signal into a nervous signal (NE), in turn, this uses the ES (melatonin and cortisol) to counterbalance again IL-1β. During cortisol resistance, a vicious loop occurs that increments all mediators, unbalancing IS, ES, and CNS networks. This IL-1β increase would occur above all when the individual succumbs to stressful events, showing the Sickness Behaviour Symptoms. IL-1β might, through melatonin and vice versa, determine sleep disorders too. CONCLUSION The molecular links here outlined could explain how stress plays a role in etiopathogenesis of several diseases through this complex interplay.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
58
|
Loupy KM, Cler KE, Marquart BM, Yifru TW, D'Angelo HM, Arnold MR, Elsayed AI, Gebert MJ, Fierer N, Fonken LK, Frank MG, Zambrano CA, Maier SF, Lowry CA. Comparing the effects of two different strains of mycobacteria, Mycobacterium vaccae NCTC 11659 and M. vaccae ATCC 15483, on stress-resilient behaviors and lipid-immune signaling in rats. Brain Behav Immun 2021; 91:212-229. [PMID: 33011306 PMCID: PMC7749860 DOI: 10.1016/j.bbi.2020.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/17/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022] Open
Abstract
Stress-related disorders, such as posttraumatic stress disorder (PTSD), are highly prevalent and often difficult to treat. In rodents, stress-related, anxiety-like defensive behavioral responses may be characterized by social avoidance, exacerbated inflammation, and altered metabolic states. We have previously shown that, in rodents, subcutaneous injections of a heat-killed preparation of the soil-derived bacterium Mycobacterium vaccae NCTC 11659 promotes stress resilience effects that are associated with immunoregulatory signaling in the periphery and the brain. In the current study, we sought to determine whether treatment with a heat-killed preparation of the closely related M. vaccae type strain, M. vaccae ATCC 15483, would also promote stress-resilience in adult male rats, likely due to biologically similar characteristics of the two strains. Here we show that immunization with either M. vaccae NCTC 11659 or M. vaccae ATCC 15483 prevents stress-induced increases in hippocampal interleukin 6 mRNA expression, consistent with previous studies showing that M. vaccae NCTC 11659 prevents stress-induced increases in peripheral IL-6 secretion, and prevents exaggeration of anxiety-like defensive behavioral responses assessed 24 h after exposure to inescapable tail shock stress (IS) in adult male rats. Analysis of mRNA expression, protein abundance, and flow cytometry data demonstrate overlapping but also unique effects of treatment with the two M. vaccae strains on immunological and metabolic signaling in the host. These data support the hypothesis that treatment with different M. vaccae strains may immunize the host against stress-induced dysregulation of physiology and behavior.
Collapse
Affiliation(s)
- Kelsey M Loupy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kristin E Cler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Brandon M Marquart
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Tumim W Yifru
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Heather M D'Angelo
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Mathew R Arnold
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Ahmed I Elsayed
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew J Gebert
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA
| | - Matthew G Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Cristian A Zambrano
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA; inVIVO Planetary Health, of the Worldwide Universities Network (WUN), West New York, NJ 07093, USA.
| |
Collapse
|
59
|
Higher levels of serum IL-1β and TNF-α are associated with an increased probability of major depressive disorder. Psychiatry Res 2021; 295:113568. [PMID: 33199026 DOI: 10.1016/j.psychres.2020.113568] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/06/2020] [Indexed: 12/22/2022]
Abstract
Major depressive disorder (MDD) is a debilitating psychiatric disease. The dysregulated cytokines in depression are assumed due to the hyperactivation of the immune system. Here we aimed to evaluate the serum interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in MDD. This study recruited 87 MDD patients and 87 age and sex-matched healthy controls (HCs). The increased levels of serum IL-1β and TNF-α were observed among MDD patients. These higher levels of peripheral markers were positively correlated with the severity of depression. Therefore, the elevated levels of serum IL-1β and TNF-α might be used as risk assessment indicators for depression.
Collapse
|
60
|
Abstract
ABSTRACT Secondary brain injury following hemorrhagic shock (HS) is a frequent complication in patients, even in the absence of direct brain trauma, leading to behavioral changes and more specifically anxiety and depression. Despite preclinical studies showing inflammation and apoptosis in the brain after HS, none have addressed the impact of circulating mediators. Our group demonstrated an increased uric acid (UA) circulation in rats following HS. Since UA is implicated in endothelial dysfunction and inflammatory response, we hypothesized UA could alter the blood-brain barrier (BBB) and impact the brain. Male Wistar rats were randomly assigned to: SHAM, HS (hemorrhagic shock) and HS + U (hemorrhagic shock + 1.5 mg/kg of uricase). The uricase intervention, specifically targeting UA, was administered during fluid resuscitation. It prevented BBB dysfunction (fluorescein sodium salt permeability and expression of intercellular adhesion molecule-1) following HS. As for neuroinflammation, all of the results obtained (MPO activity; Iba1 and GFAP expression) showed a significant increase after HS, also prevented by the uricase. The same pattern was observed after quantification of apoptosis (caspase-3 activity and TUNEL) and neurodegeneration (Fluoro-Jade). Finally, the forced swim, elevated plus maze, and social interaction tests detected anxiety-like behavior after HS, which was blunted in rats treated with the uricase. In conclusion, we have identified UA as a new circulatory inflammatory mediator, responsible for brain alterations and anxious behavior after HS in a murine model. The ability to target UA holds the potential of an adjunctive therapeutic solution to reduce brain dysfunction related to hemorrhagic shock in human.
Collapse
|
61
|
Cuddy SR, Schinlever AR, Dochnal S, Seegren PV, Suzich J, Kundu P, Downs TK, Farah M, Desai BN, Boutell C, Cliffe AR. Neuronal hyperexcitability is a DLK-dependent trigger of herpes simplex virus reactivation that can be induced by IL-1. eLife 2020; 9:e58037. [PMID: 33350386 PMCID: PMC7773336 DOI: 10.7554/elife.58037] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) establishes a latent infection in neurons and periodically reactivates to cause disease. The stimuli that trigger HSV-1 reactivation have not been fully elucidated. We demonstrate HSV-1 reactivation from latently infected mouse neurons induced by forskolin requires neuronal excitation. Stimuli that directly induce neurons to become hyperexcitable also induced HSV-1 reactivation. Forskolin-induced reactivation was dependent on the neuronal pathway of DLK/JNK activation and included an initial wave of viral gene expression that was independent of histone demethylase activity and linked to histone phosphorylation. IL-1β is released under conditions of stress, fever and UV exposure of the epidermis; all known triggers of clinical HSV reactivation. We found that IL-1β induced histone phosphorylation and increased the excitation in sympathetic neurons. Importantly, IL-1β triggered HSV-1 reactivation, which was dependent on DLK and neuronal excitability. Thus, HSV-1 co-opts an innate immune pathway resulting from IL-1 stimulation of neurons to induce reactivation.
Collapse
Affiliation(s)
- Sean R Cuddy
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
| | - Austin R Schinlever
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Sara Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Philip V Seegren
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Jon Suzich
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Parijat Kundu
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Taylor K Downs
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Mina Farah
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| | - Bimal N Desai
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube CampusGlasgowUnited Kingdom
| | - Anna R Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
62
|
Zhu X, Wu Y, Pan J, Li C, Huang J, Cui E, Chen Z, Zhou W, Chai X, Zhao S. Neuroinflammation Induction and Alteration of Hippocampal Neurogenesis in Mice Following Developmental Exposure to Gossypol. Int J Neuropsychopharmacol 2020; 24:419-433. [PMID: 33283869 PMCID: PMC8130202 DOI: 10.1093/ijnp/pyaa093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neurogenesis in the neonatal period involves the proliferation and differentiation of neuronal stem/progenitor cells and the establishment of synaptic connections. This process plays a critical role in determining the normal development and maturation of the brain throughout life. Exposure to certain physical or chemical factors during the perinatal period can lead to many neuropathological defects that cause high cognitive dysfunction and are accompanied by abnormal hippocampal neurogenesis and plasticity. As an endocrine disruptor, gossypol is generally known to exert detrimental effects in animals exposed under experimental conditions. However, it is unclear whether gossypol affects neurogenesis in the hippocampal dentate gyrus during early developmental stages. METHODS Pregnant Institute of Cancer Research mice were treated with gossypol at a daily dose of 0, 20, and 50 mg/kg body weight from embryonic day 6.5 to postnatal day (P) 21. The changes of hippocampal neurogenesis as well as potential mechanisms were investigated by 5-bromo-2-deoxyuridine labeling, behavioral tests, immunofluorescence, quantitative reverse transcription-polymerase chain reaction, and western-blot analyses. RESULTS At P8, maternal gossypol exposure impaired neural stem cell proliferation in the dentate gyrus and decreased the number of newborn cells as a result of reduced proliferation of BLBP+ radial glial cells and Tbr2+ intermediate progenitor cells. At P21, the numbers of NeuN+ neurons and parvalbumin+ γ-aminobutyric acid-ergic interneurons were increased following 50 mg/kg gossypol exposure. In addition, gossypol induced hippocampal neuroinflammation, which may contribute to behavioral abnormalities and cognitive deficits and decrease synaptic plasticity. CONCLUSIONS Our findings suggest that developmental gossypol exposure affects hippocampal neurogenesis by targeting the proliferation and differentiation of neuronal stem/progenitor cells, cognitive functions, and neuroinflammation. The present data provide novel insights into the neurotoxic effects of gossypol on offspring.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China,Correspondence: Xiaoyan Zhu, PhD, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China ()
| | - Yongji Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jiarong Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Cixia Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jian Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Enhui Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Ziluo Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Wentai Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xuejun Chai
- College of Basic Medicine, Xi’An Medical University, Xi’An, PR China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| |
Collapse
|
63
|
Badran M, Mashaqi S, Gozal D. The gut microbiome as a target for adjuvant therapy in obstructive sleep apnea. Expert Opin Ther Targets 2020; 24:1263-1282. [PMID: 33180654 PMCID: PMC9394230 DOI: 10.1080/14728222.2020.1841749] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Gut dysbiosis is assumed to play a role in obstructive sleep apnea (OSA)-associated morbidities. Pre- and probiotics, short chain fatty acids (SCFA) and fecal matter transplantation (FMT) may offer potential as novel therapeutic strategies that target this gut dysbiosis. As more mechanisms of OSA-induced dysbiosis are being elucidated, these novel approaches are being tested in preclinical and clinical development. Areas covered: We examined the evidence linking OSA to gut dysbiosis and discuss the effects of pre- and probiotics on associated cardiometabolic, neurobehavioral and gastrointestinal disorders. The therapeutic potential of SCFA and FMT are also discussed. We reviewed the National Center for Biotechnology Information database, including PubMed and PubMed Central between 2000 - 2020. Expert opinion: To date, there are no clinical trials and only limited evidence from animal studies describing the beneficial effects of pre- and probiotic supplementation on OSA-mediated dysbiosis. Thus, more work is necessary to assess whether prebiotics, probiotics and SCFA are promising future novel strategies for targeting OSA-mediated dysbiosis.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine , Columbia, MO, USA
| | - Saif Mashaqi
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Arizona School of Medicine , Tucson, AZ, USA
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine , Columbia, MO, USA
| |
Collapse
|
64
|
Parekh SV, Paniccia JE, Lebonville CL, Lysle DT. Dorsal hippocampal interleukin-1 signaling mediates heroin withdrawal-enhanced fear learning. Psychopharmacology (Berl) 2020; 237:3653-3664. [PMID: 32860071 PMCID: PMC7686097 DOI: 10.1007/s00213-020-05645-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
Converging evidence suggests opioid abuse can increase the incidence and severity of post-traumatic stress disorder (PTSD) in clinical populations. Interestingly, opioid withdrawal alone can produce symptoms similar to those of PTSD. Despite this association, the neural mechanisms underlying the relationship of opioid abuse, withdrawal, and PTSD is poorly understood. Our laboratory has investigated the neurobiological underpinnings of stress-enhanced fear learning (SEFL), an animal model of PTSD-like symptoms. We have previously shown that, in SEFL, a severe footshock induces an increase in dorsal hippocampal (DH) interleukin-1β (IL-1β), and subsequent fear learning is blocked by DH IL-1 receptor antagonism (IL-1RA). Given that opioids and stress engage similar neuroimmune mechanisms, the present experiments investigate whether the same mechanisms drive heroin withdrawal to induce a PTSD-like phenotype. First, we tested the effect of a chronic escalating heroin dose and withdrawal regimen on fear learning and found it produces enhanced future fear learning. Heroin withdrawal also induces a time-dependent, region-specific increase in IL-1β and glial fibrillary acidic protein (GFAP) immunoreactivity within the dentate gyrus of the DH. IL-1β was significantly colocalized with GFAP, indicating astrocytes may be involved in increased IL-1β. Moreover, intra-DH infusions of IL-1RA 0, 24, and 48 h into heroin withdrawal prevents the development of enhanced fear learning but does not alter withdrawal-induced weight loss. Collectively, our data suggests heroin withdrawal is sufficient to produce enhanced fear learning, astrocytes may play a role in heroin withdrawal-induced IL-1β, and DH IL-1 signaling during withdrawal mediates the development of heroin withdrawal-enhanced fear learning.
Collapse
Affiliation(s)
- Shveta V. Parekh
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC 27599-3270 USA
| | - Jacqueline E. Paniccia
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC 27599-3270 USA
| | - Christina L. Lebonville
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC 27599-3270 USA
| | - Donald T. Lysle
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC 27599-3270 USA,Corresponding Author: , Telephone: +1-919-962-3088, Fax: +1-919-962-2537
| |
Collapse
|
65
|
Nobis A, Zalewski D, Waszkiewicz N. Peripheral Markers of Depression. J Clin Med 2020; 9:E3793. [PMID: 33255237 PMCID: PMC7760788 DOI: 10.3390/jcm9123793] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Major Depressive Disorder (MDD) is a leading cause of disability worldwide, creating a high medical and socioeconomic burden. There is a growing interest in the biological underpinnings of depression, which are reflected by altered levels of biological markers. Among others, enhanced inflammation has been reported in MDD, as reflected by increased concentrations of inflammatory markers-C-reactive protein, interleukin-6, tumor necrosis factor-α and soluble interleukin-2 receptor. Oxidative and nitrosative stress also plays a role in the pathophysiology of MDD. Notably, increased levels of lipid peroxidation markers are characteristic of MDD. Dysregulation of the stress axis, along with increased cortisol levels, have also been reported in MDD. Alterations in growth factors, with a significant decrease in brain-derived neurotrophic factor and an increase in fibroblast growth factor-2 and insulin-like growth factor-1 concentrations have also been found in MDD. Finally, kynurenine metabolites, increased glutamate and decreased total cholesterol also hold promise as reliable biomarkers for MDD. Research in the field of MDD biomarkers is hindered by insufficient understanding of MDD etiopathogenesis, substantial heterogeneity of the disorder, common co-morbidities and low specificity of biomarkers. The construction of biomarker panels and their evaluation with use of new technologies may have the potential to overcome the above mentioned obstacles.
Collapse
Affiliation(s)
- Aleksander Nobis
- Department of Psychiatry, Medical University of Bialystok, pl. Brodowicza 1, 16-070 Choroszcz, Poland; (D.Z.); (N.W.)
| | | | | |
Collapse
|
66
|
Frank MG, Baratta MV, Zhang K, Fallon IP, Pearson MA, Liu G, Hutchinson MR, Watkins LR, Goldys EM, Maier SF. Acute stress induces the rapid and transient induction of caspase-1, gasdermin D and release of constitutive IL-1β protein in dorsal hippocampus. Brain Behav Immun 2020; 90:70-80. [PMID: 32750541 PMCID: PMC7544655 DOI: 10.1016/j.bbi.2020.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/31/2023] Open
Abstract
The proinflammatory cytokine interleukin (IL)-1β plays a pivotal role in the behavioral manifestations (i.e., sickness) of the stress response. Indeed, exposure to acute and chronic stressors induces the expression of IL-1β in stress-sensitive brain regions. Thus, it is typically presumed that exposure to stressors induces the extra-cellular release of IL-1β in the brain parenchyma. However, this stress-evoked neuroimmune phenomenon has not been directly demonstrated nor has the cellular process of IL-1β release into the extracellular milieu been characterized in brain. This cellular process involves a form of inflammatory cell death, termed pyroptosis, which involves: 1) activation of caspase-1, 2) caspase-1 maturation of IL-1β, 3) caspase-1 cleavage of gasdermin D (GSDMD), and 4) GSDMD-induced permeability of the cell membrane through which IL-1β is released into the extracellular space. Thus, the present study examined whether stress induces the extra-cellular release of IL-1β and engages the above cellular process in mediating IL-1β release in the brain. Male Sprague-Dawley rats were exposed to inescapable tailshock (IS). IL-1β extra-cellular release, caspase-1 activity and cleavage of GSDMD were measured in dorsal hippocampus. We found that exposure to IS induced a transient increase in the release of IL-1β into the extracellular space immediately after termination of the stressor. IS also induced a transient increase in caspase-1 activity prior to IL-1β release, while activation of GSDMD was observed immediately after termination of the stressor. IS also increased mRNA and protein expression of the ESCRTIII protein CHMP4B, which is involved in cellular repair. The present results suggest that exposure to an acute stressor induces the hallmarks of pyroptosis in brain, which might serve as a key cellular process involved in the release of IL-1β into the extracellular milieu of the brain parenchyma.
Collapse
Affiliation(s)
- Matthew G. Frank
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO;,Corresponding Author: Department of Psychology and Neuroscience, Center for Neuroscience, Campus Box 603, University of Colorado Boulder, Boulder, CO, 80301, USA, Tel: +1-303-919-8116,
| | - Michael V. Baratta
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO
| | - Kaixin Zhang
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde, Australia;,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, Australia
| | - Isabella P. Fallon
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO
| | - Mikayleigh A. Pearson
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, Australia;,International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, China
| | - Mark R. Hutchinson
- Adelaide Medical School & ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), The University of Adelaide, Adelaide, Australia
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO
| | - Ewa M. Goldys
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, Australia
| | - Steven F. Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO
| |
Collapse
|
67
|
Sarapultsev A, Sarapultsev P, Dremencov E, Komelkova M, Tseilikman O, Tseilikman V. Low glucocorticoids in stress-related disorders: the role of inflammation. Stress 2020; 23:651-661. [PMID: 32401103 DOI: 10.1080/10253890.2020.1766020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is evidence that plasma cortisol concentration can be either increased or decreased in patients with depression and related anxiety and stress-related disorders; the exact pathophysiological mechanisms of this state are not almost clear. Several distinct theories were proposed and mechanisms, which could lead to decreased glucocorticoid signaling and/or levels, were described. However, there is a possible drawback in almost all the theories proposed: insufficient attention to the inflammatory process, which is undoubtedly present in several stress-related disorders, including post-traumatic stress disorder (PTSD). Previous studies only briefly mentioned the presence of an inflammatory reaction's signs in PTSD, without giving it due importance, although recognizing that it can affect the course of the disease. With that, the state of biochemical changes, characterized by the low glucocorticoids, glucocorticoid receptor's resistance and the signs of the persistent inflammation (with the high levels of circulating cytokines) might be observed not only in PTSD but in coronary heart diseases and systemic chronic inflammatory diseases (rheumatoid arthritis) as well. That is why the present review aims to depict the pathophysiological mechanisms, which lead to a decrease in glucocorticoids in PTSD due to the action of inflammatory stimuli. We described changes in the glucocorticoid system and inflammatory reaction as parts of an integral system, where glucocorticoids and the glucocorticoid receptor reside at the apex of a regulatory network that blocks several inflammatory pathways, while decreased glucocorticoid signaling and/or level leads to unchecked inflammatory reactions to promote pathologies such as PTSD. LAY SUMMARY This review emphasizes the importance of inflammatory reaction in the development of puzzling conditions sometimes observed in severe diseases including post-traumatic stress disorder - the decreased levels of glucocorticoids in the blood. Following the classical concepts, one would expect an increase in glucocorticoid hormones, since they are part of the feedback mechanism in the immune system, which reduces stress and inflammation. However, low levels of glucocorticoid hormones are also observed. Thus, this review describes potential mechanisms, which can lead to the development of such a state.
Collapse
Affiliation(s)
- Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Petr Sarapultsev
- Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Eliyahu Dremencov
- Institute of Molecular Physiology and Genetics, Centre for Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maria Komelkova
- Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, Ekaterinburg, Russia
- School of Medical Biology, South Ural State University, Chelyabinsk, Russia
| | - Olga Tseilikman
- School of Medical Biology, South Ural State University, Chelyabinsk, Russia
| | - Vadim Tseilikman
- School of Medical Biology, South Ural State University, Chelyabinsk, Russia
| |
Collapse
|
68
|
Le SH, Tonami K, Umemori S, Nguyen LB, Ngo LQ, Araki K, Nitta H. Relationship between preoperative dental anxiety and short-term inflammatory response following oral surgery. Aust Dent J 2020; 66:13-19. [PMID: 32989884 DOI: 10.1111/adj.12796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND The relationship between dental anxiety and mucosal wound healing, especially the inflammatory response, has not been well studied. This study aimed to examine the relationship between anxiety prior to dental treatment and short-term inflammation following impacted mandibular third molar (IMTM) surgery. METHODS Fifty-nine patients who required IMTM surgery were recruited for this study. Sample demographics (gender, age) and surgical extent (Pederson classification, duration) were collected. Psychological stress towards surgery was assessed by the Dental Fear Survey (DFS). All surgeries were conducted according to an identical surgical protocol and all patients were given the same medical prescription. Correlations between short-term inflammation (swelling and trismus after 2 days) and DFS, demographics and surgical extent were statistically analysed. RESULTS The results showed that patients with a higher DFS score demonstrated more severe swelling (β = 0.36, P = 0.016) and trismus (β = 0.37, P = 0.008) 2 days after surgery. In addition, more severe trismus occurred following more difficult surgery (β = 0.29, P = 0.016) or that with a longer duration (β = 0.21, P = 0.081). Neither gender nor age showed any significant relationship with swelling or trismus. CONCLUSION Short-term inflammatory response following IMTM surgery correlated with the preoperative dental anxiety and this correlation was independent of gender and surgical extent.
Collapse
Affiliation(s)
- S H Le
- Department of Oral Surgery, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - K Tonami
- Oral Diagnosis and General Dentistry, Dental Hospital, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - S Umemori
- Oral Diagnosis and General Dentistry, Dental Hospital, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Lt-B Nguyen
- Department of Oral Surgery, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Lt-Q Ngo
- Department of Dental Basic Sciences, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - K Araki
- Department of Educational System in Dentistry, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - H Nitta
- Oral Diagnosis and General Dentistry, Dental Hospital, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
69
|
Supplementation with Combined Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 Across Development Reveals Sex Differences in Physiological and Behavioural Effects of Western Diet in Long-Evans Rats. Microorganisms 2020; 8:microorganisms8101527. [PMID: 33027912 PMCID: PMC7601208 DOI: 10.3390/microorganisms8101527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome affects various physiological and psychological processes in animals and humans, and environmental influences profoundly impact its composition. Disorders such as anxiety, obesity, and inflammation have been associated with certain microbiome compositions, which may be modulated in early life. In 62 Long–Evans rats, we characterised the effects of lifelong Bifidobacterium longum R0175 and Lactobacillus helveticus R0052 administration—along with Western diet exposure—on later anxiety, metabolic consequences, and inflammation. We found that the probiotic formulation altered specific anxiety-like behaviours in adulthood. We further show distinct sex differences in metabolic measures. In females, probiotic treatment increased calorie intake and leptin levels without affecting body weight. In males, the probiotic seemed to mitigate the effects of Western diet on adult weight gain and calorie intake, without altering leptin levels. The greatest inflammatory response was seen in male, Western-diet-exposed, and probiotic-treated rats, which may be related to levels of specific steroid hormones in these groups. These results suggest that early-life probiotic supplementation and diet exposure can have particular implications on adult health in a sex-dependent manner, and highlight the need for further studies to examine the health outcomes of probiotic treatment in both sexes.
Collapse
|
70
|
Frank MG, Fonken LK, Watkins LR, Maier SF. Acute stress induces chronic neuroinflammatory, microglial and behavioral priming: A role for potentiated NLRP3 inflammasome activation. Brain Behav Immun 2020; 89:32-42. [PMID: 32485293 PMCID: PMC7572608 DOI: 10.1016/j.bbi.2020.05.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Prior exposure to acute and chronic stressors potentiates the neuroinflammatory and microglial pro-inflammatory response to subsequent immune challenges suggesting that stressors sensitize or prime microglia. Stress-induced priming of the NLRP3 inflammasome has been implicated in this priming phenomenon, however the duration/persistence of these effects has not been investigated. In the present study, we examined whether exposure to a single acute stressor (inescapable tailshock) induced a protracted priming of the NLRP3 inflammasome as well as the neuroinflammatory, behavioral and microglial proinflammatory response to a subsequent immune challenge in hippocampus. In male Sprague-Dawley rats, acute stress potentiated the neuroinflammatory response (IL-1β, IL-6, and NFκBIα) to an immune challenge (lipopolysaccharide; LPS) administered 8 days after stressor exposure. Acute stress also potentiated the proinflammatory cytokine response (IL-1β, IL-6, TNF and NFκBIα) to LPS ex vivo. This stress-induced priming of microglia also was observed 28 days post-stress. Furthermore, challenge with LPS reduced juvenile social exploration, but not sucrose preference, in animals exposed to stress 8 days prior to immune challenge. Exposure to acute stress also increased basal mRNA levels of NLRP3 and potentiated LPS-induction of caspase-1 mRNA and protein activity 8 days after stress. The present findings suggest that acute stress produces a protracted vulnerability to the neuroinflammatory effects of subsequent immune challenges, thereby increasing risk for stress-related psychiatric disorders with an etiological inflammatory component. Further, these findings suggest the unique possibility that acute stress might induce innate immune memory in microglia.
Collapse
Affiliation(s)
- Matthew G Frank
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA.
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA
| |
Collapse
|
71
|
Zhang JL, Liu M, Cui W, Yang L, Zhang CN. Quercetin affects shoaling and anxiety behaviors in zebrafish: Involvement of neuroinflammation and neuron apoptosis. FISH & SHELLFISH IMMUNOLOGY 2020; 105:359-368. [PMID: 32693159 DOI: 10.1016/j.fsi.2020.06.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/14/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Quercetin, a potential fish food supplement, has been reported to process many beneficial properties. However, some negative effects of quercetin have been observed, which pointed out necessity for additional studies to evaluate its safety. Therefore, the present study investigated effects of quercetin (0.01, 0.1, 1, 10, 100 and 1000 μg/L) on shoaling and anxiety behaviors through novel tank tests in zebrafish (Danio rerio). Furthermore, oxidative stress, neuroinflammation and apoptosis in the brains were examined to learn more about mechanisms of action related to quercetin. The results showed that quercetin at the lower concentrations exerted beneficial effects on shoaling and anxiety behaviors. On the contrary, when quercetin was up to 1000 μg/L, it exerted detrimental effects shown as decreases of movement and increases of anxiety behaviors. Generally, U-shaped responses of antioxidant enzyme activities (superoxide dismutase and catalase), and inversed U-shaped responses of inflammatory mediators (cyclooxygenase-2) and cytokines (interleukin-1β, interleukin-6, interleukin-10, and tumor necrosis factor α) to quercetin treatment were found in the brains. In addition, quercetin at the lower concentrations attenuated cell apoptosis, while even more apoptosis was found at the 1000 μg/L quercetin group. In conclusion, quercetin could exert beneficial or detrimental effects on the shoaling and anxiety behaviors depending on the treatment concentrations, and the underlying mechanisms are potentially associated with neuroinflammation and neuron apoptosis.
Collapse
Affiliation(s)
- Ji-Liang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Min Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Wei Cui
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Li Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Chun-Nuan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
72
|
Nikolaeva M, Arefieva A, Babayan A, Chagovets V, Kitsilovskaya N, Starodubtseva N, Frankevich V, Kalinina E, Krechetova L, Sukhikh G. Immunoendocrine Markers of Stress in Seminal Plasma at IVF/ICSI Failure: a Preliminary Study. Reprod Sci 2020; 28:144-158. [PMID: 32638280 DOI: 10.1007/s43032-020-00253-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/28/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022]
Abstract
We have previously shown that high level of seminal interleukin (IL)-18 is positively associated with a greater risk of pregnancy failure in women exposed to their partners' seminal plasma (SP) during the in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) cycle. Since IL-18 and IL-1β considered to be the key immune markers of stress, here we ask whether their increase in SP may be due to the stress experienced by men engaged in the IVF programs. Therefore, we correlated seminal IL-18 with IL-1β and both cytokines with the seminal steroids, whose increase indicates the activation of neuroendocrine stress response systems. Retrospective analysis of stored seminal samples was performed. Based on previously identified cutoff level for content of IL-18 per ejaculate, samples with high IL-18 content from IVF failure group (n = 9), as well as samples with low IL-18 content from IVF success group (n = 7), were included in the study. Seminal cytokines were evaluated using FlowCytomix™ technology. A set of 16 biologically active steroids in SP was quantified by liquid chromatography coupled with mass spectrometry. Concentrations and total amounts per ejaculate of cytokines and steroids were determined. A positive significant correlation was found between the levels of IL-18 and IL-1β. There was also a positive correlation between IL-18 or IL-1β and 17-α-hydroxypregnenolone, 17-α-hydroxyprogesterone, dehydroepiandrosterone (DHEA), DHEA sulfate (DHEAS), androstenedione, testosterone, dihydrotestosterone, progesterone, corticosterone, 11-deoxycorticosterone, and the ratio of DHEAS/cortisol. We suggested that stress-related overexpression of immune and hormonal factors in SP may be the key link between male stress and embryo implantation failure.
Collapse
Affiliation(s)
- Marina Nikolaeva
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997.
| | - Alla Arefieva
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Alina Babayan
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Vitaliy Chagovets
- Department of Systems Biology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Natalia Kitsilovskaya
- Department of Systems Biology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Natalia Starodubtseva
- Department of Systems Biology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997.,Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow, Russia, 141701
| | - Vladimir Frankevich
- Department of Systems Biology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Elena Kalinina
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Lubov Krechetova
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Gennady Sukhikh
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997.,First Moscow State Medical University named after I.M. Sechenov, Trubetskaya str. 8-2, Moscow, Russia, 119991
| |
Collapse
|
73
|
Systemic immunization with altered myelin basic protein peptide produces sustained antidepressant-like effects. Mol Psychiatry 2020; 25:1260-1274. [PMID: 31375779 DOI: 10.1038/s41380-019-0470-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022]
Abstract
Immune dysregulation, specifically of inflammatory processes, has been linked to behavioral symptoms of depression in both human and rodent studies. Here, we evaluated the antidepressant effects of immunization with altered peptide ligands of myelin basic protein (MBP)-MBP87-99[A91, A96], MBP87-99[A91], and MBP87-99[R91, A96]-in different models of depression and examined the mechanism by which these peptides protect against stress-induced depression. We found that a single dose of subcutaneously administered MBP87-99[A91, A96] produced antidepressant-like effects by decreasing immobility in the forced swim test and by reducing the escape latency and escape failures in the learned helplessness paradigm. Moreover, immunization with MBP87-99[A91, A96] prevented and reversed depressive-like and anxiety-like behaviors that were induced by chronic unpredictable stress (CUS). However, MBP87-99[R91, A96] tended to aggravate CUS-induced anxiety-like behavior. Chronic stress increased the production of peripheral and central proinflammatory cytokines and induced the activation of microglia in the prelimbic cortex (PrL), which was blocked by MBP87-99[A91, A96]. Immunization with MBP-derived altered peptide ligands also rescued chronic stress-induced deficits in p11, phosphorylated cyclic adenosine monophosphate response element binding protein, and brain-derived neurotrophic factor expression. Moreover, microinjections of recombinant proinflammatory cytokines and the knockdown of p11 in the PrL blunted the antidepressant-like behavioral response to MBP87-99[A91, A96]. Altogether, these findings indicate that immunization with altered MBP peptide produces prolonged antidepressant-like effects in rats, and the behavioral response is mediated by inflammatory factors (particularly interleukin-6), and p11 signaling in the PrL. Immune-neural interactions may impact central nervous system function and alter an individual's response to stress.
Collapse
|
74
|
Dong Y, Wang X, Zhou Y, Zheng Q, Chen Z, Zhang H, Sun Z, Xu G, Hu G. Hypothalamus-pituitary-adrenal axis imbalance and inflammation contribute to sex differences in separation- and restraint-induced depression. Horm Behav 2020; 122:104741. [PMID: 32165183 DOI: 10.1016/j.yhbeh.2020.104741] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 02/07/2023]
Abstract
Whether social contact contributes to the underlying mechanisms of depression and the observed sex differences is unclear. In this study, we subjected young male and female mice to separation- and restraint-induced stress for 4 weeks and assessed behaviors, neurotransmitter levels, hormones, and inflammatory cytokines. Results showed that, compared with controls, male mice exposed to stress displayed significant decreases in body weight and sucrose preference after 1 week. In the fourth week, they exhibited a higher degree of anxiety (open field test) and depressive-like behavior (forced swim test). Moreover, the males showed significant decreases in monoamine neurotransmitters, including norepinephrine and dopamine in striatum, and an increase in pro-inflammatory cytokines, such as tumor necrosis factor α and interleukin 1β in serum. In contrast, females showed persistent loss of weight during stress and displayed significant decreases in sucrose preference after stress. Importantly, the females but not males showed activation of the hypothalamus-pituitary-adrenal (HPA) axis, with significantly higher levels adrenocorticotropic hormone. Additionally, mRNA level of c-fos and AVP showed there was significant interaction between stress and sex. Finally, we conclude that an imbalance of the HPA axis and inflammation might be important contributors to sex differences in separation/restraint-induced depressive behavior and that changes might be mediated by c-fos and AVP.
Collapse
Affiliation(s)
- Yinfeng Dong
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xuyang Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai 200233, China
| | - Yan Zhou
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiaomu Zheng
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zheng Chen
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hua Zhang
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiling Sun
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guihua Xu
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
75
|
Paiva IHR, Duarte-Silva E, Peixoto CA. The role of prebiotics in cognition, anxiety, and depression. Eur Neuropsychopharmacol 2020; 34:1-18. [PMID: 32241688 DOI: 10.1016/j.euroneuro.2020.03.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022]
Abstract
The disruption of the gut microbial composition, defined as dysbiosis, has been associated with many neurological disorders with inflammatory components. The alteration of the gut microbiota leads to an increase in pro-inflammatory cytokines that are associated with metabolic diseases (such as obesity and type 2 diabetes), autoimmune arthritis, and neuropsychiatric diseases. Prebiotics are defined as non-digestible carbohydrates and promote the growth of beneficial bacteria such as bifidobacteria and lactobacillus, exert beneficial effects on improving dysbiosis and its associated inflammatory state. Preclinical and clinical data indicated that some prebiotics also have positive impacts on the central nervous system (CNS) due to the modulation of neuroinflammation and thus may have a key role in the modulation of cognitive impairment, anxiety, and depression. The present manuscript reviews the state-of-art of the effects of prebiotics in cognitive impairment, anxiety, and depressive disorders. Data from clinical studies are still scarce, and further clinical trials are needed to corroborate the potential therapeutic cognitive, antidepressant, and anxiolytic of prebiotics. Prebiotics may provide patients suffering from cognitive deficits, depression, and anxiety with a new tool to minimize disease symptoms and increase the quality of life.
Collapse
Affiliation(s)
- Igor Henrique R Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50.670-420 Recife, PE, Brazil; Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Brazil
| | - Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50.670-420 Recife, PE, Brazil; Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, PE, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50.670-420 Recife, PE, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
76
|
Cernackova A, Durackova Z, Trebaticka J, Mravec B. Neuroinflammation and depressive disorder: The role of the hypothalamus. J Clin Neurosci 2020; 75:5-10. [PMID: 32217047 DOI: 10.1016/j.jocn.2020.03.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/13/2020] [Accepted: 03/02/2020] [Indexed: 01/07/2023]
Abstract
Data accumulated over the last two decades has demonstrated that hypothalamic inflammation plays an important role in the etiopathogenesis of the most prevalent diseases, such as cardiovascular diseases, metabolic syndrome, and even cancer. Recent findings indicate that hypothalamic inflammation is also associated with stress exposure and certain psychiatric diseases, such as depressive disorder. Mechanistic studies have shown that intense and/or chronic stress exposure is accompanied by the synthesis of inflammatory molecules in the hypothalamus, altered hypothalamic-pituitary-adrenal axis activity, and development of glucocorticoid resistance. Consequently, these factors might play a role in the etiopathogenesis of psychiatric disorders. We propose that hypothalamic inflammation represents an interconnection between somatic diseases and depressive disorder. These assumptions are discussed in this mini-review in the light of available data from studies focusing on hypothalamic inflammation.
Collapse
Affiliation(s)
- Alena Cernackova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Slovakia; Institute of Experimental Endocrinology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Zdenka Durackova
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University in Bratislava, Slovakia
| | - Jana Trebaticka
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Comenius University and Child University Hospital, Bratislava, Slovakia
| | - Boris Mravec
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Slovakia; Institute of Experimental Endocrinology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
77
|
Vaknine S, Soreq H. Central and peripheral anti-inflammatory effects of acetylcholinesterase inhibitors. Neuropharmacology 2020; 168:108020. [PMID: 32143069 DOI: 10.1016/j.neuropharm.2020.108020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/09/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
Acetylcholinesterase (AChE) inhibitors modulate acetylcholine hydrolysis and hence play a key role in determining the cholinergic tone and in implementing its impact on the cholinergic blockade of inflammatory processes. Such inhibitors may include rapidly acting small molecule AChE-blocking drugs and poisonous anti-AChE insecticides or war agent inhibitors which penetrate both body and brain. Notably, traumatized patients may be hyper-sensitized to anti-AChEs due to their impaired cholinergic tone, higher levels of circulation pro-inflammatory cytokines and exacerbated peripheral inflammatory responses. Those largely depend on the innate-immune system yet reach the brain via vagus pathways and/or disrupted blood-brain-barrier. Other regulators of the neuro-inflammatory cascade are AChE-targeted microRNAs (miRs) and synthetic chemically protected oligonucleotide blockers thereof, whose size prevents direct brain penetrance. Nevertheless, these larger molecules may exert parallel albeit slower inflammatory regulating effects on brain and body tissues. Additionally, oligonucleotide aptamers interacting with innate immune Toll-Like Receptors (TLRs) may control inflammation through diverse routes and in different rates. Such aptamers may compete with the action of both small molecule inhibitors and AChE-inhibiting miRs in peripheral tissues including muscle and intestine. However, rapid adaptation processes, visualized in neuromuscular junctions enable murine survival under otherwise lethal anti-cholinesterase exposure; and both miR inhibitors and TLR-modulating aptamers may exert body-brain signals protecting experimental mice from acute inflammation. The complex variety of AChE inhibiting molecules identifies diverse body-brain communication pathways which may rapidly induce long-lasting central reactions to peripheral stressful and inflammatory insults in both mice and men. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
Affiliation(s)
- Shani Vaknine
- The Edmond and Lily Safra Center of Brain Science, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel.
| |
Collapse
|
78
|
Obuchowicz E, Bielecka-Wajdman A, Zieliński M, Machnik G, Gołyszny M, Ludyga T. Imipramine and Venlafaxine Differentially Affect Primary Glial Cultures of Prenatally Stressed Rats. Front Pharmacol 2020; 10:1687. [PMID: 32076407 PMCID: PMC7006619 DOI: 10.3389/fphar.2019.01687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/24/2019] [Indexed: 12/25/2022] Open
Abstract
Here, we examine the effects of prenatal administration of two antidepressants—imipramine (IMI) and venlafaxine (VEN)—on morphology and activity of a primary glial culture. Microglia are targeted by antidepressants used for antenatal depression and are important regulators of central nervous system development. In this study, female Wistar rats were assigned to one of four groups: a control group that received water ad libitum (1), and groups that received additionally once daily either water (2), IMI (10 mg/kg) (3), or VEN (20 mg/kg) (4) by oral gavage from gestation day 7 to 22. Oral gavage administration induced prenatal stress. Cell cultures were obtained from the brains of 1-day-old pups. Prenatal stress caused a disturbance of sensorimotor function in pups. Prenatal stress also produced alterations in the glial cultures, specifically, an increased percentage of microglia in the mixed glial cultures and an increased percentage of dead cells. Moreover, increased levels of IL1-β, TNF-α, NO, and an increased expression of CX3CR1 mRNA were found in microglia. However, the ratio of Bax/Bcl2 mRNA was reduced. Prenatal stress increased the vulnerability of microglia to lipopolysaccharide (LPS). The mixed glial culture derived from pups exposed to IMI showed greater morphological changes and the highest percentage of microglia. Microglia were characterized by the largest increase in the production of pro-inflammatory cytokines and NO, and the greatest reduction in the expression of CX3CR1 mRNA. Exposure to IMI reduced the effects of LPS on IL-1β production and Bax/Bcl2 mRNA, and exacerbated the effects of LPS on CX3CR1 mRNA expression. Prenatal administration of VEN induced protective effects on microglia, as measured by all studied parameters. Taken together, our data suggest that, by disturbing microglia function, exposure to even mild forms of chronic prenatal stress may predispose individuals to psychiatric or neurodevelopmental disorders. These data also indicate that chronic mild stress sensitizes microglia to immune challenges, which may lead to enhanced neuronal damage in the embryonic brain. The observed detrimental effects of IMI on microglial activity under conditions of prenatal stress may help to explain the teratogenic effects of IMI reported in the literature.
Collapse
Affiliation(s)
- Ewa Obuchowicz
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Anna Bielecka-Wajdman
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Michał Zieliński
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Grzegorz Machnik
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Miłosz Gołyszny
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Tomasz Ludyga
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
79
|
McAfee JM, Kattesh HG, Lindemann MD, Voy BH, Kojima CJ, Burdick Sanchez NC, Carroll JA, Gillespie BE, Saxton AM. Effect of omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation to lactating sows on growth and indicators of stress in the postweaned pig1,2. J Anim Sci 2020; 97:4453-4463. [PMID: 31545382 DOI: 10.1093/jas/skz300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Dietary omega-3 polyunsaturated fatty acids (n-3 PUFA) are precursors for lipid metabolites that reduce inflammation. Two experiments were conducted to test the hypothesis that enriching the sow diet in n-3 PUFA during late gestation and throughout lactation reduces stress and inflammation and promotes growth in weaned pigs. A protected fish oil product (PFO; Gromega) was used to enrich the diet in n-3 PUFA. In the initial experiment, time-bred gilts were fed a gestation and lactation diet supplemented with 0% (control; n = 5), 0.25% (n = 4), 0.5% (n = 4), or 1% (n = 5) PFO from 101 ± 2 d of gestation to day 16 of lactation. Adding 1% PFO to the diet increased the n-3:n-6 PUFA ratio in colostrum and milk compared with controls (P = 0.05). A subsequent experiment was performed to determine whether supplementing the sow diet with 1% PFO improved growth and reduced circulating markers of acute inflammation and stress in the offspring. Plasma was harvested from piglets (16 per treatment group) on day 0 (d of weaning) and days 1 and 3 postweaning. Pigs from the 1% PFO treatment group weighed more (P = 0.03) on day 3 postweaning and had a greater (P ˂ 0.05) n-3:n-6 PUFA ratio in plasma on each day sampled compared with 0% PFO controls. There was an overall treatment effect on plasma total cortisol (P = 0.03) and haptoglobin (P = 0.04), with lesser concentrations in pigs on the 1% PFO diet. Plasma corticosteroid-binding globulin (CBG) concentrations were not different between treatment groups but were less (P ˂ 0.001) on days 1 and 3 when compared with day 0. The resultant free cortisol index [FCI (cortisol/CBG)] was less (P = 0.02) on days 1 and 3 for pigs from the 1% treatment group compared with the controls. An ex vivo lipopolysaccharide (LPS) challenge of whole blood collected on days 0 and 1 was used to determine whether 1% PFO attenuated release of inflammatory cytokines (IL-1β, IL-6, and TNF-α). Blood from pigs within the 1% PFO treatment group tended (P = 0.098) to have a lesser mean concentration of TNF-α in response to LPS compared with blood from controls. These results suggest that providing a PFO supplement as 1% of the diet to sows beginning in late gestation and during lactation can increase the n-3:n-6 PUFA ratio in their offspring, which may improve growth and reduce the acute physiological stress response in the pigs postweaning.
Collapse
Affiliation(s)
- John M McAfee
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | - Henry G Kattesh
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | - Merlin D Lindemann
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY
| | - Brynn H Voy
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | - Cheryl J Kojima
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | | | | | | | - Arnold M Saxton
- Department of Animal Science, University of Tennessee, Knoxville, TN
| |
Collapse
|
80
|
Emotional distress, brain functioning, and biobehavioral processes in cancer patients: a neuroimaging review and future directions. CNS Spectr 2020; 25:79-100. [PMID: 31010446 DOI: 10.1017/s1092852918001621] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite emerging evidence that distress and adversity can contribute to negative health outcomes in cancer, little is known about the brain networks, regions, or circuits that can contribute to individual differences in affect/distress states and health outcomes in treated cancer patients. To understand the state-of-the-science in this regard, we reviewed neuroimaging studies with cancer patients that examined the associations between negative affect (distress) and changes in the metabolism or structure of brain regions. Cancer patients showed changes in function and/or structure of key brain regions such as the prefrontal cortex, thalamus, amygdala, hippocampus, cingulate cortex (mainly subgenual area), hypothalamus, basal ganglia (striatum and caudate), and insula, which are associated with greater anxiety, depression, posttraumatic stress disorder (PTSD) symptoms, and distress. These results provide insights for understanding the effects of these psychological and emotional factors on peripheral stress-related biobehavioral pathways known to contribute to cancer progression and long-term health outcomes. This line of work provides leads for understanding the brain-mediated mechanisms that may explain the health effects of psychosocial interventions in cancer patients and survivors. A multilevel and integrated model for distress management intervention effects on psychological adaptation, biobehavioral processes, cancer pathogenesis, and clinical outcomes is proposed for future research.
Collapse
|
81
|
Cai L, Mu YR, Liu MM, Tang WJ, Li R. Antidepressant-like effects of penta-acetyl geniposide in chronic unpredictable mild stress-induced depression rat model: Involvement of inhibiting neuroinflammation in prefrontal cortex and regulating hypothalamic-pituitaryadrenal axis. Int Immunopharmacol 2020; 80:106182. [PMID: 31981962 DOI: 10.1016/j.intimp.2019.106182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/25/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022]
Abstract
We previously reported that penta-acetyl geniposide ((Ac)5GP, an acetylated derivative of geniposide) exhibited better pharmacological functions than geniposide, a major active component of Gardenia jasminoides Ellis. This study demonstrated the antidepressant-like effects of (Ac)5GP and its involved mechanisms using a rat depression model caused by chronic unpredictable mild stress (CUMS). Behavioral tests including sucrose preference, open field and forced swimming were applied to evaluate depression symptoms. IL-1β, IL-6 and TNF-α mRNA and protein levels in prefrontal cortex (PFC) were respectively measured by quantitative PCR and ELISA. The protein levels of IκBα, p-IκBα, NF-κB p65, NLRP3, pro- and mature-IL-1β in PFC were determined by western blot. The activity of hypothalamic-pituitaryadrenal (HPA) axis was also measured. (Ac)5GP treatment alleviated the CUMS-induced depressive-like behaviors in rats, as indicated by increased sucrose intake, increased total crossing and rearing numbers, improved central activity and reduced immobility time. (Ac)5GP reversed the CUMS-induced elevations of IL-1β, IL-6 and TNF-α mRNA and protein levels in PFC. (Ac)5GP reduced degradation and phosphorylation of IκBα and protein level of nuclear NF-κB p65 in PFC. (Ac)5GP also decreased the mRNA and protein levels of NLRP3 and reduced the ratio of mature-IL-1β protein over total IL-1β protein (pro-IL-1β + mature-IL-1β) in PFC. Moreover, (Ac)5GP reduced serum levels of adrenocorticotropic hormone/corticosterone and mRNA level of hypothalamic corticotrophin-releasing hormone. In conclusion, (Ac)5GP treatment improved the depressive-like behaviors in CUMS rats perhaps by suppressing neuroinflammation in PFC and inhibiting activations of NF-κB and NLRP3 and also attenuating HPA axis hyperactivity.
Collapse
Affiliation(s)
- Li Cai
- Department of Pathology, School of Basic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
| | - Yu-Rong Mu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
| | - Ming-Ming Liu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
| | - Wen-Jian Tang
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
| | - Rong Li
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China.
| |
Collapse
|
82
|
Towers AE, Oelschlager ML, Juda MB, Jain S, Gainey SJ, Freund GG. HFD refeeding in mice after fasting impairs learning by activating caspase-1 in the brain. Metabolism 2020; 102:153989. [PMID: 31697963 PMCID: PMC6906226 DOI: 10.1016/j.metabol.2019.153989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/10/2019] [Accepted: 10/01/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Diets that include some aspect of fasting have dramatically increased in popularity. In addition, fasting reduces inflammasome activity in the brain while improving learning. Here, we examine the impact of refeeding a low-fat diet (LFD) or high-fat diet (HFD) after fasting. METHODS Male wildtype (WT), caspase-1 knockout (KO) and/or IL-1 receptor 1 (IL-1R1) KO mice were fasted for 24 h or allowed ad libitum access to food (chow). Immediately after fasting, mice were allowed to refeed for 2 h in the presence of LFD, HFD or chow. Mouse learning was examined using novel object recognition (NOR) and novel location recognition (NLR). Caspase-1 activity was quantified in the brain using histochemistry (HC) and image analysis. RESULTS Refeeding with a HFD but not a LFD or chow fully impaired both NOR and NLR. Likewise, HFD when compared to LFD refeeding increased caspase-1 activity in the whole amygdala and, particularly, in the posterior basolateral nuclei (BLp) by 2.5-fold and 4.6-fold, respectively. When caspase-1 KO or IL-1R1 KO mice were examined, learning impairment secondary to HFD refeeding did not occur. Equally, administration of n-acetylcysteine to fasted WT mice prevented HFD-dependent learning impairment and caspase-1 activation in the BLp. Finally, the free-fatty acid receptor 1 (FFAR1) antagonist, DC260126, mitigated learning impairment associated with HFD refeeding while blocking caspase-1 activation in the BLp. CONCLUSIONS Consumption of a HFD after fasting impairs learning by a mechanism that is dependent on caspase-1 and the IL-1R1 receptor. These consequences of a HFD refeeding on the BLP of the amygdala appear linked to oxidative stress and FFAR1.
Collapse
Affiliation(s)
- Albert E Towers
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | | | - Michal B Juda
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA
| | - Sparsh Jain
- School of Molecular and Cellular Biology, University of Illinois, Urbana, IL, USA
| | - Stephen J Gainey
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Gregory G Freund
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA; Department of Animal Sciences, University of Illinois, Urbana, IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
83
|
CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination. Mol Psychiatry 2020; 25:1175-1190. [PMID: 30413800 PMCID: PMC7244405 DOI: 10.1038/s41380-018-0285-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/06/2018] [Accepted: 09/06/2018] [Indexed: 11/23/2022]
Abstract
Circular RNAs (circRNAs), highly expressed in the central nervous system, are involved in various regulatory processes and implicated in some pathophysiology. However, the potential role of circRNAs in psychiatric diseases, particularly major depressive disorder (MDD), remains largely unknown. Here, we demonstrated that circular RNA DYM (circDYM) levels were significantly decreased both in the peripheral blood of patients with MDD and in the two depressive-like mouse models: the chronic unpredictable stress (CUS) and lipopolysaccharide (LPS) models. Restoration of circDYM expression significantly attenuated depressive-like behavior and inhibited microglial activation induced by CUS or LPS treatment. Further examination indicated that circDYM functions as an endogenous microRNA-9 (miR-9) sponge to inhibit miR-9 activity, which results in a downstream increase of target-HECT domain E3 ubiquitin protein ligase 1 (HECTD1) expression, an increase of HSP90 ubiquitination, and a consequent decrease of microglial activation. Taken together, the results of our study demonstrate the involvement of circDYM and its coupling mechanism in depression, providing translational evidence that circDYM may be a novel therapeutic target for depression.
Collapse
|
84
|
Eid RS, Lieblich SE, Wong SJ, Galea LAM. Ovarian status dictates the neuroinflammatory and behavioral consequences of sub-chronic stress exposure in middle-aged female mice. Neurobiol Stress 2019; 12:100199. [PMID: 31871960 PMCID: PMC6909340 DOI: 10.1016/j.ynstr.2019.100199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/09/2019] [Accepted: 11/15/2019] [Indexed: 12/28/2022] Open
Abstract
Ovarian hormones influence the outcomes of stress exposure and are implicated in stress-related disorders including depression, yet their roles are often complex and seemingly contradictory. Importantly, depression and stress exposure are associated with immune dysregulation, and ovarian hormones have immunomodulatory properties. However, how ovarian hormones can influence the inflammatory outcomes of stress exposure is poorly understood. Here, we examined the effects of long-term ovariectomy on the behavioral and neuroinflammatory outcomes of sub-chronic stress exposure in middle-aged mice. Briefly, sham-operated and ovariectomized mice were assigned to non-stress groups or exposed to 6 days of variable stress. Mice were assessed on a battery of behavioral tests, and cytokine concentrations were quantified in the frontal cortex and hippocampus. In the frontal cortex, postsynaptic density protein-95 expression was examined as an index of excitatory synapse number and/or stability, and phosphorylated mitogen-activated protein kinases (MAPKs) were measured to explore potential cell signaling pathways elicited by stress exposure and/or ovarian hormones. Long-term ovariectomy modified the central cytokine profile by robustly reducing cytokine concentrations in the frontal cortex and modestly increasing concentrations in the hippocampus. Under non-stress conditions, long-term ovariectomy also reduced extracellular signal-regulated kinase (ERK) phosphoprotein expression in the frontal cortex and increased some measures of depressive-like behavior. The effects of sub-chronic stress exposure were however more pronounced in sham-operated mice. Notably, in sham-operated mice only, sub-chronic stress exposure increased IL-1β and IL-6:IL-10 ratio in the frontal cortex and hippocampus and reduced pERK1/2 expression in the frontal cortex. Further, although sub-chronic stress exposure increased anhedonia-like behavior regardless of ovarian status, it increased passive-coping behavior in sham-operated mice only. These data indicate that long-term ovariectomy has potent effects on the central cytokine milieu and dictates the neuroinflammatory and behavioral effects of sub-chronic stress exposure in middle-aged mice. These findings therefore suggest that the immunomodulatory properties of ovarian hormones are of relevance in the context of stress and possibly depression.
Collapse
Affiliation(s)
- Rand S Eid
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie E Lieblich
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Sarah J Wong
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada.,Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
85
|
Maeng SH, Hong H. Inflammation as the Potential Basis in Depression. Int Neurourol J 2019; 23:S63-71. [PMID: 31795605 PMCID: PMC6905209 DOI: 10.5213/inj.1938226.113] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 01/07/2023] Open
Abstract
There is growing evidence of the association between inflammation and stress-related disorders including depression. The positive correlation between the increased levels of inflammatory cytokines observed in patients with other diseases and the byproduct of the depressive symptoms may be caused by chronic stress. Increased neuroinflammatory responses are capable of activating microglia and astrocytes, which leads to release pro-inflammatory cytokines. Moreover, elevated levels of inflammatory cytokines such as tumor necrosis factor-alpha, interleukin (IL)-1, and IL-6 are causally related to various aspects of depression such as the behavioral symptomatology. Eventually, these elevated cytokines aggravate and propagate neuroinflammation, impairing brain functions. Thus, activated astrocytes and microglia may be potential mediators in neuroinflammatory processes contributing to the development of depression.
Collapse
Affiliation(s)
- Sung Ho Maeng
- Department of Gerontology, Kyung Hee University Graduate School of East-West Medical Science, Yongin, Korea
| | - Heeok Hong
- Department of Animal Science and Technology, Konkuk University, Seoul, Korea
| |
Collapse
|
86
|
Ajmone-Cat MA, Spinello C, Valenti D, Franchi F, Macrì S, Vacca RA, Laviola G. Brain-Immune Alterations and Mitochondrial Dysfunctions in a Mouse Model of Paediatric Autoimmune Disorder Associated with Streptococcus: Exacerbation by Chronic Psychosocial Stress. J Clin Med 2019; 8:1514. [PMID: 31547098 PMCID: PMC6833026 DOI: 10.3390/jcm8101514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/18/2022] Open
Abstract
Adverse psychosocial experiences have been shown to modulate individual responses to immune challenges and affect mitochondrial functions. The aim of this study was to investigate inflammation and immune responses as well as mitochondrial bioenergetics in an experimental model of Paediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcus (PANDAS). Starting in adolescence (postnatal day 28), male SJL/J mice were exposed to five injections (interspaced by two weeks) with Group-A beta-haemolytic streptococcus (GAS) homogenate. Mice were exposed to chronic psychosocial stress, in the form of protracted visual exposure to an aggressive conspecific, for four weeks. Our results indicate that psychosocial stress exacerbated individual response to GAS administrations whereby mice exposed to both treatments exhibited altered cytokine and immune-related enzyme expression in the hippocampus and hypothalamus. Additionally, they showed impaired mitochondrial respiratory chain complexes IV and V, and reduced adenosine triphosphate (ATP) production by mitochondria and ATP content. These brain abnormalities, observed in GAS-Stress mice, were associated with blunted titers of plasma corticosterone. Present data support the hypothesis that challenging environmental conditions, in terms of chronic psychosocial stress, may exacerbate the long-term consequences of exposure to GAS processes through the promotion of central immunomodulatory and oxidative stress.
Collapse
Affiliation(s)
- Maria Antonietta Ajmone-Cat
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Rome, Italy.
| | - Chiara Spinello
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Rome, Italy.
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Via Giovanni Amendola 122/O - 70126 Bari, Italy.
| | - Francesca Franchi
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Rome, Italy.
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Rome, Italy.
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Via Giovanni Amendola 122/O - 70126 Bari, Italy.
| | - Giovanni Laviola
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, I-00161 Rome, Italy.
| |
Collapse
|
87
|
Verstraeten BSE, McCreary JK, Falkenberg EA, Fang X, Weyers S, Metz GAS, Olson DM. Multiple prenatal stresses increase sexual dimorphism in adult offspring behavior. Psychoneuroendocrinology 2019; 107:251-260. [PMID: 31174163 DOI: 10.1016/j.psyneuen.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Maternal gestational stress and immune activation have independently been associated with affective and neurodevelopmental disorders across the lifespan. We investigated whether rats exposed to prenatal maternal stressors (PNMS) consisting of psychological stress, interleukin (IL)-1β or both (two-hit stress) during critical developmental windows displayed a behavioral phenotype representative of these conditions. METHODS Long-Evans dams were exposed to psychological stressors consisting of restraint stress and forced swimming from gestational day (GD)12 to 18 or to no stress (controls). From GD17 until day of delivery, these same animals were injected with saline or IL-1β as a second hit and immune stressor (5 μg/day, intraperitoneally). The behavior of F1 offspring adults was tested on the open field test, elevated plus maze and affective exploration task on postnatal days (P)90, 100 and 110 respectively. RESULTS The effects of PNMS differed depending on the specific testing environment and potentially the age at assessment, especially in female offspring. Both locomotion and anxiety-like behavioral measures were susceptible to PNMS effects. In females, psychological stress increased anxiety-like behavior, whereas IL-1β had an opposite effect, inducing exploration and risk-taking behavior on the open field test and the elevated plus maze. When present, interactions between both stressors limited the anxiogenic effect of psychological stress on its own. In contrast, prenatal psychological stress increased anxiety-like behavior in adult males overall. A similar anxiogenic effect of IL-1β was only found on the open field test while the Stress*IL-1β interaction appeared to limit the effect of either alone. Contrarily, the PNMS effects on anxiety-like behavior on the affective exploration task were highly similar between both sexes. Analysis of males and females together revealed an additive effect of Stress and IL-1β on the number of exits from the refuge, a measure of risk assessment and thus correlated with anxiety. CONCLUSION PNMS affected offspring adult behavior in a sex-dependent manner. Effects on females were more variable, whereas psychological stress mostly induced anxiety-like behavior in males. These data highlight the sexual dimorphism in vulnerability to prenatal stressors. Maternal or stress-induced programming of the stress response and neuroinflammation may play an important role in mediating stress effects on offspring adult behavior.
Collapse
Affiliation(s)
- Barbara S E Verstraeten
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, 227 HMRC, Edmonton, AB T6G 2S2, Canada; Department of Human Structure and Repair, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - J Keiko McCreary
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Erin A Falkenberg
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Xin Fang
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, 227 HMRC, Edmonton, AB T6G 2S2, Canada
| | - Steven Weyers
- Department of Human Structure and Repair, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada.
| | - David M Olson
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, 227 HMRC, Edmonton, AB T6G 2S2, Canada.
| |
Collapse
|
88
|
Lovelock DF, Deak T. Acute stress imposed during adolescence yields heightened anxiety in Sprague Dawley rats that persists into adulthood: Sex differences and potential involvement of the Medial Amygdala. Brain Res 2019; 1723:146392. [PMID: 31446016 DOI: 10.1016/j.brainres.2019.146392] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/26/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022]
Abstract
Stressors experienced during adolescence have been demonstrated to have a long-lasting influence on affective behavior in adulthood. Notably, most studies to date have found these outcomes after chronic stress during adolescence. In the present study we tested how exposure to a single episode of acute footshock during early adolescence would modify subsequent adult anxiety- and depressive-like behaviors in male and female Sprague-Dawley rats. Adolescent rats were exposed to inescapable footshock (80 shocks, 5 s, 1.0 mA, 90 sec variable inter-trial interval (ITI)) at Post-natal day (PND) 29-30 and remained undisturbed until adulthood where they were evaluated with several behavioral assays for anxiety as well as depressive-like behavior via forced swim. In addition, gene expression changes were assessed immediately after a 30 min forced swim challenge in adulthood among several stress-related brain regions including the Central Amygdala (CeA), Medial Amygdala (MeA), ventral Hippocampus (vHPC), and Paraventricular Nucleus (PVN). Studies used real-time RT-PCR to examine the cytokines Interleukin-1β (IL-1β) and Interleukin-6 (IL-6), corticotropin-releasing hormone (CRH), the immediate early genes c-Fos, c-Jun, Egr1 and Arc, and several genes relating to corticosteroid receptor function (glucocorticoid and mineralocorticoid receptor (GR and MR, respectively), Gilz (glucocorticoid-induced leucine zipper), Sgk1 (Serum and Glucocorticoid regulated Kinase 1)). Behaviorally, males displayed signs of increased anxiety, most notably in the light-dark box, whereas females did not. No notable depressive-like behavior was observed in forced swim as a result of adolescent stress history, but adolescent footshock exacerbated the c-Fos response in the MeA produced by swim in both sexes. Forced swim led to increased IL-1β expression in the PVN regardless of adolescent stress history, whereas most HPA (hypothalamic-pituitaryadrenal) axis-related genes were largely unaffected in the vHPC. To determine the potential for β-adrenergic receptors to contribute to the male-specific anxiety-like behavior, two further studies applied a β-adrenergic agonist (isoproterenol) or antagonist (propranolol) in male rats. These studies found that propranolol administered 2 h after footshock led to a reduction in some anxiety-like behaviors as compared to controls. Overall, these findings suggest that exposure to a single, intense stress challenge imposed during adolescence may have sex-specific consequences across the lifespan and may implicate the MeA in developmental plasticity.
Collapse
Affiliation(s)
- Dennis F Lovelock
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States.
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
89
|
Towers AE, Oelschlager ML, Lorenz M, Gainey SJ, McCusker RH, Krauklis SA, Freund GG. Handling stress impairs learning through a mechanism involving caspase-1 activation and adenosine signaling. Brain Behav Immun 2019; 80:763-776. [PMID: 31108171 PMCID: PMC6664453 DOI: 10.1016/j.bbi.2019.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/01/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
Acute stressors can induce fear and physiologic responses that prepare the body to protect from danger. A key component of this response is immune system readiness. In particular, inflammasome activation appears critical to linking stress to the immune system. Here, we show that a novel combination of handling procedures used regularly in mouse research impairs novel object recognition (NOR) and activates caspase-1 in the amygdala. In male mice, this handling-stress paradigm combined weighing, scruffing and sham abdominal injection once per hr. While one round of weigh/scruff/needle-stick had no impact on NOR, two rounds compromised NOR without impacting location memory or anxiety-like behaviors. Caspase-1 knockout (KO), IL-1 receptor 1 (IL-1R1) KO and IL-1 receptor antagonist (IL-RA)-administered mice were resistant to handling stress-induced loss of NOR. In addition, examination of the brain showed that handling stress increased caspase-1 activity 85% in the amygdala without impacting hippocampal caspase-1 activity. To delineate danger signals relevant to handling stress, caffeine-administered and adenosine 2A receptor (A2AR) KO mice were tested and found resistant to impaired learning and caspase-1 activation. Finally, mice treated with the β-adrenergic receptor antagonist, propranolol, were resistant to handling stress-induced loss of NOR and caspase-1 activation. Taken together, these results indicate that handling stress-induced impairment of object learning is reliant on a pathway requiring A2AR-dependent activation of caspase-1 in the amygdala that appears contingent on β-adrenergic receptor functionality.
Collapse
Affiliation(s)
- Albert E Towers
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | | | - Madelyn Lorenz
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA
| | - Stephen J Gainey
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Robert H McCusker
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA
| | - Steven A Krauklis
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Gregory G Freund
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA; Department of Animal Sciences, University of Illinois, Urbana, IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
90
|
Gassen J, Hill SE. Why inflammation and the activities of the immune system matter for social and personality psychology (and not only for those who study health). SOCIAL AND PERSONALITY PSYCHOLOGY COMPASS 2019. [DOI: 10.1111/spc3.12471] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
91
|
Düsedau HP, Kleveman J, Figueiredo CA, Biswas A, Steffen J, Kliche S, Haak S, Zagrebelsky M, Korte M, Dunay IR. p75 NTR regulates brain mononuclear cell function and neuronal structure in Toxoplasma infection-induced neuroinflammation. Glia 2019; 67:193-211. [PMID: 30597659 PMCID: PMC6590406 DOI: 10.1002/glia.23553] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022]
Abstract
Neurotrophins mediate neuronal growth, differentiation, and survival via tropomyosin receptor kinase (Trk) or p75 neurotrophin receptor (p75NTR) signaling. The p75NTR is not exclusively expressed by neurons but also by certain immune cells, implying a role for neurotrophin signaling in the immune system. In this study, we investigated the effect of p75NTR on innate immune cell behavior and on neuronal morphology upon chronic Toxoplasma gondii (T. gondii) infection‐induced neuroinflammation. Characterization of the immune cells in the periphery and central nervous system (CNS) revealed that innate immune cell subsets in the brain upregulated p75NTR upon infection in wild‐type mice. Although cell recruitment and phagocytic capacity of p75NTRexonIV knockout (p75−/−) mice were not impaired, the activation status of resident microglia and recruited myeloid cell subsets was altered. Importantly, recruited mononuclear cells in brains of infected p75−/− mice upregulated the production of the cytokines interleukin (IL)‐10, IL‐6 as well as IL‐1α. Protein levels of proBDNF, known to negatively influence neuronal morphology by binding p75NTR, were highly increased upon chronic infection in the brain of wild‐type and p75−/− mice. Moreover, upon infection the activated immune cells contributed to the proBDNF release. Notably, the neuroinflammation‐induced changes in spine density were rescued in the p75−/− mice. In conclusion, these findings indicate that neurotrophin signaling via the p75NTR affects innate immune cell behavior, thus, influencing the structural plasticity of neurons under inflammatory conditions.
Collapse
Affiliation(s)
- Henning Peter Düsedau
- Otto-von-Guericke University Magdeburg, Institute of Inflammation and Neurodegeneration, Medical Faculty, Magdeburg, Germany
| | - Jan Kleveman
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
| | - Caio Andreeta Figueiredo
- Otto-von-Guericke University Magdeburg, Institute of Inflammation and Neurodegeneration, Medical Faculty, Magdeburg, Germany
| | - Aindrila Biswas
- Otto-von-Guericke University Magdeburg, Institute of Inflammation and Neurodegeneration, Medical Faculty, Magdeburg, Germany
| | - Johannes Steffen
- Otto-von-Guericke University Magdeburg, Institute of Inflammation and Neurodegeneration, Medical Faculty, Magdeburg, Germany
| | - Stefanie Kliche
- Otto-von-Guericke University, Institute for Molecular and Clinical Immunology, Medical Faculty, Magdeburg, Germany
| | - Stefan Haak
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
| | - Marta Zagrebelsky
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
| | - Ildiko Rita Dunay
- Otto-von-Guericke University Magdeburg, Institute of Inflammation and Neurodegeneration, Medical Faculty, Magdeburg, Germany
| |
Collapse
|
92
|
Conoscenti MA, Fanselow MS. Dissociation in Effective Treatment and Behavioral Phenotype Between Stress-Enhanced Fear Learning and Learned Helplessness. Front Behav Neurosci 2019; 13:104. [PMID: 31156405 PMCID: PMC6529815 DOI: 10.3389/fnbeh.2019.00104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/29/2019] [Indexed: 01/29/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating disease with relatively high lifetime prevalence. It is marked by a high diversity of symptoms and comorbidity with other psychiatric disease. Furthermore, PTSD has a high level of origin and symptom heterogeneity within the population. These characteristics taken together make it one of the most challenging diseases to effectively model in animals. However, with relatively little headway made in developing effective disease interventions, PTSD remains as a high priority target for animal model study. Learned Helplessness (LH) is a procedure classically used to model depression, but has in recent years transitioned to use as a model of PTSD. Animals in this procedure receive 100 inescapable and unpredictable tailshocks or simple restraint without shock. The following day, the animals are tested in a shuttle box, where inescapably-shocked subjects exhibit exaggerated fear and profound deficit in escape performance. Stress-enhanced fear learning (SEFL) also uses an acute (single session) stressor for modeling PTSD in rodents. The SEFL procedure begins with exposure to 15 footshocks or simple context exposure without shock. Animals that initially received the 15 footshocks exhibit future enhanced fear learning. In this review, we will compare the behavior, physiology, and interventions of these two animal models of PTSD. Despite considerable similarity (a single session containing inescapable and uncontrollable shock) the two procedures produce a very divergent set of behavioral consequences.
Collapse
Affiliation(s)
- Michael A Conoscenti
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael S Fanselow
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,Staglin Center for Brian and Behavioral Health, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
93
|
Locachevic GA, Prado MKB, Zoccal KF, Pereira PAT, Sorgi CA, Bortolanza M, Peti APF, Fogaça MV, Guimarães FS, Del Bel E, Faccioli LH. Paradoxical Effect of LTB 4 on the Regulation of Stress-Induced Corticosterone Production. Front Behav Neurosci 2019; 13:73. [PMID: 31057373 PMCID: PMC6477085 DOI: 10.3389/fnbeh.2019.00073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/26/2019] [Indexed: 01/17/2023] Open
Abstract
Depression is a mental illness with a complex and multifactorial etiology, which has been associated with stress and inflammation. Infections, autoimmune diseases, envenomation, and trauma induce an inflammatory response that is characterized by increasing levels of circulating cytokines (e.g., IL-1β) and lipid mediators [e.g., PGE2 and leukotrienes B4 (LTB4)]. Recently, we showed that LTB4 production by the 5-lipoxygenase (5-LO) pathway regulates IL-1β and PGE2 release, reducing tissue damage in a model of sterile inflammation. Since IL-1β and PGE2 increase in serum of stressed patients and potentially trigger depression, we used an animal model of chronic unpredictable stress (CUS) to investigate the potential impact of LTB4 over depression-like symptoms. At basal conditions, 5-LO deficiency (Alox5−/−) reduces the preference for sucrose, while inducing a higher immobilization time on the tail suspension test when compared 129sv. Moreover, Alox5−/− mice present increased caspase-1 expression and elevated levels of IL-1β, IL-17 and PGE2 in the spleen, with increasing corticosterone levels in the frontal cortex but reducing systemic levels. Compared to 129sv mice, CUS induced higher levels of systemic, frontal cortex and hippocampal corticosterone, and also reduced sucrose preference, increased levels of splenic IL-1β, IL-17 and PGE2 and reduced levels of LTB4. Interestingly, CUS exposure did not alter the reduced sucrose preference shown by Alox5−/− mice but greatly enhanced splenic PGE2 production. Compared to Alox5−/− mice at basal conditions, CUS exposure also increased levels of systemic corticosterone, which remained lower than those of CUS-129sv animals. We also observed that treatment with LTB4 decreased caspase-1 expression and systemic levels of corticosterone in CUS-Alox5−/− mice but there was no significant impact on the reduced sucrose preference. Our results demonstrate that LTB4 controls the hypothalamic-pituitary-adrenal (HPA) axis by regulating levels of systemic corticosterone associated with the repression of caspase-1 expression and production of inflammatory mediators. One limitation of our study is that 129sv and Alox5−/− mice were not littermates, not sharing, therefore, the same intra-uterine and preweaning environment. Even so, taken together our results indicate that 5-LO activity is critical for the regulation of stress-induced symptoms, suggesting that the Alox5−/− mouse could be a natural model of corticosterone-independent reduced reward sensitivity.
Collapse
Affiliation(s)
- Gisele A Locachevic
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Morgana K B Prado
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Karina F Zoccal
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Priscilla A T Pereira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Carlos A Sorgi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Mariza Bortolanza
- Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula F Peti
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Manoela V Fogaça
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Francisco S Guimarães
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Elaine Del Bel
- Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Lúcia H Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
94
|
Wang W, Wang L, Xu H, Cao C, Liu P, Luo S, Duan Q, Ellenbroek B, Zhang X. Characteristics of pro- and anti-inflammatory cytokines alteration in PTSD patients exposed to a deadly earthquake. J Affect Disord 2019; 248:52-58. [PMID: 30711869 DOI: 10.1016/j.jad.2019.01.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/03/2019] [Accepted: 01/19/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Many studies have shown that the disturbance of pro-inflammatory and/or anti-inflammatory cytokines is involved in the modulation of traumatic stress and related psychiatric disorders, typically posttraumatic stress disorder (PTSD). However, the specific immune alterations associated with PTSD symptoms are still unclear. The present study compared levels of pro- and anti-inflammatory cytokines between PTSD and non-PTSD controls, and investigated the relationships of immune changes with PTSD symptomatology. METHODS In this study, 51 earthquake-exposed PTSD patients and 136 earthquake-exposed healthy controls were recruited. We assessed trauma exposure, PTSD and depression severity, and quantified a panel of pro- inflammatory cytokines, including interleukin (IL)-1β, IL-2, IL-6, IL-8, tumor necrosis factor alpha (TNF-α), interferon ϒ (IFNϒ), and anti-inflammatory cytokines, including IL-4, IL-10 and IL-13 with enzyme-linked immunosorbent assays. Additionally, total pro-inflammatory cytokines score and total anti-inflammatory cytokines score were calculated to reflect the status of two balance system. RESULTS Behavioral data showed that the PTSD group had greater severity of depression, as well as total symptoms and every symptom cluster in the seven-factor model of PTSD compared to the non-PTSD control group. Immune data showed that PTSD subjects had higher levels of IL-1β and TNFα, as well as total pro-inflammatory cytokine scores compared to controls, suggesting an increase of inflammatory activity in PTSD. In all subjects, the IL-1β levels were correlated with PCL scores, after controlling for covariates, including age, education, marital status and gender, trauma exposure severity and depression. LIMITATIONS The current study did not include a non-traumatized healthy control group, and PTSD was assessed using a self-reported measure. CONCLUSIONS Thus, by including a control group comprised entirely of earthquake-exposed individuals as means to discriminate specific alterations of cytokine levels in PTSD, these findings suggest that the increased inflammatory cytokines, especially IL-1β, may play a role in the pathophysiology of PTSD.
Collapse
Affiliation(s)
- Weiwen Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hang Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengqi Cao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, 518060, China
| | - Ping Liu
- People's Hospital of Deyang City, Deyang, Sichuan, 618000, China
| | - Shu Luo
- People's Hospital of Deyang City, Deyang, Sichuan, 618000, China
| | - Qing Duan
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Bart Ellenbroek
- School of Psychology, Victoria University of Wellington, Kelburn, Wellington, 6012, New Zealand
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
95
|
Jones JW, Alloush J, Sellamuthu R, Chua HL, MacVittie TJ, Orschell CM, Kane MA. Effect of Sex on Biomarker Response in a Mouse Model of the Hematopoietic Acute Radiation Syndrome. HEALTH PHYSICS 2019; 116:484-502. [PMID: 30681425 PMCID: PMC6384137 DOI: 10.1097/hp.0000000000000961] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sex is an important confounding variable in biomarker development that must be incorporated into biomarker discovery and validation. Additionally, understanding of sex as a biological variable is essential for effective translation of biomarkers in animal models to human populations. Toward these ends, we conducted high-throughput targeted metabolomics using liquid chromatography tandem mass spectrometry and multiplexed immunoassay analyses using a Luminex-based system in both male and female mice in a model of total-body irradiation at a radiation dose consistent with the hematopoietic acute radiation syndrome. Metabolomic and immunoassay analyses identified metabolites and cytokines that were significantly different in plasma from naive and irradiated C57BL/6 mice consisting of equal numbers of female and male mice at 3 d after 8.0 or 8.72 Gy, an approximate LD60-70/30 dose of total-body irradiation. An additional number of metabolites and cytokines had sex-specific responses after radiation. Analyses of sham-irradiated mice illustrate the presence of stress-related changes in several cytokines due simply to undergoing the irradiation procedure, absent actual radiation exposure. Basal differences in metabolite levels between female and male were also identified as well as time-dependent changes in cytokines up to 9 d postexposure. These studies provide data toward defining the influence of sex on plasma-based biomarker candidates in a well-defined mouse model of acute radiation syndrome.
Collapse
Affiliation(s)
- Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jenna Alloush
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | | | - Hui Lin Chua
- Indiana University School of Medicine, Indianapolis, IN
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | | | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| |
Collapse
|
96
|
Nguyen JT, Sahabandu D, Taishi P, Xue M, Jewett K, Dykstra-Aiello C, Roy S, Krueger JM. The neuron-specific interleukin-1 receptor accessory protein alters emergent network state properties in Vitro. Neurobiol Sleep Circadian Rhythms 2019; 6:35-43. [PMID: 31106280 PMCID: PMC6519741 DOI: 10.1016/j.nbscr.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Small in vitro neuronal/glial networks exhibit sleep-like states. Sleep regulatory substance interleukin-1β (IL1) signals via its type I receptor and a receptor accessory protein (AcP). AcP has a neuron-specific isoform called AcPb. After sleep deprivation, AcPb, but not AcP, upregulates in brain, and mice lacking AcPb lack sleep rebound. Herein we used action potentials (APs), AP burstiness, synchronization of electrical activity (SYN), and delta wave (0.5–3.75 Hz) power to characterize cortical culture network state. Homologous parameters are used in vivo to characterize sleep. Cortical cells from 1–2-day-old pups from AcP knockout (KO, lacking both AcP and AcPb), AcPb KO (lacking only AcPb), and wild type (WT) mice were cultured separately on multi-electrode arrays. Recordings of spontaneous activity were taken each day during days 4–14 in vitro. In addition, cultures were treated with IL1, or in separate experiments, stimulated electrically to determine evoked response potentials (ERPs). In AcP KO cells, the maturation of network properties accelerated compared to those from cells lacking only AcPb. In contrast, the lack of AcPb delayed spontaneous network emergence of sleep-linked properties. The addition of IL1 enhanced delta wave power in WT cells but not in AcP KO or AcPb KO cells. The ontology of electrically-induced ERPs was delayed in AcP KO cells. We conclude IL1 signaling has a critical role in the emergence of sleep-linked network behavior with AcP playing a dominant role in the slowing of development while AcPb enhances development rates of sleep-linked emergent network properties. Interleukin-1 receptor accessory protein (AcP) is required for normal development of neuronal/glial network emergent electrophysiological properties. The neuron-specific isoform of AcP, AcPb, is required for enhancement of delta wave power by interleukin-1. Results provide further support for a) interleukin-1’s involvement in sleep regulation b) that it enhances sleep via AcPb and c) that sleep is a property of mature neuronal/glial networks whether in vitro or in vivo.
Collapse
Affiliation(s)
- Joseph T. Nguyen
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University Spokane, WA, USA
| | - Dinuka Sahabandu
- Department of Electrical Engineering, Washington State University, Pullman, WA, USA
| | - Ping Taishi
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University Spokane, WA, USA
| | - Mengran Xue
- Department of Electrical Engineering, Washington State University, Pullman, WA, USA
| | - Kathryn Jewett
- Department of Genome Sciences, University of Washington. Seattle, WA, USA
| | - Cheryl Dykstra-Aiello
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University Spokane, WA, USA
| | - Sandip Roy
- Department of Electrical Engineering, Washington State University, Pullman, WA, USA
| | - James M. Krueger
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University Spokane, WA, USA
- Correspondence to: P.O. Box 1495 Spokane, WA 99210-1495, USA.
| |
Collapse
|
97
|
Wu H, Lv W, Pan Q, Kalavagunta PK, Liu Q, Qin G, Cai M, Zhou L, Wang T, Xia Z, Shang J. Simvastatin therapy in adolescent mice attenuates HFD-induced depression-like behavior by reducing hippocampal neuroinflammation. J Affect Disord 2019; 243:83-95. [PMID: 30236762 DOI: 10.1016/j.jad.2018.09.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 08/06/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND A high-fat diet (HFD)-induced obesity/hyperlipidemia is accompanied by hormonal and neurochemical changes that can be associated with depression. Emerging studies indicate that simvastatin (SMV, decreasing cholesterol levels) has therapeutic effects on neurological and neuropsychiatric diseases through hippocampal-dependent function. However, the studies on the HFD exposure in adolescent animals, which investigate the neuroprotective effects of SMV on the hippocampal morphology, serotonin (5-HT) system and inflammation, are limited. Hence, the aim of this study was to determine whether SMV attenuates HFD-induced major depressive disorders in adolescent animals and, more specifically, acts as an anti-neuroinflammatory response. METHODS Twenty-four male C57BL/6 mice were fed a control (n = 8), HFD (n = 8) and HFD + SMV (n = 8) for 14 weeks. In HFD + SMV group, SMV (10 mg/kg) was administrated from the 10th week of HFD feeding. The open field test (OFT) and the tail suspension test (TST) were used to examine the effect of SMV on behavioral performance. HE and Nissl staining were conducted to detect hippocampal morphology and neural survival. Expression of the inflammatory cytokine genes was assayed by quantitative polymerase chain reaction (Q-PCR). RESULTS Firstly, alterations in lipid parameters were minimized after SMV treatment. HFD-induced depression-like behavior, which was evidenced by an increase in immobility time in TST along with considerable decrease in locomotion activity, was significantly attenuated by SMV therapy for 4 weeks. Additionally, SMV could reduce HFD-induced structural abnormality, neuronal injury, serotonergic system disturbance and pro-inflammatory cytokine over-expression in the hippocampus. Neuroimmunological changes in central hippocampus displayed a similar characteristic (only IL-1β, IL-6, TNF-α) with that in periphery spleen, whereas they appeared in an entirely opposite trend with that in cerebral cortex. CONCLUSION Our results suggest that SMV may be a promising treatment for HFD-induced depression-like behavior during adolescent period through brain region-specific neuroninflammatory mechanisms.
Collapse
Affiliation(s)
- Huali Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenting Lv
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qi Pan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Praveen Kumar Kalavagunta
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qiongzhen Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guohong Qin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Minxuan Cai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Liangliang Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenjiang Xia
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai Province, China; Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai Province, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Shang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai Province, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
98
|
Frank MG, Fonken LK, Watkins LR, Maier SF. Microglia: Neuroimmune-sensors of stress. Semin Cell Dev Biol 2019; 94:176-185. [PMID: 30638704 DOI: 10.1016/j.semcdb.2019.01.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Exposure to stressors disrupts homeostasis and results in the release of stress hormones including glucocorticoids, epinepherine and norepinepherine. Interestingly, stress also has profound affects on microglia, which are tissue-resident macrophages in the brain parenchyma. Microglia express a diverse array of receptors, which also allows them to respond to stress hormones derived from peripheral as well as central sources. Here, we review studies of how exposure to acute and chronic stressors alters the immunophenotype and function of microglia. Further, we examine a causal for stress hormones in these effects of stress on microglia. We propose that microglia serve as immunosensors of the stress response, which puts them in the unique position to sense and respond rapidly to alterations in homeostasis and integrate the neural response to threats.
Collapse
Affiliation(s)
- Matthew G Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
99
|
Zheng X, Wang X, Wang T, Zhang H, Wu H, Zhang C, Yu L, Guan Y. Gestational Exposure to Particulate Matter 2.5 (PM 2.5) Leads to Spatial Memory Dysfunction and Neurodevelopmental Impairment in Hippocampus of Mice Offspring. Front Neurosci 2019; 12:1000. [PMID: 30666183 PMCID: PMC6330280 DOI: 10.3389/fnins.2018.01000] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Prenatal exposure to air pollutants has long-term impact on growth retardation of nervous system development and is related to central nervous system diseases in children. However, it is not well-characterized whether gestational exposure to air pollutants affects the development of nervous system in offspring. Here, we investigated the effects of gestational exposure to particulate matter 2.5 (PM2.5) on hippocampus development in mice offspring, through neurobehavioral, ultrastructural, biochemical and molecular investigations. We found that spatial memory in mice offspring from PM2.5 high-dosage group was impaired. Next, hippocampal ultrastructure of the mice offspring in puberty exhibited mitochondrial damage related to PM2.5 exposure. Interestingly, EdU-positive cells in the subgranular zone (SGZ) of offspring from PM2.5 high-dosage group decreased, with NeuN+/EdU+cells reduced significantly. Furthermore, the numbers of NeuN+/TUNEL+, GFAP+/TUNEL+, and Iba1+/TUNEL+ double-labeled cells increased with PM2.5 exposure in a dosage-dependent manner. In addition, gestational exposure to PM2.5 resulted in increased levels of both mRNAs and proteins involved in apoptosis, including caspase-3, -8, -9, p53, and c-Fos, and decreased Bcl-2/Bax ratios in the hippocampus of mice offspring. Moreover, gestational exposure to PM2.5 was dosage-dependently associated with the increased secretions of inflammatory proteins, including NF-κB, TNF-α, and IL-1β. Collectively, our results suggest that gestational exposure to PM2.5 leads to spatial memory dysfunction and neurodevelopmental impairment by exerting effects on apoptotic and neuroinflammatory events, as well as the neurogenesis in hippocampus of mice offspring.
Collapse
Affiliation(s)
- Xinrui Zheng
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Xia Wang
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Tingting Wang
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Hongxia Zhang
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Hongjuan Wu
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Can Zhang
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Li Yu
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Yingjun Guan
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| |
Collapse
|
100
|
Westfall S, Iqbal U, Sebastian M, Pasinetti GM. Gut microbiota mediated allostasis prevents stress-induced neuroinflammatory risk factors of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:147-181. [DOI: 10.1016/bs.pmbts.2019.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|