51
|
Abstract
Alcohol dependence is a chronically relapsing disorder characterized by compulsive drug-seeking and drug-taking, loss of control in limiting intake, and the emergence of a withdrawal syndrome in the absence of the drug. Accumulating evidence suggests an important role for synaptic transmission in the central nucleus of the amygdala (CeA) in mediating alcohol-related behaviors and neuroadaptive mechanisms associated with alcohol dependence. Acute alcohol facilitates γ-aminobutyric acid (GABA)ergic transmission in the CeA via both pre- and postsynaptic mechanisms, and chronic alcohol increases baseline GABAergic transmission. Acute alcohol inhibits glutamatergic transmission via effects at N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the CeA, whereas chronic alcohol up-regulates NMDA receptor (NMDAR)-mediated transmission. Pro- (e.g., corticotropin-releasing factor [CRF]) and antistress (e.g., nociceptin/orphanin FQ, oxytocin) neuropeptides affect alcohol- and anxiety-related behaviors, and also alter the alcohol-induced effects on CeA neurotransmission. Alcohol dependence produces plasticity in these neuropeptide systems, reflecting a recruitment of those systems during the transition to alcohol dependence.
Collapse
Affiliation(s)
- Marisa Roberto
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Dean Kirson
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sophia Khom
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
52
|
Boero G, Tyler RE, Todd CA, O'Buckley TK, Balan I, Besheer J, Morrow AL. (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP) regulation of hypothalamic and extrahypothalamic corticotropin releasing factor (CRF): Sexual dimorphism and brain region specificity in Sprague Dawley rats. Neuropharmacology 2021; 186:108463. [PMID: 33460689 DOI: 10.1016/j.neuropharm.2021.108463] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 11/25/2022]
Abstract
CRF is the main activator of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress. CRF neurons are found mainly in the hypothalamus, but CRF positive cells and CRF1 receptors are also found in extrahypothalamic structures, including amygdala (CeA), hippocampus, NAc and VTA. CRF release in the hypothalamus is regulated by inhibitory GABAergic interneurons and extrahypothalamic glutamatergic inputs, and disruption of this balance is found in stress-related disorders and addiction. (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP), the most potent positive modulator of GABAA receptors, attenuates the stress response reducing hypothalamic CRF mRNA expression and ACTH and corticosterone serum levels. In this study, we explored 3α,5α-THP regulation of hypothalamic and extrahypothalamic CRF mRNA and peptide expression, in male and female Sprague Dawley rats, following vehicle or 3α,5α-THP administration (15 mg/kg). In the hypothalamus, we found sex differences in CRF mRNA expression (females +74%, p < 0.01) and CRF peptide levels (females -71%, p < 0.001). 3α,5α-THP administration reduced hypothalamic CRF mRNA expression only in males (-50%, p < 0.05) and did not alter CRF peptide expression in either sex. In hippocampus and CeA, 3α,5α-THP administration reduced CRF peptide concentrations only in the male (hippocampus -29%, p < 0.05; CeA -62%, p < 0.01). In contrast, 3α,5α-THP injection increased CRF peptide concentration in the VTA of both males (+32%, p < 0.01) and females (+26%, p < 0.01). The results show sex and region-specific regulation of CRF signals and the response to 3α,5α-THP administration. This data may be key to successful development of therapeutic approaches for stress-related disorders and addiction.
Collapse
Affiliation(s)
- Giorgia Boero
- Department of Psychiatry, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ryan E Tyler
- Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Caroline A Todd
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Irina Balan
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Joyce Besheer
- Department of Psychiatry, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - A Leslie Morrow
- Department of Psychiatry, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
53
|
Silberstein S, Liberman AC, Dos Santos Claro PA, Ugo MB, Deussing JM, Arzt E. Stress-Related Brain Neuroinflammation Impact in Depression: Role of the Corticotropin-Releasing Hormone System and P2X7 Receptor. Neuroimmunomodulation 2021; 28:52-60. [PMID: 33845478 DOI: 10.1159/000515130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/07/2021] [Indexed: 11/19/2022] Open
Abstract
Depression and other psychiatric stress-related disorders are leading causes of disability worldwide. Up to date, treatments of mood disorders have limited success, most likely due to the multifactorial etiology of these conditions. Alterations in inflammatory processes have been identified as possible pathophysiological mechanisms in psychiatric conditions. Here, we review the main features of 2 systems involved in the control of these inflammatory pathways: the CRH system as a key regulator of the stress response and the ATP-gated ion-channel P2X7 receptor (P2X7R) involved in the control of immune functions. The pathophysiology of depression as a stress-related psychiatric disorder is depicted in terms of the impact of CRH and P2X7R function on inflammatory pathways in the brain. Understanding pathogenesis of affective disorders will lead to the development of therapies for treatment of depression and other stress-related diseases.
Collapse
Affiliation(s)
- Susana Silberstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Ana Clara Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Paula Ayelén Dos Santos Claro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Maria Belén Ugo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | | | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- DFBMC, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
54
|
CRH CeA→VTA inputs inhibit the positive ensembles to induce negative effect of opiate withdrawal. Mol Psychiatry 2021; 26:6170-6186. [PMID: 34642456 PMCID: PMC8760059 DOI: 10.1038/s41380-021-01321-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 01/23/2023]
Abstract
Plasticity of neurons in the ventral tegmental area (VTA) is critical for establishment of drug dependence. However, the remodeling of the circuits mediating the transition between positive and negative effect remains unclear. Here, we used neuronal activity-dependent labeling technique to characterize and temporarily control the VTA neuronal ensembles recruited by the initial morphine exposure (morphine-positive ensembles, Mor-Ens). Mor-Ens preferentially projected to NAc, and induced dopamine-dependent positive reinforcement. Electrophysiology and rabies viral tracing revealed the preferential connections between the VTA-projective corticotrophin-releasing hormone (CRH) neurons of central amygdala (CRHCeA→VTA) and Mor-Ens, which was enhanced after escalating morphine exposure and mediated the negative effect during opiate withdrawal. Pharmacologic intervention or CRISPR-mediated repression of CRHR1 in Mor-Ens weakened the inhibitory CRHCeA→VTA inputs, and alleviated the negative effect during opiate withdrawal. These data suggest that neurons encoding opioid reward experience are inhibited by enhanced CRHCeA→VTA inputs induced by chronic morphine exposure, leading to negative effect during opiate withdrawal, and provide new insight into the pathological changes in VTA plasticity after drug abuse and mechanism of opiate dependence.
Collapse
|
55
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
56
|
Diz-Chaves Y, Herrera-Pérez S, González-Matías LC, Lamas JA, Mallo F. Glucagon-Like Peptide-1 (GLP-1) in the Integration of Neural and Endocrine Responses to Stress. Nutrients 2020; 12:nu12113304. [PMID: 33126672 PMCID: PMC7692797 DOI: 10.3390/nu12113304] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Glucagon like-peptide 1 (GLP-1) within the brain is produced by a population of preproglucagon neurons located in the caudal nucleus of the solitary tract. These neurons project to the hypothalamus and another forebrain, hindbrain, and mesolimbic brain areas control the autonomic function, feeding, and the motivation to feed or regulate the stress response and the hypothalamic-pituitary-adrenal axis. GLP-1 receptor (GLP-1R) controls both food intake and feeding behavior (hunger-driven feeding, the hedonic value of food, and food motivation). The activation of GLP-1 receptors involves second messenger pathways and ionic events in the autonomic nervous system, which are very relevant to explain the essential central actions of GLP-1 as neuromodulator coordinating food intake in response to a physiological and stress-related stimulus to maintain homeostasis. Alterations in GLP-1 signaling associated with obesity or chronic stress induce the dysregulation of eating behavior. This review summarized the experimental shreds of evidence from studies using GLP-1R agonists to describe the neural and endocrine integration of stress responses and feeding behavior.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- CINBIO, Universidade de Vigo, Grupo FB3A, Laboratorio de Endocrinología, 36310 Vigo, Spain;
- Correspondence: (Y.D.-C.); (F.M.); Tel.: +34-(986)-130226 (Y.D.-C.); +34-(986)-812393 (F.M.)
| | - Salvador Herrera-Pérez
- CINBIO, Universidade de Vigo, Grupo FB3B, Laboratorio de Neurociencia, 36310 Vigo, Spain; (S.H.-P.); (J.A.L.)
| | | | - José Antonio Lamas
- CINBIO, Universidade de Vigo, Grupo FB3B, Laboratorio de Neurociencia, 36310 Vigo, Spain; (S.H.-P.); (J.A.L.)
| | - Federico Mallo
- CINBIO, Universidade de Vigo, Grupo FB3A, Laboratorio de Endocrinología, 36310 Vigo, Spain;
- Correspondence: (Y.D.-C.); (F.M.); Tel.: +34-(986)-130226 (Y.D.-C.); +34-(986)-812393 (F.M.)
| |
Collapse
|
57
|
Brockway DF, Crowley NA. Turning the 'Tides on Neuropsychiatric Diseases: The Role of Peptides in the Prefrontal Cortex. Front Behav Neurosci 2020; 14:588400. [PMID: 33192369 PMCID: PMC7606924 DOI: 10.3389/fnbeh.2020.588400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Recent advancements in technology have enabled researchers to probe the brain with the greater region, cell, and receptor specificity. These developments have allowed for a more thorough understanding of how regulation of the neurophysiology within a region is essential for maintaining healthy brain function. Stress has been shown to alter the prefrontal cortex (PFC) functioning, and evidence links functional impairments in PFC brain activity with neuropsychiatric disorders. Moreover, a growing body of literature highlights the importance of neuropeptides in the PFC to modulate neural signaling and to influence behavior. The converging evidence outlined in this review indicates that neuropeptides in the PFC are specifically impacted by stress, and are found to be dysregulated in numerous stress-related neuropsychiatric disorders including substance use disorder, major depressive disorder (MDD), posttraumatic stress disorder, and schizophrenia. This review explores how neuropeptides in the PFC function to regulate the neural activity, and how genetic and environmental factors, such as stress, lead to dysregulation in neuropeptide systems, which may ultimately contribute to the pathology of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Dakota F Brockway
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, United States
| | - Nicole A Crowley
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, United States.,The Department of Biology, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
58
|
Abstract
Addiction is commonly identified with habitual nonmedical self-administration of drugs. It is usually defined by characteristics of intoxication or by characteristics of withdrawal symptoms. Such addictions can also be defined in terms of the brain mechanisms they activate; most addictive drugs cause elevations in extracellular levels of the neurotransmitter dopamine. Animals unable to synthesize or use dopamine lack the conditioned reflexes discussed by Pavlov or the appetitive behavior discussed by Craig; they have only unconditioned consummatory reflexes. Burst discharges (phasic firing) of dopamine-containing neurons are necessary to establish long-term memories associating predictive stimuli with rewards and punishers. Independent discharges of dopamine neurons (tonic or pacemaker firing) determine the motivation to respond to such cues. As a result of habitual intake of addictive drugs, dopamine receptors expressed in the brain are decreased, thereby reducing interest in activities not already stamped in by habitual rewards.
Collapse
Affiliation(s)
- Roy A Wise
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA; .,Behavioral Genetics Laboratory, McLean Hospital, Belmont, Massachusetts 02478, USA;
| | - Mykel A Robble
- Behavioral Genetics Laboratory, McLean Hospital, Belmont, Massachusetts 02478, USA;
| |
Collapse
|
59
|
Gatta E, Saudagar V, Auta J, Grayson DR, Guidotti A. Epigenetic landscape of stress surfeit disorders: Key role for DNA methylation dynamics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:127-183. [PMID: 33461662 PMCID: PMC7942223 DOI: 10.1016/bs.irn.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic exposure to stress throughout lifespan alters brain structure and function, inducing a maladaptive response to environmental stimuli, that can contribute to the development of a pathological phenotype. Studies have shown that hypothalamic-pituitary-adrenal (HPA) axis dysfunction is associated with various neuropsychiatric disorders, including major depressive, alcohol use and post-traumatic stress disorders. Downstream actors of the HPA axis, glucocorticoids are critical mediators of the stress response and exert their function through specific receptors, i.e., the glucocorticoid receptor (GR), highly expressed in stress/reward-integrative pathways. GRs are ligand-activated transcription factors that recruit epigenetic actors to regulate gene expression via DNA methylation, altering chromatin structure and thus shaping the response to stress. The dynamic interplay between stress response and epigenetic modifiers suggest DNA methylation plays a key role in the development of stress surfeit disorders.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Vikram Saudagar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - James Auta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
60
|
Lovejoy DA, Hogg DW. Information Processing in Affective Disorders: Did an Ancient Peptide Regulating Intercellular Metabolism Become Co‐Opted for Noxious Stress Sensing? Bioessays 2020; 42:e2000039. [DOI: 10.1002/bies.202000039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2020] [Indexed: 12/28/2022]
Affiliation(s)
- David A. Lovejoy
- Department of Cell and Systems Biology University of Toronto Toronto Ontario M5S 3H4 Canada
| | - David W. Hogg
- Department of Cell and Systems Biology University of Toronto Toronto Ontario M5S 3H4 Canada
| |
Collapse
|
61
|
Vena AA, Zandy SL, Cofresí RU, Gonzales RA. Behavioral, neurobiological, and neurochemical mechanisms of ethanol self-administration: A translational review. Pharmacol Ther 2020; 212:107573. [PMID: 32437827 PMCID: PMC7580704 DOI: 10.1016/j.pharmthera.2020.107573] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder has multiple characteristics including excessive ethanol consumption, impaired control over drinking behaviors, craving and withdrawal symptoms, compulsive seeking behaviors, and is considered a chronic condition. Relapse is common. Determining the neurobiological targets of ethanol and the adaptations induced by chronic ethanol exposure is critical to understanding the clinical manifestation of alcohol use disorders, the mechanisms underlying the various features of the disorder, and for informing medication development. In the present review, we discuss ethanol's interactions with a variety of neurotransmitter systems, summarizing findings from preclinical and translational studies to highlight recent progress in the field. We then describe animal models of ethanol self-administration, emphasizing the value, limitations, and validity of commonly used models. Lastly, we summarize the behavioral changes induced by chronic ethanol self-administration, with an emphasis on cue-elicited behavior, the role of ethanol-related memories, and the emergence of habitual ethanol seeking behavior.
Collapse
Affiliation(s)
- Ashley A Vena
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, United States of America
| | | | - Roberto U Cofresí
- Psychological Sciences, University of Missouri, United States of America
| | - Rueben A Gonzales
- Division of Pharmacology and Toxicology, College of Pharmacy and Institute for Neuroscience, The University of Texas at Austin, United States of America.
| |
Collapse
|
62
|
Simpson S, Shankar K, Kimbrough A, George O. Role of corticotropin-releasing factor in alcohol and nicotine addiction. Brain Res 2020; 1740:146850. [PMID: 32330519 DOI: 10.1016/j.brainres.2020.146850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/31/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
The two most prevalent substance use disorders involve alcohol and nicotine, which are often co-abused. Robust preclinical and translational evidence indicates that individuals initiate drug use for the acute rewarding effects of the substance. The development of negative emotional states is key for the transition from recreational use to substance use disorders as subjects seek the substance to obtain relief from the negative emotional states of acute withdrawal and protracted abstinence. The neuropeptide corticotropin-releasing factor (CRF) is a major regulator of the brain stress system and key in the development of negative affective states. The present review examines the role of CRF in preclinical models of alcohol and nicotine abuse and explores links between CRF and anxiety-like, dysphoria-like, and other negative affective states. Finally, the present review discusses preclinical models of nicotine and alcohol use with regard to the CRF system, advances in molecular and genetic manipulations of CRF, and the importance of examining both males and females in this field of research.
Collapse
Affiliation(s)
- Sierra Simpson
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States; Department of Neuroscience, Scripps Research, La Jolla, CA 92037, United States
| | - Kokila Shankar
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States; Department of Neuroscience, Scripps Research, La Jolla, CA 92037, United States
| | - Adam Kimbrough
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States
| | - Olivier George
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States.
| |
Collapse
|
63
|
Yarur HE, González MP, Verbel‐Vergara D, Andrés ME, Gysling K. Cross‐talk between dopamine D1 and corticotropin releasing factor type 2 receptors leads to occlusion of their ERK1/2 signaling. J Neurochem 2020; 155:264-273. [DOI: 10.1111/jnc.15016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/04/2020] [Accepted: 03/12/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Hector E. Yarur
- Department of Cellular and Molecular Biology Faculty of Biological Sciences Pontificia Universidad Católica de Chile Santiago Chile
| | - Marcela P. González
- Department of Cellular and Molecular Biology Faculty of Biological Sciences Pontificia Universidad Católica de Chile Santiago Chile
| | - Daniel Verbel‐Vergara
- Department of Cellular and Molecular Biology Faculty of Biological Sciences Pontificia Universidad Católica de Chile Santiago Chile
| | - María E. Andrés
- Department of Cellular and Molecular Biology Faculty of Biological Sciences Pontificia Universidad Católica de Chile Santiago Chile
| | - Katia Gysling
- Department of Cellular and Molecular Biology Faculty of Biological Sciences Pontificia Universidad Católica de Chile Santiago Chile
| |
Collapse
|
64
|
Bray B, Clement KA, Bachmeier D, Weber MA, Forster GL. Corticosterone in the ventral hippocampus differentially alters accumbal dopamine output in drug-naïve and amphetamine-withdrawn rats. Neuropharmacology 2020; 165:107924. [PMID: 31881169 DOI: 10.1016/j.neuropharm.2019.107924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022]
Abstract
Dysregulation in glucocorticoid stress and accumbal dopamine reward systems can alter reward salience to increase motivational drive in control conditions while contributing to relapse during drug withdrawal. Amphetamine withdrawal is associated with dysphoria and stress hypersensitivity that may be mediated, in part, by enhanced stress-induced corticosterone observed in the ventral hippocampus. Electrical stimulation of the ventral hippocampus enhances accumbal shell dopamine release, establishing a functional connection between these two regions. However, the effects of ventral hippocampal corticosterone on this system are unknown. To address this, a stress-relevant concentration of corticosterone (0.24ng/0.5 μL) or vehicle were infused into the ventral hippocampus of urethane-anesthetized adult male rats in control and amphetamine withdrawn conditions. Accumbal dopamine output was assessed with in vivo chronoamperometry. Corticosterone infused into the ventral hippocampus rapidly enhanced accumbal dopamine output in control conditions, but produced a biphasic reduction of accumbal dopamine output in amphetamine withdrawal. Selectively blocking glucocorticoid-, mineralocorticoid-, or cytosolic receptors prevented the effects of corticosterone. Overall, these results suggest that the ability of corticosterone to alter accumbal dopamine output requires cooperative activation of mineralocorticoid and glucocorticoid receptors in the cytosol, which is dysregulated during amphetamine withdrawal. These findings implicate ventral hippocampal corticosterone in playing an important role in driving neural systems involved in positive stress coping mechanisms in healthy conditions, whereas dysregulation of this system may contribute to relapse during withdrawal.
Collapse
Affiliation(s)
- Brenna Bray
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA.
| | - Kaci A Clement
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA.
| | - Dana Bachmeier
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA.
| | - Matthew A Weber
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA; Department of Neurology, Iowa Neuroscience Institute, Pappajohn Biomedical Discovery Building, 169 Newton Road, Iowa City, IA, 52242, USA.
| | - Gina L Forster
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA; Department of Anatomy and Brain Health Research Centre, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
65
|
Biological intersection of sex, age, and environment in the corticotropin releasing factor (CRF) system and alcohol. Neuropharmacology 2020; 170:108045. [PMID: 32217364 DOI: 10.1016/j.neuropharm.2020.108045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/13/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023]
Abstract
The neuropeptide corticotropin-releasing factor (CRF) is critical in neural circuit function and behavior, particularly in the context of stress, anxiety, and addiction. Despite a wealth of preclinical evidence for the efficacy of CRF receptor 1 antagonists in reducing behavioral pathology associated with alcohol exposure, several clinical trials have had disappointing outcomes, possibly due to an underappreciation of the role of biological variables. Although he National Institutes of Health (NIH) now mandate the inclusion of sex as a biological variable in all clinical and preclinical research, the current state of knowledge in this area is based almost entirely on evidence from male subjects. Additionally, the influence of biological variables other than sex has received even less attention in the context of neuropeptide signaling. Age (particularly adolescent development) and housing conditions have been shown to affect CRF signaling and voluntary alcohol intake, and the interaction between these biological variables is particularly relevant to the role of the CRF system in the vulnerability or resilience to the development of alcohol use disorder (AUD). Going forward, it will be important to include careful consideration of biological variables in experimental design, reporting, and interpretation. As new research uncovers conditions in which sex, age, and environment play major roles in physiological and/or pathological processes, our understanding of the complex interaction between relevant biological variables and critical signaling pathways like the CRF system in the cellular and behavioral consequences of alcohol exposure will continue to expand ultimately improving the ability of preclinical research to translate to the clinic. This article is part of the special issue on Neuropeptides.
Collapse
|
66
|
Ahmed SH, Badiani A, Miczek KA, Müller CP. Non-pharmacological factors that determine drug use and addiction. Neurosci Biobehav Rev 2020; 110:3-27. [PMID: 30179633 PMCID: PMC6395570 DOI: 10.1016/j.neubiorev.2018.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/26/2018] [Accepted: 08/28/2018] [Indexed: 12/26/2022]
Abstract
Based on their pharmacological properties, psychoactive drugs are supposed to take control of the natural reward system to finally drive compulsory drug seeking and consumption. However, psychoactive drugs are not used in an arbitrary way as pure pharmacological reinforcement would suggest, but rather in a highly specific manner depending on non-pharmacological factors. While pharmacological effects of psychoactive drugs are well studied, neurobiological mechanisms of non-pharmacological factors are less well understood. Here we review the emerging neurobiological mechanisms beyond pharmacological reinforcement which determine drug effects and use frequency. Important progress was made on the understanding of how the character of an environment and social stress determine drug self-administration. This is expanded by new evidence on how behavioral alternatives and opportunities for drug instrumentalization generate different patterns of drug choice. Emerging evidence suggests that the neurobiology of non-pharmacological factors strongly determines pharmacological and behavioral drug action and may, thus, give rise for an expanded system's approach of psychoactive drug use and addiction.
Collapse
Affiliation(s)
- Serge H Ahmed
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France
| | - Aldo Badiani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology, University of Sussex, BN1 9RH Brighton, UK
| | - Klaus A Miczek
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA 02155, USA; Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|
67
|
Morrow AL, Boero G, Porcu P. A Rationale for Allopregnanolone Treatment of Alcohol Use Disorders: Basic and Clinical Studies. Alcohol Clin Exp Res 2020; 44:320-339. [PMID: 31782169 PMCID: PMC7018555 DOI: 10.1111/acer.14253] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
For many years, research from around the world has suggested that the neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone or 3α,5α-THP) may have therapeutic potential for treatment of various symptoms of alcohol use disorders (AUDs). In this critical review, we systematically address all the evidence that supports such a suggestion, delineate the etiologies of AUDs that are addressed by treatment with allopregnanolone or its precursor pregnenolone, and the rationale for treatment of various components of the disease based on basic science and clinical evidence. This review presents a theoretical framework for understanding how endogenous steroids that regulate the effects of stress, alcohol, and the innate immune system could play a key role in both the prevention and the treatment of AUDs. We further discuss cautions and limitations of allopregnanolone or pregnenolone therapy with suggestions regarding the management of risk and the potential for helping millions who suffer from AUDs.
Collapse
Affiliation(s)
- A. Leslie Morrow
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Giorgia Boero
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
68
|
Jo YS, Namboodiri VMK, Stuber GD, Zweifel LS. Persistent activation of central amygdala CRF neurons helps drive the immediate fear extinction deficit. Nat Commun 2020; 11:422. [PMID: 31969571 PMCID: PMC6976644 DOI: 10.1038/s41467-020-14393-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Fear extinction is an active learning process whereby previously established conditioned responses to a conditioned stimulus are suppressed. Paradoxically, when extinction training is performed immediately following fear acquisition, the extinction memory is weakened. Here, we demonstrate that corticotrophin-releasing factor (CRF)-expressing neurons in the central amygdala (CeA) antagonize the extinction memory following immediate extinction training. CeA-CRF neurons transition from responding to the unconditioned stimulus to the conditioned stimulus during the acquisition of a fear memory that persists during immediate extinction training, but diminishes during delayed extinction training. Inhibition of CeA-CRF neurons during immediate extinction training is sufficient to promote enhanced extinction memories, and activation of these neurons following delay extinction training is sufficient to reinstate a previously extinguished fear memory. These results demonstrate CeA-CRF neurons are an important substrate for the persistence of fear and have broad implications for the neural basis of persistent negative affective behavioral states.
Collapse
Affiliation(s)
- Yong S. Jo
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195 USA ,0000 0001 0840 2678grid.222754.4Department of Psychology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Vijay Mohan K. Namboodiri
- 0000000122986657grid.34477.33Department of Anesthesiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195 USA
| | - Garret D. Stuber
- 0000000122986657grid.34477.33Department of Anesthesiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195 USA ,0000000122986657grid.34477.33Department of Pharmacology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195 USA
| | - Larry S. Zweifel
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195 USA ,0000000122986657grid.34477.33Department of Pharmacology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195 USA
| |
Collapse
|
69
|
al'Absi M. The influence of stress and early life adversity on addiction: Psychobiological mechanisms of risk and resilience. STRESS AND BRAIN HEALTH: IN CLINICAL CONDITIONS 2020; 152:71-100. [DOI: 10.1016/bs.irn.2020.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
70
|
Abstract
BACKGROUND Stimulant drugs are second only to cannabis as the most widely used class of illicit drug globally, accounting for 68 million past-year consumers. Dependence on amphetamines (AMPH) or methamphetamine (MA) is a growing global concern. Yet, there is no established pharmacotherapy for AMPH/MA dependence. A comprehensive assessment of the research literature on pharmacotherapy for AMPH/MA dependence may inform treatment guidelines and future research directions. METHODS We systematically reviewed the peer-reviewed literature via the electronic databases PubMed, EMBASE, CINAHL and SCOPUS for randomised controlled trials reported in the English language examining a pharmacological treatment for AMPH/MA dependence or use disorder. We included all studies published to 19 June 2019. The selected studies were evaluated for design; methodology; inclusion and exclusion criteria; sample size; pharmacological and (if included) psychosocial interventions; length of follow-up and follow-up schedules; outcome variables and measures; results; overall conclusions and risk of bias. Outcome measures were any reported impact of treatment related to AMPH/MA use. RESULTS Our search returned 43 studies that met our criteria, collectively enrolling 4065 participants and reporting on 23 individual pharmacotherapies, alone or in combination. Disparate outcomes and measures (n = 55 for the primary outcomes) across studies did not allow for meta-analyses. Some studies demonstrated mixed or weak positive signals (often in defined populations, e.g. men who have sex with men), with some variation in efficacy signals dependent on baseline frequency of AMPH/MA use. The most consistent positive findings have been demonstrated with stimulant agonist treatment (dexamphetamine and methylphenidate), naltrexone and topiramate. Less consistent benefits have been shown with the antidepressants bupropion and mirtazapine, the glutamatergic agent riluzole and the corticotropin releasing factor (CRF-1) antagonist pexacerfont; whilst in general, antidepressant medications (e.g. selective serotonin reuptake inhibitors [SSRIs], tricyclic antidepressants [TCAs]) have not been effective in reducing AMPH/MA use. CONCLUSIONS No pharmacotherapy yielded convincing results for the treatment of AMPH/MA dependence; mostly studies were underpowered and had low treatment completion rates. However, there were positive signals from several agents that warrant further investigation in larger scale studies; agonist therapies show promise. Common outcome measures should include change in use days. Future research must address the heterogeneity of AMPH/MA dependence (e.g. coexisting conditions, severity of disorder, differences between MA and AMPH dependence) and the role of psychosocial intervention.
Collapse
Affiliation(s)
- Krista J Siefried
- The National Centre for Clinical Research on Emerging Drugs (NCCRED), Sydney, NSW, Australia.
- St Vincent's Hospital Alcohol and Drug Service, Darlinghurst, 390 Victoria St, 2010, Sydney, NSW, Australia.
- The University of New South Wales, National Drug and Alcohol Research Centre (NDARC), Sydney, NSW, Australia.
| | - Liam S Acheson
- St Vincent's Hospital Alcohol and Drug Service, Darlinghurst, 390 Victoria St, 2010, Sydney, NSW, Australia
| | - Nicholas Lintzeris
- Division of Addiction Medicine, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Drug and Alcohol Services, South Eastern Sydney Local Health District, Sydney, NSW, Australia
- New South Wales Drug and Alcohol Clinical Research and Improvement Network (DACRIN), Sydney, NSW, Australia
| | - Nadine Ezard
- The National Centre for Clinical Research on Emerging Drugs (NCCRED), Sydney, NSW, Australia
- St Vincent's Hospital Alcohol and Drug Service, Darlinghurst, 390 Victoria St, 2010, Sydney, NSW, Australia
- The University of New South Wales, National Drug and Alcohol Research Centre (NDARC), Sydney, NSW, Australia
- New South Wales Drug and Alcohol Clinical Research and Improvement Network (DACRIN), Sydney, NSW, Australia
| |
Collapse
|
71
|
Welsch L, Bailly J, Darcq E, Kieffer BL. The Negative Affect of Protracted Opioid Abstinence: Progress and Perspectives From Rodent Models. Biol Psychiatry 2020; 87:54-63. [PMID: 31521334 PMCID: PMC6898775 DOI: 10.1016/j.biopsych.2019.07.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/04/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022]
Abstract
Opioid use disorder (OUD) is characterized by the development of a negative emotional state that develops after a history of long-term exposure to opioids. OUD represents a true challenge for treatment and relapse prevention. Human research has amply documented emotional disruption in individuals with an opioid substance use disorder, at both behavioral and brain activity levels; however, brain mechanisms underlying this particular facet of OUD are only partially understood. Animal research has been instrumental in elucidating genes and circuits that adapt to long-term opioid use or are modified by acute withdrawal, but research on long-term consequences of opioid exposure and their relevance to the negative affect of OUD remains scarce. In this article, we review the literature with a focus on two questions: 1) Do we have behavioral models in rodents, and what do they tell us? and 2) What do we know about the neuronal populations involved? Behavioral rodent models have successfully recapitulated behavioral signs of the OUD-related negative affect, and several neurotransmitter systems were identified (i.e., serotonin, dynorphin, corticotropin-releasing factor, oxytocin). Circuit mechanisms driving the negative mood of prolonged abstinence likely involve the 5 main reward-aversion brain centers (i.e., nucleus accumbens, bed nucleus of the stria terminalis, amygdala, habenula, and raphe nucleus), all of which express mu opioid receptors and directly respond to opioids. Future work will identify the nature of these mu opioid receptor-expressing neurons throughout reward-aversion networks, characterize their adapted phenotype in opioid abstinent animals, and hopefully position these primary events in the broader picture of mu opioid receptor-associated brain aversion networks.
Collapse
Affiliation(s)
- Lola Welsch
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Julie Bailly
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Emmanuel Darcq
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Brigitte Lina Kieffer
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
72
|
Boero G, Porcu P, Morrow AL. Pleiotropic actions of allopregnanolone underlie therapeutic benefits in stress-related disease. Neurobiol Stress 2019; 12:100203. [PMID: 31879693 PMCID: PMC6920111 DOI: 10.1016/j.ynstr.2019.100203] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 01/20/2023] Open
Abstract
For several years, research from around the world has suggested that the neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone) may have therapeutic potential for treatment of various stress-related diseases including post-traumatic stress disorder (PTSD), depression, alcohol use disorders (AUDs), as well as neurological and psychiatric conditions that are worsened in the presence of stress, such as multiple sclerosis, schizophrenia, and seizure disorders. In this review, we make the argument that the pleiotropic actions of allopregnanolone account for its ability to promote recovery in such a wide variety of illnesses. Likewise, the allopregnanolone precursors, pregnenolone and progesterone, share many actions of allopregnanolone. Of course, pregnenolone and progesterone lack direct effects on GABAA receptors, but these compounds are converted to allopregnanolone in vivo. This review presents a theoretical framework for understanding how endogenous neurosteroids that regulate 1) γ-aminobutyric acid (GABA)A receptors, 2) corticotropin releasing factor (CRF) and 3) pro-inflammatory signaling in the innate immune system and brain could play a key role in both the prevention and treatment of stress-related disease. We further discuss cautions and limitations of allopregnanolone or precursor therapy as well as the need for more clinical studies.
Collapse
Affiliation(s)
- Giorgia Boero
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - A Leslie Morrow
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
73
|
Corticotropin Releasing Factor Type 1 and 2 Receptor Signaling in the Medial Prefrontal Cortex Modulates Binge-Like Ethanol Consumption in C57BL/6J Mice. Brain Sci 2019; 9:brainsci9070171. [PMID: 31330967 PMCID: PMC6680756 DOI: 10.3390/brainsci9070171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Corticotropin releasing factor (CRF) signaling via limbic CRF1 and 2 receptors (CRF1R and CRF2R, respectively) is known to modulate binge-like ethanol consumption in rodents. Though CRF signaling in the medial prefrontal cortex (mPFC) has been shown to modulate anxiety-like behavior and ethanol seeking, its role in binge ethanol intake is unknown. Here, we used “drinking-in-the-dark” (DID) procedures in male and female C57BL/6J mice to address this gap in the literature. First, the role of CRF1R and CRF2R signaling in the mPFC on ethanol consumption was evaluated through site-directed pharmacology. Next, we evaluated if CRF1R antagonist reduction of binge-intake was modulated in part through CRF2R activation by co-administration of a CRF1R and CRF2R antagonist. Intra-mPFC inhibition of CRF1R and activation of CRF2R resulted in decreased binge-like ethanol intake. Further, the inhibitory effect of the CRF1R antagonist was attenuated by co-administration of a CRF2R antagonist. We provide novel evidence that (1) inhibition of CRF1R or activation of CRF2R in the mPFC reduces binge-like ethanol intake; and (2) the effect of CRF1R antagonism may be mediated via enhanced CRF2R activation. These observations provide the first direct behavioral pharmacological evidence that CRF receptor activity in the mPFC modulates binge-like ethanol consumption.
Collapse
|
74
|
Zorrilla EP, Koob GF. Impulsivity Derived From the Dark Side: Neurocircuits That Contribute to Negative Urgency. Front Behav Neurosci 2019; 13:136. [PMID: 31293401 PMCID: PMC6603097 DOI: 10.3389/fnbeh.2019.00136] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/05/2019] [Indexed: 01/05/2023] Open
Abstract
Negative urgency is a unique dimension of impulsivity that involves acting rashly when in extreme distress and impairments in inhibitory control. It has been hypothesized to derive from stress that is related to negative emotional states that are experienced during the withdrawal/negative affect stage of the addiction cycle. Classically, a transition to compulsive drug use prevents or relieves negative emotional states that result from abstinence or stressful environmental circumstances. Recent work suggests that this shift to the "dark side" is also implicated in impulsive use that derives from negative urgency. Stress and anxious, depressed, and irritable mood have high comorbidity with addiction. They may trigger bouts of drug seeking in humans via both negative reinforcement and negative urgency. The neurocircuitry that has been identified in the "dark side" of addiction involves key neuropeptides in the central extended amygdala, including corticotropin-releasing factor. The present review article summarizes empirical and conceptual advances in the field to understand the role of the "dark side" in driving the risky and detrimental substance use that is associated with negative urgency in addiction.
Collapse
Affiliation(s)
- Eric P. Zorrilla
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
| | - George F. Koob
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, United States
| |
Collapse
|
75
|
Cannella N, Ubaldi M, Masi A, Bramucci M, Roberto M, Bifone A, Ciccocioppo R. Building better strategies to develop new medications in Alcohol Use Disorder: Learning from past success and failure to shape a brighter future. Neurosci Biobehav Rev 2019; 103:384-398. [PMID: 31112713 DOI: 10.1016/j.neubiorev.2019.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
Abstract
Alcohol Use Disorder (AUD) is a chronic disease that develops over the years. The complexity of the neurobiological processes contributing to the emergence of AUD and the neuroadaptive changes occurring during disease progression make it difficult to improve treatments. On the other hand, this complexity offers researchers the possibility to explore new targets. Over years of intense research several molecules were tested in AUD; in most cases, despite promising preclinical data, the clinical efficacy appeared insufficient to justify futher development. A prototypical example is that of corticotropin releasing factor type 1 receptor (CRF1R) antagonists that showed significant effectiveness in animal models of AUD but were largely ineffective in humans. The present article attempts to analyze the most recent venues in the development of new medications in AUD with a focus on the most promising drug targets under current exploration. Moreover, we delineate the importance of using a more integrated translational framework approach to correlate preclinical findings and early clinical data to enhance the probability to validate biological targets of interest.
Collapse
Affiliation(s)
- Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - Alessio Masi
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - Massimo Bramucci
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - Marisa Roberto
- The Scripps Research Institute, Department of Neuroscience, La Jolla, CA, USA
| | - Angelo Bifone
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy; Department of Molecular Biotechnology and Health Science, University of Torino, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy.
| |
Collapse
|
76
|
Sanchez-Roige S, Palmer AA, Fontanillas P, Elson SL, Adams MJ, Howard DM, Edenberg HJ, Davies G, Crist RC, Deary IJ, McIntosh AM, Clarke TK. Genome-Wide Association Study Meta-Analysis of the Alcohol Use Disorders Identification Test (AUDIT) in Two Population-Based Cohorts. Am J Psychiatry 2019; 176:107-118. [PMID: 30336701 PMCID: PMC6365681 DOI: 10.1176/appi.ajp.2018.18040369] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Alcohol use disorders are common conditions that have enormous social and economic consequences. Genome-wide association analyses were performed to identify genetic variants associated with a proxy measure of alcohol consumption and alcohol misuse and to explore the shared genetic basis between these measures and other substance use, psychiatric, and behavioral traits. METHOD This study used quantitative measures from the Alcohol Use Disorders Identification Test (AUDIT) from two population-based cohorts of European ancestry (UK Biobank [N=121,604] and 23andMe [N=20,328]) and performed a genome-wide association study (GWAS) meta-analysis. Two additional GWAS analyses were performed, a GWAS for AUDIT scores on items 1-3, which focus on consumption (AUDIT-C), and for scores on items 4-10, which focus on the problematic consequences of drinking (AUDIT-P). RESULTS The GWAS meta-analysis of AUDIT total score identified 10 associated risk loci. Novel associations localized to genes including JCAD and SLC39A13; this study also replicated previously identified signals in the genes ADH1B, ADH1C, KLB, and GCKR. The dimensions of AUDIT showed positive genetic correlations with alcohol consumption (rg=0.76-0.92) and DSM-IV alcohol dependence (rg=0.33-0.63). AUDIT-P and AUDIT-C scores showed significantly different patterns of association across a number of traits, including psychiatric disorders. AUDIT-P score was significantly positively genetically correlated with schizophrenia (rg=0.22), major depressive disorder (rg=0.26), and attention deficit hyperactivity disorder (rg=0.23), whereas AUDIT-C score was significantly negatively genetically correlated with major depressive disorder (rg=-0.24) and ADHD (rg=-0.10). This study also used the AUDIT data in the UK Biobank to identify thresholds for dichotomizing AUDIT total score that optimize genetic correlations with DSM-IV alcohol dependence. Coding individuals with AUDIT total scores ≤4 as control subjects and those with scores ≥12 as case subjects produced a significant high genetic correlation with DSM-IV alcohol dependence (rg=0.82) while retaining most subjects. CONCLUSIONS AUDIT scores ascertained in population-based cohorts can be used to explore the genetic basis of both alcohol consumption and alcohol use disorders.
Collapse
Affiliation(s)
- Sandra Sanchez-Roige
- Department of Psychiatry, University of California San
Diego, La Jolla, CA, 92093, USA
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San
Diego, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, University of California
San Diego, La Jolla, CA, USA
| | - Pierre Fontanillas
- Collaborator List for the 23andMe Research Team: Michelle
Agee, Babak Alipanahi, Adam Auton, Robert K. Bell, Katarzyna Bryc, Sarah L. Elson,
Pierre Fontanillas, Nicholas A. Furlotte, David A. Hinds, Karen E. Huber, Aaron
Kleinman, Nadia K. Litterman, Jennifer C. McCreight, Matthew H. McIntyre, Joanna L.
Mountain, Elizabeth S. Noblin, Carrie A.M. Northover, Steven J. Pitts, J. Fah
Sathirapongsasuti, Olga V. Sazonova, Janie F. Shelton, Suyash Shringarpure, Chao
Tian, Joyce Y. Tung, Vladimir Vacic, and Catherine H. Wilson
| | - Sarah L. Elson
- Collaborator List for the 23andMe Research Team: Michelle
Agee, Babak Alipanahi, Adam Auton, Robert K. Bell, Katarzyna Bryc, Sarah L. Elson,
Pierre Fontanillas, Nicholas A. Furlotte, David A. Hinds, Karen E. Huber, Aaron
Kleinman, Nadia K. Litterman, Jennifer C. McCreight, Matthew H. McIntyre, Joanna L.
Mountain, Elizabeth S. Noblin, Carrie A.M. Northover, Steven J. Pitts, J. Fah
Sathirapongsasuti, Olga V. Sazonova, Janie F. Shelton, Suyash Shringarpure, Chao
Tian, Joyce Y. Tung, Vladimir Vacic, and Catherine H. Wilson
| | - The 23andMe Research Team
- Collaborator List for the 23andMe Research Team: Michelle
Agee, Babak Alipanahi, Adam Auton, Robert K. Bell, Katarzyna Bryc, Sarah L. Elson,
Pierre Fontanillas, Nicholas A. Furlotte, David A. Hinds, Karen E. Huber, Aaron
Kleinman, Nadia K. Litterman, Jennifer C. McCreight, Matthew H. McIntyre, Joanna L.
Mountain, Elizabeth S. Noblin, Carrie A.M. Northover, Steven J. Pitts, J. Fah
Sathirapongsasuti, Olga V. Sazonova, Janie F. Shelton, Suyash Shringarpure, Chao
Tian, Joyce Y. Tung, Vladimir Vacic, and Catherine H. Wilson
| | | | - Mark J. Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh,
UK
| | - David M. Howard
- Division of Psychiatry, University of Edinburgh, Edinburgh,
UK
| | - Howard J. Edenberg
- Department of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, IN, USA
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology,
University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh,
Edinburgh, UK
| | - Richard C. Crist
- Translational Research Laboratories, Center for
Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania
Perelman School of Medicine, Philadelphia, PA, USA
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology,
University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh,
Edinburgh, UK
| | - Andrew M. McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh,
UK
- Centre for Cognitive Ageing and Cognitive Epidemiology,
University of Edinburgh, Edinburgh, UK
| | - Toni-Kim Clarke
- Division of Psychiatry, University of Edinburgh, Edinburgh,
UK
| |
Collapse
|
77
|
Ruisoto P, Contador I. The role of stress in drug addiction. An integrative review. Physiol Behav 2019; 202:62-68. [PMID: 30711532 DOI: 10.1016/j.physbeh.2019.01.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The high prevalence and burden to society of drug abuse and addiction is undisputed. However, its conceptualisation as a brain disease is controversial, and available interventions insufficient. Research on the role of stress in drug addiction may bridge positions and develop more effective interventions. AIM The aim of this paper is to integrate the most influential literature to date on the role of stress in drug addiction. METHODS A literature search was conducted of the core collections of Web of Science and Semantic Scholar on the topic of stress and addiction from a neurobiological perspective in humans. The most frequently cited articles and related references published in the last decade were finally redrafted into a narrative review based on 130 full-text articles. RESULTS AND DISCUSSION First, a brief overview of the neurobiology of stress and drug addiction is provided. Then, the role of stress in drug addiction is described. Stress is conceptualised as a major source of allostatic load, which result in progressive long-term changes in the brain, leading to a drug-prone state characterized by craving and increased risk of relapse. The effects of stress on drug addiction are mainly mediated by the action of corticotropin-releasing factor and other stress hormones, which weaken the hippocampus and prefrontal cortex and strengthen the amygdala, leading to a negative emotional state, craving and lack of executive control, increasing the risk of relapse. Both, drugs and stress result in an allostatic overload responsible for neuroadaptations involved in most of the key features of addiction: reward anticipation/craving, negative affect, and impaired executive functions, involved in three stages of addiction and relapse. CONCLUSION This review elucidates the crucial role of stress in drug addiction and highlights the need to incorporate the social context where brain-behaviour relationships unfold into the current model of addition.
Collapse
Affiliation(s)
- Pablo Ruisoto
- Department of Psychobiology, Methodology and Behavioral Sciences, Faculty of Psychology, University of Salamanca, Spain.
| | - Israel Contador
- Department of Psychobiology, Methodology and Behavioral Sciences, Faculty of Psychology, University of Salamanca, Spain
| |
Collapse
|
78
|
Moore CF, Panciera JI, Sabino V, Cottone P. Neuropharmacology of compulsive eating. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0024. [PMID: 29352024 DOI: 10.1098/rstb.2017.0024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2017] [Indexed: 12/22/2022] Open
Abstract
Compulsive eating behaviour is a transdiagnostic construct observed in certain forms of obesity and eating disorders, as well as in the proposed construct of 'food addiction'. Compulsive eating can be conceptualized as comprising three elements: (i) habitual overeating, (ii) overeating to relieve a negative emotional state, and (iii) overeating despite adverse consequences. Neurobiological processes that include maladaptive habit formation, the emergence of a negative affect, and dysfunctions in inhibitory control are thought to drive the development and persistence of compulsive eating behaviour. These complex psychobehavioural processes are under the control of various neuropharmacological systems. Here, we describe the current evidence implicating these systems in compulsive eating behaviour, and contextualize them within the three elements. A better understanding of the neuropharmacological substrates of compulsive eating behaviour has the potential to significantly advance the pharmacotherapy for feeding-related pathologies.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Collapse
Affiliation(s)
- Catherine F Moore
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA.,Graduate Program for Neuroscience, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA
| | - Julia I Panciera
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA.,MS in Medical Sciences Program, Graduate Medical Sciences, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA.,Master of Public Health Program, Department of Health Policy and Management, Boston University School of Public Health, 715 Albany Street, Boston, MA, USA
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord Street, R-618, Boston, MA 02118, USA
| |
Collapse
|
79
|
Involvement of orexinergic receptors in the nucleus accumbens, in the effect of forced swim stress on the reinstatement of morphine seeking behaviors. Behav Brain Res 2019; 356:279-287. [DOI: 10.1016/j.bbr.2018.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 08/03/2018] [Accepted: 08/23/2018] [Indexed: 12/28/2022]
|
80
|
D'Souza MS. Brain and Cognition for Addiction Medicine: From Prevention to Recovery Neural Substrates for Treatment of Psychostimulant-Induced Cognitive Deficits. Front Psychiatry 2019; 10:509. [PMID: 31396113 PMCID: PMC6667748 DOI: 10.3389/fpsyt.2019.00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/28/2019] [Indexed: 01/10/2023] Open
Abstract
Addiction to psychostimulants like cocaine, methamphetamine, and nicotine poses a continuing medical and social challenge both in the United States and all over the world. Despite a desire to quit drug use, return to drug use after a period of abstinence is a common problem among individuals dependent on psychostimulants. Recovery for psychostimulant drug-dependent individuals is particularly challenging because psychostimulant drugs induce significant changes in brain regions associated with cognitive functions leading to cognitive deficits. These cognitive deficits include impairments in learning/memory, poor decision making, and impaired control of behavioral output. Importantly, these drug-induced cognitive deficits often impact adherence to addiction treatment programs and predispose abstinent addicts to drug use relapse. Additionally, these cognitive deficits impact effective social and professional rehabilitation of abstinent addicts. The goal of this paper is to review neural substrates based on animal studies that could be pharmacologically targeted to reverse psychostimulant-induced cognitive deficits such as impulsivity and impairment in learning and memory. Further, the review will discuss neural substrates that could be used to facilitate extinction learning and thus reduce emotional and behavioral responses to drug-associated cues. Moreover, the review will discuss some non-pharmacological approaches that could be used either alone or in combination with pharmacological compounds to treat the above-mentioned cognitive deficits. Psychostimulant addiction treatment, which includes treatment for cognitive deficits, will help promote abstinence and allow for better rehabilitation and integration of abstinent individuals into society.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH, United States
| |
Collapse
|
81
|
Fleming W, Jones Q, Chandra U, Saini A, Walker D, Francis R, Ocampo G, Kuhn C. Withdrawal from Brief Repeated Alcohol Treatment in Adolescent and Adult Male and Female Rats. Alcohol Clin Exp Res 2018; 43:204-211. [PMID: 30566247 DOI: 10.1111/acer.13936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/20/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Early initiation of alcohol drinking has been associated with increased risk of alcohol dependence in adulthood. Although negative affect mediated in part by corticotropin-releasing factor (CRF) is a strong motivator for alcohol consumption in adults, comparisons of alcohol withdrawal in adolescents and adults generally have not included CRF-related measures such as anxiety. The purpose of the present study was to compare withdrawal signs including anxiety-like behavior after a brief multiday alcohol treatment in adolescent and adult male and female rats. METHODS Animals were treated with a 5-day regimen of alcohol injections (3 daily intraperitoneal injections of 1.5 g/kg at 3-hour intervals, total of 15) starting on postnatal day (PN) 28 or PN 70. Spontaneous withdrawal signs and anxiety-like behavior (light/dark box) were assessed 18 hours after the last injection as described. One cohort of rats was treated with alcohol, killed 18 hours after the last injection, and blood was collected to assess corticosterone. Another cohort of rats was treated with alcohol or vehicle, given 1, 2, or 3 alcohol injections (1.5 g/kg), and killed 1 hour after final injection to determine blood alcohol concentration (BAC). Finally, adult and adolescent males and females received 5 days of alcohol or vehicle treatment followed by a final challenge with alcohol (3 g/kg), and blood was collected for corticosterone. RESULTS BAC was comparable in adolescents and adults. Spontaneous withdrawal signs were comparable in adolescents and adults, and no sex differences were observed. Anxiety-like behaviors (time and distance in light, latency to emerge, and light entries) differed in alcohol- and vehicle-treated adults but not adolescents. Corticosterone was not elevated at withdrawal. Alcohol increased corticosterone significantly in vehicle-treated animals, but both adolescents and adults were tolerant to alcohol-induced elevation of corticosterone after 5 days of alcohol treatment. CONCLUSIONS These findings suggest that adolescents experience milder negative affect during withdrawal from brief alcohol exposures relative to adults but comparable suppression of hypothalamic-pituitary-adrenal axis function.
Collapse
Affiliation(s)
- Weston Fleming
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Quincy Jones
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Upasana Chandra
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Aashna Saini
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - David Walker
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Reynold Francis
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Gabriela Ocampo
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
82
|
Ferrer-Pérez C, Martinez TE, Montagud-Romero S, Ballestín R, Reguilón MD, Miñarro J, Rodríguez-Arias M. Indomethacin blocks the increased conditioned rewarding effects of cocaine induced by repeated social defeat. PLoS One 2018; 13:e0209291. [PMID: 30557308 PMCID: PMC6296503 DOI: 10.1371/journal.pone.0209291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/01/2018] [Indexed: 01/05/2023] Open
Abstract
It is well established that repeated social defeat stress can induce negative long-term consequences such as increased anxiety-like behavior and enhances the reinforcing effect of psychostimulants in rodents. In the current study, we evaluated how the immune system may play a role in these long-term effects of stress. A total of 148 OF1 mice were divided into different experimental groups according to stress condition (exploration or social defeat) and pre-treatment (saline, 5 or 10 mg/kg of the anti-inflammatory indomethacin) before each social defeat or exploration episode. Three weeks after the last social defeat, anxiety was evaluated using an elevated plus maze paradigm. After this test, conditioned place preference (CPP) was induced by a subthreshold dose of cocaine (1 mg/kg). Biological samples were taken four hours after the first and the fourth social defeat, 3 weeks after the last defeat episode, and after the CPP procedure. Plasma and brain tissue (prefrontal cortex, striatum and hippocampus) were used to determine the levels of the pro-inflammatory cytokine interleukin 6 (IL-6). Results showed an increase of peripheral and brain IL-6 levels after the first and fourth social defeat that was reverted three weeks later. Intraperitoneal administration of the anti-inflammatory drug indomethacin before each episode of stress prevented this enhancement of IL-6 levels and also reversed the increase in the rewarding effects of cocaine in defeated mice. Conversely, this protective effect was not observed with respect to the anxiogenic consequences of social stress. Our results confirm the hypothesis of a modulatory proinflammatory contribution to stress-induced vulnerability to drug abuse disorders and highlight anti-inflammatory interventions as a potential therapeutic tool to treat stress-related addiction disorders.
Collapse
Affiliation(s)
- Carmen Ferrer-Pérez
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Tamara Escrivá Martinez
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Raúl Ballestín
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Marina D. Reguilón
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - José Miñarro
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| |
Collapse
|
83
|
Tache Y, Larauche M, Yuan PQ, Million M. Brain and Gut CRF Signaling: Biological Actions and Role in the Gastrointestinal Tract. Curr Mol Pharmacol 2018; 11:51-71. [PMID: 28240194 DOI: 10.2174/1874467210666170224095741] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/16/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) pathways coordinate behavioral, endocrine, autonomic and visceral responses to stress. Convergent anatomical, molecular, pharmacological and functional experimental evidence supports a key role of brain CRF receptor (CRF-R) signaling in stress-related alterations of gastrointestinal functions. These include the inhibition of gastric acid secretion and gastric-small intestinal transit, stimulation of colonic enteric nervous system and secretorymotor function, increase intestinal permeability, and visceral hypersensitivity. Brain sites of CRF actions to alter gut motility encompass the paraventricular nucleus of the hypothalamus, locus coeruleus complex and the dorsal motor nucleus while those modulating visceral pain are localized in the hippocampus and central amygdala. Brain CRF actions are mediated through the autonomic nervous system (decreased gastric vagal and increased sacral parasympathetic and sympathetic activities). The activation of brain CRF-R2 subtype inhibits gastric motor function while CRF-R1 stimulates colonic secretomotor function and induces visceral hypersensitivity. CRF signaling is also located within the gut where CRF-R1 activates colonic myenteric neurons, mucosal cells secreting serotonin, mucus, prostaglandin E2, induces mast cell degranulation, enhances mucosal permeability and propulsive motor functions and induces visceral hyperalgesia in animals and humans. CRF-R1 antagonists prevent CRF- and stressrelated gut alterations in rodents while not influencing basal state. DISCUSSION These preclinical studies contrast with the limited clinical positive outcome of CRF-R1 antagonists to alleviate stress-sensitive functional bowel diseases such as irritable bowel syndrome. CONCLUSION The translational potential of CRF-R1 antagonists in gut diseases will require additional studies directed to novel anti-CRF therapies and the neurobiology of brain-gut interactions under chronic stress.
Collapse
Affiliation(s)
- Yvette Tache
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| | - Muriel Larauche
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| | - Pu-Qing Yuan
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| | - Mulugeta Million
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| |
Collapse
|
84
|
Acupuncture on the Stress-Related Drug Relapse to Seeking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5367864. [PMID: 30416533 PMCID: PMC6207895 DOI: 10.1155/2018/5367864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/30/2018] [Accepted: 07/19/2018] [Indexed: 11/23/2022]
Abstract
Drug addiction is a chronic relapsing disease, which causes serious social and economic problems. The most important trial for the successful treatment of drug addiction is to prevent the high rate of relapse to drug-seeking behaviors. Opponent process as a motivational theory with excessive drug seeking in the negative reinforcement of drug dependence reflects both loss of brain reward system and recruitment of brain stress system. The negative emotional state produced by brain stress system during drug withdrawal might contribute to the intense drug craving and drive drug-seeking behaviors via negative reinforcement mechanisms. Decrease in dopamine neurotransmission in the nucleus accumbens and recruitment of corticotropin-releasing factor in the extended amygdala are hypothesized to be implicated in mediating this motivated behavior. Also, a brain stress response system is hypothesized to increase drug craving and contribute to relapse to drug-seeking behavior during the preoccupation and anticipation stage of dependence caused by the exposure to stress characterized as the nonspecific responses to any demands on the body. Acupuncture has proven to be effective for reducing drug addiction and stress-related psychiatric disorders, such as anxiety and depression. Furthermore, acupuncture has been shown to correct reversible brain malfunctions by regulating drug addiction and stress-related neurotransmitters. Accordingly, it seems reasonable to propose that acupuncture attenuates relapse to drug-seeking behavior through inhibition of stress response. In this review, a brief description of stress in relapse to drug-seeking behavior and the effects of acupuncture were presented.
Collapse
|
85
|
Goldfarb EV, Sinha R. Drug-Induced Glucocorticoids and Memory for Substance Use. Trends Neurosci 2018; 41:853-868. [PMID: 30170822 PMCID: PMC6204074 DOI: 10.1016/j.tins.2018.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/13/2018] [Accepted: 08/08/2018] [Indexed: 11/29/2022]
Abstract
The biological stress response of the body forms one of the foundations of adaptive behavior, including promoting (and impairing) different forms of memory. This response transcends stressful experiences and underlies reactions to challenges and even reinforcers such as addictive substances. Nevertheless, drug-induced stress responses are rarely incorporated into models of addiction. We propose here that drug-induced stress responses (particularly glucocorticoids) play a crucial role in addictive behavior by modulating the formation of memories for substance-use experiences. We review the contributions of amygdala-, striatum-, and hippocampus-based memory systems to addiction, and reveal common effects of addictive drugs and acute stress on these different memories. We suggest that the contributions of drug-induced stress responses to memory may provide insights into the mechanisms driving addictive behavior.
Collapse
Affiliation(s)
- Elizabeth V Goldfarb
- Department of Diagnostic Radiology; Yale Stress Center; Yale University School of Medicine, New Haven, CT, USA.
| | - Rajita Sinha
- Departments of Psychiatry and Neuroscience; Yale Stress Center; Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
86
|
Greenwald MK. Anti-stress neuropharmacological mechanisms and targets for addiction treatment: A translational framework. Neurobiol Stress 2018; 9:84-104. [PMID: 30238023 PMCID: PMC6138948 DOI: 10.1016/j.ynstr.2018.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022] Open
Abstract
Stress-related substance use is a major challenge for treating substance use disorders. This selective review focuses on emerging pharmacotherapies with potential for reducing stress-potentiated seeking and consumption of nicotine, alcohol, marijuana, cocaine, and opioids (i.e., key phenotypes for the most commonly abused substances). I evaluate neuropharmacological mechanisms in experimental models of drug-maintenance and relapse, which translate more readily to individuals presenting for treatment (who have initiated and progressed). An affective/motivational systems model (three dimensions: valence, arousal, control) is mapped onto a systems biology of addiction approach for addressing this problem. Based on quality of evidence to date, promising first-tier neurochemical receptor targets include: noradrenergic (α1 and β antagonist, α2 agonist), kappa-opioid antagonist, nociceptin antagonist, orexin-1 antagonist, and endocannabinoid modulation (e.g., cannabidiol, FAAH inhibition); second-tier candidates may include corticotropin releasing factor-1 antagonists, serotonergic agents (e.g., 5-HT reuptake inhibitors, 5-HT3 antagonists), glutamatergic agents (e.g., mGluR2/3 agonist/positive allosteric modulator, mGluR5 antagonist/negative allosteric modulator), GABA-promoters (e.g., pregabalin, tiagabine), vasopressin 1b antagonist, NK-1 antagonist, and PPAR-γ agonist (e.g., pioglitazone). To address affective/motivational mechanisms of stress-related substance use, it may be advisable to combine agents with actions at complementary targets for greater efficacy but systematic studies are lacking except for interactions with the noradrenergic system. I note clinically-relevant factors that could mediate/moderate the efficacy of anti-stress therapeutics and identify research gaps that should be pursued. Finally, progress in developing anti-stress medications will depend on use of reliable CNS biomarkers to validate exposure-response relationships.
Collapse
Affiliation(s)
- Mark K. Greenwald
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|
87
|
CRF modulation of central monoaminergic function: Implications for sex differences in alcohol drinking and anxiety. Alcohol 2018; 72:33-47. [PMID: 30217435 DOI: 10.1016/j.alcohol.2018.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/03/2018] [Accepted: 01/19/2018] [Indexed: 01/06/2023]
Abstract
Decades of research have described the importance of corticotropin-releasing factor (CRF) signaling in alcohol addiction, as well as in commonly co-expressed neuropsychiatric diseases, including anxiety and mood disorders. However, CRF signaling can also acutely regulate binge alcohol consumption, anxiety, and affect in non-dependent animals, possibly via modulation of central monoaminergic signaling. We hypothesize that basal CRF tone is particularly high in animals and humans with an inherent propensity for high anxiety and alcohol consumption, and thus these individuals are at increased risk for the development of alcohol use disorder and comorbid neuropsychiatric diseases. The current review focuses on extrahypothalamic CRF circuits, particularly those stemming from the bed nucleus of the stria terminalis (BNST), found to play a role in basal phenotypes, and examines whether the intrinsic hyperactivity of these circuits is sufficient to escalate the expression of these behaviors and steepen the trajectory of development of disease states. We focus our efforts on describing CRF modulation of biogenic amine neuron populations that have widespread projections to the forebrain to modulate behaviors, including alcohol and drug intake, stress reactivity, and anxiety. Further, we review the known sex differences and estradiol modulation of these neuron populations and CRF signaling at their synapses to address the question of whether females are more susceptible to the development of comorbid addiction and stress-related neuropsychiatric diseases because of hyperactive extrahypothalamic CRF circuits compared to males.
Collapse
|
88
|
Aqueous Extract of Semen Ziziphi Spinosae Exerts Anxiolytic Effects during Nicotine Withdrawal via Improvement of Amygdaloid CRF/CRF1R Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2419183. [PMID: 30245730 PMCID: PMC6139233 DOI: 10.1155/2018/2419183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/26/2018] [Accepted: 08/16/2018] [Indexed: 12/05/2022]
Abstract
Anxiety during nicotine withdrawal (NicW) is a key risk factor for smoking relapse. Semen Ziziphi Spinosae (SZS), which is a prototypical hypnotic-sedative herb in Oriental medicine, has been clinically used to treat insomnia and general anxiety disorders for thousands of years. Thus, the present study evaluated the effects of the aqueous extract of SZS (AESZS) on NicW-induced anxiety in male rats that received subcutaneous administrations of nicotine (Nic) (0.4 mg/kg, twice a day) for 7 d followed by 4 d of withdrawal. During NicW, the rats received four intragastric treatments of AESZS (60 mg/kg/d or 180 mg/kg/d). AESZS dose-dependently attenuated NicW-induced anxiety-like behaviors in the elevated plus maze (EPM) tests and 180 mg/kg/d AESZS inhibited NicW-induced increases in plasma corticosterone. Additionally, the protein and mRNA expressions of corticotropin-releasing factor (CRF) and CRF type 1 receptor (CRF1R) increased in the central nucleus of the amygdala (CeA) during NicW, but these changes were suppressed by 180 mg/kg/d AESZS. A post-AESZS infusion of CRF into the CeA abolished the attenuation of anxiety by AESZS and 180 mg/kg/d AESZS suppressed NicW-induced increases in norepinephrine and 3-methoxy-4-hydroxy-phenylglycol levels in the CeA. The present results suggest that AESZS ameliorated NicW-induced anxiety via improvements in CRF/CRF1R and noradrenergic signaling in the CeA.
Collapse
|
89
|
Newman EL, Leonard MZ, Arena DT, de Almeida RMM, Miczek KA. Social defeat stress and escalation of cocaine and alcohol consumption: Focus on CRF. Neurobiol Stress 2018; 9:151-165. [PMID: 30450381 PMCID: PMC6236516 DOI: 10.1016/j.ynstr.2018.09.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022] Open
Abstract
Both the ostensibly aversive effects of unpredictable episodes of social stress and the intensely rewarding effects of drugs of abuse activate the mesocorticolimbic dopamine systems. Significant neuroadaptations in interacting stress and reward neurocircuitry may underlie the striking connection between stress and substance use disorders. In rodent models, recurring intermittent exposure to social defeat stress appears to produce a distinct profile of neuroadaptations that translates most readily to the repercussions of social stress in humans. In the present review, preclinical rodent models of social defeat stress and subsequent alcohol, cocaine or opioid consumption are discussed with regard to: (1) the temporal pattern of social defeat stress, (2) male and female protocols of social stress-escalated drug consumption, and (3) the neuroplastic effects of social stress, which may contribute to escalated drug-taking. Neuroadaptations in corticotropin-releasing factor (CRF) and CRF modulation of monoamines in the ventral tegmental area and the bed nucleus of the stria terminalis are highlighted as potential mechanisms underlying stress-escalated drug consumption. However, the specific mechanisms that drive CRF-mediated increases in dopamine require additional investigation as do the stress-induced neuroadaptations that may contribute to the development of compulsive patterns of drug-taking.
Collapse
Affiliation(s)
- Emily L Newman
- Psychology Dept., Tufts University, Medford, MA, 02155, USA
| | | | | | - Rosa M M de Almeida
- Institute of Psychology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Klaus A Miczek
- Psychology Dept., Tufts University, Medford, MA, 02155, USA.,Dept. of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA, 02111, USA
| |
Collapse
|
90
|
Negative consequences of early-life adversity on substance use as mediated by corticotropin-releasing factor modulation of serotonin activity. Neurobiol Stress 2018; 9:29-39. [PMID: 30151419 PMCID: PMC6108067 DOI: 10.1016/j.ynstr.2018.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/11/2018] [Accepted: 08/05/2018] [Indexed: 01/01/2023] Open
Abstract
Early-life adversity is associated with increased risk for substance abuse in later life, with women more likely to report past and current stress as a mediating factor in their substance use and relapse as compared to men. Preclinical models of neonatal and peri-adolescent (early through late adolescence) stress all support a direct relationship between experiences of early-life adversity and adult substance-related behaviors, and provide valuable information regarding the underlying neurobiology. This review will provide an overview of these animal models and how these paradigms alter drug and alcohol consumption and/or seeking in male and female adults. An introduction to the corticotropin-releasing factor (CRF) and serotonin systems, their development and their interactions at the level of the dorsal raphe will be provided, illustrating how this particular stress system is sexually dimorphic, and is well positioned to be affected by stressors early in development and throughout maturation. A model for CRF-serotonin interactions in the dorsal raphe and how these influence dopaminergic activity within the nucleus accumbens and subsequent reward-associated behaviors will be provided, and alterations to the activity of this system following early-life adversity will be identified. Overall, converging findings suggest that early-life adversity has long-term effects on the functioning of the CRF-serotonin system, highlighting a potentially important and targetable mediator linking stress to addiction. Future work should focus on identifying the exact mechanisms that promote long-term changes to the expression and activity of CRF receptors in the dorsal raphe. Moreover, it is important to clarify whether similar neurobiological mechanisms exist for males and females, given the sexual dimorphism both in CRF receptors and serotonin indices in the dorsal raphe and in the behavioral outcomes of early-life adversity. Early life stress increases risk for substance abuse in adulthood. Stress and drugs increase CRF which alters serotonin release in the brain. CRF2 receptor expression in the dorsal raphe is altered by early life stress. Resultant changes to serotonin output facilitates dopamine in the accumbens. CRF2-sertotonin-dopamine interactions may link early life stress with substance abuse.
Collapse
Key Words
- 5-HIAA, 5–Hydroxyindoleacetic Acid
- BNST, Bed Nucleus of the Stria Terminalis
- CRF, Corticotropin-Releasing Factor
- CRF-BP, Corticotropin-Releasing Factor Binding Protein
- CeA, Central Nucleus of the Amygdala
- Corticotropin-releasing factor
- Dorsal raphe nucleus
- Drug reward
- Early-life stress
- LC, Locus Coeruleus
- MDMA, 3,4-Methylenedioxymethamphetamine
- NAc, Nucleus Accumbens
- NMDA, N-methyl-d-aspartate
- PND, Postnatal Day
- Serotonin
- Sex differences
- TPH2, Tryptophan Hydroxylase 2
- VTA, Ventral Tegmental Area
- dRN, Dorsal Raphe Nucleus
Collapse
|
91
|
Pituitary Adenylate Cyclase-Activating Peptide (PACAP) Signaling and the Dark Side of Addiction. J Mol Neurosci 2018; 68:453-464. [PMID: 30074172 DOI: 10.1007/s12031-018-1147-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
While addiction to drugs of abuse represents a significant health problem worldwide, the behavioral and neural mechanisms that underlie addiction and relapse are largely unclear. The concept of the dark side of addiction, developed and explored by George Koob and colleagues, describes a systematic decrease in reward-related processing following drug self-administration and subsequent recruitment of anti-reward (i.e., stress) systems. Indeed, the activation of central nervous system (CNS) stress-response systems by drugs of abuse is contributory not only to mood and anxiety-related disorders but critical to both the maintenance of addiction and relapse following abstinence. In both human and animal studies, compounds that activate the bed nucleus of the stria terminalis (BNST) have roles in stress-related behaviors and addiction processes. The activation of pituitary adenylate cyclase-activating peptide (PACAP) systems in the BNST mediates many consequences of chronic stressor exposure that may engage in part downstream corticotropin-releasing hormone (CRH) signaling. Similar to footshock stress, the BNST administration of PACAP or the PAC1 receptor-specific agonist maxadilan can facilitate relapse following extinction of cocaine-seeking behavior. Further, in the same paradigm, the footshock-induced relapse could be attenuated following BNST pretreatment with PAC1 receptor antagonist PACAP6-38, implicating PACAP systems as critical components underlying stress-induced reinstatement. In congruence with previous work, the PAC1 receptor internalization and endosomal MEK/ERK signaling appear contributory mechanisms to the addiction processes. The studies offer new insights and approaches to addiction and relapse therapeutics.
Collapse
|
92
|
Carboni L, Romoli B, Bate ST, Romualdi P, Zoli M. Increased expression of CRF and CRF-receptors in dorsal striatum, hippocampus, and prefrontal cortex after the development of nicotine sensitization in rats. Drug Alcohol Depend 2018; 189:12-20. [PMID: 29857328 DOI: 10.1016/j.drugalcdep.2018.04.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nicotine addiction supports tobacco smoking, a main preventable cause of disease and death in Western countries. It develops through long-term neuroadaptations in the brain reward circuit by modulating intracellular pathways and regulating gene expression. This study assesses the regional expression of the transcripts of the CRF transmission in a nicotine sensitization model, since it is hypothesised that the molecular neuroadaptations that mediate the development of sensitization contribute to the development of addiction. METHODS Rats received intraperitoneal nicotine administrations (0.4 mg/kg) once daily for either 1 day or over 5 days. Locomotor activity was assessed to evaluate the development of sensitization. The mRNA expression of CRF and CRF1 and CRF2 receptors was measured by qPCR in the ventral mesencephalon, ventral striatum, dorsal striatum (DS), prefrontal cortex (PFCx), and hippocampus (Hip). RESULTS Acute nicotine administration increased locomotor activity in rats. In the sub-chronic group, locomotor activity progressively increased and reached a clear sensitization. Significant effects of sensitization on CRF mRNA levels were detected in the DS (increasing effect). Significantly higher CRF1 and CRF2 receptor levels after sensitization were detected in the Hip. Additionally, CRF2 receptor levels were augmented by sensitization in the PFCx, and treatment and time-induced increases were detected in the DS. Nicotine treatment effects were observed on CRF1R levels in the DS. CONCLUSIONS This study suggests that the CRF transmission, in addition to its role in increasing withdrawal-related anxiety, may be involved in the development of nicotine-habituated behaviours through reduced control of impulses and the aberrant memory plasticity characterising addiction.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Benedetto Romoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125 Modena, Italy; Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Simon T Bate
- Statistical Sciences, GlaxoSmithKline, 980 Great West Rd, Brentford, Middlesex, TW8 9GS, UK
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125 Modena, Italy
| |
Collapse
|
93
|
Tomek SE, Olive MF. Social Influences in Animal Models of Opiate Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:81-107. [PMID: 30193710 DOI: 10.1016/bs.irn.2018.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Opiate addiction has reached an epidemic prevalence in recent years, yet social influences on the use and abuse of opiates has been widely understudied. In particular, the neurobiological substrates of opiate addiction and their modulation by social influences are largely unknown, perhaps due to the lack of widespread incorporation of social variables into animal models of opiate addiction. As reviewed here, animal models such as oral and intravenous drug self-administration, conditioned place preference, behavioral sensitization, and the effects of various stressors, have been useful in identifying some of the neurochemical circuitry that mediate social influences on opiate addiction. However, it is clear from our review that newer paradigms that incorporate various social elements are greatly needed to provide more translational insights into the neurobiological basis of opiate addiction. These elements include social and environmental enrichment, presence of conspecifics, and procedures that require subjects to exert effort to engage in prosocial behavior. A wider implementation of social variables into animal models of opiate addiction will help inform neurobehavioral strategies to increase the efficacy of treatment.
Collapse
Affiliation(s)
- Seven E Tomek
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
94
|
Shimamoto A. Social Defeat Stress, Sex, and Addiction-Like Behaviors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:271-313. [PMID: 30193707 DOI: 10.1016/bs.irn.2018.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Social confrontation is a form of social interaction in animals where two conspecific individuals confront each other in dispute over territory, during the formation of hierarchies, and during breeding seasons. Typically, a social confrontation involves a prevailing individual and a yielding individual. The prevailing individual often exhibits aggressive postures and launches attacks, whereas the yielding individual often adopts postures of defeat. The yielding or defeated animals experience a phenomenon known as social defeat stress, in which they show exaggerated stress as well as autonomic and endocrine responses that cause impairment of both the brain and body. In laboratory settings, one can reliably generate social defeat stress by allowing a naïve (or already defeated) animal to intrude into a home cage in which its resident has already established a territory or is nursing. This resident-intruder paradigm has been widely used in both males and females to study mechanisms in the brain that underlie the stress responses. Stress has profound effects on drug reward for cocaine, methamphetamine, alcohol, and opioids. Particularly, previous experiences with social defeat can exaggerate subsequent addiction-like behaviors. The extent of these addiction-like behaviors depends on the intensity, duration, frequency, and intermittency of the confrontation episodes. This chapter describes four types of social defeat stress: acute, repeated, intermittent, and chronic. Specifically, it focuses on social defeat stress models used in laboratories to study individual, sex, and animal strain differences in addiction-like behaviors.
Collapse
Affiliation(s)
- Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, Meharry Medical College, Nashville, TN, United States.
| |
Collapse
|
95
|
Evaluation of the rewarding properties of nicotine and caffeine by implementation of a five-choice conditioned place preference task in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:160-172. [PMID: 29481898 DOI: 10.1016/j.pnpbp.2018.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/25/2018] [Accepted: 02/02/2018] [Indexed: 12/22/2022]
Abstract
The rewarding properties of drugs in zebrafish can be studied using the conditioned place preference (CPP) paradigm. Most devices that have been used for CPP consist of two-half tanks with or without a central chamber. Here we evaluated the rewarding effects of nicotine and caffeine using a tank with five arms distributed radially from a central chamber that we have denoted Fish Tank Radial Maze (FTRM). Zebrafish were trained to associate nicotine or caffeine with a coloured arm. In testing sessions to assess CPP induction, between two and five different arms were available to explore. We found that when offering the two arms, one of them associated to the drug mediating conditioning for 14 days, zebrafish showed nicotine-induced CPP but not caffeine-induced CPP. When zebrafish had the option to explore drug-paired arms together with new coloured arms as putative distractors, the nicotine-CPP strength was maintained for at least three days. The presence of novel environments induced caffeine-CPP, which was still positive after three days of testing sessions. Complementary behavioural data supported these findings. Nicotine-CPP was prevented by the histone deacetylase inhibitor phenylbutyrate administered during conditioning; however, there were no effects on caffeine-CPP. The specific acetylation of lysine 9 in histone 3 (H3-K9) was increased in nicotine-conditioned zebrafish brains. This study suggests that novel environmental cues facilitate drug-environment associations, and hence, the use of drugs of abuse.
Collapse
|
96
|
Jayanthi S, Gonzalez B, McCoy MT, Ladenheim B, Bisagno V, Cadet JL. Methamphetamine Induces TET1- and TET3-Dependent DNA Hydroxymethylation of Crh and Avp Genes in the Rat Nucleus Accumbens. Mol Neurobiol 2018; 55:5154-5166. [PMID: 28842817 PMCID: PMC5948251 DOI: 10.1007/s12035-017-0750-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/15/2017] [Indexed: 12/30/2022]
Abstract
Methamphetamine (METH) addiction is a biopsychosocial disorder that is accompanied by multiple relapses even after prolonged abstinence, suggesting the possibilities of long-lasting maladaptive epigenetic changes in the brain. Here, we show that METH administration produced time-dependent increases in the expression of corticotropin-releasing hormone (Crh/Crf), arginine vasopressin (Avp), and cocaine- and amphetamine-regulated transcript prepropeptide (Cartpt) mRNAs in the rat nucleus accumbens (NAc). Chromatin immunoprecipitation (ChIP) assays revealed that METH increased the abundance of phosphorylated CREB (pCREB) at the promoter of Cartpt but not at Avp or Crh DNA sequences. In contrast, METH produced DNA hypomethylation at sites near the Crh transcription start site (TSS) and at intragenic Avp sequences. METH also increased DNA hydroxymethylation at the Crh TSS and at intragenic Avp sites. In addition, METH increased the protein expression of ten-eleven-translocation enzymes that catalyze DNA hydroxymethylation. Importantly, METH increased TET1 binding at the Crh promoter and increased TET3 binding at Avp intragenic regions. We further tested the role of TET enzymes in METH-induced changes in gene expression by using the TET inhibitor, 1,5-isoquinolinediol (IQD), and found that IQD blocked METH-induced increases in Crh and Avp mRNA expression. Together, these results indicate that METH produced changes in neuropeptide transcription by both activation of the cAMP/CREB pathway and stimulation of TET-dependent DNA hydroxymethylation. These results provide molecular evidence for epigenetic controls of METH-induced changes in the expression of neuropeptides.
Collapse
Affiliation(s)
- Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, USA
| | - Betina Gonzalez
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Michael T McCoy
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, USA
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, USA
| | - Veronica Bisagno
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, USA.
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA IRP, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
97
|
Kai Y, Li Y, Sun T, Yin W, Mao Y, Li J, Xie W, Chen S, Wang L, Li J, Zhang Z, Tao W. A medial prefrontal cortex-nucleus acumens corticotropin-releasing factor circuitry for neuropathic pain-increased susceptibility to opioid reward. Transl Psychiatry 2018; 8:100. [PMID: 29780165 PMCID: PMC5960646 DOI: 10.1038/s41398-018-0152-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have shown that persistent pain facilitates the response to morphine reward. However, the circuit mechanism underlying this process remains ambiguous. In this study, using chronic constriction injury (CCI) of the sciatic nerve in mice, we found that persistent neuropathic pain reduced the minimum number of morphine conditioning sessions required to induce conditioned place preference (CPP) behavior. This dose of morphine had no effect on the pain threshold. In the medial prefrontal cortex (mPFC), which is involved in both pain and emotion processing, corticotropin-releasing factor (CRF) expressing neuronal activity was increased in CCI mice. Chemogenetic inhibition of mPFC CRF neurons reversed CCI-induced morphine CPP facilitation. Furthermore, the nucleus acumens (NAc) received mPFC CRF functional projections that exerted excitatory effects on NAc neurons. Optogenetic inhibition of mPCF neuronal terminals or local infusion of the CRF receptor 1 (CRFR1) antagonist in the NAc restored the effects of neuropathic pain on morphine-induced CPP behavior, but not in normal mice. On a molecular level, in CCI mice, CRFR1 protein expression was increased in the NAc by a histone dimethyltransferase G9a-mediated epigenetic mechanism. Local G9a knockdown increased the expression of CRFR1 and mimicked CCI-induced hypersensitivity to acquiring morphine CPP. Taken together, these findings demonstrate a previously unknown and specific mPFC CRF engagement of NAc neuronal circuits, the sensitization of which facilitates behavioral responses to morphine reward in neuropathic pain states via CRFR1s.
Collapse
Affiliation(s)
- Yuanzhong Kai
- 0000000121679639grid.59053.3aKey Laboratory of Brain Function and Disease of Chinese Academy of Science, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, 230027 China ,0000 0001 0085 4987grid.252245.6Institute of Health Sciences and technology, School of Life Sciences, Anhui University, Hefei, Anhui 2300601 China
| | - Yanhua Li
- 0000000121679639grid.59053.3aKey Laboratory of Brain Function and Disease of Chinese Academy of Science, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, 230027 China
| | - Tingting Sun
- 0000000121679639grid.59053.3aKey Laboratory of Brain Function and Disease of Chinese Academy of Science, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, 230027 China
| | - Weiwei Yin
- 0000000121679639grid.59053.3aKey Laboratory of Brain Function and Disease of Chinese Academy of Science, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, 230027 China
| | - Yu Mao
- 0000000121679639grid.59053.3aKey Laboratory of Brain Function and Disease of Chinese Academy of Science, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, 230027 China ,0000 0004 1771 3402grid.412679.fDepartment of Anesthesiology and Department of Pain Management, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022 China
| | - Jie Li
- 0000000121679639grid.59053.3aKey Laboratory of Brain Function and Disease of Chinese Academy of Science, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, 230027 China
| | - Wen Xie
- grid.452190.bDepartment of Psychology, Anhui Mental Health Center, Hefei, Anhui 230022 China
| | - Shi Chen
- 0000 0004 1771 3402grid.412679.fDepartment of Anesthesiology and Department of Pain Management, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022 China
| | - Likui Wang
- 0000 0004 1771 3402grid.412679.fDepartment of Anesthesiology and Department of Pain Management, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022 China
| | - Juan Li
- 0000000121679639grid.59053.3aKey Laboratory of Brain Function and Disease of Chinese Academy of Science, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, 230027 China
| | - Zhi Zhang
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, 230027, China.
| | - Wenjuan Tao
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
98
|
Boutros N, Der-Avakian A, Kesby JP, Lee S, Markou A, Semenova S. Effects of adolescent alcohol exposure on stress-induced reward deficits, brain CRF, monoamines and glutamate in adult rats. Psychopharmacology (Berl) 2018; 235:737-747. [PMID: 29181815 DOI: 10.1007/s00213-017-4789-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 11/13/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Adolescent alcohol exposure may increase depression vulnerability in adulthood by increasing the anhedonic response to stress. METHODS Male Wistar rats (postnatal days 28-53) were exposed to binge-like adolescent intermittent ethanol (AIE) or water. In adulthood, rats were exposed to social defeat, consisting of daily confrontations with an aggressive conspecific, followed by testing of brain reward function in a discrete-trial current-intensity intracranial self-stimulation procedure for 10 consecutive days. Neurochemistry and corticotropin-releasing factor (CRF) and CRF receptor 1 (CRFR1) mRNA levels were assessed in corticolimbic brain areas on day 11 of social defeat stress. RESULTS Social defeat elevated reward thresholds in both AIE- and water-exposed rats indicating stress-induced anhedonia. However, AIE-exposed rats were more likely to show threshold elevations after repeated stress compared to water-exposed rats. AIE exposure decreased CRF mRNA levels in the nucleus accumbens and increased CRFR1 mRNA levels in the prefrontal cortex, while stress increased CRF mRNA levels in the central amygdala. In the caudate putamen, AIE exposure decreased dopamine turnover, while stress increased glutamate and serotonin metabolism and turnover. CONCLUSIONS These results demonstrate increased risk of repeated stress-induced anhedonia after AIE exposure, an effect that may be due to alterations in brain CRF and dopamine systems. These results suggest that the increased rates of depression reported in people with a history of adolescent alcohol exposure may be related to alterations in brain reward and stress systems that may contribute to increased stress-induced anhedonia.
Collapse
Affiliation(s)
| | | | - James P Kesby
- University of California San Diego, La Jolla, CA, USA.,Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland, Australia
| | - Soon Lee
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Athina Markou
- University of California San Diego, La Jolla, CA, USA
| | - Svetlana Semenova
- University of California San Diego, La Jolla, CA, USA. .,PAREXEL International, 1560 E Chevy Chase Dr, Glendale, CA, 91206, USA.
| |
Collapse
|
99
|
Pexacerfont as a CRF1 antagonist for the treatment of withdrawal symptoms in men with heroin/methamphetamine dependence: a randomized, double-blind, placebo-controlled clinical trial. Int Clin Psychopharmacol 2018; 33:111-119. [PMID: 29064909 DOI: 10.1097/yic.0000000000000200] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We assessed the efficacy of pexacerfont, a CRF1 antagonist, for the treatment of withdrawal symptoms. In this randomized, double-blind, placebo-controlled clinical trial, male patients with amphetamine or opioid dependence, on the basis of the Diagnostic and Statistical Manual of Mental Disorders, 4th ed., Text Revision (DSM-IV-TR), in the age range 18-55 years, received either pexacerfont or placebo (300, 200, and 100 mg/day in the first, second, and third week, respectively). No antidepressants, behavioral interventions, or substitution therapy were administered. Candidates were excluded if they had DSM-IV-TR axis I or II disorders (other than depressive/anxiety disorders). The primary outcomes were difference in the distribution of positive urine test results for heroin and methamphetamine at the end of the trial, and the mean difference in the change in the Visual Analog Scale (VAS) score for craving from the baseline to the endpoint between the two groups. No significant difference was detected for urine test results, but a significant difference was observed for craving scores. Also, significant time×treatment interactions were found for all the scales including VAS craving, VAS temptation severity, frequency of temptation, Clinical Opiate Withdrawal Scale, Amphetamine Withdrawal Questionnaire, Beck Anxiety Inventory, and Beck Depression Inventory II. Our findings favor pexacerfont as a potential treatment for withdrawal from drug dependence; however, further comprehensive studies are warranted.
Collapse
|
100
|
Ferrer-Pérez C, Reguilón MD, Manzanedo C, Aguilar MA, Miñarro J, Rodríguez-Arias M. Antagonism of corticotropin-releasing factor CRF 1 receptors blocks the enhanced response to cocaine after social stress. Eur J Pharmacol 2018; 823:87-95. [PMID: 29391155 DOI: 10.1016/j.ejphar.2018.01.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 01/07/2023]
Abstract
Numerous studies have shown that social defeat stress induces an increase in the rewarding effects of cocaine. In this study we have investigated the role played by the main hypothalamic stress hormone, corticotropin-releasing factor (CRF), in the effects that repeated social defeat (RSD) induces in the conditioned rewarding effects and locomotor sensitization induced by cocaine. A total of 220 OF1 mice were divided into experimental groups according to the treatment received before each social defeat: saline, 5 or 10 mg/kg of the nonpeptidic corticotropin-releasing factor CRF1 receptor antagonist CP-154,526, or 15 or 30 µg/kg of the peptidic corticotropin-releasing factor CRF2 receptor antagonist Astressin2-B. Three weeks after the last defeat, conditioned place preference (CPP) induced by 1 mg/kg of cocaine was evaluated. Motor response to 10 mg/kg of cocaine was also studied after a sensitization induction. Blockade of corticotropin-releasing factor CRF1 receptor reversed the increase in cocaine CPP induced by social defeat. Conversely, peripheral corticotropin-releasing factor CRF2 receptor blockade produced similar effects to those observed in socially stressed animals. The effect of RSD on cocaine sensitization was again blocked by the corticotropin-releasing factor CRF1 receptor antagonist, while peripheral CRF2 receptor antagonist did not show effect. Acute administration of Astressin2-B induced an anxiogenic response. Our results confirm that CRF modulates the effects of social stress on reinforcement and sensitization induced by cocaine in contrasting ways. These findings highlight CRF receptors as potential therapeutic targets to be explored by research about stress-related addiction problems.
Collapse
Affiliation(s)
- Carmen Ferrer-Pérez
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Marina D Reguilón
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Carmen Manzanedo
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - M Asunción Aguilar
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - José Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain.
| |
Collapse
|