51
|
Zhang W, Wang L, Yu X, Jia A, Ming J, Ji Q. RFamide-related peptide-3 promotes alpha TC1 clone 6 cell survival likely via GPR147. Peptides 2018; 107:39-44. [PMID: 30081043 DOI: 10.1016/j.peptides.2018.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/08/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is closely related to islet alpha cell mass and viability. Several types of RFamide-related peptides (RFRPs) are involved in regulating proliferation and function of islet cells. However, current understanding of the role of RFamide-related peptide-3 (RFRP-3) in pancreatic alpha cells is limited. Therefore, we investigated the expression of the RFRP-3 receptor, G protein-coupled receptor 147 (GPR147), in mouse islets and alpha TC1 clone 6 cells, and evaluated the function of RFRP-3 on alpha cells. We show that GPR147 is expressed in mouse islets and alpha cell lines. In addition, RFRP-3 promotes survival of alpha cells under conditions of hyperglycemia and serum starvation. Mechanistic evidence demonstrates that RFRP-3 activated PI3K/AKT and ERK1/2 signaling cascades and treatment with an antagonist of GPR147, 1-adamantanecarbonyl-Arg-Phe-NH₂ (RF9) blocked this function. These findings indicate a novel effect of RFRP-3 in promoting alpha cell survival, likely via GPR147.
Collapse
Affiliation(s)
- Wencheng Zhang
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, 169 Changle Road West, 710032, China
| | - Li Wang
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, 169 Changle Road West, 710032, China
| | - Xinwen Yu
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, 169 Changle Road West, 710032, China
| | - Aihua Jia
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, 169 Changle Road West, 710032, China
| | - Jie Ming
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, 169 Changle Road West, 710032, China
| | - Qiuhe Ji
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, 169 Changle Road West, 710032, China.
| |
Collapse
|
52
|
Tsutsui K, Osugi T, Son YL, Ubuka T. Review: Structure, function and evolution of GnIH. Gen Comp Endocrinol 2018; 264:48-57. [PMID: 28754274 DOI: 10.1016/j.ygcen.2017.07.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/27/2022]
Abstract
Neuropeptides that possess the Arg-Phe-NH2 motif at their C-termini (i.e., RFamide peptides) have been characterized in the nervous system of both invertebrates and vertebrates. In vertebrates, RFamide peptides make a family and consist of the groups of gonadotropin-inhibitory hormone (GnIH), neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), kisspeptin (kiss1 and kiss2), and pyroglutamylated RFamide peptide/26RFamide peptide (QRFP/26RFa). It now appears that these vertebrate RFamide peptides exert important neuroendocrine, behavioral, sensory, and autonomic functions. In 2000, GnIH was discovered as a novel hypothalamic RFamide peptide inhibiting gonadotropin release in quail. Subsequent studies have demonstrated that GnIH acts on the brain and pituitary to modulate reproductive physiology and behavior across vertebrates. To clarify the origin and evolution of GnIH, the existence of GnIH was investigated in agnathans, the most ancient lineage of vertebrates, and basal chordates, such as tunicates and cephalochordates (represented by amphioxus). This review first summarizes the structure and function of GnIH and other RFamide peptides, in particular NPFF having a similar C-terminal structure of GnIH, in vertebrates. Then, this review describes the evolutionary origin of GnIH based on the studies in agnathans and basal chordates.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto 619-0284, Japan
| | - You Lee Son
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| | - Takayoshi Ubuka
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia
| |
Collapse
|
53
|
Williams CT, Klaassen M, Barnes BM, Buck CL, Arnold W, Giroud S, Vetter SG, Ruf T. Seasonal reproductive tactics: annual timing and the capital-to-income breeder continuum. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0250. [PMID: 28993494 DOI: 10.1098/rstb.2016.0250] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 12/11/2022] Open
Abstract
Tactics of resource use for reproduction are an important feature of life-history strategies. A distinction is made between 'capital' breeders, which finance reproduction using stored energy, and 'income' breeders, which pay for reproduction using concurrent energy intake. In reality, vertebrates use a continuum of capital-to-income tactics, and, for many species, the allocation of capital towards reproduction is a plastic trait. Here, we review how trophic interactions and the timing of life-history events are influenced by tactics of resource use in birds and mammals. We first examine how plasticity in the allocation of capital towards reproduction is linked to phenological flexibility via interactions between endocrine/neuroendocrine control systems and the sensory circuits that detect changes in endogenous state, and environmental cues. We then describe the ecological drivers of reproductive timing in species that vary in the degree to which they finance reproduction using capital. Capital can be used either as a mechanism to facilitate temporal synchrony between energy supply and demand or as a means of lessening the need for synchrony. Within many species, an individual's ability to cope with environmental change may be more tightly linked to plasticity in resource allocation than to absolute position on the capital-to-income breeder continuum.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
- Cory T Williams
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, Victoria 3216, Australia
| | - Brian M Barnes
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - C Loren Buck
- Center for Bioengineering Innovation & Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Walter Arnold
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Sebastian G Vetter
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Thomas Ruf
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| |
Collapse
|
54
|
Liu L, Chen Y, Wang D, Li N, Guo C, Liu X. Cloning and expression characterization in hypothalamic Dio2/3 under a natural photoperiod in the domesticated Brandt's vole (Lasiopodomys brandtii). Gen Comp Endocrinol 2018; 259:45-53. [PMID: 29154946 DOI: 10.1016/j.ygcen.2017.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 10/18/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
The Dio2/3 gene is related to the photoperiodic response in mammals and plays an important role in the development of gonadal organs and seasonal breeding. Our previous studies have reported synchronous variations in the gonadal mass and photoperiodical transition around the summer solstice in a wild Brandt's vole population, a species with striking seasonal breeding. To investigate the role of the Dio2/3 gene in the control of seasonal breeding in this species, we cloned and characterized its expression levels by high-throughput Real-Time PCR during the period around the summer solstice. We selected a domesticated strain to ensure similar development of samples. The synchronous variation pattern between the Dio2/3 expression levels and gonadal mass around the summer solstice supports the prediction that the Dio2/3 gene plays an important role in the seasonal transition in this species. We suggest that the observed photoperiod response may be triggered by differences in the day length rather than the absolute daylength in this species. However, the similar Dio2/3 gene expression patterns but inconsistent gonadal mass patterns between the domesticated strain and the wild strain in the samples collected on Sep 8th, an absolute nonbreeding stage in the wild, lead us to speculate that the core function of the Dio2/3 gene should be restricted in response to the photoperiod rather than factors directly regulating gonadal development, and this laboratory strain could be used as an animal model to test the mechanism of environmental adaptation.
Collapse
Affiliation(s)
- Lan Liu
- College of Life Science, Sichuan University, Sichuan, China; Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Chen
- College of Life Science, Sichuan University, Sichuan, China; Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dawei Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cong Guo
- College of Life Science, Sichuan University, Sichuan, China.
| | - Xiaohui Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
55
|
viviD D, Bentley GE. Seasonal Reproduction in Vertebrates: Melatonin Synthesis, Binding, and Functionality Using Tinbergen's Four Questions. Molecules 2018; 23:E652. [PMID: 29534047 PMCID: PMC6017951 DOI: 10.3390/molecules23030652] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022] Open
Abstract
One of the many functions of melatonin in vertebrates is seasonal reproductive timing. Longer nights in winter correspond to an extended duration of melatonin secretion. The purpose of this review is to discuss melatonin synthesis, receptor subtypes, and function in the context of seasonality across vertebrates. We conclude with Tinbergen's Four Questions to create a comparative framework for future melatonin research in the context of seasonal reproduction.
Collapse
Affiliation(s)
- Dax viviD
- Berkeley Department of Integrative Biology, University of California, Berkeley, CA 94720, USA.
| | - George E Bentley
- Berkeley Department of Integrative Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
56
|
Potter H, Alenciks E, Frazier K, Porter A, Fraley GS. Immunolesion of melanopsin neurons causes gonadal regression in Pekin drakes (Anas platyrhynchos domesticus). Gen Comp Endocrinol 2018; 256:16-22. [PMID: 28782536 DOI: 10.1016/j.ygcen.2017.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/10/2017] [Accepted: 08/03/2017] [Indexed: 02/08/2023]
Abstract
Several light sensitive receptors have been described in the avian brain that are thought to regulate the reproductive axis independently from the eyes and pineal gland. Recently, our lab has described the presence of three of these photoneuroendocrine systems in the Pekin duck: opsin, opsin 5, & melanopsin. We set out to test the hypothesis that melanopsin receptive neurons are necessary to maintain seasonal reproductive status along with growth and development in the Pekin drake. To accomplish these goals we first investigated 50-week-old Pekin drakes that were housed in the aviary at Hope College under long day length (18h lights on) conditions in floor pens. To specifically lesion melanopsin-receptive neurons, 3μl of an anti-melanopsin-saporin conjugate (MSAP, 100ng/ul) was injected into the lateral ventricle (n=10). Control drakes were injected with 3μl of equimolar unconjugated anti-melanopsin and saporin (SAP, n=10). Reproductive behaviors were analyzed weekly in a test pen with adult hens and MSAP drakes showed a significant (p<0.01) reduction in reproductive behaviors after week 2. After 5weeks, drakes were euthanized and body weights were measured, and brains, pituitaries, and testes collected and stored for analyses. Mature MSAP-treated drakes had significantly (p<0.001) reduced relative teste weights compared to SAP controls. qRT-PCR analyses of hypothalamus showed a significant reduction (p<0.001) in GnRH and melanopsin mRNA levels, but not opsin 5, vertebrate ancient opsin, or opsin 2 (rhodopsin). Immunocytochemical analyses showed a significant reduction (p<0.01) in tyrosine hydroxylase-immunoreactivity in the PMM. These data suggest that although blue light alone is not able to maintain testicular function, the blue-light sensitive melanopsin activity is critical to maintain gonadal function.
Collapse
Affiliation(s)
- H Potter
- Biology Department, Hope College, Holland, MI, USA
| | - E Alenciks
- Biology Department, Hope College, Holland, MI, USA
| | - K Frazier
- Biology Department, Hope College, Holland, MI, USA
| | - A Porter
- Biology Department, Hope College, Holland, MI, USA
| | - G S Fraley
- Biology Department, Hope College, Holland, MI, USA.
| |
Collapse
|
57
|
Tsutsui K, Son YL, Kiyohara M, Miyata I. Discovery of GnIH and Its Role in Hypothyroidism-Induced Delayed Puberty. Endocrinology 2018; 159:62-68. [PMID: 28938445 DOI: 10.1210/en.2017-00300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/11/2017] [Indexed: 11/19/2022]
Abstract
It is known that hypothyroidism delays puberty in mammals. Interaction between the hypothalamo-pituitary-thyroid (HPT) and hypothalamo-pituitary-gonadal (HPG) axes may be important processes in delayed puberty. Gonadotropin-inhibitory hormone (GnIH) is a newly discovered hypothalamic neuropeptide that inhibits gonadotropin synthesis and release in quail. It now appears that GnIH is conserved across various mammals and primates, including humans, and inhibits reproduction. We have further demonstrated that GnIH is involved in pubertal delay induced by thyroid dysfunction in female mice. Hypothyroidism delays pubertal onset with the increase in hypothalamic GnIH expression and the decrease in circulating gonadotropin and estradiol levels. Thyroid status regulates GnIH expression by epigenetic modification of the GnIH promoter region. Furthermore, knockout of GnIH gene abolishes the effect of hypothyroidism on delayed pubertal onset. Accordingly, it is considered that GnIH is a mediator of pubertal disorder induced by thyroid dysfunction. This is a novel function of GnIH that interacts between the HPT-HPG axes in pubertal onset delay. This mini-review summarizes the structure, expression, and function of GnIH and highlights the action of GnIH in pubertal disorder induced by thyroid dysfunction.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Shinjuku-ku, Tokyo, Japan
- Center for Medical Life Science of Waseda University, Shinjuku-ku, Tokyo, Japan
| | - You Lee Son
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Shinjuku-ku, Tokyo, Japan
- Center for Medical Life Science of Waseda University, Shinjuku-ku, Tokyo, Japan
- Laboratory of Photobiology, Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Mika Kiyohara
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Shinjuku-ku, Tokyo, Japan
- Center for Medical Life Science of Waseda University, Shinjuku-ku, Tokyo, Japan
- Department of Pediatrics, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Ichiro Miyata
- Department of Pediatrics, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| |
Collapse
|
58
|
Schneider JE, Deviche P. Molecular and Neuroendocrine Approaches to Understanding Trade-offs: Food, Sex, Aggression, Stress, and Longevity-An Introduction to the Symposium. Integr Comp Biol 2017; 57:1151-1160. [PMID: 28992053 PMCID: PMC5886330 DOI: 10.1093/icb/icx113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Life history strategies are composed of multiple fitness components, each of which incurs costs and benefits. Consequently, organisms cannot maximize all fitness components simultaneously. This situation results in a dynamic array of trade-offs in which some fitness traits prevail at the expense of others, often depending on context. The identification of specific constraints and trade-offs has helped elucidate physiological mechanisms that underlie variation in behavioral and physiological life history strategies. There is general recognition that trade-offs are made at the individual and population level, but much remains to be learned concerning the molecular neuroendocrine mechanisms that underlie trade-offs. For example, we still do not know whether the mechanisms that underlie trade-offs at the individual level relate to trade-offs at the population level. To advance our understanding of trade-offs, we organized a group of speakers who study neuroendocrine mechanisms at the interface of traits that are not maximized simultaneously. Speakers were invited to represent research from a wide range of taxa including invertebrates (e.g., worms and insects), fish, nonavian reptiles, birds, and mammals. Three general themes emerged. First, the study of trade-offs requires that we investigate traditional endocrine mechanisms that include hormones, neuropeptides, and their receptors, and in addition, other chemical messengers not traditionally included in endocrinology. The latter group includes growth factors, metabolic intermediates, and molecules of the immune system. Second, the nomenclature and theory of neuroscience that has dominated the study of behavior is being re-evaluated in the face of evidence for the peripheral actions of so-called neuropeptides and neurotransmitters and the behavioral repercussions of these actions. Finally, environmental and ecological contexts continue to be critical in unmasking molecular mechanisms that are hidden when study animals are housed in enclosed spaces, with unlimited food, without competitors or conspecifics, and in constant ambient conditions.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | - Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ 85287–4501, USA
| |
Collapse
|
59
|
Schneider JE, Benton NA, Russo KA, Klingerman CM, Williams WP, Simberlund J, Abdulhay A, Brozek JM, Kriegsfeld LJ. RFamide-related Peptide-3 and the Trade-off between Reproductive and Ingestive Behavior. Integr Comp Biol 2017; 57:1225-1239. [PMID: 28985338 PMCID: PMC5886337 DOI: 10.1093/icb/icx097] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ingestive and sex behaviors are important for individual survival and reproductive success, but when environmental energy availability is limited, individuals of many different species make a trade-off, forfeiting sex for ingestive behavior. For example, food-deprived female Syrian hamsters (Mesocricetus auratus) forego vaginal scent marking and lordosis (sex behaviors) in favor of foraging, hoarding, and eating food (ingestive behavior). Reproductive processes tend to be energetically costly, and individual survival requires homeostasis in metabolic energy. Thus, during energetic challenges, the chances of survival are enhanced by decreasing the energy expended on reproductive processes. The entire hypothalamic-pituitary-gonadal (HPG) system is inhibited by severe energetic challenges, but comparatively little is known about the effects of mild energetic challenges. We hypothesized that (1) a trade-off is made between sex and ingestive behavior even when the level of food restriction is insufficient to inhibit the HPG system; (2) mild energetic challenges force a trade-off between appetitive ingestive and sex behaviors, but not consummatory versions of the same behaviors; and (3) the trade-off is orchestrated by ovarian steroid modulation of RFamide-related peptide 3 (RFRP-3). In other species, RFRP-3, an ortholog of avian gonadotropin-inhibitory hormone, is implicated in control of behavior in response to energetic challenges and stressful stimuli. In support of our three hypotheses, there is a "dose-response" effect of food restriction and re-feeding on the activation of RFRP-3-immunoreactive cells in the dorsomedial hypothalamus and on appetitive behaviors (food hoarding and sexual motivation), but not on consummatory behaviors (food intake and lordosis), with no significant effect on circulating levels of estradiol or progesterone. The effect of food restriction on the activation of RFRP-3 cells is modulated at the time of estrus in gonadally-intact females and in ovariectomized females treated with progesterone alone or with estradiol plus progesterone. Intracerebral treatment with RFRP-3 results in significant decreases in sexual motivation and results in significant but small increases in food hoarding in hamsters fed ad libitum. These and other results are consistent with the idea that ovarian steroids and RFRP-3 are part of a system that orchestrates trade-offs in appetitive behaviors in environments where energy availability fluctuates.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Noah A Benton
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Kim A Russo
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Candice M Klingerman
- Department of Biological and Allied Health Sciences, Bloomsburg University, Bloomsburg, PA 17815, USA
| | - Wilbur P Williams
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Jessica Simberlund
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Amir Abdulhay
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Jeremy M Brozek
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Lance J Kriegsfeld
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
60
|
Lee DA, Andreev A, Truong TV, Chen A, Hill AJ, Oikonomou G, Pham U, Hong YK, Tran S, Glass L, Sapin V, Engle J, Fraser SE, Prober DA. Genetic and neuronal regulation of sleep by neuropeptide VF. eLife 2017; 6:25727. [PMID: 29106375 PMCID: PMC5705210 DOI: 10.7554/elife.25727] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 11/03/2017] [Indexed: 12/25/2022] Open
Abstract
Sleep is an essential and phylogenetically conserved behavioral state, but it remains unclear to what extent genes identified in invertebrates also regulate vertebrate sleep. RFamide-related neuropeptides have been shown to promote invertebrate sleep, and here we report that the vertebrate hypothalamic RFamide neuropeptide VF (NPVF) regulates sleep in the zebrafish, a diurnal vertebrate. We found that NPVF signaling and npvf-expressing neurons are both necessary and sufficient to promote sleep, that mature peptides derived from the NPVF preproprotein promote sleep in a synergistic manner, and that stimulation of npvf-expressing neurons induces neuronal activity levels consistent with normal sleep. These results identify NPVF signaling and npvf-expressing neurons as a novel vertebrate sleep-promoting system and suggest that RFamide neuropeptides participate in an ancient and central aspect of sleep control.
Collapse
Affiliation(s)
- Daniel A Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Andrey Andreev
- Department of Bioengineering, University of Southern California, Los Angeles, United States
| | - Thai V Truong
- Translational Imaging Center, University of Southern California, Los Angeles, United States
| | - Audrey Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Andrew J Hill
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Grigorios Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Uyen Pham
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Young K Hong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Steven Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Laura Glass
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Viveca Sapin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Jae Engle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Scott E Fraser
- Department of Bioengineering, University of Southern California, Los Angeles, United States.,Translational Imaging Center, University of Southern California, Los Angeles, United States
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
61
|
Banerjee S, Chaturvedi CM. Apoptotic mechanism behind the testicular atrophy in photorefractory and scotosensitive quail: Involvement of GnIH induced p-53 dependent Bax-Caspase-3 mediated pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 176:124-135. [DOI: 10.1016/j.jphotobiol.2017.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 12/17/2022]
|
62
|
Testicular atrophy and reproductive quiescence in photorefractory and scotosensitive quail: Involvement of hypothalamic deep brain photoreceptors and GnRH-GnIH system. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:254-268. [DOI: 10.1016/j.jphotobiol.2017.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 02/04/2023]
|
63
|
Wang J, Wang Y, Zhu M, Zhang F, Sheng X, Zhang H, Han Y, Yuan Z, Weng Q. Seasonal expression of luteinizing hormone receptor and follicle stimulating hormone receptor in testes of the wild ground squirrels (Citellus dauricus Brandt). Acta Histochem 2017; 119:727-732. [PMID: 28912046 DOI: 10.1016/j.acthis.2017.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 11/25/2022]
Abstract
The objective of this study was to evaluate whether luteinizing hormone (LH), follicle stimulating hormone (FSH) and their receptors luteinizing hormone receptor (LHR) and follicle stimulating hormone receptor (FSHR) play roles in the seasonal spermatogenesis of the wild ground squirrels. To that end, we characterized the testicular immunolocalization of LHR and FSHR, their expression on both mRNA and protein levels, as well as serum concentrations of LH and FSH in male wild ground squirrels throughout the annual reproductive cycle. Histologically, all types of spermatogenic cells including mature spermatozoa were identified in the breeding season (April), while spermatogonia and primary spermatocytes were observed in the non-breeding season (June), and spermatogonia, primary spermatocytes and secondary spermatocytes were found in pre-hibernation (September). LHR was present in Leydig cells during the whole periods with more intense staining in the breeding season; Stronger immunostaining of FSHR was observed in Sertoli cells during the breeding season compared to the non-breeding season and pre-hibernation. Consistently, the mRNA and protein levels of LHR and FSHR were higher in testes of the breeding season, and then decreased to a relatively lower level in the non-breeding season and pre-hibernation. Meanwhile, serum LH and FSH concentrations were significantly higher in the breeding season than those in the non-breeding season and pre-hibernation. These results suggested that gonadotropins and its receptors, LHR and FSHR may be involved in the regulation of seasonal changes in testicular functions of the wild ground squirrels.
Collapse
|
64
|
Rasri-Klosen K, Simonneaux V, Klosen P. Differential response patterns of kisspeptin and RFamide-related peptide to photoperiod and sex steroid feedback in the Djungarian hamster (Phodopus sungorus). J Neuroendocrinol 2017; 29. [PMID: 28834570 DOI: 10.1111/jne.12529] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/05/2017] [Accepted: 08/20/2017] [Indexed: 12/16/2022]
Abstract
Many animals synchronise their reproductive activity with the seasons to optimise the survival of their offspring. This synchronisation involves switching on and off their gonadotrophic axis. Ever since their discovery as key regulators of gonadotrophin-releasing hormone (GnRH) neurones, the hypothalamic RF-amide peptides kisspeptin and RFamide-related peptide (RFRP) have been a major focus of research on the seasonal regulation of the gonadotrophic axis. In the present study, we investigated the regulation of both neuropeptides in the Djungarian hamster, a major animal model for the study of seasonal reproduction. During the long-day breeding period, kisspeptin neurones in the anteroventral periventricular area are solely controlled by a positive sex steroid feedback and, in the arcuate nucleus, they are subject to a very strong negative sex steroid feedback associated with a minor photoperiodic effect. During short-day sexual quiescence, the disappearance of this hormonal feedback leads to high levels of kisspeptin in arcuate neurones. Notably, chronic central administration of kisspeptin is able to over-ride the photoperiodic inhibition of the gonadotrophic axis and reactivate the reproductive function. Therefore, our data suggest that kisspeptin secretion by arcuate neurones during sexual quiescence is inhibited by mechanisms upstream of kisspeptin neurones. RFRP expression is solely controlled by photoperiod, being strongly reduced in short days independently of the sex steroid feedback. Thus, kisspeptin and RFRP display contrasting patterns of expression and regulation. Upstream mechanisms controlling these neurones should be the focus of further studies on the roles of these RFamide neuropeptides in the seasonal control of reproduction.
Collapse
Affiliation(s)
- K Rasri-Klosen
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, Strasbourg Cedex, France
- Faculty of Medicine, Department of Pre-Clinical Science, Thammasart University, Rangsit Campus, Pathumthani, Thailand
| | - V Simonneaux
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, Strasbourg Cedex, France
| | - P Klosen
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, Strasbourg Cedex, France
| |
Collapse
|
65
|
Benton NA, Russo KA, Brozek JM, Andrews RJ, Kim VJ, Kriegsfeld LJ, Schneider JE. Food restriction-induced changes in motivation differ with stages of the estrous cycle and are closely linked to RFamide-related peptide-3 but not kisspeptin in Syrian hamsters. Physiol Behav 2017. [PMID: 28624479 DOI: 10.1016/j.physbeh.2017.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We tested the hypothesis that the effects of food restriction on behavioral motivation are mediated by one or both of the RFamide peptides, RFamide-related peptide-3 (RFRP-3) and kisspeptin (Kp) in female Syrian hamsters (Mesocricetus auratus). Female hamsters fed ad libitum and given a choice between food and adult male hamsters are highly motivated to visit males instead of food on all four days of the estrous cycle, but after 8days of mild food restriction (75% of ad libitum intake) they shift their preference toward food every day of the estrous cycle until the day of estrus, when they shift their preference back toward the males. In support of a role for RFRP-3 in these behavioral changes, the preference for food and the activation of RFRP-3-immunoreactive (Ir) cells in the dorsomedial hypothalamus (DMH) showed the same estrous cycle pattern in food-restricted females, but no association was observed between behavior and the activation of Kp cells in the hypothalamic arcuate nucleus or preoptic area. Next, we tested the hypothesis that food-restriction-induced activation of RFRP-3-Ir cells is modulated by high levels of ovarian steroids at the time of estrus. In support of this idea, on nonestrous days, mild food restriction increased activation of RFRP-3-Ir cells, but failed to do so on the day of estrus even though this level of food restriction did not significantly decrease circulating concentrations of estradiol or progesterone. Furthermore, in ovariectomized females, food-restriction-induced increases in activation of RFRP-3-Ir cells were blocked by systemic treatment with progesterone alone, estradiol plus progesterone, but not estradiol alone. Central infusion with RFRP-3 in ad libitum-fed females significantly decreased sexual motivation and produced significant increases in 90-minute food hoarding, in support of the hypothesis that elevated central levels of RFRP-3 are sufficient to create the shift in behavioral motivation in females fed ad libitum. Together, these results are consistent with the hypothesis that high levels of ingestive motivation are promoted during the nonfertile phase of the estrous cycle by elevated activation of RFRP-3-Ir cells, and RFRP-3-Ir cellular activation is modulated by ovarian steroids around the time of estrus, thereby diverting attention away from food and increasing sexual motivation.
Collapse
Affiliation(s)
- Noah A Benton
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, United States
| | - Kim A Russo
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Jeremy M Brozek
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, United States
| | - Ryan J Andrews
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Veronica J Kim
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Lance J Kriegsfeld
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Jill E Schneider
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, United States.
| |
Collapse
|
66
|
Dai X, Shi J, Han M, Wang AQ, Wei WH, Yang SM. Effect of photoperiod and 6-methoxybenzoxazolinone (6-MBOA) on the reproduction of male Brandt's voles (Lasiopodomys brandtii). Gen Comp Endocrinol 2017; 246:1-8. [PMID: 28279674 DOI: 10.1016/j.ygcen.2017.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/12/2017] [Accepted: 03/05/2017] [Indexed: 10/20/2022]
Abstract
Plant secondary metabolite 6-methoxybenzoxazolinone (6-MBOA) has been suggested to stimulate animal reproduction. 6-MBOA is detected in Leymus chinensis, a main diet of Brandt's vole (Lasiopodomys brandtii). We have previously reported a stimulatory effect of 6-MBOA on reproduction of male Brandt's voles under a short-day photoperiod. The goal of this study was to investigate the effect of 6-MBOA on reproductive physiology of male Brandt's voles under a long-day photoperiod and examine if 6-MBOA under this photoperiodic regime altered the reproductive status of male Brandt's voles differently than the short-day photoperiod. Under the long-day photoperiod, a high dose of 6-MBOA decreased KiSS-1 mRNA in the arcuate nucleus (ARC), and we also saw a decrease in circulating levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone (T). Steroidogenic acute regulatory protein (StAR) and cytochrome P45011a1 (CYP11a1) in the testes, and relative testis weight also decreased with 6-MBOA administration. Compared to the short-day photoperiod, animals under the long-day photoperiod exhibited increased body weight as well as all other reproductive parameters. Our results showed that 6-MBOA inhibited the reproduction of male Brandt's vole under a long-day photoperiod, a stark contrast from its stimulatory effects under a short-day photoperiod. The paradoxical effects of 6-MBOA suggest it may act as a partial agonist of melatonin. These results provide insight into the complex interactions between environmental factors such as photoperiod and diet in the control of Brandt's vole reproduction.
Collapse
Affiliation(s)
- Xin Dai
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Jia Shi
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, PR China
| | - Mei Han
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, PR China
| | - Ai Qin Wang
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, PR China
| | - Wan Hong Wei
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Sheng Mei Yang
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
67
|
Liu PY. Assessing new peptides that may be involved in the physiological regulation of the gonadal axis in humans: gonadotrophin inhibitory hormone. Clin Endocrinol (Oxf) 2017; 86:658-659. [PMID: 28295469 DOI: 10.1111/cen.13328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Peter Y Liu
- Division of Endocrinology, Department of Medicine, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute (LA BioMed), Torrance, CA, USA
| |
Collapse
|
68
|
George JT, Hendrikse M, Veldhuis JD, Clarke IJ, Anderson RA, Millar RP. Effect of gonadotropin-inhibitory hormone on luteinizing hormone secretion in humans. Clin Endocrinol (Oxf) 2017; 86:731-738. [PMID: 28186349 DOI: 10.1111/cen.13308] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/09/2017] [Accepted: 02/03/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Gonadotropin-inhibitory hormone (GnIH, human homologue of RFRP-3) suppresses gonadotropin secretion in animal models, but its effects have not been studied in the human. OBJECTIVE We tested the hypotheses that exogenous GnIH inhibits LH secretion (i) in postmenopausal women and (ii) in men concurrently administered exogenous kisspeptin. DESIGN Following in vitro and in vivo preclinical studies to functionally characterize the GnIH peptide, a dose-finding study (human GnIH: 1·5-150 μg/kg/h, iv for 3 h) was undertaken, and 50 μg/kg/h selected for further evaluation. Five postmenopausal women were administered 50 μg/kg/h iv infusion for 3 h or vehicle on two separate days. Four men were administered kisspeptin-10 (0·3 μg/kg iv bolus) with simultaneous infusion of GnIH (50 μg/kg/h, iv for 3 h) or vehicle. PARTICIPANTS Healthy postmenopausal women (mean age 58 ± 2 years, LH: 30·8 ± 2·9 IU/l, FSH: 78·7 ± 6·4 IU/l, oestradiol: <50 pmol/l) and men (39·8 ± 2·1 years, mean total testosterone 12·1 ± 1·8 nmol/l, LH 2·2 ± 0·2 IU/l). PRIMARY OUTCOME Change in area under curve (AUC) of LH during GnIHvs vehicle. RESULTS During GnIH administration in postmenopausal women, LH secretion decreased (ΔAUC: -9·9 ± 1·8 IU/3 h) vs vehicle (ΔAUC: -0·5 ± 1·7 IU/3 h; P = 0·02). Kisspeptin-10-stimulated LH responses in men were not affected by GnIH co-administration (60-min AUC of LH 6·2 ± 0·8 IU/h with kisspeptin-10 alone, 6·3 ± 1·0 IU/h, kisspeptin-10 with GnIH, P = 0·72). Exogenous GnIH was well tolerated, with no adverse events reported. CONCLUSIONS Gonadotropin-inhibitory hormone decreased LH secretion in postmenopausal women in this first-in-human study. Kisspeptin-stimulated LH secretion in men was not inhibited during concomitant administration of GnIH.
Collapse
Affiliation(s)
- J T George
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Diabetes Trials Unit, Endocrinology and Metabolism, Oxford Centre for Diabetes, Oxford, UK
| | - M Hendrikse
- Department of Medical Biochemistry and Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - J D Veldhuis
- Endocrine Research Unit, Center for Translational Science Activities, Mayo Clinic, Rochester, MN, USA
| | - I J Clarke
- Department of Physiology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - R A Anderson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - R P Millar
- Department of Medical Biochemistry and Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Mammal Research Institute and Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
69
|
Stevenson TJ. Environmental and hormonal regulation of epigenetic enzymes in the hypothalamus. J Neuroendocrinol 2017; 29. [PMID: 28370682 DOI: 10.1111/jne.12471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/09/2017] [Accepted: 03/25/2017] [Indexed: 12/13/2022]
Abstract
Neuroendocrine structures integrate a vast range of external cues and internal signals that, in turn, result in adaptive physiological responses. Emerging data indicate that light, social cues, stress and energy balance stimulate relatively short- and long-term genomic modifications in discrete neuroendocrine structures, which are mediated by epigenetic mechanisms. Moreover, environmentally-induced fluctuations in the synthesis of local hypothalamic and circulating hormones provide an internal signal that contributes to the extensive neuroendocrine genomic plasticity. This review examines the impact of environmental stimuli and endogenous hormonal signals on the regulation of epigenetic enzymes in key neuroendocrine structures. The data discussed are predominantly derived from studies in the neuroendocrine control of seasonal reproduction and the impact of social stress in rodent models. The perspective presented considers the role of oestrogen and glucocorticoids as the primary catalysts for inducing epigenetic modifications (eg, DNA methylation) in specific neuroendocrine structures. Oestrogen and glucocorticoid actions suggest: (i) a preferential action for specific epigenetic enzymes and (ii) nucleus- and cell-specific modifications. Untangling the complex web of hormonal regulation of methylation and acetylation will enhance our understanding of short- and long-term changes in epigenetic enzymes that generate adaptive and pathological neuroendocrine responses.
Collapse
Affiliation(s)
- T J Stevenson
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
70
|
Somoano A, Ventura J, Miñarro M. Continuous breeding of fossorial water voles in northwestern Spain: potential impact on apple orchards. FOLIA ZOOLOGICA 2017. [DOI: 10.25225/fozo.v66.i1.a6.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Aitor Somoano
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Apdo. 13, E-33300 Villaviciosa, Asturias, Spain
| | - Jacint Ventura
- Universitat Autònoma de Barcelona, Facultat de Biociències, Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Marcos Miñarro
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Apdo. 13, E-33300 Villaviciosa, Asturias, Spain
| |
Collapse
|
71
|
Qi X, Zhou W, Wang Q, Guo L, Lu D, Lin H. Gonadotropin-Inhibitory Hormone, the Piscine Ortholog of LPXRFa, Participates in 17β-Estradiol Feedback in Female Goldfish Reproduction. Endocrinology 2017; 158:860-873. [PMID: 28324026 DOI: 10.1210/en.2016-1550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/27/2016] [Indexed: 02/08/2023]
Abstract
Gonadotropin-inhibitory hormone (GnIH) plays a critical role in regulating gonadotropin-releasing hormone, gonadotropin hormone, and steroidogenesis in teleosts. In the present study, we sought to determine whether 17β-estradiol (E2) acts directly on GnIH neurons to regulate reproduction in goldfish, a seasonal breeder, and we investigated the role of estrogen receptors (ERs) in mediating this process. We found that GnIH neurons coexpress three types of ERs. Ovariectomy and letrozole implantation into female goldfish at the vitellogenic stage elicited a substantial decrease in the expression of GnIH messenger RNA (mRNA), and E2 supplementation abolished this effect. In primary cultured hypothalamus cells, E2 increased GnIH mRNA levels; surprisingly, selective ERα and ERβ agonists showed opposite effects in regulating GnIH mRNA levels. Using genome walking, we isolated a 2329-bp section of the GnIH promoter sequence, and 7 half-estrogen response elements (EREs) were found in the promoter region. Luciferase assays and electrophoretic mobility shift assay results show that the half-ERE element at -2203 is the key site for competitive binding between ERα and ERβ. Ovariectomy and letrozole implantation into female goldfish in the maturating stage did not change the GnIH mRNA expression levels. Taken together, these findings suggest that E2 binds to multiple types of ERs, which competitively bind to the same half-ERE binding site of the GnIH promoter to achieve both positive and negative feedback in response to estrogen to regulate goldfish reproduction at different stages of ovarian development.
Collapse
Affiliation(s)
- Xin Qi
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wenyi Zhou
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qingqing Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Liang Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
72
|
Bailey AM, Legan SJ, Demas GE. Exogenous kisspeptin enhances seasonal reproductive function in male Siberian hamsters. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Sandra J. Legan
- Department of Physiology University of Kentucky Lexington KY USA
| | | |
Collapse
|
73
|
Cowan M, Paullada-Salmerón JA, López-Olmeda JF, Sánchez-Vázquez FJ, Muñoz-Cueto JA. Effects of pinealectomy on the neuroendocrine reproductive system and locomotor activity in male European sea bass, Dicentrarchus labrax. Comp Biochem Physiol A Mol Integr Physiol 2017; 207:1-12. [PMID: 28188883 DOI: 10.1016/j.cbpa.2017.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 12/19/2022]
Abstract
The seasonally changing photoperiod controls the timing of reproduction in most fish species, however, the transduction of this photoperiodic information to the reproductive axis is still unclear. This study explored the potential role of two candidate neuropeptide systems, gonadotropin-inhibitory hormone (Gnih) and kisspeptin, as mediators between the pineal organ (a principle transducer of photoperiodic information) and reproductive axis in male European sea bass, Dicentrarchus labrax. Two seven-day experiments of pinealectomy (Px) were performed, in March (end of reproductive season) and August (resting season). Effects of Px and season on the brain expression of gnih (sbgnih) and its receptor (sbgnihr), kisspeptins (kiss1, kiss2) and their receptors (kissr2, kissr3) and gonadotropin-releasing hormone (gnrh1, gnrh2, gnrh3) and the main brain receptor (gnrhr-II-2b) genes, plasma melatonin levels and locomotor activity rhythms were examined. Results showed that Px reduced night-time plasma melatonin levels. Gene expression analyses demonstrated a sensitivity of the Gnih system to Px in March, with a reduction in sbgnih in the mid-hindbrain, a region with bilateral connections to the pineal organ. In August, kiss2 levels increased in Px animals but not in controls. Significant differences in expression were observed for diencephalic sbgnih, sbgnihr, kissr3 and tegmental gnrh2 between seasons. Recordings of locomotor activity following surgery revealed a change from light-synchronised to free-running rhythmic behavior. Altogether, the Gnih and Kiss2 sensitivity to Px and seasonal differences observed for Gnih and its receptor, Gnrh2, and the receptor for Kiss2 (Kissr3), suggested they could be mediators involved in the relay between environment and seasonal reproduction.
Collapse
Affiliation(s)
- Mairi Cowan
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), E-11510 Puerto Real, Spain; INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, E-11510 Puerto Real, Spain.
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), E-11510 Puerto Real, Spain; INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, E-11510 Puerto Real, Spain
| | - José Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", E-30100 Murcia, Spain
| | - Francisco Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", E-30100 Murcia, Spain
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), E-11510 Puerto Real, Spain; INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, E-11510 Puerto Real, Spain.
| |
Collapse
|
74
|
Hormonal Responses to a Potential Mate in Male Birds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1001:137-149. [DOI: 10.1007/978-981-10-3975-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
75
|
Muñoz-Cueto JA, Paullada-Salmerón JA, Aliaga-Guerrero M, Cowan ME, Parhar IS, Ubuka T. A Journey through the Gonadotropin-Inhibitory Hormone System of Fish. Front Endocrinol (Lausanne) 2017; 8:285. [PMID: 29163357 PMCID: PMC5670112 DOI: 10.3389/fendo.2017.00285] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that belongs to the RFamide peptide family and was first identified in the quail brain. From the discovery of avian GnIH, orthologous GnIH peptides have been reported in a variety of vertebrates, including mammals, amphibians, teleosts and agnathans, but also in protochordates. It has been clearly established that GnIH suppresses reproduction in avian and mammalian species through its inhibitory actions on brain GnRH and pituitary gonadotropins. In addition, GnIH also appears to be involved in the regulation of feeding, growth, stress response, heart function and social behavior. These actions are mediated via G protein-coupled GnIH receptors (GnIH-Rs), of which two different subtypes, GPR147 and GPR74, have been described to date. With around 30,000 species, fish represent more than one-half of the total number of recognized living vertebrate species. In addition to this impressive biological diversity, fish are relevant because they include model species with scientific and clinical interest as well as many exploited species with economic importance. In spite of this, the study of GnIH and its physiological effects on reproduction and other physiological processes has only been approached in a few fish species, and results obtained are in some cases conflicting. In this review, we summarize the information available in the literature on GnIH sequences identified in fish, the distribution of GnIH and GnIH-Rs in central and peripheral tissues, the physiological actions of GnIH on the reproductive brain-pituitary-gonadal axis, as well as other reported effects of this neuropeptide, and existing knowledge on the regulatory mechanisms of GnIH in fish.
Collapse
Affiliation(s)
- José A. Muñoz-Cueto
- Faculty of Environmental and Marine Sciences, Department of Biology, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain
- Marine Research Institute (INMAR) – Andalusian Centre of Marine Science and Technology (CACYTMAR), University of Cádiz, Puerto Real, Spain
- *Correspondence: José A. Muñoz-Cueto,
| | - José A. Paullada-Salmerón
- Faculty of Environmental and Marine Sciences, Department of Biology, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain
- Marine Research Institute (INMAR) – Andalusian Centre of Marine Science and Technology (CACYTMAR), University of Cádiz, Puerto Real, Spain
| | - María Aliaga-Guerrero
- Faculty of Environmental and Marine Sciences, Department of Biology, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain
- Marine Research Institute (INMAR) – Andalusian Centre of Marine Science and Technology (CACYTMAR), University of Cádiz, Puerto Real, Spain
| | - Mairi E. Cowan
- Faculty of Environmental and Marine Sciences, Department of Biology, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain
- Marine Research Institute (INMAR) – Andalusian Centre of Marine Science and Technology (CACYTMAR), University of Cádiz, Puerto Real, Spain
| | - Ishwar S. Parhar
- Jeffrey Cheah School of Medicine and Health Science, Brain Research Institute, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Takayoshi Ubuka
- Jeffrey Cheah School of Medicine and Health Science, Brain Research Institute, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
76
|
Williamson CM, Romeo RD, Curley JP. Dynamic changes in social dominance and mPOA GnRH expression in male mice following social opportunity. Horm Behav 2017; 87:80-88. [PMID: 27826060 DOI: 10.1016/j.yhbeh.2016.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/24/2016] [Accepted: 11/02/2016] [Indexed: 12/17/2022]
Abstract
Social competence - the ability of animals to dynamically adjust their social behavior dependent on the current social context - is fundamental to the successful establishment and maintenance of social relationships in group-living species. The social opportunity paradigm, where animals rapidly ascend a social hierarchy following the removal of more dominant individuals, is a well-established approach for studying the neural and neuroendocrine mechanisms underlying socially competent behavior. In the current study, we demonstrate that this paradigm can be successfully adapted for studying socially competent behavior in laboratory mice. Replicating our previous reports, we show that male laboratory mice housed in a semi-natural environment form stable linear social hierarchies. Novel to the current study, we find that subdominant male mice immediately respond to the removal of the alpha male from a hierarchy by initiating a dramatic increase in aggressive behavior towards more subordinate individuals. Consequently, subdominants assume the role of the alpha male. Analysis of brain gene expression in individuals 1h following social ascent indicates elevated gonadotropin-releasing hormone (GnRH) mRNA levels in the medial preoptic area (mPOA) of the hypothalamus compared to individuals that do not experience a social opportunity. Moreover, hormonal analyses indicate that subdominant individuals have increased circulating plasma testosterone levels compared to subordinate individuals. Our findings demonstrate that male mice are able to dynamically and rapidly adjust both behavior and neuroendocrine function in response to changes in social context. Further, we establish the social opportunity paradigm as an ethologically relevant approach for studying social competence and behavioral plasticity in mammals.
Collapse
Affiliation(s)
- Cait M Williamson
- Department of Psychology, Columbia University, New York, NY 10027, USA
| | - Russell D Romeo
- Department of Psychology, Barnard College, New York, NY 10027, USA
| | - James P Curley
- Department of Psychology, Columbia University, New York, NY 10027, USA; Center for Integrative Animal Behavior, Columbia University, New York 10027, USA.
| |
Collapse
|
77
|
Armbruster D, Brocke B, Strobel A. Winter is coming: Seasonality and the acoustic startle reflex. Physiol Behav 2016; 169:178-183. [PMID: 27940142 DOI: 10.1016/j.physbeh.2016.11.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 11/16/2022]
Abstract
Circannual rhythms and seasonality have long been in the interest of research. In humans, seasonal changes in mood have been extensively investigated since a substantial part of the population experiences worsening of mood during winter. Questions remain regarding accompanying physiological phenomena. We report seasonal effects on the acoustic startle response in a cross-sectional (n=124) and a longitudinal sample (n=23). Startle magnitudes were larger in winter (sample 1: p=0.026; sample 2: p=0.010) compared to summer months. Although the findings need to be replicated they may have implications regarding the timing of startle experiments.
Collapse
Affiliation(s)
- Diana Armbruster
- Personality and Individual Differences, Institute of Psychology I, Technische Universität Dresden, Dresden, Germany.
| | - Burkhard Brocke
- Personality and Individual Differences, Institute of Psychology I, Technische Universität Dresden, Dresden, Germany
| | - Alexander Strobel
- Personality and Individual Differences, Institute of Psychology I, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
78
|
Ullah R, Shen Y, Zhou YD, Huang K, Fu JF, Wahab F, Shahab M. Expression and actions of GnIH and its orthologs in vertebrates: Current status and advanced knowledge. Neuropeptides 2016; 59:9-20. [PMID: 27255391 DOI: 10.1016/j.npep.2016.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/01/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022]
Abstract
The physiology of reproduction is very complex and is regulated by multiple factors, including a number of hypothalamic neuropeptides. In last few decades, various neuropeptides have been discovered to be involved in stimulation or inhibition of reproduction. In 2000, Tsutsui and colleagues uncovered gonadotropin-inhibitory hormone (GnIH), a neuropeptide generating inhibitory drive to the reproductive axis, in the brain of Coturnix quail. Afterward, GnIH orthologs were discovered in other vertebrates from fish to mammals including human. In these vertebrates, all the discovered GnIH and its ortholgs have LPXRFamide (X=L or Q) sequence at C-terminus. GnIH orthologs of mammals and primates are also termed as RFamide-related peptide (RFRP)-1 and -3 that too have an LPXRFamide (X=L or Q) motif at their C-terminus. GnIH and its orthologs form a member of the RFamide peptide family. GnIH signals via its canonical G protein coupled receptor 147 (GPR147). Both GnIH and GPR147 are expressed in hypothalamus and other brain regions. Besides actions through the hypothalamic GnRH and kisspeptinergic neurons, GnIH-GPR147 signaling exerts inhibitory effect on the reproductive axis via pituitary gonadotropes and directly at gonadal level. Various factors including availability and quality of food, photoperiod, temperature, social interaction, various stresses and some diseases modulate GnIH-GPR147 signaling. In this review, we have discussed expression and actions of GnIH and its orthologs in vertebrates. Special emphasis is given on the role of GnIH-GPR147 signaling pathway in the regulation of reproduction. We have also reviewed and discussed currently available literature on the participation of GnIH-GPR147 signaling pathway in the stress modulation of reproduction.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Endocrinology, Children Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China; Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Key Laboratory of Medical Neurobiology of Ministry of Health and Zhejiang Province, Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Yi Shen
- Key Laboratory of Medical Neurobiology of Ministry of Health and Zhejiang Province, Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Yu-Dong Zhou
- Key Laboratory of Medical Neurobiology of Ministry of Health and Zhejiang Province, Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Ke Huang
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jun-Fen Fu
- Department of Endocrinology, Children Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Fazal Wahab
- Stem Cell Biology Unit, German Primate Center, Leibniz-Institute for Primate Research, Kellnerweg 4, 37077 Gottingen, Germany
| | - Muhammad Shahab
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
79
|
Bauer CM, Needham KB, Le CN, Stewart EC, Graham JL, Ketterson ED, Greives TJ. Hypothalamic-pituitary-adrenal axis activity is not elevated in a songbird (Junco hyemalis) preparing for migration. Gen Comp Endocrinol 2016; 232:60-6. [PMID: 26718082 DOI: 10.1016/j.ygcen.2015.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/01/2015] [Accepted: 12/19/2015] [Indexed: 11/23/2022]
Abstract
During spring, increasing daylengths stimulate gonadal development in migratory birds. However, late-stage reproductive development is typically postponed until migration has been completed. The hypothalamic-pituitary-adrenal (HPA) axis regulates the secretion of glucocorticoids, which have been associated with pre-migratory hyperphagia and fattening. The HPA-axis is also known to suppress the hypothalamic-pituitary-gonadal (HPG) axis, suggesting the possibility that final transition into the breeding life history stage may be slowed by glucocorticoids. We hypothesized that greater HPA-axis activity in individuals preparing for migration may foster preparation for migration while simultaneously acting as a "brake" on the development of the HPG-axis. To test this hypothesis, we sampled baseline corticosterone (CORT), stress-induced CORT, and negative feedback efficacy of Dark-eyed Juncos (Junco hyemalis) in an overwintering population that included both migratory (J.h. hyemalis) and resident (J.h. carolinensis) individuals. We predicted that compared to residents, migrants would have higher baseline CORT, higher stress-induced CORT, and weaker negative feedback. Juncos were sampled in western Virginia in early March, which was about 2-4wk before migratory departure for migrants and 4-5wk before first clutch initiation for residents. Contrary to our predictions, we found that migrants had lower baseline and stress-induced CORT and similar negative feedback efficacy compared with residents, which suggests that delayed breeding in migrants is influenced by other physiological mechanisms. Our findings also suggest that baseline CORT is not elevated during pre-migratory fattening, as migrants had lower baseline CORT and were fatter than residents.
Collapse
Affiliation(s)
- Carolyn M Bauer
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA.
| | - Katie B Needham
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Chuong N Le
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Emily C Stewart
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Jessica L Graham
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | | | - Timothy J Greives
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
80
|
Di Yorio MP, Pérez Sirkin DI, Delgadin TH, Shimizu A, Tsutsui K, Somoza GM, Vissio PG. Gonadotrophin-Inhibitory Hormone in the Cichlid Fish Cichlasoma dimerus: Structure, Brain Distribution and Differential Effects on the Secretion of Gonadotrophins and Growth Hormone. J Neuroendocrinol 2016; 28. [PMID: 26919074 DOI: 10.1111/jne.12377] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/10/2016] [Accepted: 02/19/2016] [Indexed: 12/21/2022]
Abstract
The role of gonadotrophin-inhibitory hormone (GnIH) in the inhibition of the reproductive axis has been well-established in birds and mammals. However, its role in other vertebrates, such as the teleost fish, remains controversial. In this context, the present study aimed to evaluate whether GnIH modulates the release of gonadotrophins and growth hormone (GH) in the cichlid fish Cichlasoma dimerus. First, we partially sequenced the precursor polypeptide for GnIH and identified three putative GnIH peptides. Next, we analysed the expression of this precursor polypeptide via a polymerase chain reaction in the reproductive axis of both sexes. We found a high expression of the polypeptide in the hypothalamus and gonads of males. Immunocytochemistry allowed the observation of GnIH-immunoreactive somata in the nucleus posterioris periventricularis and the nucleus olfacto-retinalis, with no differences between the sexes. GnIH-immunoreactive fibres were present in all brain regions, with a high density in the nucleus lateralis tuberis and at both sides of the third ventricle. Finally, we performed in vitro studies on intact pituitary cultures to evaluate the effect of two doses (10(-6) m and 10(-8) m) of synthetic C. dimerus (cd-) LPQRFa-1 and LPQRFa-2 on the release of gonadotrophins and GH. We observed that cd-LPQRFa-1 decreased β-luteinising hormone (LH) and β-follicle-stimulating hormone (FSH) and also increased GH release to the culture medium. The release of β-FSH was increased only when it was stimulated with the higher cd-LPQRFa-2 dose. The results of the present study indicate that cd-LPQRFa-1, the cichlid fish GnIH, inhibits β-LH and β-FSH release and stimulates GH release in intact pituitary cultures of C. dimerus. The results also show that cd-LPQRF-2 could act as an β-FSH-releasing factor in this fish species.
Collapse
Affiliation(s)
- M P Di Yorio
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE, FCEN-UBA/IBBEA-CONICET-UBA, Ciudad Universitaria, (C1428EHA), Buenos Aires, Argentina
| | - D I Pérez Sirkin
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE, FCEN-UBA/IBBEA-CONICET-UBA, Ciudad Universitaria, (C1428EHA), Buenos Aires, Argentina
| | - T H Delgadin
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE, FCEN-UBA/IBBEA-CONICET-UBA, Ciudad Universitaria, (C1428EHA), Buenos Aires, Argentina
| | - A Shimizu
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | - K Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - G M Somoza
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomús, Buenos Aires, Argentina
| | - P G Vissio
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE, FCEN-UBA/IBBEA-CONICET-UBA, Ciudad Universitaria, (C1428EHA), Buenos Aires, Argentina
| |
Collapse
|
81
|
Tsutsui K. How to contribute to the progress of neuroendocrinology: New insights from discovering novel neuropeptides and neurosteroids regulating pituitary and brain functions. Gen Comp Endocrinol 2016; 227:3-15. [PMID: 26145291 DOI: 10.1016/j.ygcen.2015.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/28/2015] [Accepted: 05/07/2015] [Indexed: 12/29/2022]
Abstract
Obtaining new insights by discovering novel neuropeptides and neurosteroids regulating pituitary and brain functions is essential for the progress of neuroendocrinology. At the beginning of 1970s, gonadotropin-releasing hormone (GnRH) was discovered in mammals. Since then, it was generally accepted that GnRH is the only hypothalamic neuropeptide regulating gonadotropin release in vertebrates. In 2000, however, gonadotropin-inhibitory hormone (GnIH), a novel hypothalamic neuropeptide that actively inhibits gonadotropin release, was discovered in quail. The follow-up studies demonstrated that GnIH acts as a new key player for regulation of reproduction across vertebrates. It now appears that GnIH acts on the pituitary and the brain to serve a number of behavioral and physiological functions. On the other hand, a new concept has been established that the brain synthesizes steroids, called neurosteroids. The formation of neurosteroids in the brain was originally demonstrated in mammals and subsequently in other vertebrates. Recently, 7α-hydroxypregnenolone was discovered as a novel bioactive neurosteroid inducing locomotor behavior of vertebrates, indicating that neurosteroidogenesis in the brain is still incompletely elucidated in vertebrates. At the beginning of 2010s, it was further found that the pineal gland actively produces neurosteroids. Pineal neurosteroids act on the brain to regulate locomotor rhythms and neuronal survival. Furthermore, the interaction of neuropeptides and neurosteroids is becoming clear. GnIH decreases aggressive behavior by regulating neuroestrogen synthesis in the brain. This review summarizes these new insights by discovering novel neuropeptides and neurosteroids in the field of neuroendocrinology.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| |
Collapse
|
82
|
Ukena K, Iwakoshi-Ukena E, Osugi T, Tsutsui K. Identification and localization of gonadotropin-inhibitory hormone (GnIH) orthologs in the hypothalamus of the red-eared slider turtle, Trachemys scripta elegans. Gen Comp Endocrinol 2016; 227:69-76. [PMID: 26130239 DOI: 10.1016/j.ygcen.2015.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/10/2015] [Accepted: 06/15/2015] [Indexed: 01/27/2023]
Abstract
Gonadotropin-inhibitory hormone (GnIH) was discovered in 2000 as a novel hypothalamic neuropeptide that inhibited gonadotropin release in the Japanese quail. GnIH and its orthologs have a common C-terminal LPXRFamide (X=L or Q) motif, and have been identified in vertebrates from agnathans to humans, apart from reptiles. In the present study, we characterized a cDNA encoding GnIH orthologs in the brain of the red-eared slider turtle. The deduced precursor protein consisted of 205 amino-acid residues, encoding three putative peptide sequences that included the LPXRFamide motif at their C-termini. In addition, the precursor sequence was most similar to those of avian species. Immunoaffinity purification combined with mass spectrometry confirmed that three mature peptides were produced in the brain. In situ hybridization and immunohistochemistry showed that turtle GnIH-containing cells were restricted to the periventricular hypothalamic nucleus. Immunoreactive fibers were densely distributed in the median eminence. Thus, GnIH and related peptides may act on the pituitary to regulate pituitary hormone release in turtles as well as other vertebrates.
Collapse
Affiliation(s)
- Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan.
| | - Eiko Iwakoshi-Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Tomohiro Osugi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Tokyo 162-8480, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Tokyo 162-8480, Japan
| |
Collapse
|
83
|
Wingfield JC, Perfito N, Calisi R, Bentley G, Ubuka T, Mukai M, O'Brien S, Tsutsui K. Putting the brakes on reproduction: Implications for conservation, global climate change and biomedicine. Gen Comp Endocrinol 2016; 227:16-26. [PMID: 26474923 DOI: 10.1016/j.ygcen.2015.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023]
Abstract
Seasonal breeding is widespread in vertebrates and involves sequential development of the gonads, onset of breeding activities (e.g. cycling in females) and then termination resulting in regression of the reproductive system. Whereas males generally show complete spermatogenesis prior to and after onset of breeding, females of many vertebrate species show only partial ovarian development and may delay onset of cycling (e.g. estrous), yolk deposition or germinal vesicle breakdown until conditions conducive for ovulation and onset of breeding are favorable. Regulation of this "brake" on the onset of breeding remains relatively unknown, but could have profound implications for conservation efforts and for "mismatches" of breeding in relation to global climate change. Using avian models it is proposed that a brain peptide, gonadotropin-inhibitory hormone (GnIH), may be the brake to prevent onset of breeding in females. Evidence to date suggests that although GnIH may be involved in the regulation of gonadal development and regression, it plays more regulatory roles in the process of final ovarian development leading to ovulation, transitions from sexual to parental behavior and suppression of reproductive function by environmental stress. Accumulating experimental evidence strongly suggests that GnIH inhibits actions of gonadotropin-releasing hormones on behavior (central effects), gonadotropin secretion (central and hypophysiotropic effects), and has direct actions in the gonad to inhibit steroidogenesis. Thus, actual onset of breeding activities leading to ovulation may involve environmental cues releasing an inhibition (brake) on the hypothalamo-pituitary-gonad axis.
Collapse
Affiliation(s)
- John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Nicole Perfito
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Rebecca Calisi
- Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA
| | - George Bentley
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - T Ubuka
- Department of Biology, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - M Mukai
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Sara O'Brien
- Department of Biology, Radford University, Radford, VA 24142, USA
| | - K Tsutsui
- Department of Biology, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
84
|
Tsutsui K, Ubuka T. GnIH Control of Feeding and Reproductive Behaviors. Front Endocrinol (Lausanne) 2016; 7:170. [PMID: 28082949 PMCID: PMC5186799 DOI: 10.3389/fendo.2016.00170] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/16/2016] [Indexed: 11/13/2022] Open
Abstract
In 2000, Tsutsui and colleagues discovered a neuropeptide gonadotropin-inhibitory hormone (GnIH) that inhibits gonadotropin release in birds. Subsequently, extensive studies during the last 15 years have demonstrated that GnIH is a key neurohormone that regulates reproduction in vertebrates, acting in the brain and on the pituitary to modulate reproduction and reproductive behavior. On the other hand, deprivation of food and other metabolic challenges inhibit the reproductive axis as well as sexual motivation. Interestingly, recent studies have further indicated that GnIH controls feeding behavior in vertebrates, such as in birds and mammals. This review summarizes the discovery of GnIH and its conservation in vertebrates and the neuroendocrine control of feeding behavior and reproductive behavior by GnIH.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
- *Correspondence: Kazuyoshi Tsutsui,
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
- Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute Monash Sunway, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
85
|
Ketterson ED, Fudickar AM, Atwell JW, Greives TJ. Seasonal timing and population divergence: when to breed, when to migrate. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2015.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
86
|
Min L, Leon S, Li H, Pinilla L, Carroll RS, Tena-Sempere M, Kaiser UB. RF9 Acts as a KISS1R Agonist In Vivo and In Vitro. Endocrinology 2015; 156:4639-48. [PMID: 26418326 PMCID: PMC4655216 DOI: 10.1210/en.2015-1635] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RF9, a reported antagonist of the mammalian gonadotropin-inhibitory hormone receptor, stimulates gonadotropin secretion in mammals. Recent studies have suggested that the stimulatory effect of RF9 on gonadotropin secretion relies on intact kisspeptin receptor (KISS1R) signaling, but the underlying mechanisms remain to be elucidated. Using Chinese Hamster Ovary cells stably transfected with KISS1R, we show that RF9 binds specifically to KISS1R, with a Kd of 1.6 × 10(-5)M, and stimulates an increase in intracellular calcium and inositol phosphate accumulation in a KISS1R-dependent manner, with EC50 values of 3.0 × 10(-6)M and 1.6 × 10(-7)M, respectively. RF9 also stimulated ERK phosphorylation, with a time course similar to that of kisspeptin-10. RFRP-3, the putative endogenous ligand for NPFFR1, did not stimulate inositol phosphate accumulation or pERK, nor did it alter responses to of kisspeptin-10 or RF9. In agreement with these in vitro data, we found that RF9 stimulated a robust LH increase in Npffr1(-/-) mice, similar to that in wild-type littermates, whereas the stimulatory effect of RF9 was markedly reduced in Kiss1r(-/-) and double Kiss1r(-/-)/Npfrr1(-/-) mice. The stimulatory effect of RF9 on LH secretion was restored by the selective rescue of Kiss1r expression in GnRH neurons, in Kiss1r(-/-T) mice. Taken together, our study demonstrates that RF9 acts primarily as a KISS1R agonist, but not as an allosteric modulator, to stimulate LH secretion. Our findings raise questions regarding the utility of RF9 for assessing NPFF1R function and de-emphasize a predominant role of this signaling system in central regulation of reproduction.
Collapse
Affiliation(s)
- Le Min
- Division of Endocrinology, Diabetes and Hypertension (L.M., H.L., R.S.C., U.B.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Cell Biology, Physiology and Immunology (S.L., L.P., M.T.-S.), University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, and Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofia, Córdoba, 14004 Spain; and FiDiPro Program, Department of Physiology (M.T.-S.), University of Turku, FIN-20520 Turku, Finland
| | - Silvia Leon
- Division of Endocrinology, Diabetes and Hypertension (L.M., H.L., R.S.C., U.B.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Cell Biology, Physiology and Immunology (S.L., L.P., M.T.-S.), University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, and Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofia, Córdoba, 14004 Spain; and FiDiPro Program, Department of Physiology (M.T.-S.), University of Turku, FIN-20520 Turku, Finland
| | - Huan Li
- Division of Endocrinology, Diabetes and Hypertension (L.M., H.L., R.S.C., U.B.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Cell Biology, Physiology and Immunology (S.L., L.P., M.T.-S.), University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, and Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofia, Córdoba, 14004 Spain; and FiDiPro Program, Department of Physiology (M.T.-S.), University of Turku, FIN-20520 Turku, Finland
| | - Leonor Pinilla
- Division of Endocrinology, Diabetes and Hypertension (L.M., H.L., R.S.C., U.B.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Cell Biology, Physiology and Immunology (S.L., L.P., M.T.-S.), University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, and Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofia, Córdoba, 14004 Spain; and FiDiPro Program, Department of Physiology (M.T.-S.), University of Turku, FIN-20520 Turku, Finland
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension (L.M., H.L., R.S.C., U.B.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Cell Biology, Physiology and Immunology (S.L., L.P., M.T.-S.), University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, and Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofia, Córdoba, 14004 Spain; and FiDiPro Program, Department of Physiology (M.T.-S.), University of Turku, FIN-20520 Turku, Finland
| | - Manuel Tena-Sempere
- Division of Endocrinology, Diabetes and Hypertension (L.M., H.L., R.S.C., U.B.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Cell Biology, Physiology and Immunology (S.L., L.P., M.T.-S.), University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, and Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofia, Córdoba, 14004 Spain; and FiDiPro Program, Department of Physiology (M.T.-S.), University of Turku, FIN-20520 Turku, Finland
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension (L.M., H.L., R.S.C., U.B.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Department of Cell Biology, Physiology and Immunology (S.L., L.P., M.T.-S.), University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, and Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina Sofia, Córdoba, 14004 Spain; and FiDiPro Program, Department of Physiology (M.T.-S.), University of Turku, FIN-20520 Turku, Finland
| |
Collapse
|
87
|
"Seasonal changes in the neuroendocrine system": some reflections. Front Neuroendocrinol 2015; 37:3-12. [PMID: 25462591 DOI: 10.1016/j.yfrne.2014.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/12/2022]
Abstract
This perspective considers first the general issue of seasonality and how it is shaped ecologically. It asks what is the relative importance of "strategic" (photoperiod-dependent) versus "tactical" (supplemental) cues in seasonality and what neural circuits are involved? It then considers recent developments as reflected in the Special Issue. What don't we understand about the photoperiodic clock and also the long-term timing mechanisms underlying refractoriness? Are these latter related to the endogenous annual rhythms? Can we finally identify the opsins involved in photodetection? What is the present position with regard to melatonin as "the" annual calendar? An exciting development has been the recognition of the involvement of thyroid hormones in seasonality but how does the Dio/TSH/thyroid hormone pathway integrate with downstream components of the photoperiodic response system? Finally, there are the seasonal changes within the central nervous system itself--perhaps the most exciting aspect of all.
Collapse
|
88
|
Tsutsui K, Ubuka T, Son YL, Bentley GE, Kriegsfeld LJ. Contribution of GnIH Research to the Progress of Reproductive Neuroendocrinology. Front Endocrinol (Lausanne) 2015; 6:179. [PMID: 26635728 PMCID: PMC4655308 DOI: 10.3389/fendo.2015.00179] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/05/2015] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of gonadotropin-releasing hormone (GnRH) in mammals at the beginning of the 1970s, it was generally accepted that GnRH is the only hypothalamic neuropeptide regulating gonadotropin release in mammals and other vertebrates. In 2000, however, gonadotropin-inhibitory hormone (GnIH), a novel hypothalamic neuropeptide that actively inhibits gonadotropin release, was discovered in quail. Numerous studies over the past decade and a half have demonstrated that GnIH serves as a key player regulating reproduction across vertebrates, acting on the brain and pituitary to modulate reproductive physiology and behavior. In the latter case, recent evidence indicates that GnIH can regulate reproductive behavior through changes in neurosteroid, such as neuroestrogen, biosynthesis in the brain. This review summarizes the discovery of GnIH, and the contributions to GnIH research focused on its mode of action, regulation of biosynthesis, and how these findings advance our understanding of reproductive neuroendocrinology.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
- *Correspondence: Kazuyoshi Tsutsui,
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
- Brain Research Institute Monash Sunway of the Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - You Lee Son
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - George E. Bentley
- Department of Integrative Biology, Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Lance J. Kriegsfeld
- Department of Psychology, Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
89
|
Valle S, Carpentier E, Vu B, Tsutsui K, Deviche P. Food restriction negatively affects multiple levels of the reproductive axis in male house finches, Haemorhous mexicanus. J Exp Biol 2015; 218:2694-704. [DOI: 10.1242/jeb.123323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/23/2015] [Indexed: 01/06/2023]
Abstract
Nutrition influences reproductive functions across vertebrates, but the effects of food availability on the functioning of the hypothalamic-pituitary-gonadal (HPG) axis in wild birds and the mechanisms mediating these effects remain unclear. We investigated the influence of chronic food restriction on the HPG axis of photostimulated House Finches, Haemorhous mexicanus. Food-restricted birds had underdeveloped testes with smaller seminiferous tubules than ad libitum-fed birds. Baseline plasma testosterone (T) increased in response to photostimulation in ad libitum-fed but not in food-restricted birds. Food availability did not, however, affect the plasma T increase resulting from a gonadotropin-releasing hormone (GnRH) or a luteinizing hormone (LH) challenge. The number of hypothalamic GnRH-I immunoreactive (ir) but not proGnRH-ir perikarya was higher in food-restricted than ad libitum-fed finches, suggesting inhibited secretion of GnRH. Hypothalamic gonadotropin-inhibitory hormone (GnIH)-ir and neuropeptide Y (NPY)-ir were not affected by food availability. Plasma corticosterone (CORT) was also not affected by food availability, indicating that the observed HPG axis inhibition did not result from increased activity of the hypothalamic-pituitary-adrenal (HPA) axis. This study is among the first to examine multilevel functional changes in the HPG axis in response to food restriction in a wild bird. The results indicate that food availability affects both hypothalamic and gonadal function, but further investigations are needed to clarify the mechanisms by which nutritional signals mediate these effects.
Collapse
Affiliation(s)
- Shelley Valle
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Elodie Carpentier
- Universite de Poitiers, Faculté des Sciences Fondamentales et Appliquées, Poitiers, F-86022, France
| | - Bethany Vu
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Kazuyoshi Tsutsui
- Department of Biology, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|