51
|
Park S, Sethi S, Bouret SG. Non-nutritive Sweeteners Induce Hypothalamic ER Stress Causing Abnormal Axon Outgrowth. Front Endocrinol (Lausanne) 2019; 10:876. [PMID: 31920985 PMCID: PMC6928131 DOI: 10.3389/fendo.2019.00876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/29/2019] [Indexed: 11/13/2022] Open
Abstract
With the prevalence of obesity, non-nutritive sweeteners (NNS) have been widely used as sugar substitutes as they deliver a sweet taste without excessive caloric load. However, it is increasingly recognized that NNS are not inert compounds and may cause long-term metabolic perturbations. Endoplasmic reticulum (ER) stress has emerged as a critical link in the development of obesity and type 2 diabetes. In this study, we investigated the effects of NNS found in common diet beverages (i.e., sucralose, aspartame, acesulfame potassium) and a natural sweetener (i.e., rebaudioside A) on ER stress in the hypothalamic cell line mHypoE-N43/5 in vivo and on axonal outgrowth ex vivo. Sucralose, aspartame, and acesulfame potassium caused elevated ER stress gene expression in mHypoE-N43/5 cells, with sucralose and acesulfame potassium having the most potent effect. Moreover, acesulfame potassium treatment reduced axon outgrowth from arcuate nucleus explants and this effect was attenuated with the ER stress-relieving drug tauroursodeoxycholic acid. Furthermore, sucralose induced cytotoxicity and acesulfame potassium increases caspase3/7 activity at high concentrations in mHypoE-N43/5 cells. In contrast, rebaudioside A only had moderate effects on hypothalamic ER stress and no adverse effects on axon outgrowth, cytotoxicity, or caspase3/7 activity. Together, our data reveal that commonly consumed NNS cause cellular stress in hypothalamic cells disrupting axon outgrowth and that these biological alterations are not seen with rebaudioside A. These data provide biological plausibility for some NNS to adversely impact metabolic health and identifies rebaudioside A as a sweetener with lower detrimental biological impact on hypothalamic cells.
Collapse
Affiliation(s)
- Soyoung Park
- Development Neuroscience Program, Children's Hospital Los Angeles, Los Angeles, CA, United States
- *Correspondence: Soyoung Park
| | - Sunjay Sethi
- Development Neuroscience Program, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Sebastien G. Bouret
- INSERM, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, UMR-S 1172, Lille, France
- University of Lille, FHU 1, 000 Days for Health, Lille, France
- Sebastien G. Bouret
| |
Collapse
|
52
|
Abuaish S, Spinieli RL, McGowan PO. Perinatal high fat diet induces early activation of endocrine stress responsivity and anxiety-like behavior in neonates. Psychoneuroendocrinology 2018; 98:11-21. [PMID: 30086533 DOI: 10.1016/j.psyneuen.2018.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 12/21/2022]
Abstract
The maternal environment has a profound effect on the development of offspring, including responses to stress mediated by the hypothalamic-pituitary-adrenal (HPA) axis. In rodents, perinatal high fat diet (HFD) has been shown to program the HPA axis in a manner that persists throughout adulthood, however the effects of perinatal HFD on stress-related behaviors and physiology in neonates are limited. The first two weeks of life in rodents are known as the stress hyporesponsive period, during which animals do not respond to stressors that are otherwise known to elicit behavioral and physiological responses in mature animals. As neonates emerge from the hyporesponsive period, the maturing neural systems mediating the HPA axis leads to the suppression of ultrasonic vocalizations (USVs) and movement in the presence of threatening stimuli, such as male adult rat odor. In this study, we investigated the effects of perinatal HFD exposure, spanning the maternal pregestation, gestation and lactation period, on stress-related behaviors and physiology in neonatal rat offspring throughout the stress hyporesponsive period. During the stress hyporesponsive period, postnatal day (PND) 7, HFD pups had higher corticosterone levels in response to the presence of male odor, produced fewer USVs, and had an increase in basal corticotropin releasing hormone (Crh) transcript levels in the paraventricular nucleus of the hypothalamus. As pup emerged from the stress hyporesponsive period, PND 13, HFD offspring exhibited higher adrenocorticotropic hormone (ACTH) levels in response to male odor, increased anxiety-like behaviors as shown by increased USVs and immobility, and lower glucocorticoid receptor (Nr3c1) transcript abundance in the ventral hippocampus. These results indicate an alteration in the typical physiological and behavioral responses to stress during the hyporesponsive period of the HPA axis as a function of perinatal HFD exposure, which involves changes in the regulation of key genes mediating the HPA axis.
Collapse
Affiliation(s)
- Sameera Abuaish
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Department of Cell and Systems Biology, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada
| | - Richard L Spinieli
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Department of Cell and Systems Biology, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada; Psychobiology Graduate Program, School of Philosophy, Science and Literature of Ribeirão Preto of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Patrick O McGowan
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Department of Cell and Systems Biology, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
53
|
Abstract
PUFA modulate hypothalamic-pituitary-adrenal (HPA) axis activity and cortisol concentrations and therefore affect physiological stress responses and the regulation of energy balance in the short- and long-term. Especially dietary intake of n-3 PUFA and a lowered n-6:n-3 ratio are highly encouraged due to beneficial and diminishing effects on basal cortisol secretions. However, the time of such effects to occur and how plasma PUFA patterns affect cortisol concentrations in the short-term was rarely investigated. In order to address this, we supplemented forty male and forty female guinea pigs with diets high in the essential PUFA α-linolenic acid (ALA, 18 : 3n-3) and linoleic acid (LA, 18 : 2n-6) for 20 d. Saliva cortisol concentrations in relation to altering plasma PUFA patterns during this time span were analysed in a repeated measurement design both during basal conditions (individual housing) in 5-d intervals and during stressful social confrontations. We detected very fast plasma PUFA accumulation rates, corresponding to the major dietary PUFA, which resulted in plasma PUFA plateau phases after 10 d. ALA negatively and LA positively affected saliva cortisol concentrations throughout the study. A positive effect of the plasma n-6:n-3 ratio on saliva cortisol concentrations was detected during peak plasma PUFA accumulations and social confrontations, while no effects were detected in relation to plasma PUFA plateau phases. These results suggest that the plasma n-6:n-3 ratio diminishes HPA axis activity during altered physiological conditions only and highlights the importance of altering plasma PUFA patterns for HPA axis functions and the control of energy balance and physiological stress.
Collapse
|
54
|
Yang D, Huynh H, Wan Y. Milk lipid regulation at the maternal-offspring interface. Semin Cell Dev Biol 2018; 81:141-148. [PMID: 29051053 PMCID: PMC5916746 DOI: 10.1016/j.semcdb.2017.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022]
Abstract
Milk lipids provide a large proportion of energy, nutrients, essential fatty acids, and signaling molecules for the newborns, the synthesis of which is a tightly controlled process. Dysregulated milk lipid production and composition may be detrimental to the growth, development, health and survival of the newborns. Many genetically modified animal models have contributed to our understanding of milk lipid regulation in the lactating mammary gland. In this review, we discuss recent advances in our knowledge of the mechanisms that control milk lipid biosynthesis and secretion during lactation, and how maternal genetic and dietary defects impact milk lipid composition and consequently offspring traits.
Collapse
Affiliation(s)
- Dengbao Yang
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - HoangDinh Huynh
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
55
|
Halah MP, Marangon PB, Antunes-Rodrigues J, Elias LLK. Neonatal nutritional programming impairs adiponectin effects on energy homeostasis in adult life of male rats. Am J Physiol Endocrinol Metab 2018; 315:E29-E37. [PMID: 29438632 DOI: 10.1152/ajpendo.00358.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neonatal nutritional changes induce long-lasting effects on energy homeostasis. Adiponectin influences food intake and body weight. The aim of this study was to investigate the effects of neonatal nutritional programming on the central stimulation of adiponectin. Male Wistar rats were divided on postnatal (PN) day 3 in litters of 3 (small litter, SL), 10 (normal litter, NL), or 16 pups/dam (large litter, LL). We assessed body weight gain for 60 days, adiponectin concentration, and white adipose tissue weight. We examined the response of SL, NL, and LL rats on body weight gain, food intake, oxygen consumption (V̇o2), respiratory exchange ratio (RER), calorimetry, locomotor activity, phosphorylated-AMP-activated protein kinase (AMPK) expression in the hypothalamus, and uncoupling protein (UCP)-1 in the brown adipose tissue after central stimulus with adiponectin. After weaning, SL rats maintained higher body weight gain despite similar food intake compared with NL rats. LL rats showed lower body weight at weaning, with a catch up afterward and higher food intake. Both LL and SL groups had decreased plasma concentrations of adiponectin at PN60. SL rats had increased white adipose tissue. Central injection of adiponectin decreased body weight and food intake and increased V̇o2, RER, calorimetry, p-AMPK and UCP- 1 expression in NL rats, but it had no effect on SL and LL rats, compared with the respective vehicle groups. In conclusion, neonatal under- and overfeeding induced an increase in body weight gain in juvenile and early adult life. Unresponsiveness to central effects of adiponectin contributes to the imbalance of the energy homeostasis in adult life induced by neonatal nutritional programming.
Collapse
Affiliation(s)
- Mariana Peduti Halah
- Department of Physiology, Ribeirao Preto Medical School University of Sao Paulo , Sao Paulo , Brazil
| | - Paula Beatriz Marangon
- Department of Physiology, Ribeirao Preto Medical School University of Sao Paulo , Sao Paulo , Brazil
| | - Jose Antunes-Rodrigues
- Department of Physiology, Ribeirao Preto Medical School University of Sao Paulo , Sao Paulo , Brazil
| | - Lucila L K Elias
- Department of Physiology, Ribeirao Preto Medical School University of Sao Paulo , Sao Paulo , Brazil
| |
Collapse
|
56
|
Green AJ, Hoyo C, Mattingly CJ, Luo Y, Tzeng JY, Murphy SK, Buchwalter DB, Planchart A. Cadmium exposure increases the risk of juvenile obesity: a human and zebrafish comparative study. Int J Obes (Lond) 2018; 42:1285-1295. [PMID: 29511319 PMCID: PMC6054604 DOI: 10.1038/s41366-018-0036-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/13/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Human obesity is a complex metabolic disorder disproportionately affecting people of lower socioeconomic strata, and ethnic minorities, especially African Americans and Hispanics. Although genetic predisposition and a positive energy balance are implicated in obesity, these factors alone do not account for the excess prevalence of obesity in lower socioeconomic populations. Therefore, environmental factors, including exposure to pesticides, heavy metals, and other contaminants, are agents widely suspected to have obesogenic activity, and they also are spatially correlated with lower socioeconomic status. Our study investigates the causal relationship between exposure to the heavy metal, cadmium (Cd), and obesity in a cohort of children and in a zebrafish model of adipogenesis. DESIGN An extensive collection of first trimester maternal blood samples obtained as part of the Newborn Epigenetics Study (NEST) was analyzed for the presence of Cd, and these results were cross analyzed with the weight-gain trajectory of the children through age 5 years. Next, the role of Cd as a potential obesogen was analyzed in an in vivo zebrafish model. RESULTS Our analysis indicates that the presence of Cd in maternal blood during pregnancy is associated with increased risk of juvenile obesity in the offspring, independent of other variables, including lead (Pb) and smoking status. Our results are recapitulated in a zebrafish model, in which exposure to Cd at levels approximating those observed in the NEST study is associated with increased adiposity. CONCLUSION Our findings identify Cd as a potential human obesogen. Moreover, these observations are recapitulated in a zebrafish model, suggesting that the underlying mechanisms may be evolutionarily conserved, and that zebrafish may be a valuable model for uncovering pathways leading to Cd-mediated obesity in human populations.
Collapse
Affiliation(s)
- Adrian J Green
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Carolyn J Mattingly
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yiwen Luo
- Department of Statistics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jung-Ying Tzeng
- Department of Statistics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Division of Gynecological Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - David B Buchwalter
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Antonio Planchart
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
57
|
Gandhi K, Li C, German N, Skobowiat C, Carrillo M, Kallem RR, Larumbe E, Martinez S, Chuecos M, Ventolini G, Nathanielsz P, Schlabritz-Loutsevitch N. Effect of maternal high-fat diet on key components of the placental and hepatic endocannabinoid system. Am J Physiol Endocrinol Metab 2018; 314:E322-E333. [PMID: 29138223 PMCID: PMC5966752 DOI: 10.1152/ajpendo.00119.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 02/06/2023]
Abstract
Maternal obesity in pregnancy has been linked to a spectrum of adverse developmental changes. Involvement of eCBs in obesity is well characterized. However, information regarding eCB physiology in obesity associated with pregnancy is sparse. This study evaluated fetomaternal hepatic, systemic, and placental eCB molecular changes in response to maternal consumption of a HFD. From ≥9 mo before conception, nonpregnant baboons ( Papio spp.) were fed a diet of either 45 (HFD; n = 11) or 12% fat or a control diet (CTR; n = 11), and dietary intervention continued through pregnancy. Maternal and fetal venous plasma samples were evaluated using liquid chromatography-mass spectrometry to quantify AEA and 2-AG. Placental, maternal and fetal hepatic tissues were analyzed using RT-PCR, Western blot, and immunohistochemistry. mRNA and protein expression of endocannabinoid receptors (CB1R and CB2R), FAAH, DAGL, MAGL, and COX-2 were determined. Statistical analyses were performed with the nonparametric Scheirer-Ray-Hare extension of the Kruskal-Wallis test to analyze the effects of diet (HFD vs. CTR), fetal sex (male vs. female), and the diet × sex interaction. Fetal weight was influenced by fetal sex but not by maternal diet. The increase in maternal weight in animals fed the HFD vs. the CTR diet approached significance ( P = 0.055). Maternal circulating 2-AG concentrations increased, and fetal circulating concentrations decreased in the HFD group, independently of fetal sex. CB1R receptor expression was detected in syncytiotrophoblasts (HFD) and the fetal endothelium (CTR and HFD). Placental CB2R protein expression was higher in males and lower in female fetuses in the HFD group. Fetal hepatic CB2R, FAAH, COX-2 (for both fetal sexes), and DAGLα (in male fetuses) protein expression decreased in the HFD group compared with the CTR group. We conclude that consumption of a HFD during pregnancy results in fetal systemic 2-AG and hepatic eCB deficiency.
Collapse
Affiliation(s)
- Kushal Gandhi
- School of Medicine, Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin , Odessa, Texas
| | - Cun Li
- Department of Animal Science, University of Wyoming , Laramie, Wyoming
- Texas Biomedical Research Institute and Southwest National Primate Research Center , San Antonio, Texas
| | - Nadezhda German
- School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | | | - Maira Carrillo
- School of Medicine, Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin , Odessa, Texas
| | - Raja Reddy Kallem
- School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Eneko Larumbe
- Clinical Research Institute, Texas Tech University Health Sciences , Lubbock, Texas
| | - Stacy Martinez
- School of Medicine, Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin , Odessa, Texas
| | - Marcel Chuecos
- School of Medicine, Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin , Odessa, Texas
| | - Gary Ventolini
- School of Medicine, Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin , Odessa, Texas
| | - Peter Nathanielsz
- Department of Animal Science, University of Wyoming , Laramie, Wyoming
- Texas Biomedical Research Institute and Southwest National Primate Research Center , San Antonio, Texas
| | - Natalia Schlabritz-Loutsevitch
- School of Medicine, Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin , Odessa, Texas
| |
Collapse
|
58
|
Schmitz L, Kuglin R, Bae-Gartz I, Janoschek R, Appel S, Mesaros A, Jakovcevski I, Vohlen C, Handwerk M, Ensenauer R, Dötsch J, Hucklenbruch-Rother E. Hippocampal insulin resistance links maternal obesity with impaired neuronal plasticity in adult offspring. Psychoneuroendocrinology 2018; 89:46-52. [PMID: 29324300 DOI: 10.1016/j.psyneuen.2017.12.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/20/2017] [Accepted: 12/27/2017] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Maternal obesity and a disturbed metabolic environment during pregnancy and lactation have been shown to result in many long-term health consequences for the offspring. Among them, impairments in neurocognitive development and performance belong to the most dreaded ones. So far, very few mechanistic approaches have aimed to determine the responsible molecular events. METHODS In a mouse model of maternal diet-induced obesity and perinatal hyperinsulinemia, we assessed adult offspring's hippocampal insulin signaling as well as concurrent effects on markers of hippocampal neurogenesis, synaptic plasticity and function using western blotting and immunohistochemistry. In search for a potential link between neuronal insulin resistance and hippocampal plasticity, we additionally quantified protein expression of key molecules of synaptic plasticity in an in vitro model of acute neuronal insulin resistance. RESULTS Maternal obesity and perinatal hyperinsulinemia result in adult hippocampal insulin resistance with subsequently reduced hippocampal mTor signaling and altered expression of markers of neurogenesis (doublecortin), synaptic plasticity (FoxO1, pSynapsin) and function (vGlut, vGAT) in the offspring. The observed effects are independent of the offspring's adult metabolic phenotype and can be associated with multiple previously reported behavioral abnormalities. Additionally, we demonstrate that induction of insulin resistance in cultured hippocampal neurons reduces mTor signaling, doublecortin and vGAT protein expression. CONCLUSIONS Hippocampal insulin resistance might play a key role in mediating the long-term effects of maternal obesity and perinatal hyperinsulinemia on hippocampal plasticity and the offspring's neurocognitive outcome.
Collapse
Affiliation(s)
- Lisa Schmitz
- Department of Pediatrics and Adolescent Medicine, University Hospital of Cologne, Kerpener Str. 62, Cologne, 50924, Germany
| | - Rebecca Kuglin
- Department of Pediatrics and Adolescent Medicine, University Hospital of Cologne, Kerpener Str. 62, Cologne, 50924, Germany
| | - Inga Bae-Gartz
- Department of Pediatrics and Adolescent Medicine, University Hospital of Cologne, Kerpener Str. 62, Cologne, 50924, Germany
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, University Hospital of Cologne, Kerpener Str. 62, Cologne, 50924, Germany
| | - Sarah Appel
- Department of Pediatrics and Adolescent Medicine, University Hospital of Cologne, Kerpener Str. 62, Cologne, 50924, Germany
| | - Andrea Mesaros
- Max Planck Institute for Biology of Ageing, Phenotyping Core Facility, Joseph-Stelzmann-Str. 9b, Cologne, 50931, Germany
| | - Igor Jakovcevski
- Institute for Molecular and Behavioral Neuroscience, Center for Molecular Medicine Cologne, Cologne, Germany; Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Christina Vohlen
- Department of Pediatrics and Adolescent Medicine, University Hospital of Cologne, Kerpener Str. 62, Cologne, 50924, Germany
| | - Marion Handwerk
- Department of Pediatrics and Adolescent Medicine, University Hospital of Cologne, Kerpener Str. 62, Cologne, 50924, Germany
| | - Regina Ensenauer
- Experimental Pediatrics and Metabolism, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, University Hospital of Cologne, Kerpener Str. 62, Cologne, 50924, Germany
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics and Adolescent Medicine, University Hospital of Cologne, Kerpener Str. 62, Cologne, 50924, Germany.
| |
Collapse
|
59
|
Anderson JE, Zhu A, Mizuno TM. Nitric oxide treatment attenuates muscle atrophy during hind limb suspension in mice. Free Radic Biol Med 2018; 115:458-470. [PMID: 29277394 DOI: 10.1016/j.freeradbiomed.2017.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/09/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023]
Abstract
UNLABELLED Debilitating muscle-disuse atrophy in aging or obesity has huge socioeconomic impact. Since nitric oxide (NO) mediates muscle satellite cell activation and induces hypertrophy with exercise in old mice, we tested whether treatment with the NO donor, isosorbide dinitrate (ISDN), during hind limb suspension would reduce atrophy. Mice were suspended 18 days, with or without daily ISDN (66mg/kg). Muscles were examined for atrophy (weight, fiber diameter); regulatory changes in atrogin-1 (a negative regulator of muscle mass), myostatin (inhibits myogenesis), and satellite cell proliferation; and metabolic responses in myosin heavy chains (MyHCs), liver lipid, and hypothalamic gene expression. Suspension decreased muscle weight and weight relative to body weight between 25-55%, and gastrocnemius fiber diameter vs. CONTROLS In young-adult mice, ISDN attenuated atrophy by half or more. In quadriceps, ISDN completely prevented the suspension-induced rise in atrogin-1 and drop in myostatin precursor, and attenuated the changes in MyHCs 1 and 2b observed in unloaded muscles without treatment. Fatty liver in suspended young-adult mice was also reduced by ISDN; suspended young mice had higher hypothalamic expression of the orexigenic agouti-related protein, Agrp than controls. Notably, a suspension-induced drop in muscle satellite cell proliferation by 25-58% was completely prevented (young mice) or attenuated (halved, in young-adult mice) by ISDN. NO-donor treatment has potential to attenuate atrophy and metabolic changes, and prevent regulatory changes during disuse and offset/prevent wasting in age-related sarcopenia or space travel. Increases in precursor proliferation resulting from NO treatment would also amplify benefits of physical therapy and exercise.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, Canada R3T 2N2.
| | - Antonia Zhu
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, Canada R3T 2N2
| | - Tooru M Mizuno
- Department of Physiology and Pathophysiology, Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 727 McDermott Avenue, Winnipeg, MB, Canada R3E 3P5
| |
Collapse
|
60
|
Dietary fatty acids sex-specifically modulate guinea pig postnatal development via cortisol concentrations. Sci Rep 2018; 8:471. [PMID: 29323260 PMCID: PMC5765112 DOI: 10.1038/s41598-017-18978-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022] Open
Abstract
Early ontogenetic periods and postnatal maturation in organisms are sex-specifically sensitive to hypothalamic-pituitary-adrenal (HPA)-axis activities, related glucocorticoid secretions, and their effects on energy balance and homeostasis. Dietary polyunsaturated (PUFAs) and saturated (SFAs) fatty acids potentially play a major role in this context because PUFAs positively affect HPA-axis functions and a shift towards SFAs may impair body homeostasis. Here we show that dietary PUFAs positively affect postnatal body mass gain and diminish negative glucocorticoid-effects on structural growth rates in male guinea pigs. In contrast, SFAs increased glucocorticoid concentrations, which positively affected testes size and testosterone concentrations in males, but limited their body mass gain and first year survival rate. No distinct diet-related effects were detectable on female growth rates. These results highlight the importance of PUFAs in balancing body homeostasis during male's juvenile development, which clearly derived from a sex-specific energetic advantage of dietary PUFA intakes compared to SFAs.
Collapse
|
61
|
Pinos H, Carrillo B, Díaz F, Chowen JA, Collado P. Differential vulnerability to adverse nutritional conditions in male and female rats: Modulatory role of estradiol during development. Front Neuroendocrinol 2018; 48:13-22. [PMID: 28754628 DOI: 10.1016/j.yfrne.2017.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/07/2017] [Accepted: 07/23/2017] [Indexed: 01/21/2023]
Abstract
Many studies have shown the importance of an adequate nutritional environment during development to optimally establish the neurohormonal circuits that regulate feeding behavior. Under- or over-nutrition during early stages of life can lead to alterations in the physiology and brain networks that control food intake, resulting in a greater vulnerability to suffer maladjustments in energy metabolism in adulthood. These alterations produced by under- or over-nourishment during development differ between males and females, as does the modulatory action that estradiol exerts on the alterations produced by malnutrition. Estradiol regulates metabolism and brain metabolic circuits through the same transcription factor pathway, STAT3, that leptin and ghrelin use to program feeding circuits. Although more research is needed to disentangle the actual role of estradiol during development on the programming of feeding circuits, a synergistic role together with leptin and/or ghrelin might be hypothesized.
Collapse
Affiliation(s)
- Helena Pinos
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, 28040 Madrid, Spain; Instituto Mixto de Investigación-Escuela Nacional de Sanidad (IMIENS), Spain
| | - Beatriz Carrillo
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, 28040 Madrid, Spain; Instituto Mixto de Investigación-Escuela Nacional de Sanidad (IMIENS), Spain
| | - Francisca Díaz
- Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Investigación Biomédica en Red (CIBER) de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Avda. Menéndez Pelayo, N° 65, 28009 Madrid, Spain
| | - Julie A Chowen
- Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Investigación Biomédica en Red (CIBER) de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Avda. Menéndez Pelayo, N° 65, 28009 Madrid, Spain
| | - Paloma Collado
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal n° 10, 28040 Madrid, Spain; Instituto Mixto de Investigación-Escuela Nacional de Sanidad (IMIENS), Spain.
| |
Collapse
|
62
|
Barrand S, Crowley TM, Wood-Bradley RJ, De Jong KA, Armitage JA. Impact of maternal high fat diet on hypothalamic transcriptome in neonatal Sprague Dawley rats. PLoS One 2017; 12:e0189492. [PMID: 29240779 PMCID: PMC5730210 DOI: 10.1371/journal.pone.0189492] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
Maternal consumption of a high fat diet during early development has been shown to impact the formation of hypothalamic neurocircuitry, thereby contributing to imbalances in appetite and energy homeostasis and increasing the risk of obesity in subsequent generations. Early in postnatal life, the neuronal projections responsible for energy homeostasis develop in response to appetite-related peptides such as leptin. To date, no study characterises the genome-wide transcriptional changes that occur in response to exposure to high fat diet during this critical window. We explored the effects of maternal high fat diet consumption on hypothalamic gene expression in Sprague Dawley rat offspring at postnatal day 10. RNA-sequencing enabled discovery of differentially expressed genes between offspring of dams fed a high fat diet and offspring of control diet fed dams. Female high fat diet offspring displayed altered expression of 86 genes (adjusted P-value<0.05), including genes coding for proteins of the extra cellular matrix, particularly Collagen 1a1 (Col1a1), Col1a2, Col3a1, and the imprinted Insulin-like growth factor 2 (Igf2) gene. Male high fat diet offspring showed significant changes in collagen genes (Col1a1 and Col3a1) and significant upregulation of two genes involved in regulation of dopamine availability in the brain, tyrosine hydroxylase (Th) and dopamine reuptake transporter Slc6a3 (also known as Dat1). Transcriptional changes were accompanied by increased body weight, body fat and body length in the high fat diet offspring, as well as altered blood glucose and plasma leptin. Transcriptional changes identified in the hypothalamus of offspring of high fat diet mothers could alter neuronal projection formation during early development leading to abnormalities in the neuronal circuitry controlling appetite in later life, hence priming offspring to the development of obesity.
Collapse
Affiliation(s)
- Sanna Barrand
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Tamsyn M. Crowley
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
- MMR, BCRG, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Ryan J. Wood-Bradley
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Kirstie A. De Jong
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - James A. Armitage
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| |
Collapse
|
63
|
Nutritional Programming of Lifespan by FOXO Inhibition on Sugar-Rich Diets. Cell Rep 2017; 18:299-306. [PMID: 28076775 PMCID: PMC5263231 DOI: 10.1016/j.celrep.2016.12.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/21/2016] [Accepted: 12/08/2016] [Indexed: 11/20/2022] Open
Abstract
Consumption of unhealthy diets is exacerbating the burden of age-related ill health in aging populations. Such diets can program mammalian physiology to cause long-term, detrimental effects. Here, we show that, in Drosophila melanogaster, an unhealthy, high-sugar diet in early adulthood programs lifespan to curtail later-life survival despite subsequent dietary improvement. Excess dietary sugar promotes insulin-like signaling, inhibits dFOXO-the Drosophila homolog of forkhead box O (FOXO) transcription factors-and represses expression of dFOXO target genes encoding epigenetic regulators. Crucially, dfoxo is required both for transcriptional changes that mark the fly's dietary history and for nutritional programming of lifespan by excess dietary sugar, and this mechanism is conserved in Caenorhabditis elegans. Our study implicates FOXO factors, the evolutionarily conserved determinants of animal longevity, in the mechanisms of nutritional programming of animal lifespan.
Collapse
|
64
|
Exercise during pregnancy and its impact on mothers and offspring in humans and mice. J Dev Orig Health Dis 2017; 9:63-76. [DOI: 10.1017/s2040174417000617] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exercise during pregnancy has beneficial effects on maternal and offspring’s health in humans and mice. The underlying mechanisms remain unclear. This comparative study aimed to determine the long-term effects of an exercise program on metabolism, weight gain, body composition and changes in hormones [insulin, leptin, brain-derived neurotrophic factor (BDNF)]. Pregnant women (n=34) and mouse dams (n=44) were subjected to an exercise program compared with matched controls (period I). Follow-up in the offspring was performed over 6 months in humans, corresponding to postnatal day (P) 21 in mice (period II). Half of the mouse offspring was challenged with a high-fat diet (HFD) for 6 weeks between P70 and P112 (period III). In period I, exercise during pregnancy led to 6% lower fat content, 40% lower leptin levels and an increase of 50% BDNF levels in humans compared with controls, which was not observed in mice. After period II in humans and mice, offspring body weight did not differ from that of the controls. Further differences were observed in period III. Offspring of exercising mouse dams had significantly lower fat mass and leptin levels compared with controls. In addition, at P112, BDNF levels in offspring were significantly higher from exercising mothers while this effect was completely blunted by HFD feeding. In this study, we found comparable effects on maternal and offspring’s weight gain in humans and mice but different effects in insulin, leptin and BDNF. The long-term potential protective effects of exercise on biomarkers should be examined in human studies.
Collapse
|
65
|
Lin X, Yang P, Reece EA, Yang P. Pregestational type 2 diabetes mellitus induces cardiac hypertrophy in the murine embryo through cardiac remodeling and fibrosis. Am J Obstet Gynecol 2017; 217:216.e1-216.e13. [PMID: 28412087 PMCID: PMC5787338 DOI: 10.1016/j.ajog.2017.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cardiac hypertrophy is highly prevalent in patients with type 2 diabetes mellitus. Experimental evidence has implied that pregnant women with type 2 diabetes mellitus and their children are at an increased risk of cardiovascular diseases. Our previous mouse model study revealed that maternal type 2 diabetes mellitus induces structural heart defects in their offspring. OBJECTIVE This study aims to determine whether maternal type 2 diabetes mellitus induces embryonic heart hypertrophy in a murine model of diabetic embryopathy. STUDY DESIGN The type 2 diabetes mellitus embryopathy model was established by feeding 4-week-old female C57BL/6J mice with a high-fat diet for 15 weeks. Cardiac hypertrophy in embryos at embryonic day 17.5 was characterized by measuring heart size and thickness of the right and left ventricle walls and the interventricular septum, as well as the expression of β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, desmin, and adrenomedullin. Cardiac remodeling was determined by collagen synthesis and fibronectin synthesis. Fibrosis was evaluated by Masson staining and determining the expression of connective tissue growth factor, osteopontin, and galectin-3 genes. Cell apoptosis also was measured in the developing heart. RESULTS The thicknesses of the left ventricle walls and the interventricular septum of embryonic hearts exposed to maternal diabetes were significantly thicker than those in the nondiabetic group. Maternal diabetes significantly increased β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, and desmin expression, but decreased expression of adrenomedullin. Moreover, collagen synthesis was significantly elevated, whereas fibronectin synthesis was suppressed, in embryonic hearts from diabetic dams, suggesting that cardiac remodeling is a contributing factor to cardiac hypertrophy. The cardiac fibrosis marker, galectin-3, was induced by maternal diabetes. Furthermore, maternal type 2 diabetes mellitus activated the proapoptotic c-Jun-N-terminal kinase 1/2 stress signaling and triggered cell apoptosis by increasing the number of terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end labeling-positive cells (10.4 ± 2.2% of the type 2 diabetes mellitus group vs 3.8 ± 0.7% of the nondiabetic group, P < .05). CONCLUSION Maternal type 2 diabetes mellitus induces cardiac hypertrophy in embryonic hearts. Adverse cardiac remodeling, including elevated collagen synthesis, suppressed fibronectin synthesis, profibrosis, and apoptosis, is implicated as the etiology of cardiac hypertrophy.
Collapse
Affiliation(s)
- Xue Lin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Penghua Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - E Albert Reece
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
66
|
Carrillo B, Collado P, Díaz F, Chowen JA, Pérez-Izquierdo MÁ, Pinos H. Physiological and brain alterations produced by high-fat diet in male and female rats can be modulated by increased levels of estradiol during critical periods of development. Nutr Neurosci 2017; 22:29-39. [PMID: 28696162 DOI: 10.1080/1028415x.2017.1349574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Overnutrition due to a high-fat diet (HFD) can increase the vulnerability of the metabolic system to maladjustments. Estradiol has an inhibitory role on food intake and this hormone has demonstrated to be a crucial organizer during brain development. OBJECTIVE Our aim was to determine whether increased levels of estradiol in the early postnatal period modulate the alterations in metabolism and brain metabolic circuits produced by overnutrition. METHODS Twenty-four male and 24 female Wistar rats were submitted to a HFD (34.9% fat) or a control diet (5% fat) from gestational day 6. From postnatal (P) 6 to P13, both control and HFD groups were administered a s.c. injection of vehicle or estradiol benzoate (0.4 mg/kg), resulting in eight experimental groups (n = 6 in each group). Body weight, food intake and subcutaneous, visceral, and brown fat pads were measured. Agouti-related peptide, neuropeptide Y, orexin, and proopiomelanocortin (POMC) were analyzed by quantitative real-time polymerase chain reaction assay and plasma estradiol levels were measured by ELISA. RESULTS Males fed a HFD showed an increase in body weight and the amount of visceral and subcutaneous fat, which was coincident with an increase in the number of kilocalories ingested. Neonatal estradiol treatment restored the body weight and subcutaneous fat of HFD males to control levels. Hypothalamic POMC mRNA levels in HFD females were increased with respect to control females. This increase was reverted with estradiol treatment during development. DISCUSSION HFD and estradiol treatment have different effects on males and females. Overnutrition affects physiological parameters, such as body weight, visceral, and subcutaneous fat content, in males, while females present alterations in hypothalamic POMC mRNA levels. Hence, the increase in estradiol levels during a period that is critical for the programing of the feeding system can modulate some of the alterations produced by the continuous intake of high-fat content food.
Collapse
Affiliation(s)
- Beatriz Carrillo
- a Departamento de Psicobiología , Universidad Nacional de Educación a Distancia (UNED) , C/ Juan del Rosal n° 10, 28040 Madrid , Spain
| | - Paloma Collado
- a Departamento de Psicobiología , Universidad Nacional de Educación a Distancia (UNED) , C/ Juan del Rosal n° 10, 28040 Madrid , Spain
| | - Francisca Díaz
- b Departamento de Endocrinología , Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Investigación Biomédica en Red (CIBER) de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III , Avda. Menéndez Pelayo, N° 65, 28009 , Madrid
| | - Julie A Chowen
- b Departamento de Endocrinología , Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Investigación Biomédica en Red (CIBER) de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III , Avda. Menéndez Pelayo, N° 65, 28009 , Madrid
| | - Mª Ángeles Pérez-Izquierdo
- a Departamento de Psicobiología , Universidad Nacional de Educación a Distancia (UNED) , C/ Juan del Rosal n° 10, 28040 Madrid , Spain
| | - Helena Pinos
- a Departamento de Psicobiología , Universidad Nacional de Educación a Distancia (UNED) , C/ Juan del Rosal n° 10, 28040 Madrid , Spain
| |
Collapse
|
67
|
Abstract
Excessive fat deposition in obesity has a multifactorial aetiology, but is widely considered the result of disequilibrium between energy intake and expenditure. Despite specific public health policies and individual treatment efforts to combat the obesity epidemic, >2 billion people worldwide are overweight or obese. The central nervous system circuitry, fuel turnover and metabolism as well as adipose tissue homeostasis are important to comprehend excessive weight gain and associated comorbidities. Obesity has a profound impact on quality of life, even in seemingly healthy individuals. Diet, physical activity or exercise and lifestyle changes are the cornerstones of obesity treatment, but medical treatment and bariatric surgery are becoming important. Family history, food environment, cultural preferences, adverse reactions to food, perinatal nutrition, previous or current diseases and physical activity patterns are relevant aspects for the health care professional to consider when treating the individual with obesity. Clinicians and other health care professionals are often ill-equipped to address the important environmental and socioeconomic drivers of the current obesity epidemic. Finally, understanding the epigenetic and genetic factors as well as metabolic pathways that take advantage of 'omics' technologies could play a very relevant part in combating obesity within a precision approach.
Collapse
|
68
|
Zou T, Chen D, Yang Q, Wang B, Zhu MJ, Nathanielsz PW, Du M. Resveratrol supplementation of high-fat diet-fed pregnant mice promotes brown and beige adipocyte development and prevents obesity in male offspring. J Physiol 2017; 595:1547-1562. [PMID: 27891610 DOI: 10.1113/jp273478] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/15/2016] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS Maternal high-fat diet impairs brown adipocyte function and correlates with obesity in offspring. Maternal resveratrol administration recovers metabolic activity of offspring brown adipose tissue. Maternal resveratrol promotes beige adipocyte development in offspring white adipose tissue. Maternal resveratrol intervention protects offspring against high-fat diet-induced obesity. ABSTRACT Promoting beige/brite adipogenesis and thermogenic activity is considered as a promising therapeutic approach to reduce obesity and metabolic syndrome. Maternal obesity impairs offspring brown adipocyte function and correlates with obesity in offspring. We previously found that dietary resveratrol (RES) induces beige adipocyte formation in adult mice. Here, we evaluated further the effect of resveratrol supplementation of pregnant mice on offspring thermogenesis and energy expenditure. Female C57BL/6 J mice were fed a control diet (CON) or a high-fat diet (HFD) with or without 0.2% (w/w) RES during pregnancy and lactation. Male offspring were weaned onto a HFD and maintained on this diet for 11 weeks. The offspring thermogenesis and related regulatory factors in adipose tissue were evaluated. At weaning, HFD offspring had lower thermogenesis in brown and white adipose tissues compared with CON offspring, which was recovered by maternal RES supplementation, along with the appearance of multilocular brown/beige adipocytes and elevated thermogenic gene expression. Adult offspring of RES-treated mothers showed increased energy expenditure and insulin sensitivity when on an obesogenic diet compared with HFD offspring. The elevated metabolic activity was correlated with enhanced brown adipose function and white adipose tissue browning in HFD+RES compared with HFD offspring. In conclusion, RES supplementation of HFD-fed dams during pregnancy and lactation promoted white adipose browning and thermogenesis in offspring at weaning accompanied by persistent beneficial effects in protecting against HFD-induced obesity and metabolic disorders.
Collapse
Affiliation(s)
- Tiande Zou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Washington Centre for Muscle Biology and Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiyuan Yang
- Washington Centre for Muscle Biology and Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Bo Wang
- Washington Centre for Muscle Biology and Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Mei-Jun Zhu
- School of Food Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Peter W Nathanielsz
- Wyoming Pregnancy and Life Course Health Centre, Department of Animal Science, University of Wyoming, Laramie, WY, 82071, USA
| | - Min Du
- Washington Centre for Muscle Biology and Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA.,Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100194, China
| |
Collapse
|
69
|
Abstract
The activity of the hypothalamus-pituitary-thyroid axis (HPT) is coordinated by hypophysiotropic thyrotropin releasing hormone (TRH) neurons present in the paraventricular nucleus of the hypothalamus. Hypophysiotropic TRH neurons act as energy sensors. TRH controls the synthesis and release of thyrotropin, which activates the synthesis and secretion of thyroid hormones; in target tissues, transporters and deiodinases control their local availability. Thyroid hormones regulate many functions, including energy homeostasis. This review discusses recent evidence that covers several aspects of TRH role in HPT axis regulation. Knowledge about the mechanisms of TRH signaling has steadily increased. New transcription factors engaged in TRH gene expression have been identified, and advances made on how they interact with signaling pathways and define the dynamics of TRH neurons response to acute and/or long-term influences. Albeit yet incomplete, the relationship of TRH neurons activity with positive energy balance has emerged. The importance of tanycytes as a central relay for the feedback control of the axis, as well as for HPT responses to alterations in energy balance, and other stimuli has been reinforced. Finally, some studies have started to shed light on the interference of prenatal and postnatal stress and nutrition on HPT axis programing, which have confirmed the axis susceptibility to early insults.
Collapse
Affiliation(s)
- Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, 62250, Cuernavaca MOR, Morelos, México.
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, 62250, Cuernavaca MOR, Morelos, México
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, 62250, Cuernavaca MOR, Morelos, México
| |
Collapse
|
70
|
de Fante T, Simino LA, Reginato A, Payolla TB, Vitoréli DCG, de Souza M, Torsoni MA, Milanski M, Torsoni AS. Diet-Induced Maternal Obesity Alters Insulin Signalling in Male Mice Offspring Rechallenged with a High-Fat Diet in Adulthood. PLoS One 2016; 11:e0160184. [PMID: 27479001 PMCID: PMC4968809 DOI: 10.1371/journal.pone.0160184] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/14/2016] [Indexed: 12/27/2022] Open
Abstract
Modern lifestyle has resulted in an increase in the prevalence of obesity and its comorbidities in pregnant women and the young population. It has been well established that the consumption of a high-fat diet (HFD) has many direct effects on glucose metabolism. However, it is important to assess whether maternal consumption of a HFD during critical periods of development can lead to metabolic changes in the offspring metabolism. This study evaluated the potential effects of metabolic programming on the impairment of insulin signalling in recently weaned offspring from obese dams. Additionally, we investigated if early exposure to an obesogenic environment could exacerbate the impairment of glucose metabolism in adult life in response to a HFD. Swiss female mice were fed with Standard Chow (SC) or a HFD during gestation and lactation and tissues from male offspring were analysed at d28 and d82. Offspring from obese dams had greater weight gain and higher adiposity and food intake than offspring from control dams. Furthermore, they showed impairment in insulin signalling in central and peripheral tissues, which was associated with the activation of inflammatory pathways. Adipose tissue was ultimately the most affected in adult offspring after HFD rechallenge; this may have contributed to the metabolic deregulation observed. Overall, our results suggest that diet-induced maternal obesity leads to increased susceptibility to obesity and impairment of insulin signalling in offspring in early and late life that cannot be reversed by SC consumption, but can be aggravated by HFD re-exposure.
Collapse
Affiliation(s)
- Thaís de Fante
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas–UNICAMP, Limeira, São Paulo, Brazil
| | - Laís Angélica Simino
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas–UNICAMP, Limeira, São Paulo, Brazil
| | - Andressa Reginato
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas–UNICAMP, Limeira, São Paulo, Brazil
| | - Tanyara Baliani Payolla
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas–UNICAMP, Limeira, São Paulo, Brazil
| | | | - Monique de Souza
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas–UNICAMP, Limeira, São Paulo, Brazil
| | - Márcio Alberto Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas–UNICAMP, Limeira, São Paulo, Brazil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas–UNICAMP, Limeira, São Paulo, Brazil
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas–UNICAMP, Limeira, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
71
|
Carvalho JC, Lisboa PC, de Oliveira E, Peixoto-Silva N, Pinheiro CR, Fraga MC, Claudio-Neto S, Franci CR, Manhães AC, Moura EG. Effects of early and late neonatal bromocriptine treatment on hypothalamic neuropeptides, dopaminergic reward system and behavior of adult rats. Neuroscience 2016; 325:175-87. [DOI: 10.1016/j.neuroscience.2016.03.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
|
72
|
DNA methylation regulates hypothalamic gene expression linking parental diet during pregnancy to the offspring's risk of obesity in Psammomys obesus. Int J Obes (Lond) 2016; 40:1079-88. [PMID: 27108813 DOI: 10.1038/ijo.2016.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/18/2016] [Accepted: 03/22/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND/OBJECTIVE The rising incidence of obesity is a major public health issue worldwide. Recent human and animal studies suggest that parental diet can influence fetal development and is implicated with risk of obesity and type 2 diabetes in offspring. The hypothalamus is central to body energy homoeostasis and appetite by controlling endocrine signals. We hypothesise that offspring susceptibility to obesity is programmed in the hypothalamus in utero and mediated by changes to DNA methylation, which persist to adulthood. We investigated hypothalamic genome-wide DNA methylation in Psammomys obesus diet during pregnancy to the offspring's risk of obesity. METHODS Using methyl-CpG binding domain capture and deep sequencing (MBD-seq), we examined the hypothalamus of offspring exposed to a low-fat diet and standard chow diet during the gestation and lactation period. RESULTS Offspring exposed to a low-fat parental diet were more obese and had increased circulating insulin and glucose levels. Methylome profiling identified 1447 genomic regions of differential methylation between offspring of parents fed a low-fat diet compared with parents on standard chow diet. Pathway analysis shows novel DNA methylation changes of hypothalamic genes associated with neurological function, nutrient sensing, appetite and energy balance. Differential DNA methylation corresponded to changes in hypothalamic gene expression of Tas1r1 and Abcc8 in the offspring exposed to low-fat parental diet. CONCLUSION Subject to parental low-fat diet, we observe DNA methylation changes of genes associated with obesity in offspring.
Collapse
|
73
|
Reductions in hypothalamic Gfap expression, glial cells and α-tanycytes in lean and hypermetabolic Gnasxl-deficient mice. Mol Brain 2016; 9:39. [PMID: 27080240 PMCID: PMC4832494 DOI: 10.1186/s13041-016-0219-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/08/2016] [Indexed: 01/31/2023] Open
Abstract
Background Neuronal and glial differentiation in the murine hypothalamus is not complete at birth, but continues over the first two weeks postnatally. Nutritional status and Leptin deficiency can influence the maturation of neuronal projections and glial patterns, and hypothalamic gliosis occurs in mouse models of obesity. Gnasxl constitutes an alternative transcript of the genomically imprinted Gnas locus and encodes a variant of the signalling protein Gαs, termed XLαs, which is expressed in defined areas of the hypothalamus. Gnasxl-deficient mice show postnatal growth retardation and undernutrition, while surviving adults remain lean and hypermetabolic with increased sympathetic nervous system (SNS) activity. Effects of this knock-out on the hypothalamic neural network have not yet been investigated. Results RNAseq analysis for gene expression changes in hypothalami of Gnasxl-deficient mice indicated Glial fibrillary acid protein (Gfap) expression to be significantly down-regulated in adult samples. Histological analysis confirmed a reduction in Gfap-positive glial cell numbers specifically in the hypothalamus. This reduction was observed in adult tissue samples, whereas no difference was found in hypothalami of postnatal stages, indicating an adaptation in adult Gnasxl-deficient mice to their earlier growth phenotype and hypermetabolism. Especially noticeable was a loss of many Gfap-positive α-tanycytes and their processes, which form part of the ependymal layer that lines the medial and dorsal regions of the 3rd ventricle, while β-tanycytes along the median eminence (ME) and infundibular recesses appeared unaffected. This was accompanied by local reductions in Vimentin and Nestin expression. Hypothalamic RNA levels of glial solute transporters were unchanged, indicating a potential compensatory up-regulation in the remaining astrocytes and tanycytes. Conclusion Gnasxl deficiency does not directly affect glial development in the hypothalamus, since it is expressed in neurons, and Gfap-positive astrocytes and tanycytes appear normal during early postnatal stages. The loss of Gfap-expressing cells in adult hypothalami appears to be a consequence of the postnatal undernutrition, hypoglycaemia and continued hypermetabolism and leanness of Gnasxl-deficient mice, which contrasts with gliosis observed in obese mouse models. Since α-tanycytes also function as adult neural progenitor cells, these findings might indicate further developmental abnormalities in hypothalamic formations of Gnasxl-deficient mice, potentially including neuronal composition and projections. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0219-1) contains supplementary material, which is available to authorized users.
Collapse
|
74
|
Lents CA, Brown-Brandl TM, Rohrer GA, Oliver WT, Freking BA. Plasma concentrations of acyl-ghrelin are associated with average daily gain and feeding behavior in grow-finish pigs. Domest Anim Endocrinol 2016; 55:107-13. [PMID: 26808977 DOI: 10.1016/j.domaniend.2015.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/22/2015] [Accepted: 12/26/2015] [Indexed: 11/24/2022]
Abstract
The objectives of this study were to determine the effect of sex, sire line, and litter size on concentrations of acyl-ghrelin and total ghrelin in plasma of grow-finish pigs and to understand the relationship of plasma concentrations of ghrelin with feeding behavior, average daily gain (ADG), and back fat in grow-finish swine. Yorkshire-Landrace crossbred dams were inseminated with semen from Yorkshire, Landrace, or Duroc sires. Within 24 h of birth, pigs were cross-fostered into litter sizes of normal (N; >12 pigs/litter) or small (S; ≤ 9 pigs/litter). At 8 wk of age, pigs (n = 240) were blocked by sire breed, sex, and litter size and assigned to pens (n = 6) containing commercial feeders modified with a system to monitor feeding behavior. Total time eating, number of daily meals, and duration of meals were recorded for each individual pig. Body weight was recorded every 4 wk. Back fat and loin eye area were recorded at the conclusion of the 12-wk feeding study. A blood sample was collected at week 7 of the study to quantify concentrations of acyl- and total ghrelin in plasma. Pigs from small litters weighed more (P < 0.05) and tended (P = 0.07) to be fatter than pigs from normal litters. Postnatal litter size did not affect ADG, feeding behavior, or concentrations of ghrelin in plasma during the grow-finish phase. Barrows spent more time eating (P < 0.001) than gilts, but the number of meals and concentrations of ghrelin did not differ with sex of the pig. Pigs from Duroc and Yorkshire sires had lesser (P < 0.0001) concentrations of acyl-ghrelin than pigs from Landrace sires, but plasma concentrations of total ghrelin were not affected by sire breed. Concentrations of acyl-ghrelin were positively correlated with the number of meals and negatively correlated with meal length and ADG (P < 0.05). A larger number of short-duration meals may indicate that pigs with greater concentrations of acyl-ghrelin consumed less total feed, which likely explains why they were leaner and grew more slowly. Acyl-ghrelin is involved in regulating feeding behavior in pigs, and measuring acyl-ghrelin is important when trying to understand the role of this hormone in swine physiology.
Collapse
Affiliation(s)
- C A Lents
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA.
| | - T M Brown-Brandl
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA
| | - G A Rohrer
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA
| | - W T Oliver
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA
| | - B A Freking
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA
| |
Collapse
|
75
|
Bilella A, Alvarez-Bolado G, Celio MR. Birthdate of parvalbumin-neurons in the Parvafox-nucleus of the lateral hypothalamus. Brain Res 2016; 1633:111-114. [PMID: 26764531 DOI: 10.1016/j.brainres.2015.12.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/14/2015] [Accepted: 12/27/2015] [Indexed: 10/22/2022]
Abstract
The Parvafox-nucleus in the lateral hypothalamus is characterized by the presence of two distinct neural populations, the Parvalbumin (Parv) and the Foxb1-expressing ones. Foxb1-neurons are born at day 10 in the subventricular zone of the mouse mammillary region. It would be interesting to know if the subpopulation of Parv- neurons develop independently at different times and then meet the Foxb1- expressing neurons in the lateral hypothalamus, their final settling place. The aim of this study was to define the period of birth of the Parv-positive neurons using an in-vivo Bromodeoxyuridine-based method in rats. Parv-neurons are generated from embryonic day 10 to day 13, with a peak at day 12. Thus, it appears that the birthdates of the two subpopulations in these two species is similar, perhaps suggesting that they are born from the same neuroepithelial region.
Collapse
Affiliation(s)
- Alessandro Bilella
- Anatomy Unit, Department of Medicine and Program in Neuroscience, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Gonzalo Alvarez-Bolado
- Institute of Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Marco R Celio
- Anatomy Unit, Department of Medicine and Program in Neuroscience, University of Fribourg, CH-1700 Fribourg, Switzerland.
| |
Collapse
|
76
|
Elson AE, Simerly RB. Developmental specification of metabolic circuitry. Front Neuroendocrinol 2015; 39:38-51. [PMID: 26407637 PMCID: PMC4681622 DOI: 10.1016/j.yfrne.2015.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 01/16/2023]
Abstract
The hypothalamus contains a core circuitry that communicates with the brainstem and spinal cord to regulate energy balance. Because metabolic phenotype is influenced by environmental variables during perinatal development, it is important to understand how these neural pathways form in order to identify key signaling pathways that are responsible for metabolic programming. Recent progress in defining gene expression events that direct early patterning and cellular specification of the hypothalamus, as well as advances in our understanding of hormonal control of central neuroendocrine pathways, suggest several key regulatory nodes that may represent targets for metabolic programming of brain structure and function. This review focuses on components of central circuitry known to regulate various aspects of energy balance and summarizes what is known about their developmental neurobiology within the context of metabolic programming.
Collapse
Affiliation(s)
- Amanda E Elson
- The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Keck School of Medicine, Los Angeles, CA 90027, USA
| | - Richard B Simerly
- The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Keck School of Medicine, Los Angeles, CA 90027, USA.
| |
Collapse
|