51
|
Pällmann N, Braig M, Sievert H, Preukschas M, Hermans-Borgmeyer I, Schweizer M, Nagel CH, Neumann M, Wild P, Haralambieva E, Hagel C, Bokemeyer C, Hauber J, Balabanov S. Biological Relevance and Therapeutic Potential of the Hypusine Modification System. J Biol Chem 2015; 290:18343-60. [PMID: 26037925 DOI: 10.1074/jbc.m115.664490] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Indexed: 11/06/2022] Open
Abstract
Hypusine modification of the eukaryotic initiation factor 5A (eIF-5A) is emerging as a crucial regulator in cancer, infections, and inflammation. Although its contribution in translational regulation of proline repeat-rich proteins has been sufficiently demonstrated, its biological role in higher eukaryotes remains poorly understood. To establish the hypusine modification system as a novel platform for therapeutic strategies, we aimed to investigate its functional relevance in mammals by generating and using a range of new knock-out mouse models for the hypusine-modifying enzymes deoxyhypusine synthase and deoxyhypusine hydroxylase as well as for the cancer-related isoform eIF-5A2. We discovered that homozygous depletion of deoxyhypusine synthase and/or deoxyhypusine hydroxylase causes lethality in adult mice with different penetrance compared with haploinsufficiency. Network-based bioinformatic analysis of proline repeat-rich proteins, which are putative eIF-5A targets, revealed that these proteins are organized in highly connected protein-protein interaction networks. Hypusine-dependent translational control of essential proteins (hubs) and protein complexes inside these networks might explain the lethal phenotype observed after deletion of hypusine-modifying enzymes. Remarkably, our results also demonstrate that the cancer-associated isoform eIF-5A2 is dispensable for normal development and viability. Together, our results provide the first genetic evidence that the hypusine modification in eIF-5A is crucial for homeostasis in mammals. Moreover, these findings highlight functional diversity of the hypusine system compared with lower eukaryotes and indicate eIF-5A2 as a valuable and safe target for therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Nora Pällmann
- From the Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumor Center, the Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Melanie Braig
- From the Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumor Center, the Division of Hematology and
| | - Henning Sievert
- From the Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumor Center
| | - Michael Preukschas
- From the Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumor Center, the Department of Molecular Pathology, Institute for Hematopathology, 22547 Hamburg, Germany
| | | | | | - Claus Henning Nagel
- the Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Melanie Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Peter Wild
- Institute of Surgical Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Eugenia Haralambieva
- Institute of Surgical Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Carsten Bokemeyer
- From the Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumor Center
| | - Joachim Hauber
- the Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Stefan Balabanov
- From the Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumor Center, the Division of Hematology and
| |
Collapse
|
52
|
Meng QB, Kang WM, Yu JC, Liu YQ, Ma ZQ, Zhou L, Cui QC, Zhou WX. Overexpression of eukaryotic translation initiation factor 5A2 (EIF5A2) correlates with cell aggressiveness and poor survival in gastric cancer. PLoS One 2015; 10:e0119229. [PMID: 25793713 PMCID: PMC4368542 DOI: 10.1371/journal.pone.0119229] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 01/29/2015] [Indexed: 12/17/2022] Open
Abstract
Eukaryotic translation initiation factor 5A2 (EIF5A2) plays an important role in tumor progression and prognosis evaluation. However, little information is available about its potential role in gastric cancer. This study aimed to investigate the function of EIF5A2 in tumor progression and its potential mechanisms. EIF5A2 expression was measured in human gastric cancer cell lines, the immortalized gastric mucosal epithelial cell line (GES-1) and human gastric cancer tissues and knocked down by RNA interference or upregulated by EIF5A2 plasmid transfection. Cell proliferation, migration and invasion were assessed in vitro. The downstream targets of EIF5A2 were examined by western blotting. EIF5A2 and its potential target metastasis-associated protein 1 (MTA1) expression were examined in 160 pairs of human gastric cancer and adjacent non-tumor specimens using immunohistochemistry (IHC) staining, and its correlation with clinicopathological features and survival was investigated. Knockdown of EIF5A2 or MTA1 caused an apparent suppression of HGC27 cell proliferation, migration and invasion. After knockdown of EIF5A2 in HGC27 cells, E-cadherin levels were upregulated and vimentin, cyclin D1, cyclin D3, C-MYC and MTA1 levels were downregulated. Upregulation of EIF5A2 in MKN45 cells resulted in the converse. IHC results showed a positive correlation between EIF5A2 and MTA1 expression in gastric cancers (P<0.001). Both EIF5A2 and MTA1 overexpression were correlated with pT stage (P=0.018 and P=0.042), pN stage (P=0.037 and P=0.020) and lymphovascular invasion (P=0.016 and P=0.044). EIF5A2 or MTA1 overexpression was significantly associated with poor overall survival and disease-free survival (All P<0.05). Multivariate analyses identified EIF5A2 as an independent predictor for both overall survival (P=0.012) and disease-free survival (P=0.008) in gastric cancer patients. Our findings indicate that EIF5A2 upregulation plays an important oncogenic role in gastric cancer. EIF5A2 may represent a new predictor for poor survival and is a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Qing-Bin Meng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Gastrointestinal Surgery, the First Hospital of Wu Han City, Wuhan city, Hubei Provence, China
| | - Wei-Ming Kang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jian-Chun Yu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yu-Qin Liu
- Cell Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Wuhan city, Beijing, China
| | - Zhi-Qiang Ma
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Quan-Cai Cui
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei-Xun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
53
|
Xu G, Yu H, Shi X, Sun L, Zhou Q, Zheng D, Shi H, Li N, Zhang X, Shao G. Cisplatin sensitivity is enhanced in non-small cell lung cancer cells by regulating epithelial-mesenchymal transition through inhibition of eukaryotic translation initiation factor 5A2. BMC Pulm Med 2014; 14:174. [PMID: 25380840 PMCID: PMC4232729 DOI: 10.1186/1471-2466-14-174] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/16/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) has been believed to be related with chemotherapy resistance in non-small cell lung cancer (NSCLC). Recent studies have suggested eIF5A-2 may function as a proliferation-related oncogene in tumorigenic processes. METHODS We used cell viability assays, western blotting, immunofluorescence, transwell-matrigel invasion assay, wound-healing assay combined with GC7 (a novel eIF5A-2 inhibitor) treatment or siRNA interference to investigate the role of eIF5A-2 playing in NSCLC chemotherapy. RESULTS We found low concentrations of GC7 have little effect on NSCLC viability, but could enhance cisplatin cytotoxicity in NSCLC cells. GC7 also could reverse mesenchymal phenotype in NCI-H1299 and prevented A549 cells undergoing EMT after TGF-β1 inducement. eIF5A-2 knockdown resulted in EMT inhibition. CONCLUSION Our data indicated GC7 enhances cisplatin cytotoxicity and prevents the EMT in NSCLC cells by inhibiting eIF5A-2.
Collapse
Affiliation(s)
- Guodong Xu
- />Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School of Ningbo University, NO 57 Xingning Road, Ningbo, 315041 China
| | - Hui Yu
- />Department of Pathology, Shanghai Pulmonary Hospital Tongji University School of Medical, Shanghai, 200065 China
| | - Xinbao Shi
- />Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School of Ningbo University, NO 57 Xingning Road, Ningbo, 315041 China
| | - Lebo Sun
- />Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School of Ningbo University, NO 57 Xingning Road, Ningbo, 315041 China
| | - Qingyun Zhou
- />Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School of Ningbo University, NO 57 Xingning Road, Ningbo, 315041 China
| | - Dawei Zheng
- />Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School of Ningbo University, NO 57 Xingning Road, Ningbo, 315041 China
| | - Huoshun Shi
- />Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School of Ningbo University, NO 57 Xingning Road, Ningbo, 315041 China
| | - Ni Li
- />Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School of Ningbo University, NO 57 Xingning Road, Ningbo, 315041 China
| | - Xianning Zhang
- />Department of Cell Biology and Medical Genetics, Research Center of Molecular Medicine, National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058 China
| | - Guofeng Shao
- />Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School of Ningbo University, NO 57 Xingning Road, Ningbo, 315041 China
| |
Collapse
|
54
|
Gawron D, Gevaert K, Van Damme P. The proteome under translational control. Proteomics 2014; 14:2647-62. [PMID: 25263132 DOI: 10.1002/pmic.201400165] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/21/2014] [Accepted: 09/23/2014] [Indexed: 02/02/2023]
Abstract
A single eukaryotic gene can give rise to a variety of protein forms (proteoforms) as a result of genetic variation and multilevel regulation of gene expression. In addition to alternative splicing, an increasing line of evidence shows that alternative translation contributes to the overall complexity of proteomes. Identifying the repertoire of proteins and micropeptides expressed by alternative selection of (near-)cognate translation initiation sites and different reading frames however remains challenging with contemporary proteomics. MS-enabled identification of proteoforms is expected to benefit from transcriptome and translatome data by the creation of customized and sample-specific protein sequence databases. Here, we focus on contemporary integrative omics approaches that complement proteomics with DNA- and/or RNA-oriented technologies to elucidate the mechanisms of translational control. Together, these technologies enable to map the translation (initiation) landscape and more comprehensively define the inventory of proteoforms raised upon alternative translation, thus assisting in the (re-)annotation of genomes.
Collapse
Affiliation(s)
- Daria Gawron
- Department of Medical Protein Research, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
55
|
Wei JH, Cao JZ, Zhang D, Liao B, Zhong WM, Lu J, Zhao HW, Zhang JX, Tong ZT, Fan S, Liang CZ, Liao YB, Pang J, Wu RH, Fang Y, Chen ZH, Li B, Xie D, Chen W, Luo JH. EIF5A2 predicts outcome in localised invasive bladder cancer and promotes bladder cancer cell aggressiveness in vitro and in vivo. Br J Cancer 2014; 110:1767-77. [PMID: 24504366 PMCID: PMC3974079 DOI: 10.1038/bjc.2014.52] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/19/2013] [Accepted: 01/10/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND EIF5A2, eukaryotic translation initiation factor 5A2, is associated with several human cancers. In this study, we investigated the role of EIF5A2 in the metastatic potential of localised invasive bladder cancer (BC) and its underlying molecular mechanisms were explored. METHODS The expression pattern of EIF5A2 in localised invasive BC was determined by immunohistochemistry. In addition, the function of EIF5A2 in BC and its underlying mechanisms were elucidated with a series of in vitro and in vivo assays. RESULTS Overexpression of EIF5A2 was an independent predictor for poor metastasis-free survival of localised invasive BC patients treated with radical cystectomy. Knockdown of EIF5A2 inhibited BC cell migratory and invasive capacities in vitro and metastatic potential in vivo and reversed epithelial-mesenchymal transition (EMT), whereas overexpression of EIF5A2 promoted BC cells motility and invasiveness in vitro and metastatic potential in vivo and induced EMT. In addition, we found that EIF5A2 might activate TGF-β1 expression to induce EMT and drive aggressiveness in BC cells. EIF5A2 stabilized STAT3 and stimulated nuclear localisation of STAT3, which resulted in increasing enrichment of STAT3 onto TGF-β1 promoter to enhance the transcription of TGF-β1. CONCLUSIONS EIF5A2 overexpression predicts tumour metastatic potential in patients with localised invasive BC treated with radical cystectomy. Furthermore, EIF5A2 elevated TGF-β1 expression through STAT3 to induce EMT and promotes aggressiveness in BC.
Collapse
Affiliation(s)
- J-H Wei
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - J-Z Cao
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Urology, Jiangmen Hospital, Sun Yat-Sen University, Jiangmen, China
| | - D Zhang
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - B Liao
- Department of Pathology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - W-M Zhong
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - J Lu
- Department of Urology, Jiangmen Hospital, Sun Yat-Sen University, Jiangmen, China
| | - H-W Zhao
- Department of Urology, Yuhuangding Hospital, Qingdao University Medical College, Yantai, China
| | - J-X Zhang
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Z-T Tong
- Department of Urology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - S Fan
- Department of Urology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - C-Z Liang
- Department of Urology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Y-B Liao
- Department of Urology, Jiangmen Hospital, Sun Yat-Sen University, Jiangmen, China
| | - J Pang
- Department of Urology, Jiangmen Hospital, Sun Yat-Sen University, Jiangmen, China
| | - R-H Wu
- Department of Urology, Jiangmen Hospital, Sun Yat-Sen University, Jiangmen, China
| | - Y Fang
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Z-H Chen
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - B Li
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - D Xie
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - W Chen
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - J-H Luo
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
56
|
Khosravi S, Wong RPC, Ardekani GS, Zhang G, Martinka M, Ong CJ, Li G. Role of EIF5A2, a downstream target of Akt, in promoting melanoma cell invasion. Br J Cancer 2014; 110:399-408. [PMID: 24178756 PMCID: PMC3899752 DOI: 10.1038/bjc.2013.688] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/26/2013] [Accepted: 10/09/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cutaneous melanoma is a life-threatening skin cancer because of its poorly understood invasive nature and high metastatic potential. This study examines the importance of eukaryotic translation initiation factor 5A2 (EIF5A2) in melanoma pathogenesis. METHODS We examined EIF5A2 expression in 459 melanocytic lesions using tissue microarray. In addition, melanoma cell lines were subjected to invasion and cell proliferation assays, zymography, FACS and real-time PCR to investigate the role of EIF5A2 in cancer progression. RESULTS Positive EIF5A2 staining increased from dysplastic naevi to primary melanomas (PMs; P=0.001), and further increased in metastatic melanomas (P=0.044). Eukaryotic translation initiation factor 5A2 expression was correlated with melanoma thickness (P<0.001) and was inversely correlated with the 5-year survival of PM patients especially those with tumour ≤2 mm thick. Strikingly, none of the latter died within 5 years in EIF5A2-negative staining group. Cox regression analysis revealed that EIF5A2 is an independent prognostic marker. Further, we found that EIF5A2 is a novel downstream target of phosphorylated Akt. Both melanoma cell invasion and MMP-2 activity increased and decreased with EIF5A2 overexpression and knockdown, respectively. CONCLUSION We for the first time showed that EIF5A2, as a target of PI3K/Akt, promotes melanoma cell invasion and may serve as a promising prognostic marker and a potential therapeutic target for melanoma.
Collapse
Affiliation(s)
- S Khosravi
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - R P C Wong
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - G S Ardekani
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - G Zhang
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Martinka
- Department of Pathology, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - C J Ong
- Department of Surgery, Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - G Li
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
57
|
Lou B, Fan J, Wang K, Chen W, Zhou X, Zhang J, Lin S, Lv F, Chen Y. N1-guanyl-1,7-diaminoheptane (GC7) enhances the therapeutic efficacy of doxorubicin by inhibiting activation of eukaryotic translation initiation factor 5A2 (eIF5A2) and preventing the epithelial-mesenchymal transition in hepatocellular carcinoma cells. Exp Cell Res 2013; 319:2708-2717. [PMID: 23958463 DOI: 10.1016/j.yexcr.2013.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/09/2013] [Accepted: 08/02/2013] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) cells undergo the epithelial-mesenchymal transition (EMT) during chemotherapy, which reduces the efficacy of doxorubicin-based chemotherapy. We investigated N1-guanyl-1,7-diaminoheptane (GC7) which inhibits eukaryotic translation initiation factor 5A2 (eIF5A2) activation; eIF5A2 is associated with chemoresistance. GC7 enhanced doxorubicin cytotoxicity in epithelial HCC cells (Huh7, Hep3B and HepG2) but had little effect in mesenchymal HCC cells (SNU387, SNU449). GC7 suppressed the doxorubicin-induced EMT in epithelial HCC cells; knockdown of eIF5A2 inhibited the doxorubicin-induced EMT and enhanced doxorubicin cytotoxicity. GC7 combination therapy may enhance the therapeutic efficacy of doxorubicin in HCC by inhibiting eIF5A2 activation and preventing the EMT.
Collapse
Affiliation(s)
- Bin Lou
- Department of Laboratory Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Wang FW, Guan XY, Xie D. Roles of eukaryotic initiation factor 5A2 in human cancer. Int J Biol Sci 2013; 9:1013-20. [PMID: 24250246 PMCID: PMC3831114 DOI: 10.7150/ijbs.7191] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/26/2013] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic initiation factor 5A (eIF5A), the only known cellular protein containing the amino acid hypusine, is an essential component of translation elongation. eIF5A2, one of the two isoforms in the eIF5A family, is reported to be a novel oncogenic protein in many types of human cancer. Both in vitro and in vivo studies showed that eIF5A2 could initiate tumor formation, enhance cancer cell growth, and increase cancer cell motility and metastasis by inducing epithelial-mesenchymal transition. Accumulatied evidence suggests that eIF5A2 is a useful biomarker in the prediction of cancer prognoses and serves as an anticancer molecular target. In this review, we will focus on updating current knowledge of the EIF5A2 gene in human cancers. The molecular mechanisms of EIF5A2 related to tumorigenesis will also be discussed.
Collapse
Affiliation(s)
- Feng-wei Wang
- 1. Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China. Collaborative Innovation Center of Cancer Medicine
| | | | | |
Collapse
|
59
|
Shang FF, Zhao W, Zhao Q, Liu J, Li DW, Zhang H, Zhou XF, Li CY, Wang TH. Upregulation of eIF-5A1 in the paralyzed muscle after spinal cord transection associates with spontaneous hindlimb locomotor recovery in rats by upregulation of the ErbB, MAPK and neurotrophin signal pathways. J Proteomics 2013; 91:188-99. [PMID: 23238062 DOI: 10.1016/j.jprot.2012.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/18/2012] [Accepted: 12/02/2012] [Indexed: 02/05/2023]
Abstract
It is well known that trauma is frequently accompanied by spontaneous functional recovery after spinal cord injury (SCI), but the underlying mechanisms remain elusive. In this study, BBB scores showed a gradual return of locomotor functions after SCT. Proteomics analysis revealed 16 differential protein spots in the gastrocnemius muscle between SCT and normal rats. Of these differential proteins, eukaryotic translation initiation factor 5A1 (elf-5A1), a highly conserved molecule throughout eukaryotes, exhibited marked upregulation in the gastrocnemius muscle after SCT. To study the role of eIF-5A1 in the restoration of hindlimb locomotor functions following SCT, we used siRNA to downregulate the mRNA level of eIF-5A1. Compared with untreated SCT control rats, those subjected to eIF-5A1 knockdown exhibited impaired functional recovery. Moreover, gene expression microarrays and bioinformatic analysis showed high correlation between three main signal pathways (ErbB, MAPK and neurotrophin signal pathways) and eIF-5A1. These signal pathways regulate cell proliferation, differentiation and neurocyte growth. Consequently, eIF-5A1 played a pivotal role via these signal pathways in hindlimb locomotor functional recovery after SCT, which could pave the way for the development of a new strategy for the treatment of spinal cord injury in clinical trials.
Collapse
Affiliation(s)
- Fei-Fei Shang
- Institute of Neurological Disease, The State Key Laboratory of Biotherapy and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Eukaryotic translation initiation factors in cancer development and progression. Cancer Lett 2013; 340:9-21. [PMID: 23830805 DOI: 10.1016/j.canlet.2013.06.019] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 01/03/2023]
Abstract
Eukaryotic gene expression is a complicated process primarily regulated at the levels of gene transcription and mRNA translation. The latter involves four main steps: initiation, elongation, termination and recycling. Translation regulation is primarily achieved during initiation which is orchestrated by 12 currently known eukaryotic initiation factors (eIFs). Here, we review the current state of eIF research and present a concise summary of the various eIF subunits. As eIFs turned out to be critically implicated in different oncogenic processes the various eIF members and their contribution to onset and progression of cancer are featured.
Collapse
|
61
|
Xu GD, Shi XB, Sun LB, Zhou QY, Zheng DW, Shi HS, Che YL, Wang ZS, Shao GF. Down-regulation of eIF5A-2 prevents epithelial-mesenchymal transition in non-small-cell lung cancer cells. J Zhejiang Univ Sci B 2013; 14:460-7. [PMID: 23733422 PMCID: PMC3682161 DOI: 10.1631/jzus.b1200200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/25/2012] [Indexed: 11/11/2022]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is believed to be the critical process in malignant tumor invasion and metastases, and has a great influence on improving the survival rate in non-small-cell lung cancer (NSCLC) patients. Recent studies suggested that eukaryotic initiation factor 5A-2 (eIF5A-2) might serve as an adverse prognostic marker of survival. We detected eIF5A-2 in NSCLC A549 cells, and found that the invasive capability correlates with the eIF5A-2 expression. METHODS Transforming growth factor (TGF)-β1 was used to induce EMT in A549 cells. Western blotting, immunofluorescence, wound healing assay, and transwell-matrigel invasion chambers were used to identify phenotype changes. Western blotting was also used to observe changes of the expression of eIF5A-2. We down-regulated the eIF5A-2 expression using an eIF5A-2 siRNA and identified the phenotype changes by western blotting and immunofluorescence. We tested the change of migration and invasion capabilities of A549 cells by the wound healing assay and transwell-matrigel invasion chambers. RESULTS After stimulating with TGF-β1, almost all A549 cells changed to the mesenchymal phenotype and acquired more migration and invasion capabilities. These cells also had higher eIF5A-2 protein expression. Down-regulation of eIF5A-2 expression with eIF5A-2 siRNA transfection could change the cells from mesenchymal to epithelial phenotype and decrease tumor cell migration and invasive capabilities significantly. CONCLUSIONS The expression of eIF5A-2 was up-regulated following EMT phenotype changes in A549 cells, which correlated with enhanced tumor invasion and metastatic capabilities. Furthermore, in the A549 cell line, the process of EMT phenotype change could be reversed by eIF5A-2 siRNA, with a consequent weakening of both invasive and metastatic capabilities.
Collapse
Affiliation(s)
- Guo-dong Xu
- Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School, Ningbo University, Ningbo 315041, China
| | - Xin-bao Shi
- Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School, Ningbo University, Ningbo 315041, China
| | - Le-bo Sun
- Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School, Ningbo University, Ningbo 315041, China
| | - Qing-yun Zhou
- Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School, Ningbo University, Ningbo 315041, China
| | - Da-wei Zheng
- Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School, Ningbo University, Ningbo 315041, China
| | - Huo-shun Shi
- Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School, Ningbo University, Ningbo 315041, China
| | - Yong-liang Che
- Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School, Ningbo University, Ningbo 315041, China
| | - Zi-shan Wang
- Department of Thoracic & Cardiovascular Surgery, Ningbo First Hospital, Affiliated Hospital of Medical School, Ningbo University, Ningbo 315041, China
| | - Guo-feng Shao
- Department of Thoracic & Cardiovascular Surgery, Lihuili Hospital, Ningbo Medical Center, Affiliated Hospital of Medical School, Ningbo University, Ningbo 315041, China
| |
Collapse
|
62
|
Tunca B, Tezcan G, Cecener G, Egeli U, Zorluoglu A, Yilmazlar T, Ak S, Yerci O, Ozturk E, Umut G, Evrensel T. Overexpression of CK20, MAP3K8 and EIF5A correlates with poor prognosis in early-onset colorectal cancer patients. J Cancer Res Clin Oncol 2013; 139:691-702. [PMID: 23322277 DOI: 10.1007/s00432-013-1372-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/03/2013] [Indexed: 01/05/2023]
Abstract
PURPOSE Due to ethnic, genetic and environmental factors, the clinical and molecular characteristics of Turkish colorectal cancer (CRC) patients are different from those of Western populations. The aim of this study was to clarify the relevant alterations of gene expression associated with colorectal carcinogenesis in early-onset patients and to identify specific biomarkers that could provide novel therapeutic molecular targets in this population. METHODS The expression profiles of 114 different genes were evaluated using mRNA PCR arrays in 39 tumors and 20 surgical margin tissue samples from 39 sporadic CRC patients diagnosed at less than 50 years of age. RESULTS The expression levels of IMPDH2, CK20, MAP3K8 and EIF5A were strongly up-regulated in CRC tissues compared with normal colorectal tissues (p < 0.05). The highly significant expression ratios of CK20, MAP3K8 and EIF5A observed in the colorectal tumors of patients predicted recurrence (p < 0.05). The expression of IMPDH2, CK20, MAP3K8 and EIF5A was significantly higher in the tumors of patients with short median survival (log-rank p value < 0.05). Progression-free survival was also significantly increased in patients with low expression of the EIF5A gene compared with those who exhibited high expression of this gene (log-rank p value < 0.05). CONCLUSION We demonstrated that high CK20, MAP3K8 and EIF5A expression levels were significant prognostic factors for poor overall survival in CRC patients. Further studies and validations are required; these genes may provide novel therapeutic molecular targets for CRC treatment, as well as new directions for the development of anticancer drugs.
Collapse
Affiliation(s)
- Berrin Tunca
- Department of Medical Biology, Medical Faculty, Uludag University, Bursa, Turkey.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Caraglia M, Park MH, Wolff EC, Marra M, Abbruzzese A. eIF5A isoforms and cancer: two brothers for two functions? Amino Acids 2013; 44:103-9. [PMID: 22139412 PMCID: PMC3536922 DOI: 10.1007/s00726-011-1182-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/22/2011] [Indexed: 12/11/2022]
Abstract
Eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein that contains the unusual amino acid hypusine [N(ε)-(4-amino-2-hydroxybutyl)lysine]. The role of hypusine formation in the eIF5A protein in the regulation of cell proliferation and apoptosis is addressed in the present review. Moreover, vertebrates carry two genes that encode two eIF5A isoforms, eIF5A-1 and eIF5A-2, which, in humans, are 84% identical. However, the biological functions of these two isoforms may be significantly different. In fact, eIF5A-1 is demonstrable in most cells of different histogenesis, whereas eIF5A-2 protein is detectable only in certain human cancer cells or tissues, suggesting its role as a potential oncogene. In this review we focus our attention on the involvement of eIF5A-1 in the triggering of an apoptotic program and in the regulation of cell proliferation. In addition, the potential oncogenic role and prognostic significance of eIF5A-2 in the prediction of the survival of cancer patients is described. eIF5A-1 and/or the eIF5A-2 isoform may serve as a new molecular diagnostic or prognostic marker or as a molecular target for anti-cancer therapy.
Collapse
Affiliation(s)
- M Caraglia
- Department of Biochemistry and Biophysics, Second University of Naples, Via Costantinopoli, 16, 80138 Naples, Italy.
| | | | | | | | | |
Collapse
|
64
|
Preukschas M, Hagel C, Schulte A, Weber K, Lamszus K, Sievert H, Pällmann N, Bokemeyer C, Hauber J, Braig M, Balabanov S. Expression of eukaryotic initiation factor 5A and hypusine forming enzymes in glioblastoma patient samples: implications for new targeted therapies. PLoS One 2012; 7:e43468. [PMID: 22927971 PMCID: PMC3424167 DOI: 10.1371/journal.pone.0043468] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/20/2012] [Indexed: 12/23/2022] Open
Abstract
Glioblastomas are highly aggressive brain tumors of adults with poor clinical outcome. Despite a broad range of new and more specific treatment strategies, therapy of glioblastomas remains challenging and tumors relapse in all cases. Recent work demonstrated that the posttranslational hypusine modification of the eukaryotic initiation factor 5A (eIF-5A) is a crucial regulator of cell proliferation, differentiation and an important factor in tumor formation, progression and maintenance. Here we report that eIF-5A as well as the hypusine-forming enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH) are highly overexpressed in glioblastoma patient samples. Importantly, targeting eIF-5A and its hypusine modification with GC7, a specific DHS-inhibitor, showed a strong antiproliferative effect in glioblastoma cell lines in vitro, while normal human astrocytes were not affected. Furthermore, we identified p53 dependent premature senescence, a permanent cell cycle arrest, as the primary outcome in U87-MG cells after treatment with GC7. Strikingly, combined treatment with clinically relevant alkylating agents and GC7 had an additive antiproliferative effect in glioblastoma cell lines. In addition, stable knockdown of eIF-5A and DHS by short hairpin RNA (shRNA) could mimic the antiproliferative effects of GC7. These findings suggest that pharmacological inhibition of eIF-5A may represent a novel concept to treat glioblastomas and may help to substantially improve the clinical course of this tumor entity.
Collapse
Affiliation(s)
- Michael Preukschas
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Hagel
- Department of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Schulte
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Weber
- Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henning Sievert
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nora Pällmann
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joachim Hauber
- Heinrich-Pette-Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Melanie Braig
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Balabanov
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
65
|
He LR, Zhao HY, Li BK, Liu YH, Liu MZ, Guan XY, Bian XW, Zeng YX, Xie D. Overexpression of eIF5A-2 is an adverse prognostic marker of survival in stage I non-small cell lung cancer patients. Int J Cancer 2011; 129:143-50. [PMID: 20830705 DOI: 10.1002/ijc.25669] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have previously isolated an oncogene EIF5A2 (eukaryotic initiation factor 5A2) from a frequently amplified region at 3q of a primary ovarian cancer cell line, and demonstrated its impact on prognosis in human ovarian cancer. Amplification of chromosome 3q has also been detected frequently in non-small cell lung cancer (NSCLC), however, abnormalities of EIF5A2 and its clinicopathologic significance in NSCLC haven't been studied. In our study, the methods of immunohistochemistry and fluorescence in situ hybridization were utilized to examine protein expression and amplification of EIF5A2 in 248 surgically resected NSCLCs (learning cohort) and another validation cohort of 120 stage I NSCLC patients. Overexpression and amplification of EIF5A2 was detected informatively in 48.7% and 13.7% of NSCLCs in learning cohort, 33.3% and 6.0% of NSCLCs in validation cohort. Overexpression of eIF5A-2 was found to correlate with gene amplification, increased cell proliferation and advanced T stage. In learning cohort, eIF5A-2 expression was evaluated as a strong prognostic factor on disease-specific survival, but in subgroup analyses, it only retained its stratified significance in stage I set (Hazards ratio = 2.799, p = 0.001). In validation cohort, the impact of eIF5A-2 expression on survival in stage I NSCLC patients was also observed (Hazard ratio = 2.097, p = 0.014). Our findings suggested that overexpression of eIF5A-2 correlates with local invasion of NSCLC, and might serve as an adverse prognostic marker of survival for stage I NSCLC patients.
Collapse
Affiliation(s)
- Li-Ru He
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Tang DJ, Dong SS, Ma NF, Xie D, Chen L, Fu L, Lau SH, Li Y, Li Y, Guan XY. Overexpression of eukaryotic initiation factor 5A2 enhances cell motility and promotes tumor metastasis in hepatocellular carcinoma. Hepatology 2010; 51:1255-63. [PMID: 20112425 DOI: 10.1002/hep.23451] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UNLABELLED A high incidence of tumor recurrence and metastasis has been reported in hepatocellular carcinoma (HCC) patients; however, the underlying molecular mechanisms are largely unknown. In the present study a novel metastasis-related gene, eukaryotic initiation factor 5A2 (EIF5A2), was characterized for its role in HCC metastasis and underlying molecular mechanisms. Overexpression of EIF5A2 messenger RNA (mRNA) was detected in 50/81 (61.7%) of HCCs, which was significantly higher than those in nontumorous liver tissues. Compared with matched primary HCC, higher expression of EIF5A2 protein was observed in 25/47 (53.2%) of metastatic tumors. Functional studies found that ectopic expression of EIF5A2 could enhance cancer cell migration and invasion in vitro and tumor metastasis in vivo in an experimental mouse model. Moreover, inhibition of EIF5A by small interfering RNA (siRNA) or deoxyhypusine synthase (DHPS) inhibitor GC7, which inhibits EIF5A2 maturation, could effectively decrease cell motility. Further study found that EIF5A2 was able to induce epithelial-mesenchymal transition (EMT), a key event in tumor invasion and metastasis, characterized by down-regulation of epithelial markers (E-cadherin and beta-catenin) and up-regulation of mesenchymal markers (fibronectin, N-cadherin, alpha-SMA, and vimentin). In addition, EIF5A2 could also activate RhoA/Rac1 to stimulate the formation of stress fiber and lamellipodia. CONCLUSION EIF5A2 plays an important role in HCC invasion and metastasis by inducing EMT, as well as stimulating cytoskeleton rearrangement through activation of RhoA and Rac1.
Collapse
Affiliation(s)
- Dong-Jiang Tang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|