51
|
Bai J, Wang K, Liu Y, Li Y, Liang C, Luo G, Dong S, Yuan Y, Zhang H. Computational Cardiac Modeling Reveals Mechanisms of Ventricular Arrhythmogenesis in Long QT Syndrome Type 8: CACNA1C R858H Mutation Linked to Ventricular Fibrillation. Front Physiol 2017; 8:771. [PMID: 29046645 PMCID: PMC5632762 DOI: 10.3389/fphys.2017.00771] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/21/2017] [Indexed: 01/05/2023] Open
Abstract
Functional analysis of the L-type calcium channel has shown that the CACNA1C R858H mutation associated with severe QT interval prolongation may lead to ventricular fibrillation (VF). This study investigated multiple potential mechanisms by which the CACNA1C R858H mutation facilitates and perpetuates VF. The Ten Tusscher-Panfilov (TP06) human ventricular cell models incorporating the experimental data on the kinetic properties of L-type calcium channels were integrated into one-dimensional (1D) fiber, 2D sheet, and 3D ventricular models to investigate the pro-arrhythmic effects of CACNA1C mutations by quantifying changes in intracellular calcium handling, action potential profiles, action potential duration restitution (APDR) curves, dispersion of repolarization (DOR), QT interval and spiral wave dynamics. R858H “mutant” L-type calcium current (ICaL) augmented sarcoplasmic reticulum calcium content, leading to the development of afterdepolarizations at the single cell level and focal activities at the tissue level. It also produced inhomogeneous APD prolongation, causing QT prolongation and repolarization dispersion amplification, rendering R858H “mutant” tissue more vulnerable to the induction of reentry compared with other conditions. In conclusion, altered ICaL due to the CACNA1C R858H mutation increases arrhythmia risk due to afterdepolarizations and increased tissue vulnerability to unidirectional conduction block. However, the observed reentry is not due to afterdepolarizations (not present in our model), but rather to a novel blocking mechanism.
Collapse
Affiliation(s)
- Jieyun Bai
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yashu Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yacong Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Cuiping Liang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Gongning Luo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Suyu Dong
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yongfeng Yuan
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Henggui Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom.,Space Institute of Southern China, Shenzhen, China
| |
Collapse
|
52
|
Wölkart G, Schrammel A, Koyani CN, Scherübel S, Zorn‐Pauly K, Malle E, Pelzmann B, Andrä M, Ortner A, Mayer B. Cardioprotective effects of 5-hydroxymethylfurfural mediated by inhibition of L-type Ca 2+ currents. Br J Pharmacol 2017; 174:3640-3653. [PMID: 28768052 PMCID: PMC5610158 DOI: 10.1111/bph.13967] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The antioxidant 5-hydroxymethylfurfural (5-HMF) exerts documented beneficial effects in several experimental pathologies and is currently tested as an antisickling drug in clinical trials. In the present study, we examined the cardiovascular effects of 5-HMF and elucidated the mode of action of the drug. EXPERIMENTAL APPROACH The cardiovascular effects of 5-HMF were studied with pre-contracted porcine coronary arteries and rat isolated normoxic-perfused hearts. Isolated hearts subjected to ischaemia/reperfusion (I/R) injury were used to test for potential cardioprotective effects of the drug. The effects of 5-HMF on action potential and L-type Ca2+ current (ICa,L ) were studied by patch-clamping guinea pig isolated ventricular cardiomyocytes. KEY RESULTS 5-HMF relaxed coronary arteries in a concentration-dependent manner and exerted negative inotropic, lusitropic and chronotropic effects in rat isolated perfused hearts. On the other hand, 5-HMF improved recovery of inotropic and lusitropic parameters in isolated hearts subjected to I/R. Patch clamp experiments revealed that 5-HMF inhibits L-type Ca2+ channels. Reduced ICa,L density, shift of ICa,L steady-state inactivation curves toward negative membrane potentials and slower recovery of ICa,L from inactivation in response to 5-HMF accounted for the observed cardiovascular effects. CONCLUSIONS AND IMPLICATIONS Our data revealed a cardioprotective effect of 5-HMF in I/R that is mediated by inhibition of L-type Ca2+ channels. Thus, 5-HMF is suggested as a beneficial additive to cardioplegic solutions, but adverse effects and contraindications of Ca2+ channel blockers have to be considered in therapeutic application of the drug.
Collapse
Affiliation(s)
- G Wölkart
- Institute of Pharmaceutical Sciences, Department of Pharmacology and ToxicologyUniversity of GrazGrazAustria
| | - A Schrammel
- Institute of Pharmaceutical Sciences, Department of Pharmacology and ToxicologyUniversity of GrazGrazAustria
| | - C N Koyani
- Institute of Molecular Biology and BiochemistryMedical University of GrazGrazAustria
| | - S Scherübel
- Institute of BiophysicsMedical University of GrazGrazAustria
| | - K Zorn‐Pauly
- Institute of BiophysicsMedical University of GrazGrazAustria
| | - E Malle
- Institute of Molecular Biology and BiochemistryMedical University of GrazGrazAustria
| | - B Pelzmann
- Institute of BiophysicsMedical University of GrazGrazAustria
| | - M Andrä
- Department of Thoracic and Cardiovascular SurgeryKlinikum KlagenfurtKlagenfurtAustria
| | - A Ortner
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical ChemistryUniversity of GrazGrazAustria
| | - B Mayer
- Institute of Pharmaceutical Sciences, Department of Pharmacology and ToxicologyUniversity of GrazGrazAustria
| |
Collapse
|
53
|
Verkerk AO, Veerman CC, Zegers JG, Mengarelli I, Bezzina CR, Wilders R. Patch-Clamp Recording from Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Improving Action Potential Characteristics through Dynamic Clamp. Int J Mol Sci 2017; 18:ijms18091873. [PMID: 28867785 PMCID: PMC5618522 DOI: 10.3390/ijms18091873] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 01/10/2023] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold great promise for studying inherited cardiac arrhythmias and developing drug therapies to treat such arrhythmias. Unfortunately, until now, action potential (AP) measurements in hiPSC-CMs have been hampered by the virtual absence of the inward rectifier potassium current (IK1) in hiPSC-CMs, resulting in spontaneous activity and altered function of various depolarising and repolarising membrane currents. We assessed whether AP measurements in "ventricular-like" and "atrial-like" hiPSC-CMs could be improved through a simple, highly reproducible dynamic clamp approach to provide these cells with a substantial IK1 (computed in real time according to the actual membrane potential and injected through the patch-clamp pipette). APs were measured at 1 Hz using perforated patch-clamp methodology, both in control cells and in cells treated with all-trans retinoic acid (RA) during the differentiation process to increase the number of cells with atrial-like APs. RA-treated hiPSC-CMs displayed shorter APs than control hiPSC-CMs and this phenotype became more prominent upon addition of synthetic IK1 through dynamic clamp. Furthermore, the variability of several AP parameters decreased upon IK1 injection. Computer simulations with models of ventricular-like and atrial-like hiPSC-CMs demonstrated the importance of selecting an appropriate synthetic IK1. In conclusion, the dynamic clamp-based approach of IK1 injection has broad applicability for detailed AP measurements in hiPSC-CMs.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Christiaan C Veerman
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Jan G Zegers
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Isabella Mengarelli
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Connie R Bezzina
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Ronald Wilders
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
54
|
Abstract
There has been a significant progress in our understanding of the molecular mechanisms by which calcium (Ca2+) ions mediate various types of cardiac arrhythmias. A growing list of inherited gene defects can cause potentially lethal cardiac arrhythmia syndromes, including catecholaminergic polymorphic ventricular tachycardia, congenital long QT syndrome, and hypertrophic cardiomyopathy. In addition, acquired deficits of multiple Ca2+-handling proteins can contribute to the pathogenesis of arrhythmias in patients with various types of heart disease. In this review article, we will first review the key role of Ca2+ in normal cardiac function-in particular, excitation-contraction coupling and normal electric rhythms. The functional involvement of Ca2+ in distinct arrhythmia mechanisms will be discussed, followed by various inherited arrhythmia syndromes caused by mutations in Ca2+-handling proteins. Finally, we will discuss how changes in the expression of regulation of Ca2+ channels and transporters can cause acquired arrhythmias, and how these mechanisms might be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Andrew P Landstrom
- From the Section of Cardiology, Department of Pediatrics (A.P.L.), Cardiovascular Research Institute (A.P.L., X.H.T.W.), and Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX; and Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.)
| | - Dobromir Dobrev
- From the Section of Cardiology, Department of Pediatrics (A.P.L.), Cardiovascular Research Institute (A.P.L., X.H.T.W.), and Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX; and Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.)
| | - Xander H T Wehrens
- From the Section of Cardiology, Department of Pediatrics (A.P.L.), Cardiovascular Research Institute (A.P.L., X.H.T.W.), and Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX; and Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.).
| |
Collapse
|
55
|
Jiang W, Zeng M, Cao Z, Liu Z, Hao J, Zhang P, Tian Y, Zhang P, Ma J. Icariin, a Novel Blocker of Sodium and Calcium Channels, Eliminates Early and Delayed Afterdepolarizations, As Well As Triggered Activity, in Rabbit Cardiomyocytes. Front Physiol 2017; 8:342. [PMID: 28611679 PMCID: PMC5447092 DOI: 10.3389/fphys.2017.00342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/09/2017] [Indexed: 11/13/2022] Open
Abstract
Icariin, a flavonoid monomer from Herba Epimedii, has confirmed pharmacological and biological effects. However, its effects on arrhythmias and cardiac electrophysiology remain unclear. Here we investigate the effects of icariin on ion currents and action potentials (APs) in the rabbit myocardium. Furthermore, the effects of icariin on aconitine-induced arrhythmias were assessed in whole rabbits. Ion currents and APs were recorded in voltage-clamp and current-clamp mode in rabbit left ventricular myocytes (LVMs) and left atrial myocytes (LAMs), respectively. Icariin significantly shortened action potential durations (APDs) at 50 and 90% repolarization (APD50 and APD90) and reduced AP amplitude (APA) and the maximum upstroke velocity (Vmax) of APs in LAMs and LVMs; however, icariin had no effect on resting membrane potential (RMP) in these cells. Icariin decreased the rate-dependence of the APD and completely abolished anemonia toxin II (ATX-II)-induced early afterdepolarizations (EADs). Moreover, icariin significantly suppressed delayed afterdepolarizations (DADs) and triggered activities (TAs) elicited by isoproterenol (ISO, 1 μM) and high extracellular calcium concentrations ([Ca2+]o, 3.6 mM) in LVMs. Icariin also decreased INaT in a concentration-dependent manner in LAMs and LVMs, with IC50 values of 12.28 ± 0.29 μM (n = 8 cells/4 rabbits) and 11.83 ± 0.92 μM (n = 10 cells/6 rabbits; p > 0.05 vs. LAMs), respectively, and reversed ATX-II-induced INaL in a concentration-dependent manner in LVMs. Furthermore, icariin attenuated ICaL in a dose-dependent manner in LVMs. The corresponding IC50 value was 4.78 ± 0.89 μM (n = 8 cells/4 rabbits), indicating that the aforementioned current in LVMs was 2.8-fold more sensitive to icariin than ICaL in LAMs (13.43 ± 2.73 μM; n = 9 cells/5 rabbits). Icariin induced leftward shifts in the steady-state inactivation curves of INaT and ICaL in LAMs and LVMs but did not have a significant effect on their activation processes. Moreover, icariin had no effects on IK1 and IKr in LVMs or Ito and IKur in LAMs. These results revealed for the first time that icariin is a multichannel blocker that affects INaT, INaL and ICaL in the myocardium and that the drug had significant inhibitory effects on aconitine-induced arrhythmias in whole rabbits. Therefore, icariin has potential as a class I and IV antiarrhythmic drug.
Collapse
Affiliation(s)
- Wanzhen Jiang
- Cardio-Electrophysiological Research Laboratory, Medical College, Wuhan University of Science and TechnologyHubei, China
| | - Mengliu Zeng
- Cardio-Electrophysiological Research Laboratory, Medical College, Wuhan University of Science and TechnologyHubei, China
| | - Zhenzhen Cao
- Cardio-Electrophysiological Research Laboratory, Medical College, Wuhan University of Science and TechnologyHubei, China
| | - Zhipei Liu
- Cardio-Electrophysiological Research Laboratory, Medical College, Wuhan University of Science and TechnologyHubei, China
| | - Jie Hao
- Cardio-Electrophysiological Research Laboratory, Medical College, Wuhan University of Science and TechnologyHubei, China
| | - Peipei Zhang
- Cardio-Electrophysiological Research Laboratory, Medical College, Wuhan University of Science and TechnologyHubei, China
| | - Youjia Tian
- Cardio-Electrophysiological Research Laboratory, Medical College, Wuhan University of Science and TechnologyHubei, China
| | - Peihua Zhang
- Cardio-Electrophysiological Research Laboratory, Medical College, Wuhan University of Science and TechnologyHubei, China
| | - Jihua Ma
- Cardio-Electrophysiological Research Laboratory, Medical College, Wuhan University of Science and TechnologyHubei, China
| |
Collapse
|
56
|
Zhao CY, Greenstein JL, Winslow RL. Mechanisms of the cyclic nucleotide cross-talk signaling network in cardiac L-type calcium channel regulation. J Mol Cell Cardiol 2017; 106:29-44. [PMID: 28365422 PMCID: PMC5508987 DOI: 10.1016/j.yjmcc.2017.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 01/20/2017] [Indexed: 10/19/2022]
Abstract
Regulation of L-type Calcium (Ca2+) Channel (LCC) gating is critical to shaping the cardiac action potential (AP) and triggering the initiation of excitation-contraction (EC) coupling in cardiac myocytes. The cyclic nucleotide (cN) cross-talk signaling network, which encompasses the β-adrenergic and the Nitric Oxide (NO)/cGMP/Protein Kinase G (PKG) pathways and their interaction (cross-talk) through distinctively-regulated phosphodiesterase isoenzymes (PDEs), regulates LCC current via Protein Kinase A- (PKA) and PKG-mediated phosphorylation. Due to the tightly-coupled and intertwined biochemical reactions involved, it remains to be clarified how LCC gating is regulated by the signaling network from receptor to end target. In addition, the large number of EC coupling-related phosphorylation targets of PKA and PKG makes it difficult to quantify and isolate changes in L-type Ca2+ current (ICaL) responses regulated by the signaling network. We have developed a multi-scale, biophysically-detailed computational model of LCC regulation by the cN signaling network that is supported by experimental data. LCCs are modeled with functionally distinct PKA- and PKG-phosphorylation dependent gating modes. The model exhibits experimentally observed single channel characteristics, as well as whole-cell LCC currents upon activation of the cross-talk signaling network. Simulations show 1) redistribution of LCC gating modes explains changes in whole-cell current under various stimulation scenarios of the cN cross-talk network; 2) NO regulation occurs via potentiation of a gating mode characterized by prolonged closed times; and 3) due to compensatory actions of cross-talk and antagonizing functions of PKA- and PKG-mediated phosphorylation of LCCs, the effects of individual inhibitions of PDEs 2, 3, and 4 on ICaL are most pronounced at low levels of β-adrenergic stimulation. Simulations also delineate the contribution of the following two mechanisms to overall LCC regulation, which have otherwise been challenging to distinguish: 1) regulation of PKA and PKG activation via cN cross-talk (Mechanism 1); and 2) LCC interaction with activated PKA and PKG (Mechanism 2). These results provide insights into how cN signals transduced via the cN cross-talk signaling network are integrated via LCC regulation in the heart.
Collapse
Affiliation(s)
- Claire Y Zhao
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD, 21218, USA.
| | - Joseph L Greenstein
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD, 21218, USA.
| | - Raimond L Winslow
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
57
|
Stallaert W, van der Westhuizen ET, Schönegge AM, Plouffe B, Hogue M, Lukashova V, Inoue A, Ishida S, Aoki J, Le Gouill C, Bouvier M. Purinergic Receptor Transactivation by the β2-Adrenergic Receptor Increases Intracellular Ca 2+ in Nonexcitable Cells. Mol Pharmacol 2017; 91:533-544. [PMID: 28280061 DOI: 10.1124/mol.116.106419] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
The β2 adrenergic receptor (β2AR) increases intracellular Ca2+ in a variety of cell types. By combining pharmacological and genetic manipulations, we reveal a novel mechanism through which the β2AR promotes Ca2+ mobilization (pEC50 = 7.32 ± 0.10) in nonexcitable human embryonic kidney (HEK)293S cells. Downregulation of Gs with sustained cholera toxin pretreatment and the use of Gs-null HEK293 (∆Gs-HEK293) cells generated using the clustered regularly interspaced short palindromic repeat-associated protein-9 nuclease (CRISPR/Cas9) system, combined with pharmacological modulation of cAMP formation, revealed a Gs-dependent but cAMP-independent increase in intracellular Ca2+ following β2AR stimulation. The increase in cytoplasmic Ca2+ was inhibited by P2Y purinergic receptor antagonists as well as a dominant-negative mutant form of Gq, a Gq-selective inhibitor, and an inositol 1,4,5-trisphosphate (IP3) receptor antagonist, suggesting a role for this Gq-coupled receptor family downstream of the β2AR activation. Consistent with this mechanism, β2AR stimulation promoted the extracellular release of ATP, and pretreatment with apyrase inhibited the β2AR-promoted Ca2+ mobilization. Together, these data support a model whereby the β2AR stimulates a Gs-dependent release of ATP, which transactivates Gq-coupled P2Y receptors through an inside-out mechanism, leading to a Gq- and IP3-dependent Ca2+ mobilization from intracellular stores. Given that β2AR and P2Y receptors are coexpressed in various tissues, this novel signaling paradigm could be physiologically important and have therapeutic implications. In addition, this study reports the generation and validation of HEK293 cells deleted of Gs using the CRISPR/Cas9 genome editing technology that will undoubtedly be powerful tools to study Gs-dependent signaling.
Collapse
Affiliation(s)
- Wayne Stallaert
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Emma T van der Westhuizen
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Anne-Marie Schönegge
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Bianca Plouffe
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Mireille Hogue
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Viktoria Lukashova
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Asuka Inoue
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Satoru Ishida
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Junken Aoki
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Christian Le Gouill
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| | - Michel Bouvier
- Department of Biochemistry (W.S., E.T.v.d.W., A.-M.S., B.P., M.B.) and Institute for Research in Immunology and Cancer (W.S., E.T.v.d.W., A.-M.S., B.P., M.H., V.L., C.L.G., M.B.), Université de Montréal, Montréal, QC, Canada; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (A.I., S.I., J.A.); Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan (A.I.); and Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan (J.A.)
| |
Collapse
|
58
|
Gondim ANS, Lara A, Santos-Miranda A, Roman-Campos D, Lauton-Santos S, Menezes-Filho JER, de Vasconcelos CML, Conde-Garcia EA, Guatimosim S, Cruz JS. (-)-Terpinen-4-ol changes intracellular Ca 2+ handling and induces pacing disturbance in rat hearts. Eur J Pharmacol 2017; 807:56-63. [PMID: 28435092 DOI: 10.1016/j.ejphar.2017.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
(-)-Terpinen-4-ol is a naturally occurring plant monoterpene and has been shown to have a plethora of biological activities. The objective of this study was to investigate the effects of (-)-terpinen-4-ol on the rat heart, a key player in the control and maintenance of arterial blood pressure. The effects of (-)-terpinen-4-ol on the rat heart were investigated using isolated left atrium isometric force measurements, in vivo electrocardiogram (ECG) recordings, patch clamp technique, and confocal microscopy. It was observed that (-)-terpinen-4-ol reduced contraction force in an isolated left atrium at millimolar concentrations. Conversely, it induced a positive inotropic effect and extrasystoles at micromolar concentrations, suggesting that (-)-terpinen-4-ol may have arrhythmogenic activity on cardiac tissue. In anaesthetized animals, (-)-terpinen-4-ol also elicited rhythm disturbance, such as supraventricular tachycardia and atrioventricular block. To investigate the cellular mechanism underlying the dual effect of (-)-terpinen-4-ol on heart muscle, experiments were performed on isolated ventricular cardiomyocytes to determine the effect of (-)-terpinen-4-ol on L-type Ca2+ currents, Ca2+ sparks, and Ca2+ transients. The arrhythmogenic activity of (-)-terpinen-4-ol in vitro and in vivo may be explained by its effect on intracellular Ca2+ handling. Taken together, our data suggest that (-)-terpinen-4-ol has cardiac arrhythmogenic activity.
Collapse
Affiliation(s)
- Antonio Nei Santana Gondim
- Departamento de Educação - Campus XII, Universidade do Estado da Bahia, Av. Vanessa Cardoso e Cardoso, s/n, Postal Code 46430-000 Guanambi, BA, Brazil; Laboratório das Membranas Excitáveis e Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, ICB - Bloco K-4, Postal Code 30161-970 Belo Horizonte, MG, Brazil
| | - Aline Lara
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, ICB - Bloco D-4, Postal Code 30161-970 Belo Horizonte, MG, Brazil
| | - Artur Santos-Miranda
- Laboratório das Membranas Excitáveis e Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, ICB - Bloco K-4, Postal Code 30161-970 Belo Horizonte, MG, Brazil
| | - Danilo Roman-Campos
- Laboratório de Biofísica, Departamento de Biofísica, Universidade Federal de São Paulo, Rua Botucatu 862, Vila Clementino, Zipcode 04023-062 São Paulo, SP, Brazil
| | - Sandra Lauton-Santos
- Departamento de Fisiologia, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Jardim Rosa Elze, Postal Code 49100-000 São Cristóvão, SE, Brazil
| | - José Evaldo Rodrigues Menezes-Filho
- Departamento de Fisiologia, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Jardim Rosa Elze, Postal Code 49100-000 São Cristóvão, SE, Brazil
| | - Carla Maria Lins de Vasconcelos
- Departamento de Fisiologia, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Jardim Rosa Elze, Postal Code 49100-000 São Cristóvão, SE, Brazil
| | - Eduardo Antonio Conde-Garcia
- Departamento de Fisiologia, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Jardim Rosa Elze, Postal Code 49100-000 São Cristóvão, SE, Brazil
| | - Silvia Guatimosim
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, ICB - Bloco D-4, Postal Code 30161-970 Belo Horizonte, MG, Brazil
| | - Jader S Cruz
- Laboratório das Membranas Excitáveis e Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, ICB - Bloco K-4, Postal Code 30161-970 Belo Horizonte, MG, Brazil.
| |
Collapse
|
59
|
Zhao H, Yu Y, Wu X, Liu S, Liu B, Du J, Li B, Jiang L, Feng X. A Role of BK Channel in Regulation of Ca 2+ Channel in Ventricular Myocytes by Substrate Stiffness. Biophys J 2017; 112:1406-1416. [PMID: 28402883 PMCID: PMC5389963 DOI: 10.1016/j.bpj.2017.01.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/19/2016] [Accepted: 01/31/2017] [Indexed: 12/25/2022] Open
Abstract
Substrate stiffness is crucial for diverse cell functions, but the mechanisms conferring cells with mechanosensitivity are still elusive. By tailoring substrate stiffness with 10-fold difference, we showed that L-type voltage-gated Ca2+ channel current density was greater in chick ventricular myocytes cultured on the stiff substrate than on the soft substrate. Blockage of the BK channel increased the Ca2+ current density on the soft substrate and consequently eliminated substrate stiffness regulation of the Ca2+ channel. The expression of the BK channel, including the STREX-containing α-subunit that forms stretch-activated BK channel in myocytes and the BK channel function in myocytes (and also in HEK293 cells heterologously expressing STREX-containing α- and β1-subunits) was reduced in cells cultured on the stiff substrate. Furthermore, in HEK293 cells coexpressing the cardiac CaV1.2 channel and STREX-containing BK channel, the Ca2+ current density was greater in cells on the stiff substrate, which was not observed in cells expressing the CaV1.2 channel alone or coexpressing with the STREX-deleted BK channel. These results provide strong evidence to show that the stretch-activated BK channel plays a key role in functional regulation of cardiac voltage-gated Ca2+ channel by substrate stiffness, revealing, to our knowledge, a novel mechanosensing mechanism in ventricular myocytes.
Collapse
Affiliation(s)
- Hucheng Zhao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Yang Yu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Xiaoan Wu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Sisi Liu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Bailin Liu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Jing Du
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
| | - Linhua Jiang
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom; Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Xiqiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
| |
Collapse
|
60
|
Emerin plays a crucial role in nuclear invagination and in the nuclear calcium transient. Sci Rep 2017; 7:44312. [PMID: 28290476 PMCID: PMC5349585 DOI: 10.1038/srep44312] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/06/2017] [Indexed: 02/07/2023] Open
Abstract
Alteration of the nuclear Ca2+ transient is an early event in cardiac remodeling. Regulation of the nuclear Ca2+ transient is partly independent of the cytosolic Ca2+ transient in cardiomyocytes. One nuclear membrane protein, emerin, is encoded by EMD, and an EMD mutation causes Emery-Dreifuss muscular dystrophy (EDMD). It remains unclear whether emerin is involved in nuclear Ca2+ homeostasis. The aim of this study is to elucidate the role of emerin in rat cardiomyocytes by means of hypertrophic stimuli and in EDMD induced pluripotent stem (iPS) cell-derived cardiomyocytes in terms of nuclear structure and the Ca2+ transient. The cardiac hypertrophic stimuli increased the nuclear area, decreased nuclear invagination, and increased the half-decay time of the nuclear Ca2+ transient in cardiomyocytes. Emd knockdown cardiomyocytes showed similar properties after hypertrophic stimuli. The EDMD-iPS cell-derived cardiomyocytes showed increased nuclear area, decreased nuclear invagination, and increased half-decay time of the nuclear Ca2+ transient. An autopsied heart from a patient with EDMD also showed increased nuclear area and decreased nuclear invagination. These data suggest that Emerin plays a crucial role in nuclear structure and in the nuclear Ca2+ transient. Thus, emerin and the nuclear Ca2+ transient are possible therapeutic targets in heart failure and EDMD.
Collapse
|
61
|
Tamayo M, Manzanares E, Bas M, Martín-Nunes L, Val-Blasco A, Jesús Larriba M, Fernández-Velasco M, Delgado C. Calcitriol (1,25-dihydroxyvitamin D3) increases L-type calcium current via protein kinase A signaling and modulates calcium cycling and contractility in isolated mouse ventricular myocytes. Heart Rhythm 2017; 14:432-439. [PMID: 27989685 DOI: 10.1016/j.hrthm.2016.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 11/26/2022]
|
62
|
Vornanen M. Electrical Excitability of the Fish Heart and Its Autonomic Regulation. FISH PHYSIOLOGY 2017. [DOI: 10.1016/bs.fp.2017.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
63
|
Yang H, Kuang SJ, Rao F, Xue YM, Liu XY, Shan ZX, Li XH, Zhu JN, Zhou ZL, Zhang XJ, Lin QX, Yu XY, Deng CY. Species-specific differences in the role of L-type Ca²⁺ channels in the regulation of coronary arterial smooth muscle contraction. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:151-7. [PMID: 26497185 DOI: 10.1007/s00210-015-1173-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/03/2015] [Indexed: 01/11/2023]
Abstract
The L-type calcium channel (LCC) plays a regulatory role in various physical and pathological processes. In the vasculature, LCCs mediate agonist-induced vascular smooth muscle contraction. However, whether LCC-mediated vessel responses to certain vasoconstrictors vary among species remains unclear. The coronary arteries were dissected from the hearts of rats and mice. Coronary arterial ring contraction was measured using the Multi Myograph system. High K+ (60 mM)-induced coronary artery contractions were stronger in rats than in mice, whereas CaCl2-induced contraction curves did not differ significantly between the two groups. Endothelin-1, U46619 (thromboxane A2 receptor agonist), and 5-hydroxytryptamine (5-HT) induced concentration-dependent vasoconstriction of coronary arterial rings in rats and mice. The vessel rings of mice were more sensitive to ET-1 and U46619 and less sensitive to 5-HT than those of rats. The LCC blocker nifedipine significantly inhibited coronary artery contractions induced by ET-1, U46619, and 5-HT. The inhibitory effect of 1 μM nifedipine on ET-1- and 5-HT-induced coronary artery contractions was stronger in mice than in rats, whereas its effect on U46619-induced vessel contractions was weaker in mice than in rats. The 5-HT2A receptor and LCC mRNA levels were higher in the coronary arteries of rats than in those of mice, whereas the expressions of the ETA and TXA2 receptors and Orai1 mRNA levels were comparable between the two groups. LCC plays an important role in coronary arterial contraction. Rats and mice show different responses to vasoconstrictors and LCC blockers, suggesting that the coronary arteries of rats and mice have different biological characteristics.
Collapse
|
64
|
Nuclear translocation of the cardiac L-type calcium channel C-terminus is regulated by sex and 17β-estradiol. J Mol Cell Cardiol 2016; 97:226-34. [DOI: 10.1016/j.yjmcc.2016.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/03/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022]
|
65
|
Sutphin BS, Boczek NJ, Barajas-Martínez H, Hu D, Ye D, Tester DJ, Antzelevitch C, Ackerman MJ. Molecular and Functional Characterization of Rare CACNA1C Variants in Sudden Unexplained Death in the Young. CONGENIT HEART DIS 2016; 11:683-692. [PMID: 27218670 DOI: 10.1111/chd.12371] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/03/2016] [Accepted: 03/18/2016] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Perturbations in the CACNA1C-encoded L-type calcium channel α-subunit have been linked recently to heritable arrhythmia syndromes, including Timothy syndrome, Brugada syndrome, early repolarization syndrome, and long QT syndrome. These heritable arrhythmia syndromes may serve as a pathogenic basis for autopsy-negative sudden unexplained death in the young (SUDY). However, the contribution of CACNA1C mutations to SUDY is unknown. OBJECTIVE We set out to determine the spectrum, prevalence, and pathophysiology of rare CACNA1C variants in SUDY. METHODS Mutational analysis of CACNA1C was conducted in 82 SUDY cases using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct sequencing. Identified variants were engineered using site-directed mutagenesis, and heterologously expressed in TSA-201 or HEK293 cells. RESULTS Two SUDY cases (2.4%) harbored functional variants in CACNA1C. The E850del and N2091S variants involve highly conserved residues and localize to the II-III linker and C-terminus, respectively. Although observed in publically available exome databases, both variants confer abnormal CaV 1.2 electrophysiological characteristics. Examination of the electrophysiological properties revealed the E850del mutation in CACNA1C led to a 95% loss-of-function in ICa , and the N2091S variant led to a 105% gain-of-function in ICa. Additionally, N2091S led to minor kinetic alterations including a -3.4 mV shift in V1/2 of activation. CONCLUSION This study provides molecular and functional evidence that rare CACNA1C genetic variants may contribute to the underlying pathogenic basis for some cases of SUDY in either a gain or loss-of-function mechanism.
Collapse
Affiliation(s)
- Brittan S Sutphin
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland, Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minn, USA
| | - Nicole J Boczek
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland, Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minn, USA
| | | | - Dan Hu
- Department of Molecular Genetics, Masonic Medical Research Laboratory, Utica, N.Y., USA
| | - Dan Ye
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland, Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minn, USA
| | - David J Tester
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland, Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minn, USA
| | - Charles Antzelevitch
- Department of Molecular Genetics, Masonic Medical Research Laboratory, Utica, N.Y., USA
| | - Michael J Ackerman
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland, Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minn, USA.,Departments of Medicine (Division of Cardiovascular Diseases) and Pediatrics (Division of Pediatric Cardiology), Mayo Clinic, Rochester, Minn, USA
| |
Collapse
|
66
|
Zhao CY, Greenstein JL, Winslow RL. Roles of phosphodiesterases in the regulation of the cardiac cyclic nucleotide cross-talk signaling network. J Mol Cell Cardiol 2016; 91:215-27. [PMID: 26773602 PMCID: PMC4764497 DOI: 10.1016/j.yjmcc.2016.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/12/2015] [Accepted: 01/04/2016] [Indexed: 12/27/2022]
Abstract
The balanced signaling between the two cyclic nucleotides (cNs) cAMP and cGMP plays a critical role in regulating cardiac contractility. Their degradation is controlled by distinctly regulated phosphodiesterase isoenzymes (PDEs), which in turn are also regulated by these cNs. As a result, PDEs facilitate communication between the β-adrenergic and Nitric Oxide (NO)/cGMP/Protein Kinase G (PKG) signaling pathways, which regulate the synthesis of cAMP and cGMP respectively. The phenomena in which the cAMP and cGMP pathways influence the dynamics of each other are collectively referred to as cN cross-talk. However, the cross-talk response and the individual roles of each PDE isoenzyme in shaping this response remain to be fully characterized. We have developed a computational model of the cN cross-talk network that mechanistically integrates the β-adrenergic and NO/cGMP/PKG pathways via regulation of PDEs by both cNs. The individual model components and the integrated network model replicate experimentally observed activation-response relationships and temporal dynamics. The model predicts that, due to compensatory interactions between PDEs, NO stimulation in the presence of sub-maximal β-adrenergic stimulation results in an increase in cytosolic cAMP accumulation and corresponding increases in PKA-I and PKA-II activation; however, the potentiation is small in magnitude compared to that of NO activation of the NO/cGMP/PKG pathway. In a reciprocal manner, β-adrenergic stimulation in the presence of sub-maximal NO stimulation results in modest cGMP elevation and corresponding increase in PKG activation. In addition, we demonstrate that PDE2 hydrolyzes increasing amounts of cAMP with increasing levels of β-adrenergic stimulation, and hydrolyzes increasing amounts of cGMP with decreasing levels of NO stimulation. Finally, we show that PDE2 compensates for inhibition of PDE5 both in terms of cGMP and cAMP dynamics, leading to cGMP elevation and increased PKG activation, while maintaining whole-cell β-adrenergic responses similar to that prior to PDE5 inhibition. By defining and quantifying reactions comprising cN cross-talk, the model characterizes the cross-talk response and reveals the underlying mechanisms of PDEs in this non-linear, tightly-coupled reaction system.
Collapse
Affiliation(s)
- Claire Y Zhao
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD 21218, USA.
| | - Joseph L Greenstein
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD 21218, USA.
| | - Raimond L Winslow
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
67
|
Zhu F, Chu X, Wang H, Zhang X, Zhang Y, Liu Z, Guo H, Liu H, Liu Y, Chu L, Zhang J. New Findings on the Effects of Tannic Acid: Inhibition of L-Type Calcium Channels, Calcium Transient and Contractility in Rat Ventricular Myocytes. Phytother Res 2016; 30:510-6. [PMID: 26762248 DOI: 10.1002/ptr.5558] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/03/2015] [Accepted: 12/05/2015] [Indexed: 11/07/2022]
Abstract
Tannic acid (TA) is a group of water-soluble polyphenolic compounds that occur mainly in plant-derived feeds, food grains and fruits. Many studies have explored its biomedical properties, such as anticancer, antibacterial, antimutagenic, antioxidant, antidiabetic, antiinflammatory and antihypertensive activities. However, the effects of TA on the L-type Ca(2+) current (ICa-L) of cardiomyocytes remain undefined. The present study examined the effects of TA on ICa-L using the whole-cell patch-clamp technique and on intracellular Ca(2+) handling and cell contractility in rat ventricular myocytes with the aid of a video-based edge detection system. Exposure to TA resulted in a concentration- and voltage-dependent blockade of ICa-L, with the half maximal inhibitory concentration of 1.69 μM and the maximal inhibitory effect of 46.15%. Moreover, TA significantly inhibited the amplitude of myocyte shortening and peak value of Ca(2+) transient and increased the time to 10% of the peak. These findings provide new experimental evidence for the cellular mechanism of action of TA and may help to expand clinical treatments for cardiovascular disease.
Collapse
Affiliation(s)
- Fengli Zhu
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Xi Chu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Hua Wang
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Xuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Yuanyuan Zhang
- Department of Medicinal Chemistry, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Zhenyi Liu
- Department of Medicinal Chemistry, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Hui Guo
- Department of Medicinal Chemistry, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Hongying Liu
- Department of Infectious Diseases, Hebei General Hospital, No. 348, Heping West Road, Shijiazhuang, Hebei, 050051, China
| | - Yang Liu
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Li Chu
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China.,Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Jianping Zhang
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China.,Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| |
Collapse
|
68
|
Fulgenzi G, Tomassoni-Ardori F, Babini L, Becker J, Barrick C, Puverel S, Tessarollo L. BDNF modulates heart contraction force and long-term homeostasis through truncated TrkB.T1 receptor activation. J Cell Biol 2015; 210:1003-12. [PMID: 26347138 PMCID: PMC4576863 DOI: 10.1083/jcb.201502100] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BDNF exerts inotropic function in the adult mammalian heart through TrkB.T1 receptor and loss of this ligand/receptor system in cardiomyocytes impairs calcium signaling and causes cardiomyopathy, suggesting an essential physiological role for this pathway in cardiac function. Brain-derived neurotrophic factor (BDNF) is critical for mammalian development and plasticity of neuronal circuitries affecting memory, mood, anxiety, pain sensitivity, and energy homeostasis. Here we report a novel unexpected role of BDNF in regulating the cardiac contraction force independent of the nervous system innervation. This function is mediated by the truncated TrkB.T1 receptor expressed in cardiomyocytes. Loss of TrkB.T1 in these cells impairs calcium signaling and causes cardiomyopathy. TrkB.T1 is activated by BDNF produced by cardiomyocytes, suggesting an autocrine/paracrine loop. These findings unveil a novel signaling mechanism in the heart that is activated by BDNF and provide evidence for a global role of this neurotrophin in the homeostasis of the organism by signaling through different TrkB receptor isoforms.
Collapse
|
69
|
Pon CK, Lane JR, Sloan EK, Halls ML. The β2-adrenoceptor activates a positive cAMP-calcium feedforward loop to drive breast cancer cell invasion. FASEB J 2015; 30:1144-54. [PMID: 26578688 DOI: 10.1096/fj.15-277798] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/09/2015] [Indexed: 01/04/2023]
Abstract
Activation of the sympathetic nervous system by stress increases breast cancer metastasis in vivo. Preclinical studies suggest that stress activates β-adrenoceptors (βARs) to enhance metastasis from primary tumors and that β-blockers may be protective in breast cancer. However, the subtype of βAR that mediates this effect, as well as the signaling mechanisms underlying increased tumor cell dissemination, remain unclear. We show that the β2AR is the only functionally relevant βAR subtype in the highly metastatic human breast cancer cell line MDA-MB-231HM. β2AR activation results in elevated cAMP (formoterol pEC50 9.86 ± 0.32), increased intracellular Ca(2+) (formoterol pEC50 8.20 ± 0.33) and reduced phosphorylated ERK (pERK; formoterol pIC50 11.62 ± 0.31). We demonstrate that a highly amplified positive feedforward loop between the cAMP and Ca(2+) pathways is responsible for efficient inhibition of basal pERK. Importantly, activation of the β2AR increased invasion (formoterol area under the curve [AUC] relative to vehicle: 1.82 ± 0.36), which was dependent on the cAMP/Ca(2+) loop (formoterol AUC in the presence of 2'5'-dideoxyadenosine 0.64 ± 0.03, or BAPTA-AM 0.45 ± 0.23) but independent of inhibition of basal pERK1/2 (vehicle AUC with U0126 0.60 ± 0.30). Specifically targeting the positive feedforward cAMP/Ca(2+) loop may be beneficial for the development of therapeutics to slow disease progression in patients with breast cancer.
Collapse
Affiliation(s)
- Cindy K Pon
- *Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Cousins Center, UCLA Semel Institute for Neuroscience and Human Behavior, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California USA; and Division of Cancer Surgery, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - J Robert Lane
- *Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Cousins Center, UCLA Semel Institute for Neuroscience and Human Behavior, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California USA; and Division of Cancer Surgery, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Erica K Sloan
- *Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Cousins Center, UCLA Semel Institute for Neuroscience and Human Behavior, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California USA; and Division of Cancer Surgery, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Michelle L Halls
- *Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Cousins Center, UCLA Semel Institute for Neuroscience and Human Behavior, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California USA; and Division of Cancer Surgery, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| |
Collapse
|
70
|
Orphan nuclear receptor Nur77 affects cardiomyocyte calcium homeostasis and adverse cardiac remodelling. Sci Rep 2015; 5:15404. [PMID: 26486271 PMCID: PMC4613907 DOI: 10.1038/srep15404] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022] Open
Abstract
Distinct stressors may induce heart failure. As compensation, β-adrenergic stimulation enhances myocardial contractility by elevating cardiomyocyte intracellular Ca2+ ([Ca2+]i). However, chronic β-adrenergic stimulation promotes adverse cardiac remodelling. Cardiac expression of nuclear receptor Nur77 is enhanced by β-adrenergic stimulation, but its role in cardiac remodelling is still unclear. We show high and rapid Nur77 upregulation in cardiomyocytes stimulated with β-adrenergic agonist isoproterenol. Nur77 knockdown in culture resulted in hypertrophic cardiomyocytes. Ventricular cardiomyocytes from Nur77-deficient (Nur77-KO) mice exhibited elevated diastolic and systolic [Ca2+]i and prolonged action potentials compared to wild type (WT). In vivo, these differences resulted in larger cardiomyocytes, increased expression of hypertrophic genes, and more cardiac fibrosis in Nur77-KO mice upon chronic isoproterenol stimulation. In line with the observed elevated [Ca2+]i, Ca2+-activated phosphatase calcineurin was more active in Nur77-KO mice compared to WT. In contrast, after cardiac pressure overload by aortic constriction, Nur77-KO mice exhibited attenuated remodelling compared to WT. Concluding, Nur77-deficiency results in significantly altered cardiac Ca2+ homeostasis and distinct remodelling outcome depending on the type of insult. Detailed knowledge on the role of Nur77 in maintaining cardiomyocyte Ca2+ homeostasis and the dual role Nur77 plays in cardiac remodelling will aid in developing personalized therapies against heart failure.
Collapse
|
71
|
Hua R, MacLeod SL, Polina I, Moghtadaei M, Jansen HJ, Bogachev O, O’Blenes SB, Sapp JL, Legare JF, Rose RA. Effects of Wild-Type and Mutant Forms of Atrial Natriuretic Peptide on Atrial Electrophysiology and Arrhythmogenesis. Circ Arrhythm Electrophysiol 2015; 8:1240-54. [DOI: 10.1161/circep.115.002896] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/10/2015] [Indexed: 11/16/2022]
Abstract
Background—
Atrial natriuretic peptide (ANP) is a hormone with numerous beneficial cardiovascular effects. Recently, a mutation in the ANP gene, which results in the generation of a mutant form of ANP (mANP), was identified and shown to cause atrial fibrillation in people. The mechanism(s) through which mANP causes atrial fibrillation is unknown. Our objective was to compare the effects of wild-type ANP and mANP on atrial electrophysiology in mice and humans.
Methods and Results—
Action potentials (APs), L-type Ca
2+
currents (
I
Ca,L
), and Na
+
current were recorded in atrial myocytes from wild-type or natriuretic peptide receptor C knockout (NPR-C
−/−
) mice. In mice, ANP and mANP (10–100 nmol/L) had opposing effects on atrial myocyte AP morphology and
I
Ca,L
. ANP increased AP upstroke velocity (
V
max
), AP duration, and
I
Ca,L
similarly in wild-type and NPR-C
−/−
myocytes. In contrast, mANP decreased
V
max
, AP duration, and
I
Ca,L
, and these effects were completely absent in NPR-C
−/−
myocytes. ANP and mANP also had opposing effects on
I
Ca,L
in human atrial myocytes. In contrast, neither ANP nor mANP had any effect on Na
+
current in mouse atrial myocytes. Optical mapping studies in mice demonstrate that ANP sped electric conduction in the atria, whereas mANP did the opposite and slowed atrial conduction. Atrial pacing in the presence of mANP induced arrhythmias in 62.5% of hearts, whereas treatment with ANP completely prevented the occurrence of arrhythmias.
Conclusions—
These findings provide mechanistic insight into how mANP causes atrial fibrillation and demonstrate that wild-type ANP is antiarrhythmic.
Collapse
Affiliation(s)
- Rui Hua
- From the Department of Physiology and Biophysics (R.H., S.L.M., I.P., M.M., H.J.J., O.B., S.B.O., J.L.S., R.A.R.), IWK Health Centre (S.B.O.), Department of Surgery (S.B.O., J.-F.L.), Division of Cardiology (J.L.S.), School of Biomedical Engineering (R.A.R.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sarah L. MacLeod
- From the Department of Physiology and Biophysics (R.H., S.L.M., I.P., M.M., H.J.J., O.B., S.B.O., J.L.S., R.A.R.), IWK Health Centre (S.B.O.), Department of Surgery (S.B.O., J.-F.L.), Division of Cardiology (J.L.S.), School of Biomedical Engineering (R.A.R.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Iuliia Polina
- From the Department of Physiology and Biophysics (R.H., S.L.M., I.P., M.M., H.J.J., O.B., S.B.O., J.L.S., R.A.R.), IWK Health Centre (S.B.O.), Department of Surgery (S.B.O., J.-F.L.), Division of Cardiology (J.L.S.), School of Biomedical Engineering (R.A.R.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Motahareh Moghtadaei
- From the Department of Physiology and Biophysics (R.H., S.L.M., I.P., M.M., H.J.J., O.B., S.B.O., J.L.S., R.A.R.), IWK Health Centre (S.B.O.), Department of Surgery (S.B.O., J.-F.L.), Division of Cardiology (J.L.S.), School of Biomedical Engineering (R.A.R.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hailey J. Jansen
- From the Department of Physiology and Biophysics (R.H., S.L.M., I.P., M.M., H.J.J., O.B., S.B.O., J.L.S., R.A.R.), IWK Health Centre (S.B.O.), Department of Surgery (S.B.O., J.-F.L.), Division of Cardiology (J.L.S.), School of Biomedical Engineering (R.A.R.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Oleg Bogachev
- From the Department of Physiology and Biophysics (R.H., S.L.M., I.P., M.M., H.J.J., O.B., S.B.O., J.L.S., R.A.R.), IWK Health Centre (S.B.O.), Department of Surgery (S.B.O., J.-F.L.), Division of Cardiology (J.L.S.), School of Biomedical Engineering (R.A.R.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stacy B. O’Blenes
- From the Department of Physiology and Biophysics (R.H., S.L.M., I.P., M.M., H.J.J., O.B., S.B.O., J.L.S., R.A.R.), IWK Health Centre (S.B.O.), Department of Surgery (S.B.O., J.-F.L.), Division of Cardiology (J.L.S.), School of Biomedical Engineering (R.A.R.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John L. Sapp
- From the Department of Physiology and Biophysics (R.H., S.L.M., I.P., M.M., H.J.J., O.B., S.B.O., J.L.S., R.A.R.), IWK Health Centre (S.B.O.), Department of Surgery (S.B.O., J.-F.L.), Division of Cardiology (J.L.S.), School of Biomedical Engineering (R.A.R.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jean-Francois Legare
- From the Department of Physiology and Biophysics (R.H., S.L.M., I.P., M.M., H.J.J., O.B., S.B.O., J.L.S., R.A.R.), IWK Health Centre (S.B.O.), Department of Surgery (S.B.O., J.-F.L.), Division of Cardiology (J.L.S.), School of Biomedical Engineering (R.A.R.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert A. Rose
- From the Department of Physiology and Biophysics (R.H., S.L.M., I.P., M.M., H.J.J., O.B., S.B.O., J.L.S., R.A.R.), IWK Health Centre (S.B.O.), Department of Surgery (S.B.O., J.-F.L.), Division of Cardiology (J.L.S.), School of Biomedical Engineering (R.A.R.), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
72
|
Boczek NJ, Ye D, Jin F, Tester DJ, Huseby A, Bos JM, Johnson AJ, Kanter R, Ackerman MJ. Identification and Functional Characterization of a Novel CACNA1C-Mediated Cardiac Disorder Characterized by Prolonged QT Intervals With Hypertrophic Cardiomyopathy, Congenital Heart Defects, and Sudden Cardiac Death. Circ Arrhythm Electrophysiol 2015; 8:1122-32. [PMID: 26253506 PMCID: PMC5094060 DOI: 10.1161/circep.115.002745] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 07/23/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND A portion of sudden cardiac deaths can be attributed to structural heart diseases, such as hypertrophic cardiomyopathy (HCM) or cardiac channelopathies such as long-QT syndrome (LQTS); however, the underlying molecular mechanisms are distinct. Here, we identify a novel CACNA1C missense mutation with mixed loss-of-function/gain-of-function responsible for a complex phenotype of LQTS, HCM, sudden cardiac death, and congenital heart defects. METHODS AND RESULTS Whole exome sequencing in combination with Ingenuity variant analysis was completed on 3 affected individuals and 1 unaffected individual from a large pedigree with concomitant LQTS, HCM, and congenital heart defects and identified a novel CACNA1C mutation, p.Arg518Cys, as the most likely candidate mutation. Mutational analysis of exon 12 of CACNA1C was completed on 5 additional patients with a similar phenotype of LQTS plus a personal or family history of HCM-like phenotypes and identified 2 additional pedigrees with mutations at the same position, p.Arg518Cys/His. Whole cell patch clamp technique was used to assess the electrophysiological effects of the identified mutations in CaV1.2 and revealed a complex phenotype, including loss of current density and inactivation in combination with increased window and late current. CONCLUSIONS Through whole exome sequencing and expanded cohort screening, we identified a novel genetic substrate p.Arg518Cys/His-CACNA1C, in patients with a complex phenotype including LQTS, HCM, and congenital heart defects annotated as cardiac-only Timothy syndrome. Our electrophysiological studies, identification of mutations at the same amino acid position in multiple pedigrees, and cosegregation with disease in these pedigrees provide evidence that p.Arg518Cys/His is the pathogenic substrate for the observed phenotype.
Collapse
Affiliation(s)
- Nicole J Boczek
- From the Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (N.J.B., D.Y., D.J.T., J.M.B., M.J.A.), Division of Immunology and Neurology (F.J., A.H., A.J.J.), and Departments of Medicine (Division of Cardiovascular Diseases) and Pediatrics (Division of Pediatric Cardiology) (M.J.A.), Mayo Clinic, Rochester, MN; Division of Cardiology, Nicklaus Children's Hospital, Miami, FL (R.K.)
| | - Dan Ye
- From the Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (N.J.B., D.Y., D.J.T., J.M.B., M.J.A.), Division of Immunology and Neurology (F.J., A.H., A.J.J.), and Departments of Medicine (Division of Cardiovascular Diseases) and Pediatrics (Division of Pediatric Cardiology) (M.J.A.), Mayo Clinic, Rochester, MN; Division of Cardiology, Nicklaus Children's Hospital, Miami, FL (R.K.)
| | - Fang Jin
- From the Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (N.J.B., D.Y., D.J.T., J.M.B., M.J.A.), Division of Immunology and Neurology (F.J., A.H., A.J.J.), and Departments of Medicine (Division of Cardiovascular Diseases) and Pediatrics (Division of Pediatric Cardiology) (M.J.A.), Mayo Clinic, Rochester, MN; Division of Cardiology, Nicklaus Children's Hospital, Miami, FL (R.K.)
| | - David J Tester
- From the Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (N.J.B., D.Y., D.J.T., J.M.B., M.J.A.), Division of Immunology and Neurology (F.J., A.H., A.J.J.), and Departments of Medicine (Division of Cardiovascular Diseases) and Pediatrics (Division of Pediatric Cardiology) (M.J.A.), Mayo Clinic, Rochester, MN; Division of Cardiology, Nicklaus Children's Hospital, Miami, FL (R.K.)
| | - April Huseby
- From the Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (N.J.B., D.Y., D.J.T., J.M.B., M.J.A.), Division of Immunology and Neurology (F.J., A.H., A.J.J.), and Departments of Medicine (Division of Cardiovascular Diseases) and Pediatrics (Division of Pediatric Cardiology) (M.J.A.), Mayo Clinic, Rochester, MN; Division of Cardiology, Nicklaus Children's Hospital, Miami, FL (R.K.)
| | - J Martijn Bos
- From the Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (N.J.B., D.Y., D.J.T., J.M.B., M.J.A.), Division of Immunology and Neurology (F.J., A.H., A.J.J.), and Departments of Medicine (Division of Cardiovascular Diseases) and Pediatrics (Division of Pediatric Cardiology) (M.J.A.), Mayo Clinic, Rochester, MN; Division of Cardiology, Nicklaus Children's Hospital, Miami, FL (R.K.)
| | - Aaron J Johnson
- From the Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (N.J.B., D.Y., D.J.T., J.M.B., M.J.A.), Division of Immunology and Neurology (F.J., A.H., A.J.J.), and Departments of Medicine (Division of Cardiovascular Diseases) and Pediatrics (Division of Pediatric Cardiology) (M.J.A.), Mayo Clinic, Rochester, MN; Division of Cardiology, Nicklaus Children's Hospital, Miami, FL (R.K.)
| | - Ronald Kanter
- From the Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (N.J.B., D.Y., D.J.T., J.M.B., M.J.A.), Division of Immunology and Neurology (F.J., A.H., A.J.J.), and Departments of Medicine (Division of Cardiovascular Diseases) and Pediatrics (Division of Pediatric Cardiology) (M.J.A.), Mayo Clinic, Rochester, MN; Division of Cardiology, Nicklaus Children's Hospital, Miami, FL (R.K.)
| | - Michael J Ackerman
- From the Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (N.J.B., D.Y., D.J.T., J.M.B., M.J.A.), Division of Immunology and Neurology (F.J., A.H., A.J.J.), and Departments of Medicine (Division of Cardiovascular Diseases) and Pediatrics (Division of Pediatric Cardiology) (M.J.A.), Mayo Clinic, Rochester, MN; Division of Cardiology, Nicklaus Children's Hospital, Miami, FL (R.K.).
| |
Collapse
|
73
|
Moreno C, Hermosilla T, Morales D, Encina M, Torres-Díaz L, Díaz P, Sarmiento D, Simon F, Varela D. Cavβ2 transcription start site variants modulate calcium handling in newborn rat cardiomyocytes. Pflugers Arch 2015; 467:2473-84. [PMID: 26265381 DOI: 10.1007/s00424-015-1723-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 12/21/2022]
Abstract
In the heart, the main pathway for calcium influx is mediated by L-type calcium channels, a multi-subunit complex composed of the pore-forming subunit CaV1.2 and the auxiliary subunits CaVα2δ1 and CaVβ2. To date, five distinct CaVβ2 transcriptional start site (TSS) variants (CaVβ2a-e) varying only in the composition and length of the N-terminal domain have been described, each of them granting distinct biophysical properties to the L-type current. However, the physiological role of these variants in Ca(2+) handling in the native tissue has not been explored. Our results show that four of these variants are present in neonatal rat cardiomyocytes. The contribution of those CaVβ2 TSS variants on endogenous L-type current and Ca(2+) handling was explored by adenoviral-mediated overexpression of each CaVβ2 variant in cultured newborn rat cardiomyocytes. As expected, all CaVβ2 TSS variants increased L-type current density and produced distinctive changes on L-type calcium channel (LTCC) current activation and inactivation kinetics. The characteristics of the induced calcium transients were dependent on the TSS variant overexpressed. Moreover, the amplitude of the calcium transients varied depending on the subunit involved, being higher in cardiomyocytes transduced with CaVβ2a and smaller in CaVβ2d. Interestingly, the contribution of Ca(2+) influx and Ca(2+) release on total calcium transients, as well as the sarcoplasmic calcium content, was found to be TSS-variant-dependent. Remarkably, determination of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) messenger RNA (mRNA) abundance and cell size change indicates that CaVβ2 TSS variants modulate the cardiomyocyte hypertrophic state. In summary, we demonstrate that expression of individual CaVβ2 TSS variants regulates calcium handling in cardiomyocytes and, consequently, has significant repercussion in the development of hypertrophy.
Collapse
Affiliation(s)
- Cristian Moreno
- Centro de Estudios Moleculares de la Célula (CEMC), Programa de Fisiopatología, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| | - Tamara Hermosilla
- Centro de Estudios Moleculares de la Célula (CEMC), Programa de Fisiopatología, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| | - Danna Morales
- Centro de Estudios Moleculares de la Célula (CEMC), Programa de Fisiopatología, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| | - Matías Encina
- Centro de Estudios Moleculares de la Célula (CEMC), Programa de Fisiopatología, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| | - Leandro Torres-Díaz
- Centro de Estudios Moleculares de la Célula (CEMC), Programa de Fisiopatología, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| | - Pablo Díaz
- Centro de Estudios Moleculares de la Célula (CEMC), Programa de Fisiopatología, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| | - Daniela Sarmiento
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas and Facultad de Medicina, Universidad Andres Bello, Avenida Republica 239, Santiago, Chile
| | - Felipe Simon
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas and Facultad de Medicina, Universidad Andres Bello, Avenida Republica 239, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Varela
- Centro de Estudios Moleculares de la Célula (CEMC), Programa de Fisiopatología, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
74
|
Novak A, Barad L, Lorber A, Gherghiceanu M, Reiter I, Eisen B, Eldor L, Itskovitz-Eldor J, Eldar M, Arad M, Binah O. Functional abnormalities in iPSC-derived cardiomyocytes generated from CPVT1 and CPVT2 patients carrying ryanodine or calsequestrin mutations. J Cell Mol Med 2015; 19:2006-18. [PMID: 26153920 PMCID: PMC4549051 DOI: 10.1111/jcmm.12581] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/17/2015] [Indexed: 01/11/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia characterized by syncope and sudden death occurring during exercise or acute emotion. CPVT is caused by abnormal intracellular Ca2+ handling resulting from mutations in the RyR2 or CASQ2 genes. Because CASQ2 and RyR2 are involved in different aspects of the excitation-contraction coupling process, we hypothesized that these mutations are associated with different functional and intracellular Ca²+ abnormalities. To test the hypothesis we generated induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CM) from CPVT1 and CPVT2 patients carrying the RyR2R420Q and CASQ2D307H mutations, respectively, and investigated in CPVT1 and CPVT2 iPSC-CM (compared to control): (i) The ultrastructural features; (ii) the effects of isoproterenol, caffeine and ryanodine on the [Ca2+]i transient characteristics. Our major findings were: (i) Ultrastructurally, CASQ2 and RyR2 mutated cardiomyocytes were less developed than control cardiomyocytes. (ii) While in control iPSC-CM isoproterenol caused positive inotropic and lusitropic effects, in the mutated cardiomyocytes isoproterenol was either ineffective, caused arrhythmias, or markedly increased diastolic [Ca2+]i. Importantly, positive inotropic and lusitropic effects were not induced in mutated cardiomyocytes. (iii) The effects of caffeine and ryanodine in mutated cardiomyocytes differed from control cardiomyocytes. Our results show that iPSC-CM are useful for investigating the similarities/differences in the pathophysiological consequences of RyR2 versus CASQ2 mutations underlying CPVT1 and CPVT2 syndromes.
Collapse
Affiliation(s)
- Atara Novak
- Department of Physiology, Technion, Haifa, Israel.,The Rappaport Institute for Research in the Medical Sciences, Technion, Haifa, Israel.,Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Lili Barad
- Department of Physiology, Technion, Haifa, Israel.,The Rappaport Institute for Research in the Medical Sciences, Technion, Haifa, Israel.,Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Avraham Lorber
- Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.,Department of Pediatric Cardiology, Rambam Health Care Campus, Haifa, Israel
| | | | - Irina Reiter
- Department of Physiology, Technion, Haifa, Israel.,The Rappaport Institute for Research in the Medical Sciences, Technion, Haifa, Israel.,Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Binyamin Eisen
- Department of Physiology, Technion, Haifa, Israel.,The Rappaport Institute for Research in the Medical Sciences, Technion, Haifa, Israel.,Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Liron Eldor
- Department of Plastic Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Joseph Itskovitz-Eldor
- The Rappaport Institute for Research in the Medical Sciences, Technion, Haifa, Israel.,Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Michael Eldar
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Binah
- Department of Physiology, Technion, Haifa, Israel.,The Rappaport Institute for Research in the Medical Sciences, Technion, Haifa, Israel.,Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
75
|
Nitric Oxide Protects L-Type Calcium Channel of Cardiomyocyte during Long-Term Isoproterenol Stimulation in Tail-Suspended Rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:780814. [PMID: 26167497 PMCID: PMC4488016 DOI: 10.1155/2015/780814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/30/2015] [Indexed: 12/14/2022]
Abstract
The aim of this study was to investigate the effects of nitric oxide (NO) and reactive oxygen species (ROS) on L-type calcium channel (LTCC) gating properties of cardiomyocytes during long-term isoproterenol (ISO) stimulation. Expression and activity of nNOS as well as S-nitrosylation of LTCC α1C subunit significantly decreased in the myocardium of SUS rats. Long-term ISO stimulation increased ROS in cardiomyocytes of SUS rats. ISO-enhanced calcium current (ICa,L) in the SUS group was less than that in the CON group. The maximal ICa,L decreased to about 80% or 60% of initial value at the 50th minute of ISO treatment in CON or SUS group, respectively. Specific inhibitor NAAN of nNOS reduced maximal ICa,L to 50% of initial value in the CON group; in contrast, NO donor SNAP maintained maximal ICa,L in SUS group to similar extent of CON group after 50 min of ISO treatment. Long-term ISO stimulation also changed steady-state activation (P < 0.01), inactivation (P < 0.01), and recovery (P < 0.05) characteristics of LTCC in SUS group. In conclusion, NO-induced S-nitrosylation of LTCC α1C subunit may competitively prevent oxidation from ROS at the same sites. Furthermore, LTCC can be protected by NO during long-term ISO stimulation.
Collapse
|
76
|
Pedrozo Z, Criollo A, Battiprolu PK, Morales CR, Contreras-Ferrat A, Fernández C, Jiang N, Luo X, Caplan MJ, Somlo S, Rothermel BA, Gillette TG, Lavandero S, Hill JA. Polycystin-1 Is a Cardiomyocyte Mechanosensor That Governs L-Type Ca2+ Channel Protein Stability. Circulation 2015; 131:2131-42. [PMID: 25888683 PMCID: PMC4470854 DOI: 10.1161/circulationaha.114.013537] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/10/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND L-type calcium channel activity is critical to afterload-induced hypertrophic growth of the heart. However, the mechanisms governing mechanical stress-induced activation of L-type calcium channel activity are obscure. Polycystin-1 (PC-1) is a G protein-coupled receptor-like protein that functions as a mechanosensor in a variety of cell types and is present in cardiomyocytes. METHODS AND RESULTS We subjected neonatal rat ventricular myocytes to mechanical stretch by exposing them to hypo-osmotic medium or cyclic mechanical stretch, triggering cell growth in a manner dependent on L-type calcium channel activity. RNAi-dependent knockdown of PC-1 blocked this hypertrophy. Overexpression of a C-terminal fragment of PC-1 was sufficient to trigger neonatal rat ventricular myocyte hypertrophy. Exposing neonatal rat ventricular myocytes to hypo-osmotic medium resulted in an increase in α1C protein levels, a response that was prevented by PC-1 knockdown. MG132, a proteasomal inhibitor, rescued PC-1 knockdown-dependent declines in α1C protein. To test this in vivo, we engineered mice harboring conditional silencing of PC-1 selectively in cardiomyocytes (PC-1 knockout) and subjected them to mechanical stress in vivo (transverse aortic constriction). At baseline, PC-1 knockout mice manifested decreased cardiac function relative to littermate controls, and α1C L-type calcium channel protein levels were significantly lower in PC-1 knockout hearts. Whereas control mice manifested robust transverse aortic constriction-induced increases in cardiac mass, PC-1 knockout mice showed no significant growth. Likewise, transverse aortic constriction-elicited increases in hypertrophic markers and interstitial fibrosis were blunted in the knockout animals CONCLUSION PC-1 is a cardiomyocyte mechanosensor that is required for cardiac hypertrophy through a mechanism that involves stabilization of α1C protein.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Biomarkers
- Calcium Channels, L-Type/biosynthesis
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/physiology
- Cardiomegaly/etiology
- Cardiomegaly/prevention & control
- Cells, Cultured
- Fibrosis
- Hypertrophy
- Hypotonic Solutions/pharmacology
- Male
- Mechanotransduction, Cellular/physiology
- Mice
- Mice, Knockout
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/physiology
- Protein Interaction Mapping
- Protein Stability
- Protein Structure, Tertiary
- RNA Interference
- Rats
- Rats, Sprague-Dawley
- Recombinant Fusion Proteins/metabolism
- Stress, Mechanical
- TRPP Cation Channels/chemistry
- TRPP Cation Channels/genetics
- TRPP Cation Channels/physiology
Collapse
Affiliation(s)
- Zully Pedrozo
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Alfredo Criollo
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Pavan K Battiprolu
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Cyndi R Morales
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Ariel Contreras-Ferrat
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Carolina Fernández
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Nan Jiang
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Xiang Luo
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Michael J Caplan
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Stefan Somlo
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Beverly A Rothermel
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Thomas G Gillette
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT
| | - Sergio Lavandero
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT.
| | - Joseph A Hill
- From Division of Cardiology, Department of Internal Medicine (Z.P., A.C., P.K.B., C.R.M., N.J., X.L., B.A.R., T.G.G., S.L., J.A.H.) and Department of Molecular Biology (B.A.R., J.A.H.), UT Southwestern Medical Center, Dallas, TX; Advanced Center for Chronic Diseases and Centro de Estudios Moleculares de la Célula, Facultad de Medicina & Facultad de Ciencias Químicas y Farmacéuticas, Santiago, Chile (Z.P., A.C.-F., C.F., S.L.); Instituto de Ciencias Biomédicas, Facultad de Medicina (Z.P., S.L.) and Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología (A.C.), Universidad de Chile, Santiago; and Departments of Cellular and Molecular Physiology (M.J.C.), Internal Medicine (S.S.), and Genetics (S.S.), Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
77
|
Zhang Q, Bai Y, Yang Z, Tian J, Meng Z. The molecular mechanisms of sodium metabisulfite on the expression of K ATP and L-Ca2+ channels in rat hearts. Regul Toxicol Pharmacol 2015; 72:440-6. [PMID: 26015265 DOI: 10.1016/j.yrtph.2015.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 03/13/2015] [Accepted: 05/19/2015] [Indexed: 11/18/2022]
Abstract
Sodium metabisulfite (SMB) is used as an antioxidant and antimicrobial agent in a variety of drugs and foods. However, there are few reported studies about its side effects. This study is to investigate the SMB effects on the expression of ATP-sensitive K(+) (KATP) and L-type calcium (L-Ca(2+)) channels in rat hearts. The results show that the mRNA and protein levels of the KATP channel subunits Kir6.2 and SUR2A were increased by SMB; on the contrary, SMB at 520 mg/kg significantly decreased the expression of the L-Ca(2+) channel subunits Cav1.2 and Cav1.3. This suggests that SMB can activate the expression of KATP channel by increasing the mRNA and protein levels of Kir6.2 and SUR2A, while it inhibits the expression of L-Ca(2+) channels by decreasing the mRNA and protein levels of Cav1.2 and Cav1.3 in rat hearts. Therefore, the molecular mechanism of the SMB effect on rat hearts might be related to the increased expression of KATP channels and the decreased expression of L-Ca(2+) channels.
Collapse
Affiliation(s)
- Quanxi Zhang
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| | - Yunlong Bai
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Zhenhua Yang
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Jingjing Tian
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Ziqiang Meng
- Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
78
|
Balycheva M, Faggian G, Glukhov AV, Gorelik J. Microdomain-specific localization of functional ion channels in cardiomyocytes: an emerging concept of local regulation and remodelling. Biophys Rev 2015; 7:43-62. [PMID: 28509981 PMCID: PMC5425752 DOI: 10.1007/s12551-014-0159-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/18/2014] [Indexed: 12/26/2022] Open
Abstract
Cardiac excitation involves the generation of action potential by individual cells and the subsequent conduction of the action potential from cell to cell through intercellular gap junctions. Excitation of the cellular membrane results in opening of the voltage-gated L-type calcium ion (Ca2+) channels, thereby allowing a small amount of Ca2+ to enter the cell, which in turn triggers the release of a much greater amount of Ca2+ from the sarcoplasmic reticulum, the intracellular Ca2+ store, and gives rise to the systolic Ca2+ transient and contraction. These processes are highly regulated by the autonomic nervous system, which ensures the acute and reliable contractile function of the heart and the short-term modulation of this function upon changes in heart rate or workload. It has recently become evident that discrete clusters of different ion channels and regulatory receptors are present in the sarcolemma, where they form an interacting network and work together as a part of a macro-molecular signalling complex which in turn allows the specificity, reliability and accuracy of the autonomic modulation of the excitation-contraction processes by a variety of neurohormonal pathways. Disruption in subcellular targeting of ion channels and associated signalling proteins may contribute to the pathophysiology of a variety of cardiac diseases, including heart failure and certain arrhythmias. Recent methodological advances have made it possible to routinely image the topography of live cardiomyocytes, allowing the study of clustering functional ion channels and receptors as well as their coupling within a specific microdomain. In this review we highlight the emerging understanding of the functionality of distinct subcellular microdomains in cardiac myocytes (e.g. T-tubules, lipid rafts/caveolae, costameres and intercalated discs) and their functional role in the accumulation and regulation of different subcellular populations of sodium, Ca2+ and potassium ion channels and their contributions to cellular signalling and cardiac pathology.
Collapse
Affiliation(s)
- Marina Balycheva
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
- Cardiosurgery Department, University of Verona School of Medicine, Verona, Italy
| | - Giuseppe Faggian
- Cardiosurgery Department, University of Verona School of Medicine, Verona, Italy
| | - Alexey V Glukhov
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Julia Gorelik
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
79
|
Abstract
BACKGROUND Timothy syndrome (TS) is a rare multisystem genetic disorder characterized by a myriad of abnormalities, including QT prolongation, syndactyly, and neurologic symptoms. The predominant genetic causes are recurrent de novo missense mutations in exon 8/8A of the CACNA1C-encoded L-type calcium channel; however, some cases remain genetically elusive. OBJECTIVE The purpose of this study was to identify the genetic cause of TS in a patient who did not harbor a CACNA1C mutation in exon 8/A, and was negative for all other plausible genetic substrates. METHODS Diagnostic exome sequencing was used to identify the genetic substrate responsible for our case of TS. The identified mutation was characterized using whole-cell patch-clamp technique, and the results of these analyses were modeled using a modified Luo-Rudy dynamic model to determine the effects on the cardiac action potential. RESULTS Whole exome sequencing revealed a novel CACNA1C mutation, p.Ile1166Thr, in a young male with diagnosed TS. Functional electrophysiologic analysis identified a novel mechanism of TS-mediated disease, with an overall loss of current density and a gain-of-function shift in activation, leading to an increased window current. Modeling studies of this variant predicted prolongation of the action potential as well as the development of spontaneous early afterdepolarizations. CONCLUSION Through expanded whole exome sequencing, we identified a novel genetic substrate for TS, p.Ile1166Thr-CACNA1C. Electrophysiologic experiments combined with modeling studies have identified a novel TS mechanism through increased window current. Therefore, expanded genetic testing in cases of TS to the entire CACNA1C coding region, if initial targeted testing is negative, may be warranted.
Collapse
|
80
|
Zhang Y, Liu J, Liu Z, Wang M, Wang J, Lu S, Zhu L, Zeng X, Liang S. Effects of the venom of the spider Ornithoctonus hainana on neonatal rat ventricular myocytes cellular and ionic electrophysiology. Toxicon 2014; 87:104-12. [PMID: 24930961 DOI: 10.1016/j.toxicon.2014.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/22/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
Abstract
Cardiac ion channels are membrane-spanning proteins that allow the passive movement of ions across the cell membrane along its electrochemical gradient, which regulates the resting membrane potential as well as the shape and duration of the cardiac action potential. Additionally, they have been recognized as potential targets for the actions of neurotransmitters, hormones and drugs of cardiac diseases. Spider venoms contain high abundant of toxins that target diverse ion channels and have been considered as a potential resource of new constituents with specific pharmacological properties. However, few peptides from spider venoms were detected as cardiac channel antagonists. In order to explore the effects of the venom of Ornithoctonus hainana on the action potential and ionic currents of neonatal rat ventricular myocytes (NRVMs), whole cell patch clamp technique was used to record action potential duration (APD), sodium current (INa), L calcium current (ICaL), rapidly activating and inactivating transient outward currents (Ito1), rapid (IKr) and slow (IKs) components of the delayed rectifier currents and the inward rectifier currents (IK1). Our results showed that 100 μg/mL venom obviously prolonged APDs. Significantly, the venom could inhibit INa and ICaL effectively, while no evident inhibitory effects on cardiac K(+) channels (Ito1, Iks, Ikr and Ik1) were observed, suggesting that the venom represented a multifaceted pharmacological profile. The effect of venom on Na(+) and Ca(2+) currents of ventricular myocytes revealed that the hainan venom as a rich resource of cardiac channel antagonists might be valuable tools for the investigation of both channels and drug development.
Collapse
Affiliation(s)
- Yiya Zhang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Jinyan Liu
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Zhonghua Liu
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Meichi Wang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Jing Wang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Shanshan Lu
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Li Zhu
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Xiongzhi Zeng
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China.
| | - Songping Liang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
81
|
Tuckwell HC, Penington NJ. Computational modeling of spike generation in serotonergic neurons of the dorsal raphe nucleus. Prog Neurobiol 2014; 118:59-101. [PMID: 24784445 DOI: 10.1016/j.pneurobio.2014.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 04/14/2014] [Accepted: 04/21/2014] [Indexed: 01/14/2023]
Abstract
Serotonergic neurons of the dorsal raphe nucleus, with their extensive innervation of limbic and higher brain regions and interactions with the endocrine system have important modulatory or regulatory effects on many cognitive, emotional and physiological processes. They have been strongly implicated in responses to stress and in the occurrence of major depressive disorder and other psychiatric disorders. In order to quantify some of these effects, detailed mathematical models of the activity of such cells are required which describe their complex neurochemistry and neurophysiology. We consider here a single-compartment model of these neurons which is capable of describing many of the known features of spike generation, particularly the slow rhythmic pacemaking activity often observed in these cells in a variety of species. Included in the model are 11 kinds of ion channels: a fast sodium current INa, a delayed rectifier potassium current IKDR, a transient potassium current IA, a slow non-inactivating potassium current IM, a low-threshold calcium current IT, two high threshold calcium currents IL and IN, small and large conductance potassium currents ISK and IBK, a hyperpolarization-activated cation current IH and a leak current ILeak. In Sections 3-8, each current type is considered in detail and parameters estimated from voltage clamp data where possible. Three kinds of model are considered for the BK current and two for the leak current. Intracellular calcium ion concentration Cai is an additional component and calcium dynamics along with buffering and pumping is discussed in Section 9. The remainder of the article contains descriptions of computed solutions which reveal both spontaneous and driven spiking with several parameter sets. Attention is focused on the properties usually associated with these neurons, particularly long duration of action potential, steep upslope on the leading edge of spikes, pacemaker-like spiking, long-lasting afterhyperpolarization and the ramp-like return to threshold after a spike. In some cases the membrane potential trajectories display doublets or have humps or notches as have been reported in some experimental studies. The computed time courses of IA and IT during the interspike interval support the generally held view of a competition between them in influencing the frequency of spiking. Spontaneous activity was facilitated by the presence of IH which has been found in these neurons by some investigators. For reasonable sets of parameters spike frequencies between about 0.6Hz and 1.2Hz are obtained, but frequencies as high as 6Hz could be obtained with special parameter choices. Topics investigated and compared with experiment include shoulders, notches, anodal break phenomena, the effects of noradrenergic input, frequency versus current curves, depolarization block, effects of cell size and the effects of IM. The inhibitory effects of activating 5-HT1A autoreceptors are also investigated. There is a considerable discussion of in vitro versus in vivo firing behavior, with focus on the roles of noradrenergic input, corticotropin-releasing factor and orexinergic inputs. Location of cells within the nucleus is probably a major factor, along with the state of the animal.
Collapse
Affiliation(s)
- Henry C Tuckwell
- Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany; School of Electrical and Electronic Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Nicholas J Penington
- Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Box 29, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA; Program in Neural and Behavioral Science and Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Medical Center, Box 29, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA
| |
Collapse
|
82
|
Feest ER, Steven Korte F, Tu AY, Dai J, Razumova MV, Murry CE, Regnier M. Thin filament incorporation of an engineered cardiac troponin C variant (L48Q) enhances contractility in intact cardiomyocytes from healthy and infarcted hearts. J Mol Cell Cardiol 2014; 72:219-27. [PMID: 24690333 DOI: 10.1016/j.yjmcc.2014.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 03/03/2014] [Accepted: 03/21/2014] [Indexed: 01/10/2023]
Abstract
Many current pharmaceutical therapies for systolic heart failure target intracellular [Ca(2+)] ([Ca(2+)]i) metabolism, or cardiac troponin C (cTnC) on thin filaments, and can have significant side-effects, including arrhythmias or adverse effects on diastolic function. In this study, we tested the feasibility of directly increasing the Ca(2+) binding properties of cTnC to enhance contraction independent of [Ca(2+)]i in intact cardiomyocytes from healthy and myocardial infarcted (MI) hearts. Specifically, cardiac thin filament activation was enhanced through adenovirus-mediated over-expression of a cardiac troponin C (cTnC) variant designed to have increased Ca(2+) binding affinity conferred by single amino acid substitution (L48Q). In skinned cardiac trabeculae and myofibrils we and others have shown that substitution of L48Q cTnC for native cTnC increases Ca(2+) sensitivity of force and the maximal rate of force development. Here we introduced L48Q cTnC into myofilaments of intact cardiomyocytes via adeno-viral transduction to deliver cDNA for the mutant or wild type (WT) cTnC protein. Using video-microscopy to monitor cell contraction, relaxation, and intracellular Ca(2+) transients (Fura-2), we report that incorporation of L48Q cTnC significantly increased contractility of cardiomyocytes from healthy and MI hearts without adversely affecting Ca(2+) transient properties or relaxation. The improvements in contractility from L48Q cTnC expression are likely the result of enhanced contractile efficiency, as intracellular Ca(2+) transient amplitudes were not affected. Expression and incorporation of L48Q cTnC into myofilaments was confirmed by Western blot analysis of myofibrils from transduced cardiomyocytes, which indicated replacement of 18±2% of native cTnC with L48Q cTnC. These experiments demonstrate the feasibility of directly targeting cardiac thin filament proteins to enhance cardiomyocyte contractility that is impaired following MI.
Collapse
Affiliation(s)
- Erik R Feest
- Department of Bioengineering, University of Washington, Seattle. WA 98195, USA
| | - F Steven Korte
- Department of Bioengineering, University of Washington, Seattle. WA 98195, USA; Centers for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - An-Yue Tu
- Department of Bioengineering, University of Washington, Seattle. WA 98195, USA
| | - Jin Dai
- Department of Bioengineering, University of Washington, Seattle. WA 98195, USA
| | - Maria V Razumova
- Department of Bioengineering, University of Washington, Seattle. WA 98195, USA
| | - Charles E Murry
- Department of Bioengineering, University of Washington, Seattle. WA 98195, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA; Centers for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle. WA 98195, USA; Centers for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
83
|
Cui HZ, Oh HC, Li X, Lee YJ, Cho KW, Kang DG, Lee HS. Ethanol extract of Lycopus lucidus elicits positive inotropic effect via activation of Ca2+ entry and Ca2+ release in beating rabbit atria. J Med Food 2014; 16:633-40. [PMID: 23875903 DOI: 10.1089/jmf.2012.2487] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lycopus lucidus Turcz has been widely used as a traditional Oriental medicine (TOM) in Korea and China and prescribed for the enhancement of heart function. However, the precise effects have yet to be defined. The purpose of the present study was, therefore, to address whether the ethanol extract of Lycopus lucidus Turcz (ELT) has a positive inotropic effect. ELT-induced changes in atrial mechanical dynamics (pulse pressure, dp/dt, and stroke volume), and cAMP efflux were measured in perfused beating rabbit atria. Three active components, rosmarinic acid, betulinic acid, and oleanolic acid were identified in ELT by high performance liquid chromatography analysis. ELT increased atrial dynamics in a concentration-dependent manner without changes in atrial cAMP levels and cAMP efflux. The ELT-induced positive inotropic effect was blocked by inhibition of the L-type Ca(2+) channels and sarcoplasmic reticulum (SR). Inhibitors of β-adrenoceptors had no effect on the ELT-induced positive inotropic effect. The results suggest that ELT exerts a positive inotropic effect via activation of Ca(2+) entry through L-type Ca(2+) channel and Ca(2+) release from the SR in beating rabbit atria.
Collapse
Affiliation(s)
- Hao Zhen Cui
- Professional Graduate School of Oriental Medicine and College of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, Korea
| | | | | | | | | | | | | |
Collapse
|
84
|
Cardiac functions of voltage-gated Ca(2+) channels: role of the pharmacoresistant type (E-/R-Type) in cardiac modulation and putative implication in sudden unexpected death in epilepsy (SUDEP). Rev Physiol Biochem Pharmacol 2014; 167:115-39. [PMID: 25280639 DOI: 10.1007/112_2014_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Voltage-gated Ca(2+) channels (VGCCs) are ubiquitous in excitable cells. These channels play key roles in many physiological events like cardiac regulation/pacemaker activity due to intracellular Ca(2+) transients. In the myocardium, the Cav1 subfamily (L-type: Cav1.2 and Cav1.3) is the main contributor to excitation-contraction coupling and/or pacemaking, whereas the Cav3 subfamily (T-type: Cav3.1 and Cav3.2) is important in rhythmically firing of the cardiac nodal cells. No established cardiac function has been attributed to the Cav2 family (E-/R-type: Cav2.3) despite accumulating evidence of cardiac dysregulation observed upon deletion of the Cav2.3 gene, the only member of this family so far detected in cardiomyocytes. In this review, we summarize the pathophysiological changes observed after ablation of the E-/R-type VGCC and propose a cardiac mechanism of action for this channel. Also, considering the role played by this channel in epilepsy and its reported sensitivity to antiepileptic drugs, a putative involvement of this channel in the cardiac mechanism of sudden unexpected death in epilepsy is also discussed.
Collapse
|
85
|
Michel G, Matthes HWD, Hachet-Haas M, El Baghdadi K, de Mey J, Pepperkok R, Simpson JC, Galzi JL, Lecat S. Plasma membrane translocation of REDD1 governed by GPCRs contributes to mTORC1 activation. J Cell Sci 2013; 127:773-87. [PMID: 24338366 DOI: 10.1242/jcs.136432] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mTORC1 kinase promotes cell growth in response to growth factors by activation of receptor tyrosine kinase. It is regulated by the cellular energy level and the availability of nutrients. mTORC1 activity is also inhibited by cellular stresses through overexpression of REDD1 (regulated in development and DNA damage responses). We report the identification of REDD1 in a fluorescent live-imaging screen aimed at discovering new proteins implicated in G-protein-coupled receptor signaling, based on translocation criteria. Using a sensitive and quantitative plasma membrane localization assay based on bioluminescent resonance energy transfer, we further show that a panel of endogenously expressed GPCRs, through a Ca(2+)/calmodulin pathway, triggers plasma membrane translocation of REDD1 but not of its homolog REDD2. REDD1 and REDD2 share a conserved mTORC1-inhibitory motif characterized at the functional and structural level and differ most in their N-termini. We show that the N-terminus of REDD1 and its mTORC1-inhibitory motif participate in the GPCR-evoked dynamic interaction of REDD1 with the plasma membrane. We further identify REDD1 as a novel effector in GPCR signaling. We show that fast activation of mTORC1 by GPCRs correlates with fast and maximal translocation of REDD1 to the plasma membrane. Overexpression of functional REDD1 leads to a reduction of mTORC1 activation by GPCRs. By contrast, depletion of endogenous REDD1 protein unleashes mTORC1 activity. Thus, translocation to the plasma membrane appears to be an inactivation mechanism of REDD1 by GPCRs, which probably act by sequestering its functional mTORC1-inhibitory motif that is necessary for plasma membrane targeting.
Collapse
Affiliation(s)
- Grégory Michel
- GPCRs, Pain and Inflammation Team, UMR7242, CNRS-University of Strasbourg, LabEx Medalis, 67412 Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Weiss S, Oz S, Benmocha A, Dascal N. Regulation of cardiac L-type Ca²⁺ channel CaV1.2 via the β-adrenergic-cAMP-protein kinase A pathway: old dogmas, advances, and new uncertainties. Circ Res 2013; 113:617-31. [PMID: 23948586 DOI: 10.1161/circresaha.113.301781] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the heart, adrenergic stimulation activates the β-adrenergic receptors coupled to the heterotrimeric stimulatory Gs protein, followed by subsequent activation of adenylyl cyclase, elevation of cyclic AMP levels, and protein kinase A (PKA) activation. One of the main targets for PKA modulation is the cardiac L-type Ca²⁺ channel (CaV1.2) located in the plasma membrane and along the T-tubules, which mediates Ca²⁺ entry into cardiomyocytes. β-Adrenergic receptor activation increases the Ca²⁺ current via CaV1.2 channels and is responsible for the positive ionotropic effect of adrenergic stimulation. Despite decades of research, the molecular mechanism underlying this modulation has not been fully resolved. On the contrary, initial reports of identification of key components in this modulation were later refuted using advanced model systems, especially transgenic animals. Some of the cardinal debated issues include details of specific subunits and residues in CaV1.2 phosphorylated by PKA, the nature, extent, and role of post-translational processing of CaV1.2, and the role of auxiliary proteins (such as A kinase anchoring proteins) involved in PKA regulation. In addition, the previously proposed crucial role of PKA in modulation of unstimulated Ca²⁺ current in the absence of β-adrenergic receptor stimulation and in voltage-dependent facilitation of CaV1.2 remains uncertain. Full reconstitution of the β-adrenergic receptor signaling pathway in heterologous expression systems remains an unmet challenge. This review summarizes the past and new findings, the mechanisms proposed and later proven, rejected or disputed, and emphasizes the essential issues that remain unresolved.
Collapse
Affiliation(s)
- Sharon Weiss
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel.
| | | | | | | |
Collapse
|
87
|
Abstract
Ca²⁺ plays a crucial role in connecting membrane excitability with contraction in myocardium. The hallmark features of heart failure are mechanical dysfunction and arrhythmias; defective intracellular Ca²⁺ homeostasis is a central cause of contractile dysfunction and arrhythmias in failing myocardium. Defective Ca²⁺ homeostasis in heart failure can result from pathological alteration in the expression and activity of an increasingly understood collection of Ca²⁺ homeostatic and structural proteins, ion channels, and enzymes. This review focuses on the molecular mechanisms of defective Ca²⁺ cycling in heart failure and considers how fundamental understanding of these pathways may translate into novel and innovative therapies.
Collapse
Affiliation(s)
- Min Luo
- Division of Cardiovascular Medicine, Department of Internal Medicine, Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
88
|
Boczek NJ, Best JM, Tester DJ, Giudicessi JR, Middha S, Evans JM, Kamp TJ, Ackerman MJ. Exome sequencing and systems biology converge to identify novel mutations in the L-type calcium channel, CACNA1C, linked to autosomal dominant long QT syndrome. ACTA ACUST UNITED AC 2013; 6:279-89. [PMID: 23677916 DOI: 10.1161/circgenetics.113.000138] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Long QT syndrome (LQTS) is the most common cardiac channelopathy with 15 elucidated LQTS-susceptibility genes. Approximately 20% of LQTS cases remain genetically elusive. METHODS AND RESULTS We combined whole-exome sequencing and bioinformatic/systems biology to identify the pathogenic substrate responsible for nonsyndromic, genotype-negative, autosomal dominant LQTS in a multigenerational pedigree, and we established the spectrum and prevalence of variants in the elucidated gene among a cohort of 102 unrelated patients with "genotype-negative/phenotype-positive" LQTS. Whole-exome sequencing was used on 3 members within a genotype-negative/phenotype-positive family. Genomic triangulation combined with bioinformatic tools and ranking algorithms led to the identification of a CACNA1C mutation. This mutation, Pro857Arg-CACNA1C, cosegregated with the disease within the pedigree, was ranked by 3 disease-network algorithms as the most probable LQTS-susceptibility gene and involves a conserved residue localizing to the proline, gltamic acid, serine, and threonine (PEST) domain in the II-III linker. Functional studies reveal that Pro857Arg-CACNA1C leads to a gain of function with increased ICa,L and increased surface membrane expression of the channel compared to wild type. Subsequent mutational analysis identified 3 additional variants within CACNA1C in our cohort of 102 unrelated cases of genotype-negative/phenotype-positive LQTS. Two of these variants also involve conserved residues within Cav1.2's PEST domain. CONCLUSIONS This study provides evidence that coupling whole-exome sequencing and bioinformatic/systems biology is an effective strategy for the identification of potential disease-causing genes/mutations. The identification of a functional CACNA1C mutation cosegregating with disease in a single pedigree suggests that CACNA1C perturbations may underlie autosomal dominant LQTS in the absence of Timothy syndrome.
Collapse
Affiliation(s)
- Nicole J Boczek
- Center for Translational Science Activities, Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Insights into the toxicological properties of a low molecular weight fraction from Zoanthus sociatus (Cnidaria). Mar Drugs 2013; 11:2873-81. [PMID: 23945599 PMCID: PMC3766870 DOI: 10.3390/md11082873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/13/2013] [Accepted: 06/27/2013] [Indexed: 12/26/2022] Open
Abstract
The phylum Cnidaria is an ancient group of venomous animals, specialized in the production and delivery of toxins. Many species belonging to the class Anthozoa have been studied and their venoms often contain a group of peptides, less than 10 kDa, that act upon ion channels. These peptides and their targets interact with high affinity producing neurotoxic and cardiotoxic effects, and even death, depending on the dose and the administration pathway. Zoanthiniaria is an order of the Subclass Hexacorallia, class Anthozoa, and unlike sea anemone (order Actiniaria), neither its diversity of toxins nor the in vivo effects of the venoms has been exhaustively explored. In this study we assessed some toxicological tests on mice with a low molecular weight fraction obtained by gel filtration in Sephadex G-50 from Zoanthus sociatus crude extract. The gel filtration chromatogram at 280 nm revealed two major peaks, the highest absorbance corresponding to the low molecular weight fraction. The toxicological effects seem to be mostly autonomic and cardiotoxic, causing death in a dose dependent manner with a LD50 of 792 μg/kg. Moreover, at a dose of 600 μg/kg the active fraction accelerated the KCl-induced lethality in mice.
Collapse
|
90
|
Schwoerer AP, Neef S, Broichhausen I, Jacubeit J, Tiburcy M, Wagner M, Biermann D, Didié M, Vettel C, Maier LS, Zimmermann WH, Carrier L, Eschenhagen T, Volk T, El-Armouche A, Ehmke H. Enhanced Ca²+ influx through cardiac L-type Ca²+ channels maintains the systolic Ca²+ transient in early cardiac atrophy induced by mechanical unloading. Pflugers Arch 2013; 465:1763-73. [PMID: 23842739 PMCID: PMC3898408 DOI: 10.1007/s00424-013-1316-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 11/04/2022]
Abstract
Cardiac atrophy as a consequence of mechanical unloading develops following exposure to microgravity or prolonged bed rest. It also plays a central role in the reverse remodelling induced by left ventricular unloading in patients with heart failure. Surprisingly, the intracellular Ca2+ transients which are pivotal to electromechanical coupling and to cardiac plasticity were repeatedly found to remain unaffected in early cardiac atrophy. To elucidate the mechanisms underlying the preservation of the Ca2+ transients, we investigated Ca2+ cycling in cardiomyocytes from mechanically unloaded (heterotopic abdominal heart transplantation) and control (orthotopic) hearts in syngeneic Lewis rats. Following 2 weeks of unloading, sarcoplasmic reticulum (SR) Ca2+ content was reduced by ~55 %. Atrophic cardiac myocytes also showed a much lower frequency of spontaneous diastolic Ca2+ sparks and a diminished systolic Ca2+ release, even though the expression of ryanodine receptors was increased by ~30 %. In contrast, current clamp recordings revealed prolonged action potentials in endocardial as well as epicardial myocytes which were associated with a two to fourfold higher sarcolemmal Ca2+ influx under action potential clamp. In addition, Cav1.2 subunits which form the pore of L-type Ca2+ channels (LTCC) were upregulated in atrophic myocardium. These data suggest that in early cardiac atrophy induced by mechanical unloading, an augmented sarcolemmal Ca2+ influx through LTCC fully compensates for a reduced systolic SR Ca2+ release to preserve the Ca2+ transient. This interplay involves an electrophysiological remodelling as well as changes in the expression of cardiac ion channels.
Collapse
Affiliation(s)
- A. P. Schwoerer
- Department of Cellular and Integrative Physiology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research)—Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - S. Neef
- Department of Cardiology, Heart Research Center, Georg-August-University Goettingen, Goettingen, Germany
| | - I. Broichhausen
- Department of Cellular and Integrative Physiology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research)—Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - J. Jacubeit
- Department of Cellular and Integrative Physiology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research)—Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - M. Tiburcy
- Institute of Pharmacology, Heart Research Center, Georg-August-University Goettingen, Goettingen, Germany
- DZHK (German Centre for Cardiovascular Research)—Goettingen, Goettingen, Germany
| | - M. Wagner
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - D. Biermann
- Department of Cardiovascular Surgery, Center for Cardiology and Cardiovascular Surgery, University Heart Center, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246 Hamburg, Germany
| | - M. Didié
- Department of Cardiology, Heart Research Center, Georg-August-University Goettingen, Goettingen, Germany
- Institute of Pharmacology, Heart Research Center, Georg-August-University Goettingen, Goettingen, Germany
- DZHK (German Centre for Cardiovascular Research)—Goettingen, Goettingen, Germany
| | - C. Vettel
- Institute of Pharmacology, Heart Research Center, Georg-August-University Goettingen, Goettingen, Germany
- DZHK (German Centre for Cardiovascular Research)—Goettingen, Goettingen, Germany
| | - L. S. Maier
- Department of Cardiology, Heart Research Center, Georg-August-University Goettingen, Goettingen, Germany
- DZHK (German Centre for Cardiovascular Research)—Goettingen, Goettingen, Germany
| | - W. H. Zimmermann
- Institute of Pharmacology, Heart Research Center, Georg-August-University Goettingen, Goettingen, Germany
- DZHK (German Centre for Cardiovascular Research)—Goettingen, Goettingen, Germany
| | - L. Carrier
- DZHK (German Centre for Cardiovascular Research)—Hamburg/Kiel/Luebeck, Hamburg, Germany
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246 Hamburg, Germany
- Inserm, U974; CNRS, UMR7215; UPMC UM76, Institut de Myologie, Paris, 75013 France
| | - T. Eschenhagen
- DZHK (German Centre for Cardiovascular Research)—Hamburg/Kiel/Luebeck, Hamburg, Germany
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246 Hamburg, Germany
| | - T. Volk
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - A. El-Armouche
- Institute of Pharmacology, Heart Research Center, Georg-August-University Goettingen, Goettingen, Germany
- DZHK (German Centre for Cardiovascular Research)—Goettingen, Goettingen, Germany
| | - H. Ehmke
- Department of Cellular and Integrative Physiology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research)—Hamburg/Kiel/Luebeck, Hamburg, Germany
| |
Collapse
|
91
|
Myofilament Ca2+ desensitization mediates positive lusitropic effect of neuronal nitric oxide synthase in left ventricular myocytes from murine hypertensive heart. J Mol Cell Cardiol 2013; 60:107-15. [DOI: 10.1016/j.yjmcc.2013.04.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 04/13/2013] [Accepted: 04/15/2013] [Indexed: 11/23/2022]
|
92
|
Sorensen AB, Søndergaard MT, Overgaard MT. Calmodulin in a Heartbeat. FEBS J 2013; 280:5511-32. [DOI: 10.1111/febs.12337] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/28/2013] [Accepted: 05/07/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Anders B. Sorensen
- Department of Biotechnology, Chemistry and Environmental Engineering; Aalborg University; Denmark
| | - Mads T. Søndergaard
- Department of Biotechnology, Chemistry and Environmental Engineering; Aalborg University; Denmark
| | - Michael T. Overgaard
- Department of Biotechnology, Chemistry and Environmental Engineering; Aalborg University; Denmark
| |
Collapse
|
93
|
Li A, Ahsen OO, Liu JJ, Du C, McKee ML, Yang Y, Wasco W, Newton-Cheh CH, O'Donnell CJ, Fujimoto JG, Zhou C, Tanzi RE. Silencing of the Drosophila ortholog of SOX5 in heart leads to cardiac dysfunction as detected by optical coherence tomography. Hum Mol Genet 2013; 22:3798-806. [PMID: 23696452 DOI: 10.1093/hmg/ddt230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The SRY-related HMG-box 5 (SOX5) gene encodes a member of the SOX family of transcription factors. Recently, genome-wide association studies have implicated SOX5 as a candidate gene for susceptibility to four cardiac-related endophenotypes: higher resting heart rate (HR), the electrocardiographic PR interval, atrial fibrillation and left ventricular mass. We have determined that human SOX5 has a highly conserved Drosophila ortholog, Sox102F, and have employed transgenic Drosophila models to quantitatively measure cardiac function in adult flies. For this purpose, we have developed a high-speed and ultrahigh-resolution optical coherence tomography imaging system, which enables rapid cross-sectional imaging of the heart tube over various cardiac cycles for the measurement of cardiac structural and dynamical parameters such as HR, dimensions and areas of heart chambers, cardiac wall thickness and wall velocities. We have found that the silencing of Sox102F resulted in a significant decrease in HR, heart chamber size and cardiac wall velocities, and a significant increase in cardiac wall thickness that was accompanied by disrupted myofibril structure in adult flies. In addition, the silencing of Sox102F in the wing led to increased L2, L3 and wing marginal veins and increased and disorganized expression of wingless, the central component of the Wnt signaling pathway. Collectively, the silencing of Sox102F resulted in severe cardiac dysfunction and structural defects with disrupted Wnt signaling transduction in flies. This implicates an important functional role for SOX5 in heart and suggests that the alterations in SOX5 levels may contribute to the pathogenesis of multiple cardiac diseases or traits.
Collapse
Affiliation(s)
- Airong Li
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Orchard CH, Bryant SM, James AF. Do t-tubules play a role in arrhythmogenesis in cardiac ventricular myocytes? J Physiol 2013; 591:4141-7. [PMID: 23652596 DOI: 10.1113/jphysiol.2013.254540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The transverse (t-) tubules of mammalian ventricular myocytes are invaginations of the surface membrane. The function of many of the key proteins involved in excitation-contraction coupling is located predominantly at the t-tubules, which thus form a Ca(2+)-handling micro-environment that is central to the normal rapid activation and relaxation of the ventricular myocyte. Although cellular arrhythmogenesis shares many ion flux pathways with normal excitation-contraction coupling, the role of the t-tubules in such arrhythmogenesis has not previously been considered. In this brief review we consider how the location and co-location of proteins at the t-tubules may contribute to the generation of arrhythmogenic delayed and early afterdepolarisations, and how the loss of t-tubules that occurs during heart failure may alter the generation of such arrhythmias, as well as contributing to other types of arrhythmia as a result of changes of electrical heterogeneity within the whole heart.
Collapse
Affiliation(s)
- C H Orchard
- C. H. Orchard: University of Bristol, School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
95
|
Flynn R, Altier C. A macromolecular trafficking complex composed of β₂-adrenergic receptors, A-Kinase Anchoring Proteins and L-type calcium channels. J Recept Signal Transduct Res 2013; 33:172-6. [PMID: 23557075 DOI: 10.3109/10799893.2013.782219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Sympathetic modulation of cardiac L-type calcium channels is an important mechanism for regulating heart rate and cardiac contractility. At the molecular level, activation of β-adrenergic receptors (βAR) increases calcium influx into cardiac myocytes by activating protein kinase A (PKA), leading to subsequent phosphorylation of L-type calcium channels. In the case of the β2AR, this process is facilitated by the presence of A-Kinase Anchoring Proteins (AKAPs) that serve as scaffolding proteins for the L-type calcium channel and the β2AR complex. Our work has shown that, in addition to facilitating PKA phosphorylation of the channel, AKAPs also promote an increase in the Cav1.2 channel surface expression. Here we review the molecular mechanisms of β2AR/AKAP/L-type channel interactions and trafficking.
Collapse
Affiliation(s)
- Robyn Flynn
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
96
|
Yu L, Li M, She T, Shi C, Meng W, Wang B, Cheng M. Endothelin-1 stimulates the expression of L-type Ca2+ channels in neonatal rat cardiomyocytes via the extracellular signal-regulated kinase 1/2 pathway. J Membr Biol 2013; 246:343-53. [PMID: 23546014 DOI: 10.1007/s00232-013-9538-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 03/16/2013] [Indexed: 01/07/2023]
Abstract
The cardiac L-type Ca(2+) channel current (I(Ca,L)) plays an important role in controlling both cardiac excitability and excitation-contraction coupling and is involved in the electrical remodeling during postnatal heart development and cardiac hypertrophy. However, the possible role of endothelin-1 (ET-1) in the electrical remodeling of postnatal and diseased hearts remains unclear. Therefore, the present study was designed to investigate the transcriptional regulation of I(Ca,L) mediated by ET-1 in neonatal rat ventricular myocytes using the whole-cell patch-clamp technique, quantitative RT-PCR and Western blotting. Furthermore, we determined whether the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway is involved. ET-1 increased I(Ca,L) density without altering its voltage dependence of activation and inactivation. In line with the absence of functional changes, ET-1 increased L-type Ca(2+) channel pore-forming α1C-subunit mRNA and protein levels without affecting the mRNA expression of auxiliary β- and α2/δ-subunits. Furthermore, an actinomycin D chase experiment revealed that ET-1 did not alter α1C-subunit mRNA stability. These effects of ET-1 were inhibited by the ETA receptor antagonist BQ-123 but not the ETB receptor antagonist BQ-788. Moreover, the effects of ET-1 on I(Ca,L) and α1C-subunit expression were abolished by the ERK1/2 inhibitor (PD98059) but not by the p38 MAPK inhibitor (SB203580) or the c-Jun N-terminal kinase inhibitor (SP600125). These findings indicate that ET-1 increased the transcription of L-type Ca(2+) channel in cardiomyocytes via activation of ERK1/2 through the ETA receptor, which may contribute to the electrical remodeling of heart during postnatal development and cardiac hypertrophy.
Collapse
Affiliation(s)
- Liangzhu Yu
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Peoples Republic of China.
| | | | | | | | | | | | | |
Collapse
|
97
|
Zhang SS, Shaw RM. Multilayered regulation of cardiac ion channels. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:876-85. [PMID: 23103513 PMCID: PMC3568256 DOI: 10.1016/j.bbamcr.2012.10.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 12/27/2022]
Abstract
Essential to beat-to-beat heart function is the ability for cardiomyocytes to propagate electrical excitation and generate contractile force. Both excitation and contractility depend on specific ventricular ion channels, which include the L-type calcium channel (LTCC) and the connexin 43 (Cx43) gap junction. Each of these two channels is localized to a distinct subdomain of the cardiomyocyte plasma membrane. In this review, we focus on regulatory mechanisms that govern the lifecycles of LTCC and Cx43, from their biogenesis in the nucleus to directed delivery to T-tubules and intercalated discs, respectively. We discuss recent findings on how alternative promoter usage, tissue-specific transcription, and alternative splicing determine precise ion channel expression levels within a cardiomyocyte. Moreover, recent work on microtubule and actin-dependent trafficking for Cx43 and LTCC are introduced. Lastly, we discuss how human cardiac disease phenotypes can be attributed to defects in distinct mechanisms of channel regulation at the level of gene expression and channel trafficking. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
98
|
Electrical storm: recent pathophysiological insights and therapeutic consequences. Basic Res Cardiol 2013; 108:336. [DOI: 10.1007/s00395-013-0336-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 01/29/2013] [Accepted: 02/04/2013] [Indexed: 01/01/2023]
|
99
|
Narang D, Kerr PM, Baserman J, Tam R, Yang W, Searle G, Manning-Fox JE, Paulsen IM, Kozuska JL, MacDonald PE, Light PE, Holt A, Plane F. Triton X-100 inhibits L-type voltage-operated calcium channels. Can J Physiol Pharmacol 2013; 91:316-24. [PMID: 23627843 DOI: 10.1139/cjpp-2012-0257] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Triton X-100 (TX-100) is a nonionic detergent frequently used at millimolar concentrations to disrupt cell membranes and solubilize proteins. At low micromolar concentrations, TX-100 has been reported to inhibit the function of potassium channels. Here, we have used electrophysiological and functional techniques to examine the effects of TX-100 on another class of ion channels, L-type voltage-operated calcium channels (VOCCs). TX-100 (30 nmol·L(-1) to 3 μmol·L(-1)) caused reversible concentration-dependent inhibition of recombinant L-type VOCC (CaV 1.2) currents and of native L-type VOCC currents recorded from rat vascular smooth muscle cells and cardiac myocytes, and murine and human pancreatic β-cells. In functional studies, TX-100 (165 nmol·L(-1) to 3.4 μmol·L(-1)) caused concentration-dependent relaxation of rat isolated mesenteric resistance arteries prestimulated with phenylephrine or KCl. This effect was independent of the endothelium. TX-100 (1.6 μmol·L(-1)) inhibited depolarization-induced exocytosis in both murine and human isolated pancreatic β-cells. These data indicate that at concentrations within the nanomolar to low micromolar range, TX-100 significantly inhibits L-type VOCC activity in a number of cell types, an effect paralleled by inhibition of cell functions dependent upon activation of these channels. This inhibition occurs at concentrations below those used to solubilize proteins and may compromise the use of solutions containing TX-100 in bioassays.
Collapse
Affiliation(s)
- Deepak Narang
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Magyar J, Kiper CE, Sievert G, Cai W, Shi GX, Crump SM, Li L, Niederer S, Smith N, Andres DA, Satin J. Rem-GTPase regulates cardiac myocyte L-type calcium current. Channels (Austin) 2012; 6:166-73. [PMID: 22854599 DOI: 10.4161/chan.20192] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
RATIONALE The L-type calcium channels (LTCC) are critical for maintaining Ca(2+)-homeostasis. In heterologous expression studies, the RGK-class of Ras-related G-proteins regulates LTCC function; however, the physiological relevance of RGK-LTCC interactions is untested. OBJECTIVE In this report we test the hypothesis that the RGK protein, Rem, modulates native Ca(2+) current (I(Ca,L)) via LTCC in murine cardiomyocytes. METHODS AND RESULTS Rem knockout mice (Rem(-/-)) were engineered, and I(Ca,L) and Ca(2+) -handling properties were assessed. Rem(-/-) ventricular cardiomyocytes displayed increased I(Ca,L) density. I(Ca,L) activation was shifted positive on the voltage axis, and β-adrenergic stimulation normalized this shift compared with wild-type I(Ca,L). Current kinetics, steady-state inactivation, and facilitation was unaffected by Rem(-/-) . Cell shortening was not significantly different. Increased I(Ca,L) density in the absence of frank phenotypic differences motivated us to explore putative compensatory mechanisms. Despite the larger I(Ca,L) density, Rem(-/-) cardiomyocyte Ca(2+) twitch transient amplitude was significantly less than that compared with wild type. Computer simulations and immunoblot analysis suggests that relative dephosphorylation of Rem(-/-) LTCC can account for the paradoxical decrease of Ca(2+) transients. CONCLUSIONS This is the first demonstration that loss of an RGK protein influences I(Ca,L) in vivo in cardiac myocytes.
Collapse
Affiliation(s)
- Janos Magyar
- Department of Physiology, University of Kentucky College of Medicine, Lexington, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|