51
|
Deutsch EC, Oglesbee D, Greeley NR, Lynch DR. Usefulness of frataxin immunoassays for the diagnosis of Friedreich ataxia. J Neurol Neurosurg Psychiatry 2014; 85:994-1002. [PMID: 24463479 DOI: 10.1136/jnnp-2013-306788] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Friedreich ataxia (FRDA) is a neurodegenerative disease caused by mutations in the frataxin (FXN) gene, resulting in reduced expression of the mitochondrial protein frataxin. Improved understanding of the pathophysiology of the disease has led to a growing need for informative biomarkers to assess disease progression and response to therapeutic intervention. OBJECTIVE To evaluate the performance of frataxin measurements as a diagnostic tool using two different immunoassays. METHODS Clinical and demographic information was provided through an ongoing longitudinal natural history study on FRDA. Frataxin protein levels from multiple cell types in controls, carriers and FRDA patients were measured and compared using a lateral flow immunoassay and a Luminex xMAP-based immunoassay. Receiver operating characteristic curve analyses were then performed to evaluate the sensitivity, specificity, and positive and negative predictive values for each immunoassay. RESULTS For whole blood and buccal cells, analysing FRDA patients and carriers together in a cohort resulted in higher sensitivities and positive predictive values compared with analyzing controls and carriers together, with similar results between each tissue type. We then compared the usefulness of a lateral flow immunoassay with a multianalyte Luminex xMAP-based immunoassay, and showed that both assays demonstrate high positive predictive values with low rates of false negatives and false positives. CONCLUSIONS Frataxin measurements from peripheral tissues can be used to identify FRDA patients and carriers. While multiple cell types and assays may be useful for diagnostic purposes, each assay and cell type used has its advantages and disadvantages depending on study design and scope.
Collapse
Affiliation(s)
- Eric C Deutsch
- Department of Pharmacology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Department of Molecular Genetics, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Nathaniel R Greeley
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David R Lynch
- Department of Pharmacology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
52
|
Affiliation(s)
- David R Lynch
- Division of Neurology and Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
53
|
Greeley NR, Regner S, Willi S, Lynch DR. Cross-sectional analysis of glucose metabolism in Friedreich ataxia. J Neurol Sci 2014; 342:29-35. [PMID: 24819921 DOI: 10.1016/j.jns.2014.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/08/2014] [Accepted: 04/12/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To evaluate the relationship between disease features in Friedreich ataxia and aberrant glucose metabolism. METHODS Fasting glucose, fasting insulin and random HbA1C were obtained in 158 patients with Friedreich ataxia. Regression analysis evaluated glucose, insulin, and homeostatic model assessment (HOMA) of insulin resistance (IR) and beta-cell function (ß) in relation to age, BMI, sex, and genetic severity. Categorical glucose values were analyzed in relation to other FRDA-associated disease characteristics. RESULTS In the FRDA cohort, age and GAA repeat length predicted fasting glucose and HbA1c levels (accounting for sex and BMI), while insulin and HOMA-IR were not predicted by these parameters. Within the cohort, average BMI was consistently lower than the national average by age and was marginally associated with insulin levels and HOMA-IR. Within juvenile subjects, insulin and HOMA-IR were predicted by age. Controlling for age and genetic severity, diabetes-related measures were not independent predictors of any quantitative measure of disease severity in FRDA. Glucose handling properties were also predicted by the presence of a point mutation, with 40% of individuals heterozygous for point mutations having diabetes, compared to 4.3% of subjects who carried two expanded GAA repeats. INTERPRETATION In FRDA, aberrant glucose metabolism is linked to increasing age, longer GAA repeat length on the shorter allele, frataxin point mutations, and increasing BMI. The effect of age to some degree may be mediated through changes in BMI, with increasing age associated with increases in BMI, and with HOMA-IR and insulin increases in children.
Collapse
Affiliation(s)
- Nathaniel R Greeley
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| | - Sean Regner
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| | - Steve Willi
- Division of Endocrinology and Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| | - David R Lynch
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Neurology, University of Pennsylvania Medical School, Philadelphia, PA, United States; Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA, United States.
| |
Collapse
|
54
|
Human platelets as a platform to monitor metabolic biomarkers using stable isotopes and LC-MS. Bioanalysis 2014; 5:3009-21. [PMID: 24320127 DOI: 10.4155/bio.13.269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Intracellular metabolites such as CoA thioesters are modulated in a number of clinical settings. Their accurate measurement from surrogate tissues such as platelets may provide additional information to current serum and urinary biomarkers. METHODS Freshly isolated platelets from healthy volunteers were treated with rotenone, propionate or isotopically labeled metabolic tracers. Using a recently developed LC-MS-based methodology, absolute changes in short-chain acyl-CoA thioesters were monitored, as well as relative metabolic labeling using isotopomer distribution analysis. RESULTS Consistent with in vitro experiments, isolated platelets treated with rotenone showed decreased intracellular succinyl-CoA and increased β-hydroxybutyryl-CoA, while propionate treatment resulted in increased propionyl-CoA. In addition, isotopomers of the CoAs were readily detected in platelets treated with the [(13)C]- or [(13)C(15)N]-labeled metabolic precursors. CONCLUSION Here, we show that human platelets can provide a powerful ex vivo challenge platform with potential clinical diagnostic and biomarker discovery applications.
Collapse
|
55
|
Bird MJ, Needham K, Frazier AE, van Rooijen J, Leung J, Hough S, Denham M, Thornton ME, Parish CL, Nayagam BA, Pera M, Thorburn DR, Thompson LH, Dottori M. Functional characterization of Friedreich ataxia iPS-derived neuronal progenitors and their integration in the adult brain. PLoS One 2014; 9:e101718. [PMID: 25000412 PMCID: PMC4084949 DOI: 10.1371/journal.pone.0101718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/11/2014] [Indexed: 01/20/2023] Open
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive disease characterised by neurodegeneration and cardiomyopathy that is caused by an insufficiency of the mitochondrial protein, frataxin. Our previous studies described the generation of FRDA induced pluripotent stem cell lines (FA3 and FA4 iPS) that retained genetic characteristics of this disease. Here we extend these studies, showing that neural derivatives of FA iPS cells are able to differentiate into functional neurons, which don't show altered susceptibility to cell death, and have normal mitochondrial function. Furthermore, FA iPS-derived neural progenitors are able to differentiate into functional neurons and integrate in the nervous system when transplanted into the cerebellar regions of host adult rodent brain. These are the first studies to describe both in vitro and in vivo characterization of FA iPS-derived neurons and demonstrate their capacity to survive long term. These findings are highly significant for developing FRDA therapies using patient-derived stem cells.
Collapse
Affiliation(s)
- Matthew J. Bird
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Karina Needham
- Department of Otolaryngology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ann E. Frazier
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jorien van Rooijen
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jessie Leung
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shelley Hough
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mark Denham
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew E. Thornton
- Division of Maternal Fetal Medicine, Saban Research Institute of Children's Hospital of Los Angeles, Los Angeles, California, United States of America
| | - Clare L. Parish
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Bryony A. Nayagam
- Department of Audiology and Speech Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Martin Pera
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
- Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
| | - David R. Thorburn
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Lachlan H. Thompson
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mirella Dottori
- Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
56
|
Boesch S, Nachbauer W, Mariotti C, Sacca F, Filla A, Klockgether T, Klopstock T, Schöls L, Jacobi H, Büchner B, vom Hagen JM, Nanetti L, Manicom K. Safety and tolerability of carbamylated erythropoietin in Friedreich's ataxia. Mov Disord 2014; 29:935-9. [PMID: 24515352 DOI: 10.1002/mds.25836] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/12/2013] [Accepted: 12/09/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Erythropoietin (EPO) derivatives have been found to increase frataxin levels in Friedreich's ataxia (FRDA) in vitro. This multicenter, double-blind, placebo-controlled, phase II clinical trial aimed to evaluate the safety and tolerability of Lu AA24493 (carbamylated EPO; CEPO). METHODS Thirty-six ambulatory FRDA patients harboring >400 GAA repeats were 2:1 randomly assigned to either CEPO in a fixed dose (325 µg thrice-weekly) or placebo. Safety and tolerability were assessed up to 103 days after baseline. Secondary outcome measures of efficacy (exploration of biomarkers and ataxia ratings) were performed up to 43 days after baseline. RESULTS All patients received six doses of study medication. Adverse events were equally distributed between CEPO and placebo. There was no evidence for immunogenicity of CEPO after multiple dosing. Biomarkers, such as frataxin, or measures for oxidative stress and ataxia ratings did not differ between CEPO and placebo. CONCLUSION CEPO was safe and well tolerated in a 2-week treatment phase. Secondary outcome measures remained without apparent difference between CEPO and placebo.
Collapse
Affiliation(s)
- Sylvia Boesch
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Dhamija R, Kirmani S. A 7-year-old girl with hypertrophic cardiomyopathy and progressive scoliosis. Semin Pediatr Neurol 2014; 21:67-71. [PMID: 25149925 DOI: 10.1016/j.spen.2014.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We report a 7 year old girl who was evaluated for progressive thoracolumbar scoliosis and hypertrophic cardiomyopathy. Neurological examination was found to be abnormal and significant for absent reflexes and weakness distally in lower extremities and positive Romberg sign. Electromyogram showed length-dependent, axonal, sensorimotor polyneuropathy. Frataxin levels were low at 3ng/mL. Molecular testing for Friedreich ataxia showed significantly expanded GAA repeats at 799 (abnormal >67 GAA repeats) on one allele and a heterozygous disease causing mutation, c.317T>C (p.Leu106Ser) on the other allele, confirming the diagnosis. A review of Friedreich ataxia is provided in the case report.
Collapse
Affiliation(s)
| | - Salman Kirmani
- Department of Medical Genetics, Mayo Clinic, Rochester, MN
| |
Collapse
|
58
|
Bolinches-Amorós A, Mollá B, Pla-Martín D, Palau F, González-Cabo P. Mitochondrial dysfunction induced by frataxin deficiency is associated with cellular senescence and abnormal calcium metabolism. Front Cell Neurosci 2014; 8:124. [PMID: 24860428 PMCID: PMC4026758 DOI: 10.3389/fncel.2014.00124] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/21/2014] [Indexed: 01/01/2023] Open
Abstract
Friedreich ataxia is considered a neurodegenerative disorder involving both the peripheral and central nervous systems. Dorsal root ganglia (DRG) are the major target tissue structures. This neuropathy is caused by mutations in the FXN gene that encodes frataxin. Here, we investigated the mitochondrial and cell consequences of frataxin depletion in a cellular model based on frataxin silencing in SH-SY5Y human neuroblastoma cells, a cell line that has been used widely as in vitro models for studies on neurological diseases. We showed that the reduction of frataxin induced mitochondrial dysfunction due to a bioenergetic deficit and abnormal Ca2+ homeostasis in the mitochondria that were associated with oxidative and endoplasmic reticulum stresses. The depletion of frataxin did not cause cell death but increased autophagy, which may have a cytoprotective effect against cellular insults such as oxidative stress. Frataxin silencing provoked slow cell growth associated with cellular senescence, as demonstrated by increased SA-βgal activity and cell cycle arrest at the G1 phase. We postulate that cellular senescence might be related to a hypoplastic defect in the DRG during neurodevelopment, as suggested by necropsy studies.
Collapse
Affiliation(s)
- Arantxa Bolinches-Amorós
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe Valencia, Spain ; IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe Valencia, Spain ; CIBER de Enfermedades Raras Valencia, Spain
| | - Belén Mollá
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe Valencia, Spain ; IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe Valencia, Spain ; CIBER de Enfermedades Raras Valencia, Spain
| | - David Pla-Martín
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe Valencia, Spain ; IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe Valencia, Spain ; CIBER de Enfermedades Raras Valencia, Spain
| | - Francesc Palau
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe Valencia, Spain ; IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe Valencia, Spain ; CIBER de Enfermedades Raras Valencia, Spain ; Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha Ciudad Real, Spain
| | - Pilar González-Cabo
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe Valencia, Spain ; IBV/CSIC Associated Unit, Centro de Investigación Príncipe Felipe Valencia, Spain ; CIBER de Enfermedades Raras Valencia, Spain
| |
Collapse
|
59
|
Puccio H, Anheim M, Tranchant C. Pathophysiogical and therapeutic progress in Friedreich ataxia. Rev Neurol (Paris) 2014; 170:355-65. [PMID: 24792433 DOI: 10.1016/j.neurol.2014.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 01/10/2023]
Abstract
Friedreich ataxia (FRDA) is the most common hereditary autosomal recessive ataxia, but is also a multisystemic condition with frequent presence of cardiomyopathy or diabetes. It has been linked to expansion of a GAA-triplet repeat in the first intron of the FXN gene, leading to a reduced level of frataxin, a mitochondrial protein which, by controlling both iron entry and/or sulfide production, is essential to properly assemble and protect the Fe-S cluster during the initial stage of biogenesis. Several data emphasize the role of oxidative damage in FRDA, but better understanding of pathophysiological consequences of FXN mutations has led to develop animal models. Conditional knockout models recapitulate important features of the human disease but lack the genetic context, GAA repeat expansion-based knock-in and transgenic models carry a GAA repeat expansion but they only show a very mild phenotype. Cells derived from FRDA patients constitute the most relevant frataxin-deficient cell model as they carry the complete frataxin locus together with GAA repeat expansions and regulatory sequences. Induced pluripotent stem cell (iPSC)-derived neurons present a maturation delay and lower mitochondrial membrane potential, while cardiomyocytes exhibit progressive mitochondrial degeneration, with frequent dark mitochondria and proliferation/accumulation of normal mitochondria. Efforts in developing therapeutic strategies can be divided into three categories: iron chelators, antioxidants and/or stimulants of mitochondrial biogenesis, and frataxin level modifiers. A promising therapeutic strategy that is currently the subject of intense research is to directly target the heterochromatin state of the GAA repeat expansion with histone deacytelase inhibitors (HDACi) to restore frataxin levels.
Collapse
Affiliation(s)
- H Puccio
- Translational medicine and neurogenetics, institut de génétique et de biologie moléculaire et cellulaire (IGBMC), 1, rue Laurent-Fries, BP 10142, 67404 Illkirch cedex, France; Inserm, U596, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; CNRS, UMR7104, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; Université de Strasbourg, 4, rue Blaise-Pascal, 67400 Strasbourg, France; Collège de France, chaire de génétique humaine, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France
| | - M Anheim
- Translational medicine and neurogenetics, institut de génétique et de biologie moléculaire et cellulaire (IGBMC), 1, rue Laurent-Fries, BP 10142, 67404 Illkirch cedex, France; Inserm, U596, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; CNRS, UMR7104, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; Université de Strasbourg, 4, rue Blaise-Pascal, 67400 Strasbourg, France; Service de neurologie, unité des pathologies du mouvement, hôpital de Hautepierre, hôpital universitaire, 1, place de l'Hôpital, 67000 Strasbourg, France
| | - C Tranchant
- Translational medicine and neurogenetics, institut de génétique et de biologie moléculaire et cellulaire (IGBMC), 1, rue Laurent-Fries, BP 10142, 67404 Illkirch cedex, France; Inserm, U596, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; CNRS, UMR7104, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; Université de Strasbourg, 4, rue Blaise-Pascal, 67400 Strasbourg, France; Service de neurologie, unité des pathologies du mouvement, hôpital de Hautepierre, hôpital universitaire, 1, place de l'Hôpital, 67000 Strasbourg, France.
| |
Collapse
|
60
|
Lynch DR, Regner SR, Schadt KA, Friedman LS, Lin KY, Sutton MGSJ. Management and therapy for cardiomyopathy in Friedreich’s ataxia. Expert Rev Cardiovasc Ther 2014; 10:767-77. [DOI: 10.1586/erc.12.57] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
61
|
Eigentler A, Boesch S, Schneider R, Dechant G, Nat R. Induced pluripotent stem cells from friedreich ataxia patients fail to upregulate frataxin during in vitro differentiation to peripheral sensory neurons. Stem Cells Dev 2013; 22:3271-82. [PMID: 23879205 DOI: 10.1089/scd.2013.0126] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The value of human disease models, which are based on induced pluripotent stem cells (iPSCs), depends on the capacity to generate specifically those cell types affected by pathology. We describe a new iPSC-based model of Friedreich ataxia (FRDA), an autosomal recessive neurodegenerative disorder with an intronic GAA repeat expansion in the frataxin gene. As the peripheral sensory neurons are particularly susceptible to neurodegeneration in FRDA, we applied a development-based differentiation protocol to generate specifically these cells. FRDA and control iPSC lines were efficiently differentiated toward neural crest progenitors and peripheral sensory neurons. The progress of the cell lines through discrete steps of in vitro differentiation was closely monitored by expression levels of key markers for peripheral neural development. Since it had been suggested that FRDA pathology might start early during ontogenesis, we investigated frataxin expression in our development-related model. A pronounced frataxin deficit was found in FRDA iPSCs and neural crest cells compared to controls. Whereas we identified an upregulation of frataxin expression during sensory specification for control cells, this increase was not observed for FRDA peripheral sensory neurons. This early failure, aggravating frataxin deficiency in a specifically vulnerable human cell population, indicates a developmental component in FRDA.
Collapse
Affiliation(s)
- Andreas Eigentler
- 1 Department of Neurology, Innsbruck Medical University , Innsbruck, Austria
| | | | | | | | | |
Collapse
|
62
|
Abstract
Friedreich ataxia is the most common autosomal recessive ataxia. It is a progressive neurodegenerative disorder, typically with onset before 20 years of age. Signs and symptoms include progressive ataxia, ascending weakness and ascending loss of vibration and joint position senses, pes cavus, scoliosis, cardiomyopathy, and arrhythmias. There are no disease-modifying medications to either slow or halt the progression of the disease, but research investigating therapies to increase endogenous frataxin production and decrease the downstream consequences of disrupted iron homeostasis is ongoing. Clinical trials of promising medications are underway, and the treatment era of Friedreich ataxia is beginning.
Collapse
Affiliation(s)
- Abigail Collins
- Pediatrics and Neurology, Children's Hospital Colorado, University of Colorado, Denver, School of Medicine, 13123 East 16th Avenue, B155, Aurora, CO 80045, USA.
| |
Collapse
|
63
|
Oglesbee D, Kroll C, Gakh O, Deutsch EC, Lynch DR, Gavrilova R, Tortorelli S, Raymond K, Gavrilov D, Rinaldo P, Matern D, Isaya G. High-throughput immunoassay for the biochemical diagnosis of Friedreich ataxia in dried blood spots and whole blood. Clin Chem 2013; 59:1461-9. [PMID: 23838345 PMCID: PMC3914541 DOI: 10.1373/clinchem.2013.207472] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Friedreich ataxia (FRDA) is caused by reduced frataxin (FXN) concentrations. A clinical diagnosis is typically confirmed by DNA-based assays for GAA-repeat expansions or mutations in the FXN (frataxin) gene; however, these assays are not applicable to therapeutic monitoring and population screening. To facilitate the diagnosis and monitoring of FRDA patients, we developed an immunoassay for measuring FXN. METHODS Antibody pairs were used to capture FXN and an internal control protein, ceruloplasmin (CP), in 15 μL of whole blood (WB) or one 3-mm punch of a dried blood spot (DBS). Samples were assayed on a Luminex LX200 analyzer and validated according to standard criteria. RESULTS The mean recovery of FXN from WB and DBS samples was 99%. Intraassay and interassay imprecision (CV) values were 4.9%-13% and 9.8%-16%, respectively. The FXN limit of detection was 0.07 ng/mL, and the reportable range of concentrations was 2-200 ng/mL. Reference adult and pediatric FXN concentrations ranged from 15 to 82 ng/mL (median, 33 ng/mL) for DBS and WB. The FXN concentration range was 12-22 ng/mL (median, 15 ng/mL) for FRDA carriers and 1-26 ng/mL (median 5 ng/mL) for FRDA patients. Measurement of the FXN/CP ratio increased the ability to distinguish between patients, carriers, and the reference population. CONCLUSIONS This assay is applicable to the diagnosis and therapeutic monitoring of FRDA. This assay can measure FXN and the control protein CP in both WB and DBS specimens with minimal sample requirements, creating the potential for high-throughput population screening of FRDA.
Collapse
Affiliation(s)
- Devin Oglesbee
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN
- Department of Medical Genetics, Mayo Clinic College of Medicine, Rochester, MN
| | - Charles Kroll
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN
| | - Oleksandr Gakh
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN
| | - Eric C. Deutsch
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA
- Department of Pharmacology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - David R. Lynch
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA
- Department of Pharmacology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Ralitza Gavrilova
- Department of Medical Genetics, Mayo Clinic College of Medicine, Rochester, MN
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN
| | - Silvia Tortorelli
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN
| | - Kimiyo Raymond
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN
| | - Dimitar Gavrilov
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN
| | - Piero Rinaldo
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN
| | - Dietrich Matern
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN
- Department of Medical Genetics, Mayo Clinic College of Medicine, Rochester, MN
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN
| | - Grazia Isaya
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN
- Mayo Clinic Children’s Center, Rochester, MN
| |
Collapse
|
64
|
Molecular Diagnosis of Friedreich Ataxia Using Analysis of GAA Repeats and FXN Gene Exons in Population from Western India. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/909767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The diagnosis of Friedreich ataxia is based on the clinical symptoms and GAA repeats expansions. In our experience, checking FXN gene exons for mutations along with GAA repeat analysis may give better clue for its diagnosis. In the present study, total 49 suspected Friedreich ataxia patients were analyzed for GAA repeat expansion. Eleven patients have normal number of GAA repeats, thereby termed as FRDA negative patients. Thirty-eight patients showed no amplification using GAA repeat analysis. Since no conclusion was possible based on these results, these patients were designated as uninformative. We have analyzed 5 exons of the FXN gene in FRDA negative and uninformative patients to check for possible mutations. It was observed that there were no mutations found in any of FRDA negative and most uninformative patients. We further used long range PCR to check for deletion of exon 5a. It was found that 18 patients showed expression for exon 5a PCR but none in long range PCR. Five patients showed no expression for exon 5a PCR as well as long range PCR indicating that these 5 patients may be positive FRDA patients. These findings need to be correlated with clinical history of these patients for confirmation.
Collapse
|
65
|
Parkinson MH, Boesch S, Nachbauer W, Mariotti C, Giunti P. Clinical features of Friedreich's ataxia: classical and atypical phenotypes. J Neurochem 2013; 126 Suppl 1:103-17. [PMID: 23859346 DOI: 10.1111/jnc.12317] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 11/27/2022]
Abstract
One hundred and fifty years since Nikolaus Friedreich's first description of the degenerative ataxic syndrome which bears his name, his description remains at the core of the classical clinical phenotype of gait and limb ataxia, poor balance and coordination, leg weakness, sensory loss, areflexia, impaired walking, dysarthria, dysphagia, eye movement abnormalities, scoliosis, foot deformities, cardiomyopathy and diabetes. Onset is typically around puberty with slow progression and shortened life-span often related to cardiac complications. Inheritance is autosomal recessive with the vast majority of cases showing an unstable intronic GAA expansion in both alleles of the frataxin gene on chromosome 9q13. A small number of cases are caused by a compound heterozygous expansion with a point mutation or deletion. Understanding of the underlying molecular biology has enabled identification of atypical phenotypes with late onset, or atypical features such as retained reflexes. Late-onset cases tend to have slower progression and are associated with smaller GAA expansions. Early-onset cases tend to have more rapid progression and a higher frequency of non-neurological features such as diabetes, cardiomyopathy, scoliosis and pes cavus. Compound heterozygotes, including those with large deletions, often have atypical features. In this paper, we review the classical and atypical clinical phenotypes of Friedreich's ataxia.
Collapse
Affiliation(s)
- Michael H Parkinson
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | | | | | | |
Collapse
|
66
|
Mariotti C, Nachbauer W, Panzeri M, Poewe W, Taroni F, Boesch S. Erythropoietin in Friedreich ataxia. J Neurochem 2013; 126 Suppl 1:80-7. [PMID: 23859343 DOI: 10.1111/jnc.12301] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 03/28/2013] [Accepted: 04/02/2013] [Indexed: 12/11/2022]
Abstract
In Friedreich ataxia (FRDA), several candidate substances including erythropoietin (EPO) focus on increase in the amount of frataxin and aim to counteract the consequences of frataxin deficiency. Evidence for recombinant human erythropoietin (rHuEPO) in FRDA is based on in vitro studies using mouse neuronal cell lines, human fibroblasts, cardiomyocytes, and primary lymphocytes from FRDA patients or control subjects which showed a dose-dependent increase of frataxin after incubation with different erythropoietins. The mechanism by which EPO induces frataxin increase remains to be elucidated, but may involve post-transcriptional and/or post-translational modifications of frataxin or alterations in frataxin half-life and metabolism. In vivo data on rHuEPO's ability to increase frataxin in FRDA patients is contradictory as studies on the effect of EPO derivatives in FRDA differ in treatment regimen, sample size, and duration. Open-label studies indicate for sustained frataxin increase, decrease of oxidative stress, and clinical improvement in FRDA patients after administration of rHuEPO. Two randomized controlled studies found acceptable safety and tolerability of EPO derivatives in FRDA. Secondary outcome measures, however, such as frataxin up-regulation and clinical efficacy were not met. This review will focus on (i) pre-clinical work on erythropoietins in FRDA and (ii) clinical studies in FRDA patients exposed to erythropoietins.
Collapse
Affiliation(s)
- Caterina Mariotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS-Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | | | | | | | | | | |
Collapse
|
67
|
Perdomini M, Hick A, Puccio H, Pook MA. Animal and cellular models of Friedreich ataxia. J Neurochem 2013; 126 Suppl 1:65-79. [PMID: 23859342 DOI: 10.1111/jnc.12219] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 11/30/2022]
Abstract
The development and use of animal and cellular models of Friedreich ataxia (FRDA) are essential requirements for the understanding of FRDA disease mechanisms and the investigation of potential FRDA therapeutic strategies. Although animal and cellular models of lower organisms have provided valuable information on certain aspects of FRDA disease and therapy, it is intuitive that the most useful models are those of mammals and mammalian cells, which are the closest in physiological terms to FRDA patients. To date, there have been considerable efforts put into the development of several different FRDA mouse models and relevant FRDA mouse and human cell line systems. We summarize the principal mammalian FRDA models, discuss the pros and cons of each system, and describe the ways in which such models have been used to address two of the fundamental, as yet unanswered, questions regarding FRDA. Namely, what is the exact pathophysiology of FRDA and what is the detailed genetic and epigenetic basis of FRDA?
Collapse
Affiliation(s)
- Morgane Perdomini
- Translational Medecine and Neurogenetics, IGBMC-Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | | | | | | |
Collapse
|
68
|
Analysis of the visual system in Friedreich ataxia. J Neurol 2013; 260:2362-9. [DOI: 10.1007/s00415-013-6978-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/20/2013] [Accepted: 05/25/2013] [Indexed: 10/26/2022]
|
69
|
Plasterer HL, Deutsch EC, Belmonte M, Egan E, Lynch DR, Rusche JR. Development of frataxin gene expression measures for the evaluation of experimental treatments in Friedreich's ataxia. PLoS One 2013; 8:e63958. [PMID: 23691127 PMCID: PMC3656936 DOI: 10.1371/journal.pone.0063958] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/09/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Friedreich ataxia is a progressive neurodegenerative disorder caused by GAA triplet repeat expansions or point mutations in the FXN gene and, ultimately, a deficiency in the levels of functional frataxin protein. Heterozygous carriers of the expansion express approximately 50% of normal frataxin levels yet manifest no clinical symptoms, suggesting that therapeutic approaches that increase frataxin may be effective even if frataxin is raised only to carrier levels. Small molecule HDAC inhibitor compounds increase frataxin mRNA and protein levels, and have beneficial effects in animal models of FRDA. METHODOLOGY/PRINCIPAL FINDINGS To gather data supporting the use of frataxin as a therapeutic biomarker of drug response we characterized the intra-individual stability of frataxin over time, determined the contribution of frataxin from different components of blood, compared frataxin measures in different cell compartments, and demonstrated that frataxin increases are achieved in peripheral blood mononuclear cells. Frataxin mRNA and protein levels were stable with repeated sampling over four and 15 weeks. In the 15-week study, the average CV was 15.6% for protein and 18% for mRNA. Highest levels of frataxin in blood were in erythrocytes. As erythrocytes are not useful for frataxin assessment in many clinical trial situations, we confirmed that PBMCs and buccal swabs have frataxin levels equivalent to those of whole blood. In addition, a dose-dependent increase in frataxin was observed when PBMCs isolated from patient blood were treated with HDACi. Finally, higher frataxin levels predicted less severe neurological dysfunction and were associated with slower rates of neurological change. CONCLUSIONS/SIGNIFICANCE Our data support the use of frataxin as a biomarker of drug effect. Frataxin levels are stable over time and as such a 1.5 to 2-fold change would be detectable over normal biological fluctuations. Additionally, our data support buccal cells or PBMCs as sources for measuring frataxin protein in therapeutic trials.
Collapse
Affiliation(s)
| | - Eric C. Deutsch
- Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Divisions of Neurology and Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Matthew Belmonte
- Repligen Corporation, Waltham, Massachusetts, United States of America
| | - Elizabeth Egan
- Repligen Corporation, Waltham, Massachusetts, United States of America
| | - David R. Lynch
- Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Divisions of Neurology and Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - James R. Rusche
- Repligen Corporation, Waltham, Massachusetts, United States of America
| |
Collapse
|
70
|
Saccà F, Marsili A, Puorro G, Antenora A, Pane C, Tessa A, Scoppettuolo P, Nesti C, Brescia Morra V, De Michele G, Santorelli FM, Filla A. Clinical use of frataxin measurement in a patient with a novel deletion in the FXN gene. J Neurol 2013; 260:1116-21. [PMID: 23196337 DOI: 10.1007/s00415-012-6770-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/11/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022]
Abstract
Friedreich ataxia (FRDA) is caused by a GAA expansion in the first intron of the FXN gene, which encodes frataxin. Four percent of patients harbor a point mutation on one allele and a GAA expansion on the other. We studied an Italian patient presenting with symptoms suggestive of FRDA, and carrying a single expanded 850 GAA allele. As a second diagnostic step, frataxin was measured in peripheral blood mononuclear cells, and proved to be in the pathological range (2.95 pg/μg total protein, 12.7 % of control levels). Subsequent sequencing revealed a novel deletion in exon 5a (c.572delC) which predicted a frameshift at codon 191 and a premature truncation of the protein at codon 194 (p.T191IfsX194). FXN/mRNA expression was reduced to 69.2 % of control levels. Clinical phenotype was atypical with absent dysarthria, and rapid disease progression. L-Buthionine-sulphoximine treatment of the proband's lymphoblasts showed a severe phenotype as compared to classic FRDA.
Collapse
Affiliation(s)
- Francesco Saccà
- Department of Neurological Sciences, University Federico II, Via Pansini 5, 80131 Naples, NA, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Epigenetics in Friedreich's Ataxia: Challenges and Opportunities for Therapy. GENETICS RESEARCH INTERNATIONAL 2013; 2013:852080. [PMID: 23533785 PMCID: PMC3590757 DOI: 10.1155/2013/852080] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/10/2013] [Indexed: 11/17/2022]
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by homozygous expansion of a GAA·TTC trinucleotide repeat within the first intron of the FXN gene, leading to reduced FXN transcription and decreased levels of frataxin protein. Recent advances in FRDA research have revealed the presence of several epigenetic modifications that are either directly or indirectly involved in this FXN gene silencing. Although epigenetic marks may be inherited from one generation to the next, modifications of DNA and histones can be reversed, indicating that they are suitable targets for epigenetic-based therapy. Unlike other trinucleotide repeat disorders, such as Huntington disease, the large expansions of GAA·TTC repeats in FRDA do not produce a change in the frataxin amino acid sequence, but they produce reduced levels of normal frataxin. Therefore, transcriptional reactivation of the FXN gene provides a good therapeutic option. The present paper will initially focus on the epigenetic changes seen in FRDA patients and their role in the silencing of FXN gene and will be concluded by considering the potential epigenetic therapies.
Collapse
|
72
|
|
73
|
Bandiera S, Cartault F, Jannot AS, Hatem E, Girard M, Rifai L, Loiseau C, Munnich A, Lyonnet S, Henrion-Caude A. Genetic variations creating microRNA target sites in the FXN 3'-UTR affect frataxin expression in Friedreich ataxia. PLoS One 2013; 8:e54791. [PMID: 23382970 PMCID: PMC3559822 DOI: 10.1371/journal.pone.0054791] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/14/2012] [Indexed: 11/18/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a severe neurodegenerative disease caused by GAA repeat expansion within the first intron of the frataxin gene. It has been suggested that the repeat is responsible for the disease severity due to impaired transcription thereby reducing expression of the protein. However, genotype-phenotype correlation is imperfect, and the influence of other gene regions of the frataxin gene is unknown. We hypothesized that FRDA patients may harbor specific regulatory variants in the 3'-UTR. We sequenced the 3'-UTR region of the frataxin gene in a cohort of 57 FRDA individuals and 58 controls. Seven single nucleotide polymorphisms (SNPs) out of 19 were polymorphic in our case-control sample. These SNPs defined several haplotypes with one reaching 89% of homozygosity in patients versus 24% in controls. In another cohort of 47 FRDA Reunionese patients, 94% patients were found to be homozygous for this haplotype. We found that this FRDA 3'-UTR conferred a 1.2-fold decrease in the expression of a reporter gene versus the alternative haplotype configuration. We established that differential targeting by miRNA could account for this functional variability. We specifically demonstrated the involvement of miR-124 (i.e hsa-mir-124-3p) in the down-regulation of FRDA-3'-UTR. Our results suggest for the first time that post-transcriptional regulation of frataxin occurs through the 3'-UTR and involves miRNA targeting. We propose that the involvement of miRNAs in a FRDA-specific regulation of frataxin may provide a rationale to increase residual levels of frataxin through miRNA-inhibitory molecules.
Collapse
Affiliation(s)
- Simonetta Bandiera
- INSERM U781 Hôpital Necker–Enfants Malades, Université Paris Descartes-Sorbonne Cité, Institut Imagine, Paris, France
| | - François Cartault
- INSERM U781 Hôpital Necker–Enfants Malades, Paris, France
- Département de Génétique, Centre Hospitalier Régional de La Réunion, Saint-Denis, La Réunion, France
| | - Anne-Sophie Jannot
- INSERM U781 Hôpital Necker–Enfants Malades, Université Paris Descartes-Sorbonne Cité, Institut Imagine, Paris, France
| | - Elie Hatem
- INSERM U781 Hôpital Necker–Enfants Malades, Paris, France
| | - Muriel Girard
- INSERM U781 Hôpital Necker–Enfants Malades, Université Paris Descartes-Sorbonne Cité, Institut Imagine, Paris, France
| | - Laila Rifai
- Department of Medical Genetics, National Institute of Health, Rabat, Morocco
| | | | - Arnold Munnich
- INSERM U781 Hôpital Necker–Enfants Malades, Université Paris Descartes-Sorbonne Cité, Institut Imagine, Paris, France
| | - Stanislas Lyonnet
- INSERM U781 Hôpital Necker–Enfants Malades, Université Paris Descartes-Sorbonne Cité, Institut Imagine, Paris, France
| | - Alexandra Henrion-Caude
- INSERM U781 Hôpital Necker–Enfants Malades, Université Paris Descartes-Sorbonne Cité, Institut Imagine, Paris, France
| |
Collapse
|
74
|
Hick A, Wattenhofer-Donzé M, Chintawar S, Tropel P, Simard JP, Vaucamps N, Gall D, Lambot L, André C, Reutenauer L, Rai M, Teletin M, Messaddeq N, Schiffmann SN, Viville S, Pearson CE, Pandolfo M, Puccio H. Neurons and cardiomyocytes derived from induced pluripotent stem cells as a model for mitochondrial defects in Friedreich's ataxia. Dis Model Mech 2012; 6:608-21. [PMID: 23136396 PMCID: PMC3634645 DOI: 10.1242/dmm.010900] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a recessive neurodegenerative disorder commonly associated with hypertrophic cardiomyopathy. FRDA is due to expanded GAA repeats within the first intron of the gene encoding frataxin, a conserved mitochondrial protein involved in iron-sulphur cluster biosynthesis. This mutation leads to partial gene silencing and substantial reduction of the frataxin level. To overcome limitations of current cellular models of FRDA, we derived induced pluripotent stem cells (iPSCs) from two FRDA patients and successfully differentiated them into neurons and cardiomyocytes, two affected cell types in FRDA. All FRDA iPSC lines displayed expanded GAA alleles prone to high instability and decreased levels of frataxin, but no biochemical phenotype was observed. Interestingly, both FRDA iPSC-derived neurons and cardiomyocytes exhibited signs of impaired mitochondrial function, with decreased mitochondrial membrane potential and progressive mitochondrial degeneration, respectively. Our data show for the first time that FRDA iPSCs and their neuronal and cardiac derivatives represent promising models for the study of mitochondrial damage and GAA expansion instability in FRDA.
Collapse
Affiliation(s)
- Aurore Hick
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
van den Ouweland AMW, van Minkelen R, Bolman GM, Wouters CH, Becht-Noordermeer C, Deelen WH, Deelen-Manders JMC, Ippel EPF, Saris J, Halley DJJ. Complete FXN deletion in a patient with Friedreich's ataxia. Genet Test Mol Biomarkers 2012; 16:1015-8. [PMID: 22691228 DOI: 10.1089/gtmb.2012.0012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Most patients (98%) with Friedreich's ataxia (FRDA) are homozygous for the GAA repeat expansion in FXN. Only a few compound heterozygous patients with an expanded repeat on one allele and a point mutation or an intragenic FXN deletion on the other allele are described. In a minority of the patients only a heterozygous pattern of the repeat expansion can be detected. Using array analysis after GAA repeat expansion testing, we identified a FRDA patient who is compound heterozygous for an expanded GAA repeat and a complete FXN deletion. Since not only repeat expansions and point mutations, but also large rearrangements can be the underlying cause of FRDA, a quantitative test should also be performed in case a patient shows only one allele with an expanded GAA repeat in FXN.
Collapse
|
76
|
Abstract
Friedreich ataxia is the most common inherited ataxia, with a wide phenotypic spectrum. It is generally caused by GAA expansions on both alleles of FXN, but a small percentage of patients are compound heterozygotes for a pathogenic expansion and a point mutation. Two recent diagnostic innovations are further characterizing individuals with the phenotype but without the classic genotypes. First, lateral-flow immunoassay is able to quantify the frataxin protein, thereby further characterizing these atypical individuals as likely affected or not affected, and providing some correlation to phenotype. It also holds promise as a biomarker for clinical trials in which the investigative agent increases frataxin. Second, gene dosage analysis and the identification of affected individuals with gene deletions introduce a novel genetic mechanism of disease. Both tests are now clinically available and suggest a new diagnostic paradigm for the disorder. Genetic counseling issues and future diagnostic testing approaches are considered as well.
Collapse
Affiliation(s)
- Karlla W. Brigatti
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eric C. Deutsch
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David R. Lynch
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jennifer M. Farmer
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Friedreich Ataxia Research Alliance, Downingtown, Pennsylvania
| |
Collapse
|
77
|
Deutsch EC, Seyer LA, Perlman SL, Yu J, Lynch DR. Clinical monitoring in a patient with Friedreich ataxia and osteogenic sarcoma. J Child Neurol 2012; 27:1159-63. [PMID: 22752483 PMCID: PMC3674811 DOI: 10.1177/0883073812448460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Friedreich ataxia is an autosomal recessive neurodegenerative disorder caused by mutations in the FXN gene that result in abnormally low levels of the mitochondrial protein frataxin. The authors recently used a lateral flow immunoassay to measure frataxin levels in a large cohort of controls, carriers, and patients with the condition. The findings show that frataxin levels do not appreciably change over time and correlate well with GAA(1) repeat length and age of onset; thus, frataxin is a reliable and stable marker for severity of disease. In this article, the authors present a patient diagnosed as having Friedreich ataxia and osteosarcoma who received combined methotrexate, doxorubicin (Adriamycin), and cisplatin (MAP) chemotherapy over 8 months. The authors assessed the effect of treatment on frataxin levels, blood cell counts, and clinical markers of cardiomyopathy. Results of the regimen and the use of MAP chemotherapy for treatment of neoplasms in individuals with Friedreich ataxia are discussed.
Collapse
Affiliation(s)
- Eric C. Deutsch
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Lauren A. Seyer
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Susan L. Perlman
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Jeanette Yu
- The Kaiser Permanente Medical Group, Oakland, California
| | - David R. Lynch
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
78
|
Abstract
During the past 15 years, the pace of research advancement in Friedreich ataxia has been rapid. The abnormal gene has been discovered and its gene product characterized, leading to the development of new evidence-based therapies. Still, various unsettled issues remain that affect clinical trials. These include the level of frataxin deficiency needed to cause disease, the mechanism by which frataxin-deficient mitochondrial dysfunction leads to symptomatology, and the reason selected cells are most affected in Friedreich ataxia. In this review, we summarize these questions and propose testable hypotheses for their resolution.
Collapse
Affiliation(s)
- David R Lynch
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
79
|
Lynch DR, Willi SM, Wilson RB, Cotticelli MG, Brigatti KW, Deutsch EC, Kucheruk O, Shrader W, Rioux P, Miller G, Hawi A, Sciascia T. A0001 in Friedreich ataxia: biochemical characterization and effects in a clinical trial. Mov Disord 2012; 27:1026-33. [PMID: 22744651 DOI: 10.1002/mds.25058] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/23/2012] [Accepted: 04/23/2012] [Indexed: 11/09/2022] Open
Abstract
This study tested the ability of A0001 (α-tocopheryl quinone; EPI-A0001), a potent antioxidant, to improve in vitro measures, glucose metabolism, and neurological function in Friedreich ataxia. We used an in vitro study of protection from cell toxicity followed by a double-blind, randomized, placebo-controlled trial of 2 doses of A0001 in 31 adults with Friedreich ataxia. The primary clinical trial outcome was the Disposition Index, a measure of diabetic tendency, from a frequently sampled intravenous glucose tolerance test, evaluated 4 weeks into therapy. Secondary neurologic measures included the Friedreich Ataxia Rating Scale. A0001 potently inhibited cell death in Friedreich ataxia models in vitro. For the clinical trial, mean guanine-adenine-adenine repeat length was 699, and mean age was 31 years. Four weeks after treatment initiation, differences in changes in the Disposition Index between subjects treated with A0001 and placebo were not statistically significant. In contrast, a dose-dependent improvement in the Friedreich Ataxia Rating Scale score was observed. Patients on placebo improved 2.0 rating scale points, whereas patients on low-dose A0001 improved by 4.9 points (P = .04) and patients on a high dose improved by 6.1 points (P < .01). Although A0001 did not alter the Disposition Index, it caused a dose-dependent improvement in neurologic function, as measured by the Friedreich Ataxia Rating Scale. Longer studies will assess the reproducibility and persistence of neurologic benefit.
Collapse
Affiliation(s)
- David R Lynch
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Evans-Galea MV, Carrodus N, Rowley SM, Corben LA, Tai G, Saffery R, Galati JC, Wong NC, Craig JM, Lynch DR, Regner SR, Brocht AFD, Perlman SL, Bushara KO, Gomez CM, Wilmot GR, Li L, Varley E, Delatycki MB, Sarsero JP. FXN methylation predicts expression and clinical outcome in Friedreich ataxia. Ann Neurol 2012; 71:487-97. [PMID: 22522441 DOI: 10.1002/ana.22671] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Friedreich ataxia (FA) is the most common ataxia and results from an expanded GAA repeat in the first intron of FXN. This leads to epigenetic modifications and reduced frataxin. We investigated the relationships between genetic, epigenetic, and clinical parameters in a large case-control study of FA. METHODS Clinical data and samples were obtained from individuals with FA during annual visits to our dedicated FA clinic. GAA expansions were evaluated by polymerase chain reaction (PCR) and restriction endonuclease digest. DNA methylation was measured using bisulfite-based EpiTYPER MassARRAY (Sequenom, San Diego, CA). FXN expression was determined using real-time reverse transcriptase PCR. Significant correlations between the different parameters were examined using the nonparametric Spearman rank correlation coefficient, as well as univariate and multivariate regression modeling. RESULTS Characteristic DNA methylation was identified upstream and downstream of the expansion, and validated in an independent FA cohort. Univariate and multivariate analyses showed significant inverse correlations between upstream methylation and FXN expression, and variation in downstream methylation and age of onset. FXN expression also inversely correlated with the Friedreich Ataxia Rating Scale score, an indicator of disease severity. INTERPRETATION These novel findings provide compelling evidence for the link between the GAA expansion, the DNA methylation profile, FXN expression, and clinical outcome in FA. Epigenetic profiling of FXN could be used to gain greater insight into disease onset and progression, but also as a biomarker to learn more about specific treatment responses and pharmacological mechanism(s). This work also highlights the potential for developing therapies aimed at increasing frataxin levels to treat this debilitating disease.
Collapse
Affiliation(s)
- Marguerite V Evans-Galea
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Yorns WR, Valencia I, Jayaraman A, Sheth S, Legido A, Goldenthal MJ. Buccal swab analysis of mitochondrial enzyme deficiency and DNA defects in a child with suspected myoclonic epilepsy and ragged red fibers (MERRF). J Child Neurol 2012; 27:398-401. [PMID: 22114216 DOI: 10.1177/0883073811420870] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The authors describe mitochondrial studies in a 6-year-old patient with a seizure disorder that can be seen in myoclonic epilepsy and ragged red fibers. Using a recently developed noninvasive approach, analysis of buccal mitochondrial enzyme function revealed severe respiratory complex I and IV deficiencies in the patient. In addition, analysis of buccal mitochondrial DNA showed significant amounts of the common 5 kb and 7.4 kb mitochondrial DNA deletions, also detectable in blood. This study suggests that a buccal swab approach can be used to informatively examine mitochondrial dysfunction in children with seizures and may be applicable to screening mitochondrial disease with other clinical presentations.
Collapse
Affiliation(s)
- William R Yorns
- Section of Neurology, Department of Pediatrics, St Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA 19134, USA
| | | | | | | | | | | |
Collapse
|
82
|
Bridwell-Rabb J, Winn AM, Barondeau DP. Structure-function analysis of Friedreich's ataxia mutants reveals determinants of frataxin binding and activation of the Fe-S assembly complex. Biochemistry 2011; 50:7265-74. [PMID: 21776984 PMCID: PMC3340929 DOI: 10.1021/bi200895k] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease associated with the loss of function of the protein frataxin (FXN) that results from low FXN levels due to a GAA triplet repeat expansion or, occasionally, from missense mutations in the FXN gene. Here biochemical and structural properties of FXN variants, including three FRDA missense mutations (N146K, Q148R, and R165C) and three related mutants (N146A, Q148G, and Q153A), were determined in an effort to understand the structural basis for the loss of function. In vitro assays revealed that although the three FRDA missense mutations exhibited similar losses of cysteine desulfurase and Fe-S cluster assembly activities, the causes for these activation defects were distinct. The R165C variant exhibited a k(cat)/K(M) higher than that of native FXN but weak binding to the NFS1, ISD11, and ISCU2 (SDU) complex, whereas the Q148R variant exhibited the lowest k(cat)/K(M) of the six tested FXN variants and only a modest binding deficiency. The order of the FXN binding affinities for the SDU Fe-S assembly complex was as follows: FXN > Q148R > N146A > Q148G > N146K > Q153A > R165C. Four different classes of FXN variants were identified on the basis of their biochemical properties. Together, these structure-function studies reveal determinants for the binding and allosteric activation of the Fe-S assembly complex and provide insight into how FRDA missense mutations are functionally compromised.
Collapse
Affiliation(s)
- Jennifer Bridwell-Rabb
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Andrew M. Winn
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - David P. Barondeau
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
83
|
Nachbauer W, Wanschitz J, Steinkellner H, Eigentler A, Sturm B, Hufler K, Scheiber-Mojdehkar B, Poewe W, Reindl M, Boesch S. Correlation of frataxin content in blood and skeletal muscle endorses frataxin as a biomarker in Friedreich ataxia. Mov Disord 2011; 26:1935-8. [PMID: 21692115 DOI: 10.1002/mds.23789] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 04/01/2011] [Accepted: 04/17/2011] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Friedreich ataxia is an autosomal recessive disorder caused by mutations in the frataxin gene, leading to reduced levels of the mitochondrial protein frataxin. Assays to quantitatively measure frataxin in peripheral blood have been established. To determine the validity of frataxin as a biomarker for clinical trials, we assessed frataxin in clinically affected tissue. METHODS In 7 patients with Friedreich ataxia, frataxin content was measured in blood and skeletal muscle before and after treatment with recombinant human erythropoietin, applying the electrochemiluminescence immunoassay. RESULTS We found frataxin content to be correlated in peripheral blood mononuclear cells and skeletal muscle in drug-naive patients with Friedreich ataxia. The correlation of frataxin content in both compartments remained significant after 8 weeks of treatment. Skeletal-muscle frataxin values correlated with ataxia using the Scale for the Assessment and Rating of Ataxia score. CONCLUSIONS Our results endorse frataxin measurements in peripheral blood cells as a valid biomarker in Friedreich ataxia.
Collapse
Affiliation(s)
- Wolfgang Nachbauer
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Tsai CL, Bridwell-Rabb J, Barondeau DP. Friedreich's ataxia variants I154F and W155R diminish frataxin-based activation of the iron-sulfur cluster assembly complex. Biochemistry 2011; 50:6478-87. [PMID: 21671584 PMCID: PMC3319458 DOI: 10.1021/bi200666h] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease that has been linked to defects in the protein frataxin (Fxn). Most FRDA patients have a GAA expansion in the first intron of their Fxn gene that decreases protein expression. Some FRDA patients have a GAA expansion on one allele and a missense mutation on the other allele. Few functional details are known for the ∼15 different missense mutations identified in FRDA patients. Here in vitro evidence is presented that indicates the FRDA I154F and W155R variants bind more weakly to the complex of Nfs1, Isd11, and Isu2 and thereby are defective in forming the four-component SDUF complex that constitutes the core of the Fe-S cluster assembly machine. The binding affinities follow the trend Fxn ∼ I154F > W155F > W155A ∼ W155R. The Fxn variants also have diminished ability to function as part of the SDUF complex to stimulate the cysteine desulfurase reaction and facilitate Fe-S cluster assembly. Four crystal structures, including the first for a FRDA variant, reveal specific rearrangements associated with the loss of function and lead to a model for Fxn-based activation of the Fe-S cluster assembly complex. Importantly, the weaker binding and lower activity for FRDA variants correlate with the severity of disease progression. Together, these results suggest that Fxn facilitates sulfur transfer from Nfs1 to Isu2 and that these in vitro assays are sensitive and appropriate for deciphering functional defects and mechanistic details for human Fe-S cluster biosynthesis.
Collapse
|
85
|
Saccà F, Puorro G, Antenora A, Marsili A, Denaro A, Piro R, Sorrentino P, Pane C, Tessa A, Brescia Morra V, Cocozza S, De Michele G, Santorelli FM, Filla A. A combined nucleic acid and protein analysis in Friedreich ataxia: implications for diagnosis, pathogenesis and clinical trial design. PLoS One 2011; 6:e17627. [PMID: 21412413 PMCID: PMC3055871 DOI: 10.1371/journal.pone.0017627] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/03/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Friedreich's ataxia (FRDA) is the most common hereditary ataxia among caucasians. The molecular defect in FRDA is the trinucleotide GAA expansion in the first intron of the FXN gene, which encodes frataxin. No studies have yet reported frataxin protein and mRNA levels in a large cohort of FRDA patients, carriers and controls. METHODOLOGY/PRINCIPAL FINDINGS We enrolled 24 patients with classic FRDA phenotype (cFA), 6 late onset FRDA (LOFA), all homozygous for GAA expansion, 5 pFA cases who harbored the GAA expansion in compound heterozygosis with FXN point mutations (namely, p.I154F, c.482+3delA, p.R165P), 33 healthy expansion carriers, and 29 healthy controls. DNA was genotyped for GAA expansion, mRNA/FXN was quantified in real-time, and frataxin protein was measured using lateral-flow immunoassay in peripheral blood mononuclear cells (PBMCs). Mean residual levels of frataxin, compared to controls, were 35.8%, 65.6%, 33%, and 68.7% in cFA, LOFA, pFA and healthy carriers, respectively. Comparison of both cFA and pFA with controls resulted in 100% sensitivity and specificity, but there was overlap between LOFA, carriers and controls. Frataxin levels correlated inversely with GAA1 and GAA2 expansions, and directly with age at onset. Messenger RNA expression was reduced to 19.4% in cFA, 50.4% in LOFA, 52.7% in pFA, 53.0% in carriers, as compared to controls (p<0.0001). mRNA levels proved to be diagnostic when comparing cFA with controls resulting in 100% sensitivity and specificity. In cFA and LOFA patients mRNA levels correlated directly with protein levels and age at onset, and inversely with GAA1 and GAA2. CONCLUSION/SIGNIFICANCE We report the first explorative study on combined frataxin and mRNA levels in PBMCs from a cohort of FRDA patients, carriers and healthy individuals. Lateral-flow immunoassay differentiated cFA and pFA patients from controls, whereas determination of mRNA in q-PCR was sensitive and specific only in cFA.
Collapse
Affiliation(s)
- Francesco Saccà
- Department of Neurological Sciences, University Federico II, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Selak MA, Lyver E, Micklow E, Deutsch EC, Önder Ö, Selamoglu N, Yager C, Knight S, Carroll M, Daldal F, Dancis A, Lynch DR, Sarry JE. Blood cells from Friedreich ataxia patients harbor frataxin deficiency without a loss of mitochondrial function. Mitochondrion 2011; 11:342-50. [PMID: 21147271 PMCID: PMC4419809 DOI: 10.1016/j.mito.2010.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/15/2010] [Accepted: 12/03/2010] [Indexed: 12/18/2022]
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by GAA triplet expansions or point mutations in the FXN gene on chromosome 9q13. The gene product called frataxin, a mitochondrial protein that is severely reduced in FRDA patients, leads to mitochondrial iron accumulation, Fe-S cluster deficiency and oxidative damage. The tissue specificity of this mitochondrial disease is complex and poorly understood. While frataxin is ubiquitously expressed, the cellular phenotype is most severe in neurons and cardiomyocytes. Here, we conducted comprehensive proteomic, metabolic and functional studies to determine whether subclinical abnormalities exist in mitochondria of blood cells from FRDA patients. Frataxin protein levels were significantly decreased in platelets and peripheral blood mononuclear cells from FRDA patients. Furthermore, the most significant differences associated with frataxin deficiency in FRDA blood cell mitochondria were the decrease of two mitochondrial heat shock proteins. We did not observe profound changes in frataxin-targeted mitochondrial proteins or mitochondrial functions or an increase of apoptosis in peripheral blood cells, suggesting that functional defects in these mitochondria are not readily apparent under resting conditions in these cells.
Collapse
Affiliation(s)
- Mary A. Selak
- Children’s Hospital of Philadelphia Research Institute, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Elise Lyver
- Division of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Elizabeth Micklow
- Division of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Eric C. Deutsch
- Departments of Neurology and Pediatrics, University of Pennsylvania School of Medicine, and Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Özlem Önder
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nur Selamoglu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Claire Yager
- Children’s Hospital of Philadelphia Research Institute, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Simon Knight
- Division of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Martin Carroll
- Division of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Dancis
- Division of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - David R. Lynch
- Departments of Neurology and Pediatrics, University of Pennsylvania School of Medicine, and Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jean-Emmanuel Sarry
- Division of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|