51
|
Mitragotri S, Anderson DG, Chen X, Chow EK, Ho D, Kabanov AV, Karp JM, Kataoka K, Mirkin CA, Petrosko SH, Shi J, Stevens MM, Sun S, Teoh S, Venkatraman SS, Xia Y, Wang S, Gu Z, Xu C. Accelerating the Translation of Nanomaterials in Biomedicine. ACS NANO 2015; 9:6644-54. [PMID: 26115196 PMCID: PMC5227554 DOI: 10.1021/acsnano.5b03569] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Due to their size and tailorable physicochemical properties, nanomaterials are an emerging class of structures utilized in biomedical applications. There are now many prominent examples of nanomaterials being used to improve human health, in areas ranging from imaging and diagnostics to therapeutics and regenerative medicine. An overview of these examples reveals several common areas of synergy and future challenges. This Nano Focus discusses the current status and future potential of promising nanomaterials and their translation from the laboratory to the clinic, by highlighting a handful of successful examples.
Collapse
Affiliation(s)
- Samir Mitragotri
- Center for Bioengineering, Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Address correspondence to: , ,
| | - Daniel G. Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaoyuan Chen
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Edward K. Chow
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077
| | - Dean Ho
- Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, California 90095, United States
| | - Alexander V. Kabanov
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeffrey M. Karp
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kazunori Kataoka
- Departments of Materials Engineering and Bioengineering, University of Tokyo, Tokyo 113-8654, Japan
| | - Chad A. Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Jinjun Shi
- Laboratory for Nanoengineering & Drug Delivery, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering, Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Sweehin Teoh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798
| | - Subbu S. Venkatraman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Shutao Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27695, United States
- Address correspondence to: , ,
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798
- Address correspondence to: , ,
| |
Collapse
|
52
|
Trendowski M, Christen TD, Zoino JN, Acquafondata C, Fondy TP. Generation and Quantitative Analysis of Pulsed Low Frequency Ultrasound to Determine the Sonic Sensitivity of Untreated and Treated Neoplastic Cells. J Vis Exp 2015:e53060. [PMID: 26274053 PMCID: PMC4545152 DOI: 10.3791/53060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Low frequency ultrasound in the 20 to 60 kHz range is a novel physical modality by which to induce selective cell lysis and death in neoplastic cells. In addition, this method can be used in combination with specialized agents known as sonosensitizers to increase the extent of preferential damage exerted by ultrasound against neoplastic cells, an approach referred to as sonodynamic therapy (SDT). The methodology for generating and applying low frequency ultrasound in a preclinical in vitro setting is presented to demonstrate that reproducible cell destruction can be attained in order to examine and compare the effects of sonication on neoplastic and normal cells. This offers a means by which to reliably sonicate neoplastic cells at a level of consistency required for preclinical therapeutic assessment. In addition, the effects of cholesterol-depleting and cytoskeletal-directed agents on potentiating ultrasonic sensitivity in neoplastic cells are discussed in order to elaborate on mechanisms of action conducive to sonochemotherapeutic approaches.
Collapse
|
53
|
Ultrasonic delivery of silica–gold nanoshells for photothermolysis of sebaceous glands in humans: Nanotechnology from the bench to clinic. J Control Release 2015; 206:30-6. [DOI: 10.1016/j.jconrel.2015.03.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/05/2015] [Accepted: 03/01/2015] [Indexed: 11/21/2022]
|
54
|
|
55
|
Aldwaikat M, Alarjah M. Investigating the sonophoresis effect on the permeation of diclofenac sodium using 3D skin equivalent. ULTRASONICS SONOCHEMISTRY 2015; 22:580-587. [PMID: 24916997 DOI: 10.1016/j.ultsonch.2014.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 06/03/2023]
Abstract
Ultrasound temporally increases skin permeability by altering stratum corneum SC function (sonophoresis). The objective of this study was to evaluate the effect of variable ultrasound conditions on the permeation of diclofenac sodium DS with range of physicochemical properties through EpiDerm™. Permeation studies were carried out in vitro using Franz diffusion cell. HPLC method was used for the determination of the concentration of diclofenac sodium in receiving compartment. Parameters like ultrasound frequency, application time, amplitude, and mode of sonication and distance of ultrasound horn from skin were investigated, and the conditions where the maximum enhancement rate obtained were determined. Application of ultrasound enhanced permeation of diclofenac sodium across EpiDerm™ by fivefolds. The most effective enhancing parameters were power sonication of 20kHz frequency, 20% amplitude at continuous mode for 5min.
Collapse
Affiliation(s)
- Mai Aldwaikat
- Faculty of Pharmacy, Umm Alqura University, Makkah, Saudi Arabia.
| | - Mohammed Alarjah
- Faculty of Pharmacy, Umm Alqura University, Makkah, Saudi Arabia.
| |
Collapse
|
56
|
Han T, Das DB. Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: a review. Eur J Pharm Biopharm 2014; 89:312-28. [PMID: 25541440 DOI: 10.1016/j.ejpb.2014.12.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 11/28/2022]
Abstract
Transdermal drug delivery (TDD) is limited by the outer layer of the skin, i.e., the stratum corneum. Research on TDD has become very active in the recent years and various technologies have been developed to overcome the resistance of the stratum corneum to molecular diffusion. In particular, researchers have started to consider the possibility of combining the TDD technologies in order to have further increase in drug permeability. Both microneedles (MNs) and ultrasound are promising technologies. They achieve enhancement in drug permeation via different mechanisms and therefore give a good potential for combining with each other. This review will focus on discussing the potential of this combinational technique along with other important issues, e.g., the mechanisms of ultrasound and MNs as it is and these mechanisms which are coupled via the two systems (i.e. MNs and ultrasound). We discuss the possible ways to achieve this combination as well as how this combination would increase the permeability. Some of the undeveloped (weaker) research areas of MNs and sonophoresis are also discussed in order to understand the true potential of combining the two technologies when they are developed further in the future. We propose several hypothetical combinations based on the possible mechanisms involved in MNs and ultrasound. Furthermore, we carry out a cluster analysis by which we determine the significance of this combinational method in comparison with some other selected combinational methods for TDD (e.g., MNs and iontophoresis). Using a time series analysis tool (ARIMA model), the current trend and the future development of combined MNs and ultrasound are also analysed. Overall, the review in this paper indicates that combining MNs and ultrasound is a promising TDD method for the future.
Collapse
Affiliation(s)
- Tao Han
- Chemical Engineering Department, Loughborough University, Loughborough, UK
| | - Diganta Bhusan Das
- Chemical Engineering Department, Loughborough University, Loughborough, UK.
| |
Collapse
|
57
|
Nieminen HJ, Salmi A, Karppinen P, Hæggström E, Hacking SA. The potential utility of high-intensity ultrasound to treat osteoarthritis. Osteoarthritis Cartilage 2014; 22:1784-99. [PMID: 25106678 DOI: 10.1016/j.joca.2014.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/22/2014] [Accepted: 07/29/2014] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is a widespread musculoskeletal disease that reduces quality of life and for which there is no cure. The treatment of OA is challenging since cartilage impedes the local and systemic delivery of therapeutic compounds (TCs). This review identifies high-intensity ultrasound (HIU) as a non-contact technique to modify articular cartilage and subchondral bone. HIU enables new approaches to overcome challenges associated with drug delivery to cartilage and new non-invasive approaches for the treatment of joint disease. Specifically, HIU has the potential to facilitate targeted drug delivery and release deep within cartilage, to repair soft tissue damage, and to physically alter tissue structures including cartilage and bone. The localized, non-invasive ultrasonic delivery of TCs to articular cartilage and subchondral bone appears to be a promising technique in the immediate future.
Collapse
Affiliation(s)
- H J Nieminen
- Department of Physics, University of Helsinki, Finland.
| | - A Salmi
- Department of Physics, University of Helsinki, Finland.
| | - P Karppinen
- Department of Physics, University of Helsinki, Finland.
| | - E Hæggström
- Department of Physics, University of Helsinki, Finland.
| | - S A Hacking
- Department of Orthopaedics, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
58
|
Liao AH, Ma WC, Wang CH, Yeh MK. Penetration depth, concentration and efficiency of transdermal α-arbutin delivery after ultrasound treatment with albumin-shelled microbubbles in mice. Drug Deliv 2014; 23:2173-2182. [PMID: 25148541 DOI: 10.3109/10717544.2014.951102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Recently, the feasibility and effects of using microbubbles (MBs) as an ultrasound (US) contrast agent for enhancing the penetration in transdermal delivery in vivo have been demonstrated, but the mechanism and efficiency are unclear. This study demonstrates the penetration depth, concentration and efficiency of transdermal α-arbutin delivery during 4 weeks after US treatment with MBs in mice. Experimental animals were randomly divided into the following four groups (n = 5 animals per group): (1) penetrating α-arbutin alone (C), (2) US combined with penetrating α-arbutin, (3) US combined with MBs and penetrating α-arbutin, and (4) US combined with diluted MBs and penetrating α-arbutin (UBD). The penetration depths in agarose phantoms and pigskin were 47 and 84% greater for group UBD, respectively, than for group C. The in vitro skin penetration by 2% α-arbutin after 3 h was 83% greater in group UBD than in group C. The degree of in vivo skin whitening (quantified as the luminosity index) in group UBD significantly increased by 25% after 1 week, 34% after 2 weeks, and then stabilized after 3 weeks at 37% in C57BL/6J mice over a 4-week experimental period. Our results indicate that combined treatment with optimal US and MBs can increase skin permeability so as to enhance α-arbutin delivery to inhibit melanogenesis without damaging the skin in mice.
Collapse
Affiliation(s)
- Ai-Ho Liao
- a Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology , Taipei , Taiwan , ROC.,b Department of Medical Engineering , National Defense Medical Center , Taipei , Taiwan , ROC
| | - Wan-Chun Ma
- a Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology , Taipei , Taiwan , ROC
| | - Chih-Hung Wang
- c Department of Otolaryngology-Head and Neck Surgery , Tri-Service General Hospital, National Defense Medical Center , Taipei , Taiwan , ROC.,d Graduate Institute of Medical Sciences, National Defense Medical Center , Taipei , Taiwan , ROC
| | - Ming-Kung Yeh
- e School of Pharmacy, National Defense Medical Center , Taipei , Taiwan , ROC , and.,f Bureau of Pharmaceutical Affairs, Military of National Defence Medical Affairs Bureau , Taipei , Taiwan , ROC
| |
Collapse
|
59
|
Rich KT, Hoerig CL, Rao MB, Mast TD. Relations between acoustic cavitation and skin resistance during intermediate- and high-frequency sonophoresis. J Control Release 2014; 194:266-77. [PMID: 25135791 DOI: 10.1016/j.jconrel.2014.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/24/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
Enhanced skin permeability is known to be achieved during sonophoresis due to ultrasound-induced cavitation. However, the mechanistic role of cavitation during sonophoresis has been extensively investigated only for low-frequency (LFS, <100 kHz) applications. Here, mechanisms of permeability-enhancing stable and inertial cavitation were investigated by passively monitoring subharmonic and broadband emissions arising from cavitation isolated within or external to porcine skin in vitro during intermediate- (IFS, 100-700 kHz) and high-frequency sonophoresis (HFS, >1 MHz). The electrical resistance of skin, a surrogate measure of the permeability of skin to a variety of compounds, was measured to quantify the reduction and subsequent recovery of the skin barrier during and after exposure to pulsed (1 second pulse, 20% duty cycle) 0.41 and 2.0 MHz ultrasound over a range of acoustic powers (0-21.7 W) for 30 min. During IFS, significant skin resistance reductions and acoustic emissions from cavitation were measured exclusively when cavitation was isolated outside of the skin. Time-dependent skin resistance reductions measured during IFS correlated significantly with subharmonic and broadband emission levels. During HFS, significant skin resistance reductions were accompanied by significant acoustic emissions from cavitation measured during trials that isolated cavitation activity either outside of skin or within skin. Time-dependent skin resistance reductions measured during HFS correlated significantly greater with subharmonic than with broadband emission levels. The reduction of the skin barrier due to sonophoresis was reversible in all trials; however, effects incurred during IFS recovered more slowly and persisted over a longer period of time than HFS. These results quantitatively demonstrate the significance of cavitation during sonophoresis and suggest that the mechanisms and post-treatment longevity of permeability enhancement due to IFS and HFS treatments are different.
Collapse
Affiliation(s)
- Kyle T Rich
- Biomedical Engineering Program, University of Cincinnati, Cincinnati, OH, USA
| | - Cameron L Hoerig
- Electrical Engineering Program, University of Cincinnati, Cincinnati, OH, USA
| | - Marepalli B Rao
- Biomedical Engineering Program, University of Cincinnati, Cincinnati, OH, USA; Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - T Douglas Mast
- Biomedical Engineering Program, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
60
|
Fetal membrane transport enhancement using ultrasound for drug delivery and noninvasive detection. Pharm Res 2014; 32:403-13. [PMID: 25079390 DOI: 10.1007/s11095-014-1470-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 07/24/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE The purpose of this research was to evaluate the effect of ultrasound on mass transport across fetal membrane for direct fetal drug delivery and sensing of the amniotic fluid in a noninvasive manner. METHODS Post-delivery human fetal membranes (chorioamnion) were used for in vitro experiments, in which the effect of ultrasound on transport across fetal membrane of fluorescent model molecule (250 kDa) was evaluated. Ex vivo experiments were carried out on a whole rat amniotic sac. The model molecule or alpha-fetoprotein was injected into the amniotic sac through the placenta. Transport of these molecules across pre- and post-insonation of the amniotic sac was evaluated. The ultrasound enhancement's mechanism was also assessed. RESULTS The greatest enhancement in mass transport (43-fold) in vitro was achieved for 5 min of insonation (20 kHz, 4.6 W/cm(2), 5 mm distance). Ex vivo results showed a rapid increase (23-fold) in mass transport of the model molecule and also for alphafetoprotein following 30 s of insonation (20 kHz, 4.6 W/cm(2), 5 mm distance). CONCLUSIONS Mass transport across fetal membranes was enhanced post-insonation both in vitro and ex vivo in a reversible and transient manner. We suggest that exterior (to the amniotic sac) ultrasound-induced cavitation is the main mechanism of action.
Collapse
|
61
|
Abstract
Tumor ablation is a minimally invasive technique that is commonly used in the treatment of tumors of the liver, kidney, bone, and lung. During tumor ablation, thermal energy is used to heat or cool tissue to cytotoxic levels (less than -40°C or more than 60°C). An additional technique is being developed that targets the permeability of the cell membrane and is ostensibly nonthermal. Within the classification of tumor ablation, there are several modalities used worldwide: radiofrequency, microwave, laser, high-intensity focused ultrasound, cryoablation, and irreversible electroporation. Each technique, although similar in purpose, has specific and optimal indications. This review serves to discuss general principles and technique, reviews each modality, and discusses modality selection.
Collapse
Affiliation(s)
- Erica M Knavel
- Department of Radiology, University of Wisconsin Madison, Clinical Sciences Center, Madison, WI.
| | | |
Collapse
|
62
|
Azagury A, Khoury L, Enden G, Kost J. Ultrasound mediated transdermal drug delivery. Adv Drug Deliv Rev 2014; 72:127-43. [PMID: 24463344 DOI: 10.1016/j.addr.2014.01.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/24/2013] [Accepted: 01/14/2014] [Indexed: 01/06/2023]
Abstract
Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injections. However, the stratum corneum serves as a barrier that limits the penetration of substances to the skin. Application of ultrasound (US) irradiation to the skin increases its permeability (sonophoresis) and enables the delivery of various substances into and through the skin. This review presents the main findings in the field of sonophoresis in transdermal drug delivery as well as transdermal monitoring and the mathematical models associated with this field. Particular attention is paid to the proposed enhancement mechanisms and future trends in the fields of cutaneous vaccination and gene therapy.
Collapse
Affiliation(s)
- Aharon Azagury
- Department of Chemical Engineering, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Luai Khoury
- Department of Biomedical Engineering, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Giora Enden
- Department of Biomedical Engineering, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Joseph Kost
- Department of Chemical Engineering, Ben-Gurion University, Beer-Sheva 84105, Israel.
| |
Collapse
|
63
|
Zhao H, Zhang G, Zhang Q. MnO2/CeO2 for catalytic ultrasonic degradation of methyl orange. ULTRASONICS SONOCHEMISTRY 2014; 21:991-996. [PMID: 24369902 DOI: 10.1016/j.ultsonch.2013.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 12/03/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
Catalytic ultrasonic degradation of aqueous methyl orange was studied in this paper. Heterogeneous catalyst MnO2/CeO2 was prepared by impregnation of manganese oxide on cerium oxide. Morphology and specific surface area of MnO2/CeO2 catalyst were characterized and its composition was determined. Results showed big differences between fresh and used catalyst. The removal efficiency of methyl orange by MnO2/CeO2 catalytic ultrasonic process was investigated. Results showed that ultrasonic process could remove 3.5% of methyl orange while catalytic ultrasonic process could remove 85% of methyl orange in 10 min. The effects of free radical scavengers were studied to determine the role of hydroxyl free radical in catalytic ultrasonic process. Results showed that methyl orange degradation efficiency declined after adding free radical scavengers, illustrating that hydroxyl free radical played an important role in degrading methyl orange. Theoretic analysis showed that the resonance size of cavitation bubbles was comparable with the size of catalyst particles. Thus, catalyst particles might act as cavitation nucleus and enhance ultrasonic cavitation effects. Measurement of H2O2 concentration in catalytic ultrasonic process confirmed this hypothesis. Effects of pre-adsorption on catalytic ultrasonic process were examined. Pre-adsorption significantly improved methyl orange removal. The potential explanation was that methyl orange molecules adsorbed on catalysts could enter cavitation bubbles and undergo stronger cavitation.
Collapse
Affiliation(s)
- He Zhao
- School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| | - Guangming Zhang
- School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China.
| | - Quanling Zhang
- School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China; Master Erasmus Mundus Mamaself Universit Rennes, 1 Campus de Beaulieu, 35042 Ernnes Cedex, France
| |
Collapse
|
64
|
Tzanakis I, Eskin DG, Georgoulas A, Fytanidis DK. Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble. ULTRASONICS SONOCHEMISTRY 2014; 21:866-78. [PMID: 24176799 DOI: 10.1016/j.ultsonch.2013.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/03/2013] [Accepted: 10/05/2013] [Indexed: 05/12/2023]
Abstract
An experimental study to evaluate cavitation bubble dynamics is conducted. The aim is to predict the magnitude and statistical distribution of hydrodynamic impact pressure generated from the implosion of various individual acoustic cavitation bubbles near to a rigid boundary, considering geometrical features of the pitted area. A steel sample was subjected to cavitation impacts by an ultrasonic transducer with a 5mm diameter probe. The pitted surface was then examined using high-precision 3D optical interferometer techniques. Only the incubation period where surface is plastically deformed without material loss is taken into account. The exposure time was adjusted in the range of 3-60 s to avoid pit overlapping and a special procedure for pit analysis and characterisation was then followed. Moreover, a high-speed camera device was deployed to capture the implosion mechanisms of cavitation bubbles near to the surface. The geometrical characteristics of single incubation pits as well as pit clusters were studied and their deformation patterns were compared. Consequently, a reverse engineering approach was applied in order the hydrodynamic impact pressure from the implosion of an individual cavitation bubble to be determined. The characteristic parameters of the cavitation implosion process such as hydrodynamic impact pressure and liquid micro-jet impact velocity as well as the hydrodynamic severity of the cavitation impacts were quantified. It was found that the length of the hypotenuse of the orthographic projections from the center of the pit, which basically represents the deformed area of the pit, increases with the hydrodynamic impact aggressiveness in a linear rate. Majority of the hydrodynamic impacts were in the range of 0.4-1 GPa while the corresponding micro-jet velocities were found to be in the range of 200-700 m/s. Outcomes of this study, contribute to further understanding the cavitation intensity from the implosion of acoustically generated bubbles and could certainly represent a significant step towards developing more accurate cavitation models.
Collapse
Affiliation(s)
- I Tzanakis
- Brunel Center for Advanced Solidification Technology (BCAST), Brunel University, Uxbridge, Middlesex UB8 3PH, UK.
| | | | | | | |
Collapse
|
65
|
Kojima Y, Imazu H, Nishida K. Physical and chemical characteristics of ultrasonically-prepared water-in-diesel fuel: effects of ultrasonic horn position and water content. ULTRASONICS SONOCHEMISTRY 2014; 21:722-728. [PMID: 24207138 DOI: 10.1016/j.ultsonch.2013.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 06/02/2023]
Abstract
An ultrasonic technique was applied to preparation of two-phase water-in-oil (W/O) emulsified fuel of water/diesel oil/surfactant. In this study, an ultrasonic apparatus with a 28 kHz rod horn was used. The influence of the horn tip position during ultrasonic treatment, sonication time and water content (5 or 10 vol%) on the emulsion stability, viscosity, water droplet size and water surface area of emulsion fuels prepared by ultrasonication was investigated. The emulsion stability of ultrasonically-prepared fuel significantly depended on the horn tip position during ultrasonic irradiation. It was found that the change in the stability with the horn tip position was partly related to that in the ultrasonic power estimated by calorimetry. Emulsion stability, viscosity and sum of water droplets surface area increased and water droplet size decreased with an increase in sonication time, and they approached each limiting value in the longer time. The maximum values of the viscosity and water surface area increased with water content, while the limiting values of the emulsion stability and water droplet size were almost independent of water content. During ultrasonication of water/diesel oil mixture, the hydrogen and methane were identified and the cracking of hydrocarbon components in the diesel oil occurred. The combustion characteristics of ultrasonically-prepared emulsion fuel were studied and compared with those of diesel oil. The soot and NOx emissions during combustion of the emulsified fuel with higher water contents were significantly reduced compared with those during combustion of diesel oil.
Collapse
Affiliation(s)
- Yoshihiro Kojima
- EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | | | | |
Collapse
|
66
|
Park D, Park H, Seo J, Lee S. Sonophoresis in transdermal drug deliverys. ULTRASONICS 2014; 54:56-65. [PMID: 23899825 DOI: 10.1016/j.ultras.2013.07.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 06/01/2013] [Accepted: 07/02/2013] [Indexed: 05/15/2023]
Abstract
Transdermal drug delivery (TDD) has several significant advantages compared to oral drug delivery, including elimination of pain and sustained drug release. However, the use of TDD is limited by low skin permeability due to the stratum corneum (SC), the outermost layer of the skin. Sonophoresis is a technique that temporarily increases skin permeability such that various medications can be delivered noninvasively. For the past several decades, various studies of sonophoresis in TDD have been performed focusing on parameter optimization, delivery mechanism, transport pathway, or delivery of several drug categories including hydrophilic and high molecular weight compounds. Based on these various studies, several possible mechanisms of sonophoresis have been suggested. For example, cavitation is believed to be the predominant mechanism responsible for drug delivery in sonophoresis. This review presents details of various studies on sonophoresis including the latest trends, delivery of various therapeutic drugs, sonophoresis pathways and mechanisms, and outlook of future studies.
Collapse
Affiliation(s)
- Donghee Park
- Department of Biomedical Engineering, Yonsei University, Wonju 220-710, Republic of Korea
| | | | | | | |
Collapse
|
67
|
Paliwal S, Hwang BH, Tsai KY, Mitragotri S. Diagnostic opportunities based on skin biomarkers. Eur J Pharm Sci 2013; 50:546-56. [DOI: 10.1016/j.ejps.2012.10.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/14/2012] [Accepted: 10/17/2012] [Indexed: 12/20/2022]
|
68
|
Souza J, Meira A, Volpato NM, Mayorga P, Gottfried C. Effect of phonophoresis on skin permeation of commercial anti-inflammatory gels: sodium diclofenac and ketoprofen. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1623-1630. [PMID: 23820249 DOI: 10.1016/j.ultrasmedbio.2013.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 02/15/2013] [Accepted: 02/16/2013] [Indexed: 06/02/2023]
Abstract
This study evaluated the use of ultrasound in combination with the commercial anti-inflammatory drugs ketoprofen and sodium diclofenac, according to the parameters used in physiotherapy. Ketoprofen and sodium diclofenac were used in the Franz diffusion cell model adapted to an ultrasound transducer in three conditions: no ultrasound, one application of ultrasound and two applications of ultrasound. High-performance liquid chromatography was used to quantify the total amount of drug permeating skin per unit area, as well as flux and latency. The results showed that for ketoprofen, the amount of drug permeating skin and flux increased with two ultrasound applications. Permeation of sodium diclofenac decreased in the presence of ultrasound. Ultrasound parameters and drug properties must be considered in the use of phonophoresis.
Collapse
Affiliation(s)
- Jaqueline Souza
- Department of Biochemistry, Institute of Health's Basic Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | | | | | | |
Collapse
|
69
|
Mitragotri S. Engineering approaches to transdermal drug delivery: a tribute to contributions of prof. Robert Langer. Skin Pharmacol Physiol 2013; 26:263-76. [PMID: 23921113 DOI: 10.1159/000351947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/08/2013] [Indexed: 11/19/2022]
Abstract
Transdermal drug delivery continues to provide an advantageous route of drug administration over injections. While the number of drugs delivered by passive transdermal patches has increased over the years, no macromolecule is currently delivered by the transdermal route. Substantial research efforts have been dedicated by a large number of researchers representing varied disciplines including biology, chemistry, pharmaceutics and engineering to understand, model and overcome the skin's barrier properties. This article focuses on engineering contributions to the field of transdermal drug delivery. The article pays tribute to Prof. Robert Langer, who pioneered the engineering approach towards transdermal drug delivery. Over a period spanning nearly 25 years since his first publication in the field of transdermal drug delivery, Bob Langer has deeply impacted the field by quantitative analysis and innovative engineering. At the same time, he has inspired several generations of engineers by collaborations and mentorship. His scientific insights, innovative technologies, translational efforts and dedicated mentorship have transformed the field.
Collapse
Affiliation(s)
- S Mitragotri
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
70
|
Sá GF, Serpa C, Arnaut LG. Stratum corneum permeabilization with photoacoustic waves generated by piezophotonic materials. J Control Release 2013; 167:290-300. [DOI: 10.1016/j.jconrel.2013.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 02/10/2013] [Indexed: 10/27/2022]
|
71
|
Zhao YZ, Du LN, Lu CT, Jin YG, Ge SP. Potential and problems in ultrasound-responsive drug delivery systems. Int J Nanomedicine 2013; 8:1621-33. [PMID: 23637531 PMCID: PMC3635663 DOI: 10.2147/ijn.s43589] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS) have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington’s disease, thrombolysis, and disruption of the blood–brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future.
Collapse
Affiliation(s)
- Ying-Zheng Zhao
- Wenzhou Medical College, Wenzhou City, Zhejiang Province, People's Republic of China
| | | | | | | | | |
Collapse
|
72
|
Nabili M, Patel H, Mahesh SP, Liu J, Geist C, Zderic V. Ultrasound-enhanced delivery of antibiotics and anti-inflammatory drugs into the eye. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:638-646. [PMID: 23415283 PMCID: PMC3770302 DOI: 10.1016/j.ultrasmedbio.2012.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 11/06/2012] [Accepted: 11/12/2012] [Indexed: 06/01/2023]
Abstract
Delivery of sufficient amounts of therapeutic drugs into the eye is often a challenging task. In this study, ultrasound application (frequencies of 400 KHz to 1 MHz, intensities of 0.3-1.0 W/cm(2) and exposure duration of 5 min) was investigated to overcome the barrier properties of cornea, which is a typical route for topical administration of ophthalmic drugs. Permeability of ophthalmic drugs, tobramycin and dexamethasone and sodium fluorescein, a drug-mimicking compound, was studied in ultrasound- and sham-treated rabbit corneas in vitro using a standard diffusion cell setup. Light microscopy observations were used to determine ultrasound-induced structural changes in the cornea. For tobramycin, an increase in permeability for ultrasound- and sham-treated corneas was not statistically significant. Increase of 46%-126% and 32%-109% in corneal permeability was observed for sodium fluorescein and dexamethasone, respectively, with statistical significance (p < 0.05) achieved at all treatment parameter combinations (compared with sham treatments) except for 1-MHz ultrasound applications for dexamethasone experiments. This permeability increase was highest at 400 kHz and appeared to be higher at higher intensities applied. Histologic analysis showed structural changes that were limited to epithelial layers of cornea. In summary, ultrasound application provided enhancement of drug delivery, increasing the permeability of the cornea for the anti-inflammatory ocular drug dexamethasone. Future investigations are needed to determine the effectiveness and safety of this application in in vivo long-term survival studies.
Collapse
Affiliation(s)
- Marjan Nabili
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA.
| | | | | | | | | | | |
Collapse
|
73
|
Bawiec CR, Sunny Y, Nguyen AT, Samuels JA, Weingarten MS, Zubkov LA, Lewin PA. Finite element static displacement optimization of 20-100 kHz flexural transducers for fully portable ultrasound applicator. ULTRASONICS 2013; 53:511-7. [PMID: 23040829 PMCID: PMC3568635 DOI: 10.1016/j.ultras.2012.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 05/09/2023]
Abstract
This paper focuses on the development of a finite-element model and subsequent stationary analysis performed to optimize individual flexural piezoelectric elements for operation in the frequency range of 20-100kHz. These elements form the basic building blocks of a viable, un-tethered, and portable ultrasound applicator that can produce intensities on the order of 100mW/cm(2) spatial-peak temporal-peak (I(SPTP)) with minimum (on the order of 15V) excitation voltage. The ultrasound applicator can be constructed with different numbers of individual transducer elements and different geometries such that its footprint or active area is adjustable. The primary motivation behind this research was to develop a tether-free, battery operated, fully portable ultrasound applicator for therapeutic applications such as wound healing and non-invasive transdermal delivery of both naked and encapsulated drugs. It is shown that careful selection of the components determining applicator architecture allows the displacement amplitude to be maximized for a specific frequency of operation. The work described here used the finite-element analysis software COMSOL to identify the geometry and material properties that permit the applicator's design to be optimized. By minimizing the excitation voltage required to achieve the desired output (100mW/cm(2)I(SPTP)) the power source (rechargeable Li-Polymer batteries) size may be reduced permitting both the electronics and ultrasound applicator to fit in a wearable housing.
Collapse
Affiliation(s)
- Christopher R Bawiec
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | | | | | | | | | | | | |
Collapse
|
74
|
Spatial specificity and sensitivity of passive cavitation imaging for monitoring high-intensity focused ultrasound thermal ablation in ex vivo bovine liver. PROCEEDINGS OF MEETINGS ON ACOUSTICS. ACOUSTICAL SOCIETY OF AMERICA 2013; 19:075022. [PMID: 24817990 DOI: 10.1121/1.4800327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Passive cavitation images (PCIs) generated from scattered acoustic waves are a potential technique for monitoring lesion formation during high-intensity focused ultrasound (HIFU) thermal ablation. HIFU lesion prediction by PCIs was assessed in ex vivo bovine liver samples (N=14) during 30-s sonications with 1.1-MHz continuous-wave ultrasound (1989 W/cm^2 estimated spatial-peak intensity). Treated samples were sectioned, optically scanned, and the HIFU lesions segmented based on tissue discoloration. During each insonation, a 192-element, 7-MHz linear array (L7/Iris 2, Ardent Sound) passively recorded emissions from a plane containing the HIFU propagation axis oriented parallel to the image azimuth direction. PCIs were formed from beamformed A-lines filtered into fundamental, harmonic, ultraharmonic, and inharmonic frequency bands. Lesion prediction was tested using binary classification of local tissue ablation based on thresholded PCIs, with spatial specificity and sensitivity of lesion prediction quantified by the area under receiver operating characteristic curves (AUROC). Tadpole-shaped lesions were best predicted by harmonic emissions (AUROC=0.76), prefocal lesions were best predicted by harmonic or ultraharmonic emissions (AUROC=0.86), and cigar-type focal lesions were best predicted by fundamental and harmonic emissions (AUROC=0.65). These results demonstrate spatial specificity and sensitivity when predicting HIFU lesions with PCIs.
Collapse
|
75
|
Haworth KJ, Mast TD, Radhakrishnan K, Burgess MT, Kopechek JA, Huang SL, McPherson DD, Holland CK. Passive imaging with pulsed ultrasound insonations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 132:544-53. [PMID: 22779500 PMCID: PMC3407164 DOI: 10.1121/1.4728230] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Previously, passive cavitation imaging has been described in the context of continuous-wave high-intensity focused ultrasound thermal ablation. However, the technique has potential use as a feedback mechanism for pulsed-wave therapies, such as ultrasound-mediated drug delivery. In this paper, results of experiments and simulations are reported to demonstrate the feasibility of passive cavitation imaging using pulsed ultrasound insonations and how the images depend on pulsed ultrasound parameters. The passive cavitation images were formed from channel data that was beamformed in the frequency domain. Experiments were performed in an invitro flow phantom with an experimental echo contrast agent, echogenic liposomes, as cavitation nuclei. It was found that the pulse duration and envelope have minimal impact on the image resolution achieved. The passive cavitation image amplitude scales linearly with the cavitation emission energy. Cavitation images for both stable and inertial cavitation can be obtained from the same received data set.
Collapse
Affiliation(s)
- Kevin J Haworth
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati, Cincinnati, Ohio, USA.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Sampling of disease biomarkers from skin for theranostic applications. Drug Deliv Transl Res 2012; 2:87-94. [DOI: 10.1007/s13346-012-0061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
77
|
Park D, Ryu H, Kim HS, Kim YS, Choi KS, Park H, Seo J. Sonophoresis using ultrasound contrast agents for transdermal drug delivery: an in vivo experimental study. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:642-50. [PMID: 22341597 DOI: 10.1016/j.ultrasmedbio.2011.12.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/07/2011] [Accepted: 12/16/2011] [Indexed: 05/12/2023]
Abstract
Sonophoresis temporally increases skin permeability such that various medications can be delivered noninvasively. Previous sonophoresis studies have suggested that cavitation plays an important role in enhancing transdermal drug delivery (TDD). In this study, the feasibility of controlled cavitation using ultrasound contrast agents (UCAs) at high frequency was explored through in vivo experiments in a rat model. Two commercially available UCAs, SonoVue® and Definity®, were used at 2.47 MHz and 1.12 MHz, respectively. Fluorescein isothiocyanate (FITC)-dextran with 0.1% UCA was used as the drug to be delivered through the skin. Ultrasound with a 10 ms pulse and a 1% duty cycle at 1 MPa acoustic pressure for 30 min was applied in all sonication sessions. The efficacy of sonophoresis with UCAs was quantitatively analyzed using an optical imaging system that was used to count photons emitted from fluorescein. The results showed that the proposed sonophoresis method significantly improved drug penetration compared with the traditional sonophoresis method with 4 kD, 20 kD and 150 kD FITC-dextrans at 1.12 MHz, and with 4 kD and 20 kD FITC-dextrans at 2.47 MHz. Sonophoresis for TDD was performed more effectively with the aid of UCAs. Sonophoresis with UCAs has excellent potential for broad applications in drug delivery for diseases requiring the chronic administration of medications such as diabetes.
Collapse
Affiliation(s)
- Donghee Park
- Department of Biomedical Engineering, Yonsei University, Wonju, Korea
| | | | | | | | | | | | | |
Collapse
|
78
|
Ahmadi F, McLoughlin IV, Chauhan S, ter-Haar G. Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 108:119-38. [PMID: 22402278 DOI: 10.1016/j.pbiomolbio.2012.01.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/30/2012] [Indexed: 11/25/2022]
Abstract
Low-frequency (LF) ultrasound (20-100 kHz) has a diverse set of industrial and medical applications. In fact, high power industrial applications of ultrasound mainly occupy this frequency range. This range is also used for various therapeutic medical applications including sonophoresis (ultrasonic transdermal drug delivery), dentistry, eye surgery, body contouring, the breaking of kidney stones and eliminating blood clots. While emerging LF applications such as ultrasonic drug delivery continue to be developed and undergo translation for human use, significant gaps exist in the coverage of safety standards for this frequency range. Accordingly, the need to understand the biological effects of LF ultrasound is becoming more important. This paper presents a broad overview of bio-effects and safety of LF ultrasound as an aid to minimize and control the risk of these effects. Its particular focus is at low intensities where bio-effects are initially observed. To generate a clear perspective of hazards in LF exposure, the mechanisms of bio-effects and the main differences in action at low and high frequencies are investigated and a survey of harmful effects of LF ultrasound at low intensities is presented. Mechanical and thermal indices are widely used in high frequency diagnostic applications as a means of indicating safety of ultrasonic exposure. The direct application of these indices at low frequencies needs careful investigation. In this work, using numerical simulations based on the mathematical and physical rationale behind the indices at high frequencies, it is observed that while thermal index (TI) can be used directly in the LF range, mechanical index (MI) seems to become less reliable at lower frequencies. Accordingly, an improved formulation for the MI is proposed for frequencies below 500 kHz.
Collapse
Affiliation(s)
- Farzaneh Ahmadi
- School of Computer Engineering, Nanyang Technological University, N4-02b-52, Nanyang Avenue, Singapore 639798, Singapore
| | | | | | | |
Collapse
|
79
|
Shah UU, Roberts M, Orlu Gul M, Tuleu C, Beresford MW. Needle-free and microneedle drug delivery in children: A case for disease-modifying antirheumatic drugs (DMARDs). Int J Pharm 2011; 416:1-11. [DOI: 10.1016/j.ijpharm.2011.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/30/2011] [Accepted: 07/02/2011] [Indexed: 12/22/2022]
|
80
|
Polat BE, Hart D, Langer R, Blankschtein D. Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J Control Release 2011; 152:330-48. [PMID: 21238514 PMCID: PMC3436072 DOI: 10.1016/j.jconrel.2011.01.006] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
Abstract
The use of ultrasound for the delivery of drugs to, or through, the skin is commonly known as sonophoresis or phonophoresis. The use of therapeutic and high frequencies of ultrasound (≥0.7MHz) for sonophoresis (HFS) dates back to as early as the 1950s, while low-frequency sonophoresis (LFS, 20-100kHz) has only been investigated significantly during the past two decades. Although HFS and LFS are similar because they both utilize ultrasound to increase the skin penetration of permeants, the mechanisms associated with each physical enhancer are different. Specifically, the location of cavitation and the extent to which each process can increase skin permeability are quite dissimilar. Although the applications of both technologies are different, they each have strengths that could allow them to improve current methods of local, regional, and systemic drug delivery. In this review, we will discuss the mechanisms associated with both HFS and LFS, specifically concentrating on the key mechanistic differences between these two skin treatment methods. Background on the relevant physics associated with ultrasound transmitted through aqueous media will also be discussed, along with implications of these phenomena on sonophoresis. Finally, a thorough review of the literature is included, dating back to the first published reports of sonophoresis, including a discussion of emerging trends in the field.
Collapse
Affiliation(s)
- Baris E. Polat
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Douglas Hart
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
81
|
Polat BE, Blankschtein D, Langer R. Low-frequency sonophoresis: application to the transdermal delivery of macromolecules and hydrophilic drugs. Expert Opin Drug Deliv 2011; 7:1415-32. [PMID: 21118031 DOI: 10.1517/17425247.2010.538679] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
IMPORTANCE OF THE FIELD Transdermal delivery of macromolecules provides an attractive alternative route of drug administration when compared to oral delivery and hypodermic injection because of its ability to bypass the harsh gastrointestinal tract and deliver therapeutics non-invasively. However, the barrier properties of the skin only allow small, hydrophobic permeants to traverse the skin passively, greatly limiting the number of molecules that can be delivered via this route. The use of low-frequency ultrasound for the transdermal delivery of drugs, referred to as low-frequency sonophoresis (LFS), has been shown to increase skin permeability to a wide range of therapeutic compounds, including both hydrophilic molecules and macromolecules. Recent research has demonstrated the feasibility of delivering proteins, hormones, vaccines, liposomes and other nanoparticles through LFS-treated skin. In vivo studies have also established that LFS can act as a physical immunization adjuvant. LFS technology is already clinically available for use with topical anesthetics, with other technologies currently under investigation. AREAS COVERED IN THIS REVIEW This review provides an overview of mechanisms associated with LFS-mediated transdermal delivery, followed by an in-depth discussion of the current applications of LFS technology for the delivery of hydrophilic drugs and macromolecules, including its use in clinical applications. WHAT THE READER WILL GAIN The reader will gain an insight into the field of LFS-mediated transdermal drug delivery, including how the use of this technology can improve on more traditional drug delivery methods. TAKE HOME MESSAGE Ultrasound technology has the potential to impact many more transdermal delivery platforms in the future due to its unique ability to enhance skin permeability in a controlled manner.
Collapse
Affiliation(s)
- Baris E Polat
- Massachusetts Institute of Technology, Department of Chemical Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
82
|
Abstract
Intradermal (ID) vaccination can offer improved immunity and simpler logistics of delivery, but its use in medicine is limited by the need for simple, reliable methods of ID delivery. ID injection by the Mantoux technique requires special training and may not reliably target skin, but is nonetheless used currently for BCG and rabies vaccination. Scarification using a bifurcated needle was extensively used for smallpox eradication, but provides variable and inefficient delivery into the skin. Recently, ID vaccination has been simplified by introduction of a simple-to-use hollow microneedle that has been approved for ID injection of influenza vaccine in Europe. Various designs of hollow microneedles have been studied preclinically and in humans. Vaccines can also be injected into skin using needle-free devices, such as jet injection, which is receiving renewed clinical attention for ID vaccination. Projectile delivery using powder and gold particles (i.e., gene gun) have also been used clinically for ID vaccination. Building off the scarification approach, a number of preclinical studies have examined solid microneedle patches for use with vaccine coated onto metal microneedles, encapsulated within dissolving microneedles or added topically to skin after microneedle pretreatment, as well as adapting tattoo guns for ID vaccination. Finally, technologies designed to increase skin permeability in combination with a vaccine patch have been studied through the use of skin abrasion, ultrasound, electroporation, chemical enhancers, and thermal ablation. The prospects for bringing ID vaccination into more widespread clinical practice are encouraging, given the large number of technologies for ID delivery under development.
Collapse
Affiliation(s)
- Marcel B.M. Teunissen
- , Department of Dermatology, University of Amsterdam, Academic Medica, Meibergdreef 9, Amsterdam, 1105 AZ Netherlands
| |
Collapse
|
83
|
Abstract
In this article, we discuss the optical immersion method based on refractive index matching of scatterers (e.g., collagen, elastin fibers, cells and cell compartments) and the ground material (interstitial fluid and/or cytoplasm) of tissue and blood under the action of exogenous optical clearing agents. We analyze the optical clearing of fibrous and cell-structured tissues and blood from the point of view of receiving more valuable, normally hidden, information from spectroscopic and polarization measurements, confocal microscopy, optical coherence and optical projection tomography, as well as from nonlinear spectroscopies, such as two-photon fluorescence and second-harmonic generation techniques. Some important applications of the immersion technique to glucose sensing, drug delivery monitoring, improvements of image contrast and imaging depth, nondistortive delivery of laser radiation and precision tissue laser photodisruption, among others, are also described.
Collapse
Affiliation(s)
- Elina A Genina
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, 410012 Saratov, Russia
| | | | | |
Collapse
|
84
|
Yoon J, Park D, Son T, Seo J, Nelson JS, Jung B. A physical method to enhance transdermal delivery of a tissue optical clearing agent: combination of microneedling and sonophoresis. Lasers Surg Med 2010; 42:412-7. [PMID: 20583247 DOI: 10.1002/lsm.20930] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVES Various physical methods, such as microneedling, laser ablation, sonophoresis, and sandpaper, have been widely studied to enhance the transdermal delivery of tissue optical clearing (TOC) agents. A previous study demonstrated that the microneedling method could effectively enhance the permeability of a TOC agent through the skin barrier. STUDY DESIGN/MATERIALS AND METHODS In this study, we introduce a new physical combination method which utilizes both microneedling and sonophoresis to further enhance the transdermal delivery of a TOC agent, glycerol. Porcine skin samples were divided into a control group treated only with the microneedle roller and a test group treated with both the microneedle roller and sonophoresis. Glycerol was applied topically after microneedling. The optimal concentration and transdermal delivery efficacy of glycerol were quantitatively evaluated. RESULTS A 70% glycerol solution was determined to be the optimal concentration for the combination method. The combination method resulted in approximately a 2.3-fold higher transdermal diffusion rate of glycerol when compared to the microneedling method alone. CONCLUSION The combination method and optimal glycerol concentration effectively enhanced transdermal delivery of glycerol by accelerating the diffusion rate through the skin barrier.
Collapse
Affiliation(s)
- Jinhee Yoon
- Department of Biomedical Engineering, Yonsei University, Wonju-si 220-710, Korea
| | | | | | | | | | | |
Collapse
|
85
|
Cancelos S, Moraga FJ, Lahey RT, Shain W, Parsons RH. The effect of acoustically-induced cavitation on the permeance of a bullfrog urinary bladder. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:2726-2738. [PMID: 21110568 DOI: 10.1121/1.3493442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
It is well known that ultrasound enhances drug delivery to tissues, although there is not a general consensus about the responsible mechanisms. However, it is known that the most important factor associated with ultrasonically-enhanced drug permeance through tissues is cavitation. Here we report results from research conducted using a experimental approach adapted from single bubble sonoluminescence experiments which generates very well defined acoustic fields and allows controlled activation and location of cavitation. The experimental design requires that a biological tissue be immersed inside a highly degassed liquid media to avoid random bubble nucleation. Therefore, live frog bladders were used as the living tissue due to their high resistance to hypoxia. Tissue membrane permeance was measured using radiolabeled urea. The results show that an increase in tissue permeance only occurs when cavitation is present near the tissue membrane. Moreover, confocal microscopy shows a direct correlation between permeance increases and physical damage to the tissue.
Collapse
Affiliation(s)
- Silvina Cancelos
- Center for Multiphase Research, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA.
| | | | | | | | | |
Collapse
|
86
|
Polat BE, Figueroa PL, Blankschtein D, Langer R. Transport pathways and enhancement mechanisms within localized and non-localized transport regions in skin treated with low-frequency sonophoresis and sodium lauryl sulfate. J Pharm Sci 2010; 100:512-29. [PMID: 20740667 DOI: 10.1002/jps.22280] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/26/2010] [Accepted: 05/28/2010] [Indexed: 11/06/2022]
Abstract
Recent advances in transdermal drug delivery utilizing low-frequency sonophoresis (LFS) and sodium lauryl sulfate (SLS) have revealed that skin permeability enhancement is not homogenous across the skin surface. Instead, highly perturbed skin regions, known as localized transport regions (LTRs), exist. Despite these findings, little research has been conducted to identify intrinsic properties and formation mechanisms of LTRs and the surrounding less-perturbed non-LTRs. By independently analyzing LTR, non-LTR, and total skin samples treated at multiple LFS frequencies, we found that the pore radii (r(pore)) within non-LTRs are frequency-independent, ranging from 18.2 to 18.5 Å, but significantly larger than r(pore) of native skin samples (13.6 Å). Conversely, r(pore) within LTRs increase significantly with decreasing frequency from 161 to 276 Å and to ∞ (>300 Å) for LFS/SLS-treated skin at 60, 40, and 20 kHz, respectively. Our findings suggest that different mechanisms contribute to skin permeability enhancement within each skin region. We propose that the enhancement mechanism within LTRs is the frequency-dependent process of cavitation-induced microjet collapse at the skin surface, whereas the increased r(pore) values in non-LTRs are likely due to SLS perturbation, with enhanced penetration of SLS into the skin resulting from the frequency-independent process of microstreaming.
Collapse
Affiliation(s)
- Baris E Polat
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
87
|
Wolloch L, Kost J. The importance of microjet vs shock wave formation in sonophoresis. J Control Release 2010; 148:204-11. [PMID: 20655341 DOI: 10.1016/j.jconrel.2010.07.106] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/10/2010] [Accepted: 07/14/2010] [Indexed: 12/01/2022]
Abstract
Low-frequency ultrasound application has been shown to greatly enhance transdermal drug delivery. Skin exposed to ultrasound is affected in a heterogeneous manner, thus mass transport through the stratum corneum occurs mainly through highly permeable localized transport regions (LTRs). Shock waves and microjets generated during inertial cavitations are responsible for the transdermal permeability enhancement. In this study, we evaluated the effect of these two phenomena using direct and indirect methods, and demonstrated that the contribution of microjets to skin permeability enhancement is significantly higher than shock waves.
Collapse
Affiliation(s)
- Lior Wolloch
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | |
Collapse
|
88
|
Liu HL, Pan CH, Ting CY, Hsiao MJ. Opening of the blood-brain barrier by low-frequency (28-kHz) ultrasound: a novel pinhole-assisted mechanical scanning device. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:325-335. [PMID: 20018435 DOI: 10.1016/j.ultrasmedbio.2009.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 09/21/2009] [Accepted: 10/06/2009] [Indexed: 05/28/2023]
Abstract
Disruption of the blood-brain barrier (BBB) may be transiently achieved via high-frequency focused spherical ultrasound in the presence of microbubbles. In this experimental animal study, we sought to determine whether focal reversible opening of the BBB may be achieved using low-frequency (i.e., 20-30 kHz) planar ultrasonic waves. In the presence of microbubbles, we were able to obtain BBB opening using non-focused ultrasound irradiation with a frequency as low as 28 kHz. We also achieved a tight regulation of the ultrasound patterns by using a mechanical scanning device equipped with a pinhole. Histologic examination of the brains supported the feasibility of our system. The areas of BBB disruption obtained with this method were large enough to cover a typical circumscribed cerebral tumor mass. The inherent advantages of our BBB opening method include an improved portability, the possibility to obtain fairly wide areas of BBB opening and a low incidence of hemorrhagic complications. In addition, our system has the potential to reduce the need for image guidance for treating superficial brain lesions.
Collapse
Affiliation(s)
- Hao-Li Liu
- Department of Electrical Engineering, Chang-Gung University, Taoyuan, Taiwan.
| | | | | | | |
Collapse
|
89
|
Sugibayashi K, Todo H, Yamaguchi K. Effect of negative charged particles on the recovery of skin barrier function after EP treatment. J Drug Deliv Sci Technol 2010. [DOI: 10.1016/s1773-2247(10)50077-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
90
|
Lee SE, Choi KJ, Menon GK, Kim HJ, Choi EH, Ahn SK, Lee SH. Penetration pathways induced by low-frequency sonophoresis with physical and chemical enhancers: iron oxide nanoparticles versus lanthanum nitrates. J Invest Dermatol 2009; 130:1063-72. [PMID: 19940858 DOI: 10.1038/jid.2009.361] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Low-frequency sonophoresis (LFS) has been shown to disrupt the structure of stratum corneum (SC) lipid bilayers and enhance SC permeability. In this study, we examined the penetration pathway of lanthanum nitrate (LaNO(3)) tracer in viable epidermis after combined treatment of LFS and tape stripping (TS), as a physical enhancer, or oleic acid (OA) application, as a chemical enhancer, using transmission electron microscopy (TEM). As a positive control, we visualized the passive diffusion pathway of LaNO(3) and iron oxide (Fe(3)O(4)) nanoparticles after the incision of hairless mouse skin. Next, we applied LFS immediately after TS or OA application and visualized the penetration pathway of LaNO(3). Each treatment showed restricted penetration to the SC-stratum granulosum (SG) interface or upper SG layer. However, the additional application of LFS induced diffuse intracellular distribution of LaNO(3) throughout the viable epidermis. Quantitative analysis also revealed that combined treatment significantly increases LaNO(3) penetration into viable epidermis when compared with each treatment. Our ultrastructural findings show the synergistic effect of LFS and TS or OA application on transdermal drug delivery. We also found that this combined treatment enhances the penetration of LaNO(3) through the viable epidermis through an intracellular pathway.
Collapse
Affiliation(s)
- Sang Eun Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| | | | | | | | | | | | | |
Collapse
|
91
|
Karande P, Mitragotri S. Enhancement of transdermal drug delivery via synergistic action of chemicals. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2362-73. [PMID: 19733150 DOI: 10.1016/j.bbamem.2009.08.015] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 08/14/2009] [Accepted: 08/26/2009] [Indexed: 01/29/2023]
Abstract
Transdermal drug delivery is an attractive alternative to conventional techniques for administration of systemic therapeutics. One challenge in designing transdermal drug delivery systems is to overcome the natural transport barrier of the skin. Chemicals offer tremendous potential in overcoming the skin barrier to enhance transport of drug molecules. Individual chemicals are however limited in their efficacy in disrupting the skin barrier at low concentrations and usually cause skin irritation at high concentrations. Multicomponent mixtures of chemicals, however, have been shown to provide high skin permeabilization potency as compared to individual chemicals without necessarily causing irritation. Here we review systems employing synergistic mixtures of chemicals that offer superior skin permeation enhancement. These synergistic systems include solvent mixtures, microemulsions, eutectic mixtures, complex self-assembled vesicles and inclusion complexes. Methods for design and discovery of such synergistic systems are also discussed.
Collapse
Affiliation(s)
- Pankaj Karande
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | |
Collapse
|
92
|
Abstract
OBJECTIVES Use of ultrasound in therapeutics and drug delivery has gained importance in recent years, evident by the increase in patents filed and new commercial devices launched. The present review discusses new advancements in sonophoretic drug delivery in the last two decades, and highlights important challenges still to be met to make this technology of more use in the alleviation of diseases. KEY FINDINGS Phonophoretic research often suffers from poor calibration in terms of the amount of ultrasound energy emitted, and therefore current research must focus on safety of exposure to ultrasound and miniaturization of devices in order to make this technology a commercial reality. More research is needed to identify the role of various parameters influencing sonophoresis so that the process can be optimized. Establishment of long-term safety issues, broadening the range of drugs that can be delivered through this system, and reduction in the cost of delivery are issues still to be addressed. SUMMARY Sonophoresis (phonophoresis) has been shown to increase skin permeability to various low and high molecular weight drugs, including insulin and heparin. However, its therapeutic value is still being evaluated. Some obstacles in transdermal sonophoresis can be overcome by combination with other physical and chemical enhancement techniques. This review describes recent advancements in equipment and devices for phonophoresis, new formulations tried in sonophoresis, synergistic effects with techniques such as chemical enhancers, iontophoresis and electroporation, as well as the growing use of ultrasound in areas such as cancer therapy, cardiovascular disorders, temporary modification of the blood-brain barrier for delivery of imaging and therapeutic agents, hormone replacement therapy, sports medicine, gene therapy and nanotechnology. This review also lists patents pertaining to the formulations and techniques used in sonophoretic drug delivery.
Collapse
Affiliation(s)
- Rekha Rao
- M. M. College of Pharmacy, M. M. University, Mullana, 133001, India
| | | |
Collapse
|
93
|
Kushner J, Blankschtein D, Langer R. Heterogeneity in skin treated with low-frequency ultrasound. J Pharm Sci 2009; 97:4119-28. [PMID: 18240305 DOI: 10.1002/jps.21308] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent experimental evidence using colored, fluorescent permeants suggests that skin treated with low-frequency sonophoresis (LFS) is perturbed in a heterogeneous manner. Macroscopic and microscopic visualization studies, topical penetration studies, transdermal permeability studies, and skin electrical resistivity measurements have shown that discrete domains, referred to as localized transport regions (LTRs), which are formed during LFS treatment of the skin, possess greatly reduced barrier properties, and therefore exhibit increased permeant skin penetration, compared to the surrounding regions of LFS-treated skin. The transformation of LTR formation from a heterogeneous to a homogeneous phenomenon has the potential benefit of increasing the maximum level of transdermal permeability or of reducing the area of skin required to deliver a desired dose of drug transdermally. Future studies, aimed at elucidating both the mechanisms of LTR formation and the limits of nondamaging formation of LTRs in the skin, are required to incorporate these proposed improvements to enhance the efficacy and practical utility of low-frequency sonophoresis.
Collapse
Affiliation(s)
- Joseph Kushner
- Pfizer Global Research and Development, Groton, Connecticut 06340, USA
| | | | | |
Collapse
|
94
|
Ueda H, Mutoh M, Seki T, Kobayashi D, Morimoto Y. Acoustic Cavitation as an Enhancing Mechanism of Low-Frequency Sonophoresis for Transdermal Drug Delivery. Biol Pharm Bull 2009; 32:916-20. [DOI: 10.1248/bpb.32.916] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hideo Ueda
- Faculty of Pharmaceutical Sciences, Josai University
| | - Mizue Mutoh
- Faculty of Pharmaceutical Sciences, Josai University
| | - Toshinobu Seki
- Faculty of Pharmaceutical Sciences, Josai University
- Research Institute of TTS Technology
| | | | - Yasunori Morimoto
- Faculty of Pharmaceutical Sciences, Josai University
- Research Institute of TTS Technology
| |
Collapse
|
95
|
Stowell CP, Trieu MQ, Chuang H, Katz N, Quarrington C. Ultrasound-enabled topical anesthesia for pain reduction of phlebotomy for whole blood donation. Transfusion 2008; 49:146-53. [PMID: 18954400 DOI: 10.1111/j.1537-2995.2008.01939.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Ultrasound-facilitated delivery of topical anesthetics has been used to achieve effective anesthesia within 5 minutes for venipuncture and the insertion of intravenous access devices, but has never been studied for blood donation. STUDY DESIGN AND METHODS This study was a single-center, prospective, randomized, sham treatment-controlled, single-blinded clinical evaluation. Repeat donors were randomly assigned to undergo treatment with ultrasound and topical anesthetic or sham ultrasound and placebo anesthetic before phlebotomy for whole blood donation. The primary outcome measures were pain assessments using the Verbal Categorical Scale (VCS) and the Visual Analogue Scale and the assessment of skin irritation at the target site. RESULTS One-hundred subjects were enrolled and all completed the study. Compared to the sham/placebo control group, donors receiving ultrasound/anesthetic had lower pain scores on the VCS (1.81 +/- 0.67 vs. 2.17 +/- 0.68; p = 0.01) and Visual Analog Scale (17.2 +/- 15.5 vs. 27.6 +/- 19.5; p = 0.006). The proportion of subjects in the treatment group who experienced skin irritation (8%) was similar to that in the control group (2%; p = 0.20). CONCLUSION Ultrasound-enhanced delivery of topical anesthetic was demonstrated to be a safe means of quickly achieving clinically meaningful reduction in the pain of phlebotomy for whole blood donation compared to sham/placebo treatment.
Collapse
Affiliation(s)
- Christopher P Stowell
- Department of Pathology, Blood Transfusion Service, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | |
Collapse
|
96
|
Alfredo PP, Anaruma CA, Pião ACS, João SMA, Casarotto RA. Análise qualitativa dos efeitos da sonoforese com Arnica montana sobre o processo inflamatório agudo do músculo esquelético de ratos. FISIOTERAPIA E PESQUISA 2008. [DOI: 10.1590/s1809-29502008000300010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Este estudo visou verificar o efeito da sonoforese com Arnica montana sobre a fase inflamatória aguda de uma lesão muscular. Para isso, 40 ratos Wistar machos, lesados cirurgicamente, foram divididos em 4 grupos: controle (C), 10 ratos lesados e não tratados; grupo ultra-som (US), 10 lesados, tratados com US; grupo ultra-som com arnica (US+A), 10 ratos lesados, tratados com sonoforese de gel de arnica; grupo arnica (A), 10 ratos lesados, tratados com massagem de gel de arnica. O tratamento dos três grupos foi iniciado 24h após a lesão, sendo aplicado uma vez ao dia durante 3 minutos, por três dias. Quatro dias após a lesão, os animais foram sacrificados e o terço médio do músculo tibial anterior lesado foi removido e tratado histologicamente. Os resultados da análise qualitativa mostram que, no grupo C, formou-se um intenso infiltrado de células inflamatórias no espaço intersticial e um processo de regeneração apenas iniciado. Nos grupos US e US+A foi detectado um avançado processo inflamatório, com tecido conjuntivo mais organizado e consistente. No grupo A foi detectada diminuição no número de células inflamatórias e uma desorganização em sua disposição, o que poderia levar a um atraso no processo de regeneração. Conclui-se que os grupos que receberam a aplicação do ultra-som e ultra-som com arnica apresentaram semelhante aceleração do processo inflamatório agudo, sugerindo ineficácia da sonoforese quando comparada à aplicação de apenas ultra-som.
Collapse
|
97
|
Kruse DE, Mackanos MA, O'Connell-Rodwell CE, Contag CH, Ferrara KW. Short-duration-focused ultrasound stimulation of Hsp70 expression in vivo. Phys Med Biol 2008; 53:3641-60. [PMID: 18562783 PMCID: PMC2763418 DOI: 10.1088/0031-9155/53/13/017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of transgenic reporter mice and advances in in vivo optical imaging have created unique opportunities to assess and analyze biological responses to thermal therapy directly in living tissues. Reporter mice incorporating the regulatory regions from the genes encoding the 70 kDa heat-shock proteins (Hsp70) and firefly luciferase (luc) as reporter genes can be used to non-invasively reveal gene activation in living tissues in response to thermal stress. High-intensity-focused ultrasound (HIFU) can deliver measured doses of acoustic energy to highly localized regions of tissue at intensities that are sufficient to stimulate Hsp70 expression. We report activation of Hsp70-luc expression using 1 s duration HIFU heating to stimulate gene expression in the skin of the transgenic reporter mouse. Hsp70 expression was tracked for 96 h following the application of 1.5 MHz continuous-wave ultrasound with spatial peak intensities ranging from 53 W cm(-2) up to 352 W cm(-2). The results indicated that peak Hsp70 expression is observed 6-48 h post-heating, with significant activity remaining at 96 h. Exposure durations were simulated using a finite-element model, and the predicted temperatures were found to be consistent with the observed Hsp70 expression patterns. Histological evaluation revealed that the thermal damage starts at the stratum corneum and extends deeper with increasing intensity. These results indicated that short-duration HIFU may be useful for inducing heat-shock expression, and that the period between treatments needs to be greater than 96 h due to the protective properties of Hsp70.
Collapse
Affiliation(s)
- D E Kruse
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
98
|
Ogura M, Paliwal S, Mitragotri S. Low-frequency sonophoresis: current status and future prospects. Adv Drug Deliv Rev 2008; 60:1218-23. [PMID: 18450318 DOI: 10.1016/j.addr.2008.03.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Accepted: 03/04/2008] [Indexed: 10/22/2022]
Abstract
Application of ultrasound enhances skin permeability to drugs, a phenomenon referred to as sonophoresis. Significant strides have been made in sonophoresis research in recent years, especially under low-frequency conditions (20 kHz<f<100 kHz). This article reviews the mechanistic principles and current status of sonophoresis under low-frequency conditions. Several therapeutic macromolecules including insulin, low-molecular weight heparin, and vaccines have been delivered using low-frequency sonophoresis in vivo. Clinical trials have been performed with several drugs including lidocaine and cyclosporin. Novel theoretical and experimental approaches have provided insights into the mechanisms of low-frequency sonophoresis. Current understanding of these mechanisms is presented.
Collapse
|
99
|
Yoon J, Son T, Choi EH, Choi B, Nelson JS, Jung B. Enhancement of optical skin clearing efficacy using a microneedle roller. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:021103. [PMID: 18465952 PMCID: PMC2667140 DOI: 10.1117/1.2907483] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Light scattering in biological tissues can be reduced by using optical clearing agents. Various physical methods in conjunction with agents have been studied to enhance the optical clearing efficacy of skin for diagnostic and therapeutic applications. In this study, we propose a new physical method to enhance the optical clearing potential of topically applied glycerol. A microneedle roller is used to easily create numerous transdermal microchannels prior to glycerol application. The optical clearing efficacy of skin is quantitatively evaluated with the use of a modulation transfer function target placed underneath ex vivo porcine skin samples. From cross-polarized images acquired at various time points after glycerol application, we find that samples treated with the microneedle roller resulted in an approximately two-fold increase in contrast compared to control samples 30 min after glycerol application. In conclusion, our data suggest that the microneedle roller can be a good physical method to enhance transdermal delivery of optical clearing agents, and hence their optical clearing potential over large regions of skin.
Collapse
Affiliation(s)
- Jinhee Yoon
- Yonsei University, Department of Biomedical Engineering, Wonju, Korea
| | | | | | | | | | | |
Collapse
|
100
|
Kushner J, Blankschtein D, Langer R. Evaluation of Hydrophilic Permeant Transport Parameters in the Localized and Non-Localized Transport Regions of Skin Treated Simultaneously With Low-Frequency Ultrasound and Sodium Lauryl Sulfate. J Pharm Sci 2008; 97:906-18. [PMID: 17887123 DOI: 10.1002/jps.21028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The porosity (epsilon), the tortuosity (tau), and the hindrance factor (H) of the aqueous pore channels located in the localized transport regions (LTRs) and the non-LTRs formed in skin treated simultaneously with low-frequency ultrasound (US) and the surfactant sodium lauryl sulfate (SLS), were evaluated for the delivery of four hydrophilic permeants (urea, mannitol, raffinose, and inulin) by analyzing dual-radiolabeled diffusion masking experiments for three different idealized cases of the aqueous pore pathway hypothesis. When epsilon and tau were assumed to be independent of the permeant radius, H was found to be statistically larger in the LTRs than in the non-LTRs. When a distribution of pore radii was assumed to exist in the skin, no statistical differences in epsilon, tau, and H were observed due to the large variation in the pore radii distribution shape parameter (3 A to infinity). When infinitely large aqueous pores were assumed to exist in the skin, epsilon was found to be 3-8-fold greater in the LTRs than in the non-LTRs, while little difference was observed in the LTRs and in the non-LTRs for tau. This last result suggests that the efficacy of US/SLS treatment may be enhanced by increasing the porosity of the non-LTRs.
Collapse
Affiliation(s)
- Joseph Kushner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|