51
|
Importance of residue 13 and the C-terminus for the structure and activity of the antimicrobial peptide aurein 2.2. Biophys J 2011; 99:2926-35. [PMID: 21044590 DOI: 10.1016/j.bpj.2010.08.077] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/24/2010] [Accepted: 08/30/2010] [Indexed: 11/22/2022] Open
Abstract
Previous studies on aurein 2.2 and 2.3 in DMPC/DMPG and POPC/POPG membranes have shown that bilayer thickness and phosphatidylglycerol content have a significant impact on the interaction of these peptides with membrane bilayers. Further examination with the DiSC(3)5 assay has indicated that aurein 2.2 induces greater membrane leakage than aurein 2.3 in Staphylococcus aureus C622. The only difference between these peptides is a Leu to Ile mutation at residue 13. To better understand the importance of this residue, the structure and activity of the L13A, L13F, and L13V mutants were investigated. In addition, we investigated a number of peptides with truncations at the C-terminus to determine whether the C-terminus, which contains residue 13, is crucial for antimicrobial activity. Solution circular dichroism results demonstrated that the L13F mutation and the truncation of the C-terminus by six residues resulted in decreased helical content, whereas the L13A or L13V mutation and the truncation of the C-terminus by three residues showed little to no effect on the structure. Oriented circular dichroism results demonstrated that only an extensive C-terminal truncation reduced the ability of the peptide to insert into lipid bilayers. (31)P NMR spectroscopy showed that all peptides disorder the headgroups. The implications of these results in terms of antimicrobial activity and the ability of these peptides to induce leakage in S. aureus are discussed. The results suggest that the presence of the 13th residue in aurein 2.2 is important for structure and activity, but the exact nature of residue 13 is less important as long as it is a hydrophobic residue.
Collapse
|
52
|
Optimization of the Antibacterial Activity of Half-Fin Anchovy (Setipinna taty) Hydrolysates. FOOD BIOPROCESS TECH 2011. [DOI: 10.1007/s11947-010-0505-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
53
|
Leptihn S, Har JY, Wohland T, Ding JL. Correlation of charge, hydrophobicity, and structure with antimicrobial activity of S1 and MIRIAM peptides. Biochemistry 2010; 49:9161-70. [PMID: 20873868 DOI: 10.1021/bi1011578] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antimicrobial peptides are key elements of the innate immune system. Many of them interact with membranes of bacteria leading to perturbation of the lipid bilayer and eventually to inactivation of the pathogen. The emergence of multidrug-resistant bacteria has necessitated innovations of new and more powerful classes of antimicrobials. Here we present the in-depth study of an antimicrobial peptide, MIRIAM, derived from Sushi1 (S1), a well-characterized peptide from the horseshoe crab. MIRIAM interacts strongly with negatively charged lipids, forming an α-helical structure. MIRIAM was found to neutralize LPS and kill Gram-negative bacteria with high efficiency, while not releasing LPS. The promising therapeutic potential of MIRIAM is shown by hemolytic assays, which demonstrate that eukaryotic membranes are unaffected at bactericidal concentrations. Nanoparticle-conjugated MIRIAM used in single-molecule fluorescence and electron microscopy experiments showed that MIRIAM targets bacterial membranes to kill bacteria similarly to parental S1. Furthermore, fragments derived from MIRIAM and S1 provided insights on their molecular mechanisms of action, in particular, the relationships of functional motifs comprised by charge, hydrophobicity, and structure within each peptide. We conclude that the combination of charge, hydrophobicity, and length of the peptide is important. A close interaction of amino acids in a single molecule in a carefully balanced ensemble of sequence position and secondary structure is crucial.
Collapse
|
54
|
Conlon JM, Ahmed E, Pal T, Sonnevend A. Potent and rapid bactericidal action of alyteserin-1c and its [E4K] analog against multidrug-resistant strains of Acinetobacter baumannii. Peptides 2010; 31:1806-10. [PMID: 20603168 DOI: 10.1016/j.peptides.2010.06.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/26/2010] [Accepted: 06/28/2010] [Indexed: 11/28/2022]
Abstract
The emergence of multidrug-resistant strains of Acinetobacter baumannii (MDRAB) constitutes a serious threat to public health and necessitates the discovery of new types of antimicrobial agents. Alyteserin-1c (GLKEIFKAGLGSLVKGIAAHVAS·NH(2)) is a cationic, α-helical peptide that was first isolated from skin secretions of the midwife toad Alytes obstetricans. Synthetic alyteserin-1c displayed potent activity against clinical isolates of MDRAB (minimum inhibitory concentration, MIC=5-10 μM; minimum bactericidal concentration, MBC=5-10 μM) while displaying low hemolytic activity against human erythrocytes (LD(50)=220 μM). Increasing the cationicity of alyteserin-1c by the substitution Glu(4)→Lys enhanced the potency against MDRAB (MIC=1.25-5 μM; MBC=1.25-5 μM) as well as decreasing hemolytic activity (HC(50)>400 μM). More than 99.9% of the bacteria were killed within 30 min by the [E4K] analog at a concentration of 1 × MBC. Increasing the cationicity of [E4K]alyteserin-1c further by the additional substitutions of Ala(8),Val(14) or Ala(18) by l-Lys did not enhance antimicrobial potency. Derivatives of [E4K]alyteserin-1c containing a palmitate group coupled either to α-amino group at the N-terminus or to ɛ-amino group on the Lys(18) residue of the [E4K,A18K] analog retained antimicrobial activity but showed dramatically increased hemolytic activities (>40- and >13-fold, respectively).
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates.
| | | | | | | |
Collapse
|
55
|
Azevedo Calderon LD, Silva ADAE, Ciancaglini P, Stábeli RG. Antimicrobial peptides from Phyllomedusa frogs: from biomolecular diversity to potential nanotechnologic medical applications. Amino Acids 2010; 40:29-49. [PMID: 20526637 DOI: 10.1007/s00726-010-0622-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
Screening for new bioactive peptides in South American anurans has been pioneered in frogs of the genus Phyllomedusa. All frogs of this genus have venomous skin secretions, i.e., a complex mixture of bioactive peptides against potential predators and pathogens that presumably evolved in a scenario of predator-prey interaction and defense against microbial invasion. For every new anuran species studied new peptides are found, with homologies to hormones, neurotransmitters, antimicrobials, and several other peptides with unknown biological activity. From Vittorio Erspamer findings, this genus has been reported as a "treasure store" of bioactive peptides, and several groups focus their research on these species. From 1966 to 2009, more than 200 peptide sequences from different Phyllomedusa species were deposited in UniProt and other databases. During the last decade, the emergence of high-throughput molecular technologies involving de novo peptide sequencing via tandem mass spectrometry, cDNA cloning, pharmacological screening, and surface plasmon resonance applied to peptide discovery, led to fast structural data acquisition and the generation of peptide molecular libraries. Research groups on bioactive peptides in Brazil using these new technologies, accounted for the exponential increase of new molecules described in the last decade, much higher than in any previous decades. Recently, these secretions were also reported as a rich source of multiple antimicrobial peptides effective against multidrug resistant strains of bacteria, fungi, protozoa, and virus, providing instructive lessons for the development of new and more efficient nanotechnological-based therapies for infectious diseases treatment. Therefore, novel drugs arising from the identification and analysis of bioactive peptides from South American anuran biodiversity have a promising future role on nanobiotechnology.
Collapse
Affiliation(s)
- Leonardo de Azevedo Calderon
- Centro de Estudos de Biomoléculas Aplicadas a Medicina "Professor Dr. José Roberto Giglio" (CEBio), Núcleo de Saúde (NUSAU), Universidade Federal de Rondônia (UNIR), Porto Velho, RO, 76800-000, Brazil
| | | | | | | |
Collapse
|
56
|
Development of potent anti-infective agents from Silurana tropicalis: Conformational analysis of the amphipathic, alpha-helical antimicrobial peptide XT-7 and its non-haemolytic analogue [G4K]XT-7. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1020-8. [DOI: 10.1016/j.bbapap.2010.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 12/22/2009] [Accepted: 01/20/2010] [Indexed: 11/22/2022]
|
57
|
Monincová L, Budesínský M, Slaninová J, Hovorka O, Cvacka J, Voburka Z, Fucík V, Borovicková L, Bednárová L, Straka J, Cerovský V. Novel antimicrobial peptides from the venom of the eusocial bee Halictus sexcinctus (Hymenoptera: Halictidae) and their analogs. Amino Acids 2010; 39:763-75. [PMID: 20198492 DOI: 10.1007/s00726-010-0519-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 02/05/2010] [Indexed: 10/19/2022]
Abstract
Two novel antimicrobial peptides, named halictines, were isolated from the venom of the eusocial bee Halictus sexcinctus. Their primary sequences were established by ESI-QTOF mass spectrometry, Edman degradation and enzymatic digestion as Gly-Met-Trp-Ser-Lys-Ile-Leu-Gly-His-Leu-Ile-Arg-NH2 (HAL-1), and Gly-Lys-Trp-Met-Ser-Leu-Leu-Lys-His-Ile-Leu-Lys-NH2 (HAL-2). Both peptides exhibited potent antimicrobial activity against Gram-positive and Gram-negative bacteria but also noticeable hemolytic activity. The CD spectra of HAL-1 and HAL-2 measured in the presence of trifluoroethanol or SDS showed ability to form an amphipathic alpha-helical secondary structure in an anisotropic environment such as bacterial cell membrane. NMR spectra of HAL-1 and HAL-2 measured in trifluoroethanol/water confirmed formation of helical conformation in both peptides with a slightly higher helical propensity in HAL-1. Altogether, we prepared 51 of HAL-1 and HAL-2 analogs to study the effect of such structural parameters as cationicity, hydrophobicity, alpha-helicity, amphipathicity, and truncation on antimicrobial and hemolytic activities. The potentially most promising analogs in both series are those with increased net positive charge, in which the suitable amino acid residues were replaced by Lys. This improvement basically relates to the increase of antimicrobial activity against pathogenic Pseudomonas aeruginosa and to the mitigation of hemolytic activity.
Collapse
Affiliation(s)
- Lenka Monincová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo 2, 16610, Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Cerovský V, Budesínský M, Hovorka O, Cvacka J, Voburka Z, Slaninová J, Borovicková L, Fucík V, Bednárová L, Votruba I, Straka J. Lasioglossins: three novel antimicrobial peptides from the venom of the eusocial bee Lasioglossum laticeps (Hymenoptera: Halictidae). Chembiochem 2009; 10:2089-99. [PMID: 19591185 DOI: 10.1002/cbic.200900133] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Three novel structurally related pentadecapeptides, named lasioglossins, were isolated from the venom of the eusocial bee Lasioglossum laticeps. Their primary sequences were established as H-Val-Asn-Trp-Lys-Lys-Val-Leu-Gly-Lys-Ile-Ile-Lys-Val-Ala-Lys-NH(2) (LL-I), H-Val-Asn-Trp-Lys-Lys-Ile-Leu-Gly-Lys-Ile-Ile-Lys-Val-Ala-Lys-NH(2) (LL-II) and H-Val-Asn-Trp-Lys-Lys-Ile-Leu-Gly-Lys-Ile-Ile-Lys-Val-Val-Lys-NH(2) (LL-III). These lasioglossins exhibited potent antimicrobial activity against both Gram-positive and Gram-negative bacteria, low haemolytic and mast cell degranulation activity, and a potency to kill various cancer cells in vitro. The lasioglossin CD spectra were measured in the presence of trifluoroethanol and sodium dodecyl sulfate solution and indicated a high degree of alpha-helical conformation. NMR spectroscopy, which was carried out in trifluoroethanol/water confirmed a curved alpha-helical conformation with a concave hydrophobic and convex hydrophilic side. To understand the role of this bend on biological activity, we studied lasioglossin analogues in which the Gly in the centre of the molecule was replaced by other amino acid residues (Ala, Lys, Pro). The importance of the N-terminal part of the molecule to the antimicrobial activity was revealed through truncation of five residues from both the N and C termini of the LL-III peptide. C-terminal deamidation of LL-III resulted in a drop in antimicrobial activity, but esterification of the C terminus had no effect. Molecular modelling of LL-III and the observed NOE contacts indicated the possible formation of a bifurcated H-bond between hydrogen from the Lys15 CONH peptide bond and one H of the C-terminal CONH(2) to the Ile11 oxygen atom. Such interactions cannot form with C-terminal esterification.
Collapse
Affiliation(s)
- Václav Cerovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6 (Czech Republic).
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Conlon JM, Ahmed E, Condamine E. Antimicrobial properties of brevinin-2-related peptide and its analogs: Efficacy against multidrug-resistant Acinetobacter baumannii. Chem Biol Drug Des 2009; 74:488-93. [PMID: 19793185 DOI: 10.1111/j.1747-0285.2009.00882.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brevinin-2 related peptide (B2RP; GIWDTIKSMG(10)KVFAGKILQN(20)L.NH(2)), first isolated from skin secretions of the mink frog Lithobates septentrionalis, shows broad-spectrum antimicrobial activity but its therapeutic potential is limited by moderate hemolytic activity. The peptide adopts an alpha-helical conformation in a membrane-mimetic solvent but amphipathicity is low. Increasing amphipathicity together with hydrophobicity by the substitutions Lys(16)-->Leu and Lys(16)-->Ala increased hemolytic activity approximately fivefold without increasing antimicrobial potency. The substitution Leu(18)-->Lys increased both cationicity and amphipathicity but produced decreases in both antimicrobial potency and hemolytic activity. In contrast, increasing cationicity of B2RP without changing amphipathicity by the substitution Asp(4)-->Lys resulted in a fourfold increase in potency against Escherichia coli [minimal inhibitory concentration (MIC) = 6 microm) and twofold increases in potency against Staphylococcus aureus (MIC = 12.5 microm) and Candida albicans (MIC = 6 microm) without changing significantly hemolytic activity against human erythrocytes (LC(50) = 95 microm). The emergence of antibiotic-resistant strains of the Gram-negative bacterium Acinetobacter baumannii constitutes a serious risk to public health. B2RP (MIC = 3-6 microm) and [Lys(4)]B2RP (MIC = 1.5-3 microm) potently inhibited the growth of nosocomial isolates of multidrug-resistant Acinetobacter baumannii. Although the analogs [Lys(4), Lys(18)]B2RP and [Lys(4), Ala(16), Lys(18)]B2RP showed reduced potency against Staphylococcus aureus, they retained activity against Acinetobacter baumannii (MIC = 3-6 microm) and had very low hemolytic activity (LC(50) > 200 microm).
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, United Arab Emirates University, Al-Ain, UAE.
| | | | | |
Collapse
|
60
|
Yokoyama S, Iida Y, Kawasaki Y, Minami Y, Watanabe K, Yagi F. The chitin-binding capability of Cy-AMP1 from cycad is essential to antifungal activity. J Pept Sci 2009; 15:492-7. [PMID: 19466694 DOI: 10.1002/psc.1147] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antimicrobial peptides are important components of the host innate immune responses by exerting broad-spectrum microbicidal activity against pathogenic microbes. Cy-AMP1 found in the cycad (Cycas revoluta) seeds has chitin-binding ability, and the chitin-binding domain was conserved in knottin-type and hevein-type antimicrobial peptides. The recombinant Cy-AMP1 was expressed in Escherichia coli and purified to study the role of chitin-binding domain. The mutants of Cy-AMP1 lost chitin-binding ability completely, and its antifungal activity was markedly decreased in comparison with native Cy-AMP1. However, the antimicrobial activities of the mutant peptides are nearly identical to that of native one. It was suggested that the chitin-binding domain plays an essential role in antifungal, but not antimicrobial, activity of Cy-AMP1.
Collapse
Affiliation(s)
- Seiya Yokoyama
- Department of Applied Biological Chemistry, The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-0065, Japan
| | | | | | | | | | | |
Collapse
|
61
|
Conlon JM, Demandt A, Nielsen PF, Leprince J, Vaudry H, Woodhams DC. The alyteserins: two families of antimicrobial peptides from the skin secretions of the midwife toad Alytes obstetricans (Alytidae). Peptides 2009; 30:1069-73. [PMID: 19463738 DOI: 10.1016/j.peptides.2009.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/07/2009] [Accepted: 03/09/2009] [Indexed: 10/21/2022]
Abstract
Two families of structurally related C-terminally alpha-amidated antimicrobial peptides have been identified in norepinephrine-stimulated skin secretions of the midwife toad Alytes obstetricans (Alytidae). The alyteserin-1 peptides (Gly-Leu-Lys-(Asp/Glu)-Ile-Phe-Lys-Ala-Gly-Leu-Gly-Ser-Leu-Val-Lys-(Gly/Asn)-Ile-Ala-Ala-His-Val-Ala-(Asn/Ser).NH(2)) show limited structural similarity to the ascaphins from the skins of frogs of the family Leiopelmatidae. Alyteserin-2a (Ile-Leu-Gly-Lys-Leu-Leu-Ser-Thr-Ala-Ala-Gly-Leu-Leu-Ser-Asn-Leu.NH(2)) and alyteserin-2b and -2c (Ile-Leu-Gly-Ala-Ile-Leu-Pro-Leu-Val-Ser-Gly-Leu-Leu-Ser-(Asn/Ser)-Lys-Leu x NH(2)) show limited sequence identity with bombinin H6, present in the skins of frogs of the family Bombinatoridae. The alyteserin-1 peptides show selective growth inhibitory activity against the Gram-negative bacteria Escherichia coli (MIC=25 microM) whereas alyteserin-2a is more potent against the Gram-positive bacteria Staphylococcus aureus (MIC=50 microM). The hemolytic activity against human erythrocytes of all peptides tested is relatively weak (LC(50)>100 microM). The data demonstrate that the frogs belonging to the family Alytidae are among those producing dermal antimicrobial peptides that may represent a component of the animal's system of innate immunity.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates.
| | | | | | | | | | | |
Collapse
|
62
|
Cheng JTJ, Hale JD, Elliot M, Hancock REW, Straus SK. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Biophys J 2009; 96:552-65. [PMID: 19167304 DOI: 10.1016/j.bpj.2008.10.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 10/09/2008] [Indexed: 12/25/2022] Open
Abstract
The effects of hydrophobic thickness and the molar phosphatidylglycerol (PG) content of lipid bilayers on the structure and membrane interaction of three cationic antimicrobial peptides were examined: aurein 2.2, aurein 2.3 (almost identical to aurein 2.2, except for a point mutation at residue 13), and a carboxy C-terminal analog of aurein 2.3. Circular dichroism results indicated that all three peptides adopt an alpha-helical structure in the presence of a 3:1 molar mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPC/DMPG), and 1:1 and 3:1 molar mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPC/POPG). Oriented circular dichroism data for three different lipid compositions showed that all three peptides were surface-adsorbed at low peptide concentrations, but were inserted into the membrane at higher peptide concentrations. The (31)P solid-state NMR data of the three peptides in the DMPC/DMPG and POPC/POPG bilayers showed that all three peptides significantly perturbed lipid headgroups, in a peptide or lipid composition-dependent manner. Differential scanning calorimetry results demonstrated that both amidated aurein peptides perturbed the overall phase structure of DMPC/DMPG bilayers, but perturbed the POPC/POPG chains less. The nature of the perturbation of DMPC/DMPG bilayers was most likely micellization, and for the POPC/POPG bilayers, distorted toroidal pores or localized membrane aggregate formation. Calcein release assay results showed that aurein peptide-induced membrane leakage was more severe in DMPC/DMPG liposomes than in POPC/POPG liposomes, and that aurein 2.2 induced higher calcein release than aurein 2.3 and aurein 2.3-COOH from 1:1 and 3:1 POPC/POPG liposomes. Finally, DiSC(3)5 assay data further delineated aurein 2.2 from the others by showing that it perturbed the lipid membranes of intact S. aureus C622 most efficiently, whereas aurein 2.3 had the same efficiency as gramicidin S, and aurein 2.3-COOH was the least efficient. Taken together, these data show that the membrane interactions of aurein peptides are affected by the hydrophobic thickness of the lipid bilayers and the PG content.
Collapse
Affiliation(s)
- John T J Cheng
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
63
|
Cerovský V, Hovorka O, Cvacka J, Voburka Z, Bednárová L, Borovicková L, Slaninová J, Fucík V. Melectin: a novel antimicrobial peptide from the venom of the cleptoparasitic bee Melecta albifrons. Chembiochem 2009; 9:2815-21. [PMID: 18942691 DOI: 10.1002/cbic.200800476] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A novel antimicrobial peptide designated melectin was isolated from the venom of the cleptoparasitic bee Melecta albifrons. Its primary sequence was established as H-Gly-Phe-Leu-Ser-Ile-Leu-Lys-Lys-Val-Leu-Pro-Lys-Val-Met-Ala-His-Met-Lys-NH(2) by Edman degradation and ESI-QTOF mass spectrometry. Synthetic melectin exhibited antimicrobial activity against both gram-positive and -negative bacteria and it degranulated rat peritoneal mast cells, but its hemolytic activity was low. The CD spectra of melectin measured in the presence of trifluoroethanol and sodium dodecyl sulfate showed a high content alpha-helices, which indicates that melectin can adopt an amphipathic alpha-helical secondary structure in an anisotropic environment such as the bacterial cell membrane. To envisage the role of the proline residue located in the middle of the peptide chain on biological activity and secondary structure, we prepared several melectin analogues in which the Pro11 residue was either replaced by other amino acid residues or was omitted. The results of biological testing suggest that a Pro kink in the alpha-helical structure of melectin plays an important role in selectivity for bacterial cells. In addition, a series of N- and C-terminal-shortened analogues was synthesized to examine which region of the peptide is related to antimicrobial activity.
Collapse
Affiliation(s)
- Václav Cerovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo 2, 166 10 Prague 6, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
Antimicrobial peptides (AMPs) are multi-functional peptides whose fundamental biological role in vivo has been proposed to be the elimination of pathogenic microorganisms, including Gram-positive and -negative bacteria, fungi, and viruses. Genes encoding these peptides are expressed in a variety of cells in the host, including circulating phagocytic cells and mucosal epithelial cells, demonstrating a wide range of utility in the innate immune system. Expression of these genes is tightly regulated; they are induced by pathogens and cytokines as part of the host defense response, and they can be suppressed by bacterial virulence factors and environmental factors which can lead to increased susceptibility to infection. New research has also cast light on alternative functionalities, including immunomodulatory activities, which are related to their unique structural characteristics. These peptides represent not only an important component of innate host defense against microbial colonization and a link between innate and adaptive immunity, but also form a foundation for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Gill Diamond
- Department of Oral Biology, UMDNJ-New Jersey Dental School, Newark, NJ 07101, USA.
| | | | | | | |
Collapse
|
65
|
Resende JM, Moraes CM, Prates MV, Cesar A, Almeida FCL, Mundim NCCR, Valente AP, Bemquerer MP, Piló-Veloso D, Bechinger B. Solution NMR structures of the antimicrobial peptides phylloseptin-1, -2, and -3 and biological activity: the role of charges and hydrogen bonding interactions in stabilizing helix conformations. Peptides 2008; 29:1633-44. [PMID: 18656510 DOI: 10.1016/j.peptides.2008.06.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/12/2008] [Accepted: 06/16/2008] [Indexed: 11/30/2022]
Abstract
Phylloseptins are antimicrobial peptides of 19-20 residues which are found in the skin secretions of the Phyllomedusa frogs that inhabit the tropical forests of South and Central Americas. The peptide sequences of PS-1, -2, and -3 carry an amidated C-terminus and they exhibit 74% sequence homology with major variations of only four residues close to the C-terminus. Here we investigated and compared the structures of the three phylloseptins in detail by CD- and two-dimensional NMR spectroscopies in the presence of phospholipid vesicles or in membrane-mimetic environments. Both CD and NMR spectroscopies reveal a high degree of helicity in the order PS-2> or =PS-1>PS-3, where the differences accumulate at the C-terminus. The conformational variations can be explained by taking into consideration electrostatic interactions of the negative ends of the helix dipoles with potentially cationic residues at positions 17 and 18. Whereas two are present in the sequence of PS-1 and -2 only one is present in PS-3. In conclusion, the antimicrobial phylloseptin peptides adopt alpha-helical conformations in membrane environments which are stabilized by electrostatic interactions of the helix dipole as well as other contributions such hydrophobic and capping interactions.
Collapse
Affiliation(s)
- Jarbas M Resende
- Universidade Federal de Minas Gerais, Departamento de Química, Avenida Presidente Antonio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Conlon JM, Galadari S, Raza H, Condamine E. Design of potent, non-toxic antimicrobial agents based upon the naturally occurring frog skin peptides, ascaphin-8 and peptide XT-7. Chem Biol Drug Des 2008; 72:58-64. [PMID: 18554256 DOI: 10.1111/j.1747-0285.2008.00671.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The frog skin peptides, ascaphin-8 (GFKDLLKGAAKALVKTVLF.NH(2)) and XT-7 (GLLGPLLKIAAKVGSNLL.NH(2)), show broad-spectrum antimicrobial activity but their therapeutic potential is limited by toxicity against mammalian cells. Circular dichroism spectra demonstrate that the peptides adopt an amphipathic alpha-helical conformation in a membrane-mimetic solvent. This study has investigated the cytolytic properties of analogs containing selected amino acid substitutions that increase cationicity while maintaining amphipathicity. Substitutions at Ala(10), Val(14), and Leu(18) in ascaphin-8 by either L-Lys or D-Lys produced peptides that retained antimicrobial activity against the bacteria Escherichia coli and Staphylococcus aureus and the opportunistic yeast pathogen, Candida albicans but showed appreciably reduced toxicities (>10-fold) against human erythrocytes, HepG2 hepatoma-derived cells, and L929 fibroblasts. The improved therapeutic index of the L-Lys(18) and D-Lys(18) analogs correlated with a decrease in % helicity and in effective hydrophobicity. Substitution of Gly(4) by L-Lys in XT-7 produced an analog with high potency against micro-organisms (MIC < or = 25 microM) but low cytolytic activity against erythrocytes (LD(50) > 500 microM) and this increase in therapeutic index also correlated with decreased helicity and hydrophobicity. Analogs of XT-7 with increased cationicity, containing multiple substitutions by L-Lys, not only displayed increased antimicrobial potencies, particularly against Candida albicans (MIC < or = 6 microM), but also increased hemolytic activities.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, UAE.
| | | | | | | |
Collapse
|
67
|
Cerovský V, Slaninová J, Fucík V, Hulacová H, Borovicková L, Jezek R, Bednárová L. New potent antimicrobial peptides from the venom of Polistinae wasps and their analogs. Peptides 2008; 29:992-1003. [PMID: 18375018 DOI: 10.1016/j.peptides.2008.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
Four new peptides of the mastoparan family, characterized recently in the venom of three neotropical social wasps collected in the Dominican Republic, Polistes major major, Polistes dorsalis dorsalis and Mischocyttarus phthisicus were synthesized and tested for antimicrobial potency against Bacillus subtilis, Staphylococcus aureus, Escherichia coli (E.c.) and Pseudomonas aeruginosa, and for hemolytic and mast cells degranulation activities. As these peptides possess strong antimicrobial activity (minimal inhibitory concentration (MIC) values against Bacillus subtillis and E.c. in the range of 5-40 microM), we prepared 40 of their analogs to correlate biological activities, especially antimicrobial, with the net positive charge, hydrophobicity, amphipathicity, peptide length, amino acid substitutions at different positions of the peptide chain, N-terminal acylation and C-terminal deamidation. Circular dichroism spectra of the peptides measured in the presence of trifluoroethanol or SDS showed that the peptides might adopt alpha-helical conformation in such anisotropic environments.
Collapse
Affiliation(s)
- Václav Cerovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
68
|
Conlon JM, Al-Ghaferi N, Abraham B, Leprince J. Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents. Methods 2007; 42:349-57. [PMID: 17560323 DOI: 10.1016/j.ymeth.2007.01.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 01/03/2007] [Accepted: 01/10/2007] [Indexed: 11/25/2022] Open
Abstract
The emergence of strains of pathogenic microorganisms with resistance to commonly used antibiotics has necessitated a search for novel types of antimicrobial agents. Many frog species produce amphipathic alpha-helical peptides with broad spectrum antimicrobial activity in the skin but their therapeutic potential is limited by varying degrees of cytolytic activity towards eukaryotic cells. Methods for development of such peptides into anti-infective drugs are illustrated by the example of temporin-1DRa (HFLGTLVNLAK KIL.NH(2)). Studies with model alpha-helical peptides have shown that increase in cationicity promotes antimicrobial activity whereas increases in hydrophobicity, helicity and amphipathicity promote hemolytic activity and loss of selectivity for microorganisms. Analogs of temporin-1DRa in which each amino acid is replaced by L-lysine and D-lysine were synthesized and their cytolytic activities tested against a range of microorganisms and human erythrocytes. Small changes in structure produced marked changes in conformation, as determined by retention time on reversed-phase HPLC, and in biological activity. However, peptides containing the substitutions (Val(7) -->L-Lys), (Thr(5)-->D-Lys) and (Asn(8)-->D-Lys) retained the high solubility and potent, broad spectrum antimicrobial activity of the naturally occurring peptide but were appreciably (up to 10-fold) less hemolytic. In contrast, analogs in which Leu(9) and Ile(13) were replaced by the more hydrophobic cyclohexylglycine residue showed slightly increased antimicrobial potencies (up to 2-fold) but a 4-fold increase in hemolytic activity. The data suggest a strategy of selective increases in cationicity concomitant with decreases in helicity and hydrophobicity in the transformation of naturally-occurring antimicrobial peptides into non-toxic therapeutic agents.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates.
| | | | | | | |
Collapse
|
69
|
Cummings JE, Vanderlick TK. Binding orientation and activity determinants of the antimicrobial peptide cryptdin-4 revealed by potency of mutants. Colloids Surf B Biointerfaces 2007; 60:236-42. [PMID: 17686617 DOI: 10.1016/j.colsurfb.2007.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 06/20/2007] [Indexed: 10/23/2022]
Abstract
Cryptdin-4 is a beta-sheet antimicrobial peptide of the defensin family that is found in the immune system of mice. Several structure-activity studies of this peptide have previously been conducted, but none have been based on residue-membrane interactions as part of an overall hypothesis on the peptide's orientation in the membrane. We pursue this valuable approach by first using previously reported NMR structural data to propose a membrane-bound orientation of the peptide. Four mutants are then strategically designed to modulate membrane perturbative activity in a manner consistent with the proposed binding orientation. Membrane perturbation is evaluated using a simple fluorescence-based vesicle leakage assay using POPG to form the model membrane. Effects of peptide mutations are found to be consistent with the suggested binding orientation. This approach is successfully used to create synthetic peptides with enhanced or diminished ability to perturb membranes and also yields insights on the nature of peptide-membrane interactions.
Collapse
Affiliation(s)
- Jason E Cummings
- Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, Unites States
| | | |
Collapse
|
70
|
Conlon JM, Al-Kharrge R, Ahmed E, Raza H, Galadari S, Condamine E. Effect of aminoisobutyric acid (Aib) substitutions on the antimicrobial and cytolytic activities of the frog skin peptide, temporin-1DRa. Peptides 2007; 28:2075-80. [PMID: 17767978 DOI: 10.1016/j.peptides.2007.07.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Revised: 07/22/2007] [Accepted: 07/23/2007] [Indexed: 11/26/2022]
Abstract
Temporin-1DRa (HFLGTLVNLAKKIL.NH(2)), first isolated from the skin of the California red-legged frog Rana draytonii, shows broad-spectrum antimicrobial activity but its therapeutic potential is limited by its toxicity against mammalian cells. The cytolytic properties of cationic alpha-helical peptides are determined by a complex interaction between cationicity, hydrophobicity, conformation, and amphipathicity. This study has investigated the cytolytic properties of conformationally constrained analogs of temporin-1DRa containing alpha-aminoisobutyric acid (Aib) substitutions. Cytolytic activity was determined against the bacteria Escherichia coli and Staphylococcus aureus, the opportunistic yeast pathogen, Candida albicans, human erythrocytes, HepG2 hepatoma-derived cells, and L929 fibroblasts. Aib substitutions at Gly(4), Asn(8), and Ala(10) increased both % helicity, determined in methanol solution, and hydrophobicity resulting in increases in both antimicrobial potencies and toxicities against the mammalian cells. Substitution at Leu(6) resulted in an appreciable decrease in cytolytic activity against all cells whereas the substitutions at His(1), Phe(2), Leu(3), Thr(5), and Val(7) had only minor effects on activity. Substitutions at Leu(9), Ile(13), Leu(14) produced analogs with decreased helicity and hydrophobicity that retained activity against microorganisms but showed appreciably lower cytolytic activities against mammalian cells. In particular, the fourfold increase in therapeutic index [ratio of LC(50) against erythrocytes to minimum inhibitory concentration (MIC) against microorganisms] of [Aib(13)]temporin-1DRa identifies it as a compound with potential for development as a therapeutically valuable anti-infective agent.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates.
| | | | | | | | | | | |
Collapse
|
71
|
Fernández-Vidal M, Jayasinghe S, Ladokhin AS, White SH. Folding amphipathic helices into membranes: amphiphilicity trumps hydrophobicity. J Mol Biol 2007; 370:459-70. [PMID: 17532340 PMCID: PMC2034331 DOI: 10.1016/j.jmb.2007.05.016] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/04/2007] [Accepted: 05/06/2007] [Indexed: 11/27/2022]
Abstract
High amphiphilicity is a hallmark of interfacial helices in membrane proteins and membrane-active peptides, such as toxins and antimicrobial peptides. Although there is general agreement that amphiphilicity is important for membrane-interface binding, an unanswered question is its importance relative to simple hydrophobicity-driven partitioning. We have examined this fundamental question using measurements of the interfacial partitioning of a family of 17-residue amidated-acetylated peptides into both neutral and anionic lipid vesicles. Composed only of Ala, Leu, and Gln residues, the amino acid sequences of the peptides were varied to change peptide amphiphilicity without changing total hydrophobicity. We found that peptide helicity in water and interface increased linearly with hydrophobic moment, as did the favorable peptide partitioning free energy. This observation provides simple tools for designing amphipathic helical peptides. Finally, our results show that helical amphiphilicity is far more important for interfacial binding than simple hydrophobicity.
Collapse
Affiliation(s)
- Mónica Fernández-Vidal
- Department of Physiology and Biophysics, University of California at Irvine, Irvine, CA 92697-4560, USA
| | | | | | | |
Collapse
|
72
|
Rautenbach M, Vlok NM, Stander M, Hoppe HC. Inhibition of malaria parasite blood stages by tyrocidines, membrane-active cyclic peptide antibiotics from Bacillus brevis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1488-97. [PMID: 17462586 DOI: 10.1016/j.bbamem.2007.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 12/22/2006] [Accepted: 01/16/2007] [Indexed: 11/24/2022]
Abstract
Tyrothricin, a complex mixture of antibiotic peptides from Bacillus brevis, was reported in 1944 to have antimalarial activity rivalling that of quinine in chickens infected with Plasmodium gallinaceum. We have isolated the major components of tyrothricin, cyclic decapeptides collectively known as the tyrocidines, and tested them against the human malaria parasite Plasmodium falciparum using standard in vitro assays. Although the tyrocidines differ from each other by conservative amino acid substitutions in only three positions, their observed 50% parasite inhibitory concentrations (IC(50)) spanned three orders of magnitude (0.58 to 360 nM). Activity correlated strictly with increased apparent hydrophobicity and reduced total side-chain surface area and the presence of ornithine and phenylalanine in key positions. In contrast, mammalian cell toxicity and haemolytic activities of the respective peptides were considerably less variable (2.6 to 28 microM). Gramicidin S, a structurally analogous antimicrobial peptide, was less active (IC(50)=1.3 microM) and selective than the tyrocidines. It exerted its parasite inhibition by rapid and selective lysis of infected erythrocytes as judged by fluorescence and light microscopy. The tyrocidines, however, did not cause an overt lysis of infected erythrocytes, but an inhibition of parasite development and life-cycle progression.
Collapse
Affiliation(s)
- Marina Rautenbach
- Department of Biochemistry, University of Stellenbosch, South Africa
| | | | | | | |
Collapse
|
73
|
Conlon JM, Al-Ghaferi N, Abraham B, Jiansheng H, Cosette P, Leprince J, Jouenne T, Vaudry H. Antimicrobial peptides from diverse families isolated from the skin of the Asian frog, Rana grahami. Peptides 2006; 27:2111-7. [PMID: 16621155 DOI: 10.1016/j.peptides.2006.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 03/04/2006] [Accepted: 03/07/2006] [Indexed: 11/29/2022]
Abstract
Seven peptides with antimicrobial activity were isolated in pure form from an extract of the skin of the Yunnanfu Kunming frog Rana grahami Boulenger, 1917. The peptides were identified as belonging to the nigrocin-2 (three peptides), brevinin-1 (one peptide), brevinin-2 (three peptides), and esculentin-1 (one peptide) families. Nigrocin-2GRb (GLFGKILGVGKKVLCGLSGMC) containing three lysine residues, represented the peptide with highest potency against microorganisms (MIC = 3 microM against Escherichia coli, 12.5 microM against Staphylococcus aureus and 50 microM against Candida albicans) and the greatest hemolytic activity against human erythrocytes (LD50 = 40 microM). In contrast, nigrocin-2GRa (GLLSGILGAGKHIVCGLSGLC) and nigrocin-2GRc (GLLSGILGAGKNIVCGLSGLC), with only a single lysine residue, showed weak antimicrobial and hemolytic activity. Phylogenetic relationships among Eurasian ranid frogs are less well understood than those of North American ranids but the primary structures of the R. grahami antimicrobial peptides suggest a close relationship of this species with the Japanese pond frogs R. nigromaculata and R. porosa brevipoda.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates.
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Bergen PJ, Li J, Rayner CR, Nation RL. Colistin methanesulfonate is an inactive prodrug of colistin against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2006; 50:1953-8. [PMID: 16723551 PMCID: PMC1479097 DOI: 10.1128/aac.00035-06] [Citation(s) in RCA: 290] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is a dearth of information on the pharmacodynamics of "colistin," despite its increasing use as a last line of defense for treatment of infections caused by multidrug-resistant gram-negative organisms. The antimicrobial activities of colistin and colistin methanesulfonate (CMS) were investigated by studying the time-kill kinetics of each against a type culture of Pseudomonas aeruginosa in cation-adjusted Mueller-Hinton broth. The appearance of colistin from CMS spiked at 8.0 and 32 mg/liter was measured by high-performance liquid chromatography, which generated colistin concentration-time profiles. These concentration-time profiles were subsequently mimicked in other incubations, independent of CMS, by incrementally spiking colistin. When the cultures were spiked with CMS at either concentration, there was a substantial delay in the onset of the killing effect which was not evident until the concentrations of colistin generated from the hydrolysis of CMS had reached approximately 0.5 to 1 mg/liter (i.e., approximately 0.5 to 1 times the MIC for colistin). The time course of the killing effect was similar when colistin was added incrementally to achieve the same colistin concentration-time course observed from the hydrolysis of CMS. Given that the killing kinetics of CMS can be accounted for by the appearance of colistin, CMS is an inactive prodrug of colistin with activity against P. aeruginosa. This is the first study to demonstrate the formation of colistin in microbiological media containing CMS and to demonstrate that CMS is an inactive prodrug of colistin. These findings have important implications for susceptibility testing involving "colistin," in particular, for MIC measurement and for microbiological assays and pharmacokinetic and pharmacodynamic studies.
Collapse
Affiliation(s)
- Phillip J Bergen
- Facility for Anti-Infective Drug Development and Innovation, Victorian College of Pharmacy, Monash University, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
75
|
Ramamoorthy A, Thennarasu S, Lee DK, Tan A, Maloy L. Solid-state NMR investigation of the membrane-disrupting mechanism of antimicrobial peptides MSI-78 and MSI-594 derived from magainin 2 and melittin. Biophys J 2006; 91:206-16. [PMID: 16603496 PMCID: PMC1479060 DOI: 10.1529/biophysj.105.073890] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism of membrane interaction of two amphipathic antimicrobial peptides, MSI-78 and MSI-594, derived from magainin-2 and melittin, is presented. Both the peptides show excellent antimicrobial activity. The 8-anilinonaphthalene-1-sulfonic acid uptake experiment using Escherichia coli cells suggests that the outer membrane permeabilization is mainly due to electrostatic interactions. The interaction of MSI-78 and MSI-594 with lipid membranes was studied using 31P and 2H solid-state NMR, circular dichroism, and differential scanning calorimetry techniques. The binding of MSI-78 and MSI-594 to the lipid membrane is associated with a random coil to alpha-helix structural transition. MSI-78 and MSI-594 also induce the release of entrapped dye from POPC/POPG (3:1) vesicles. Measurement of the phase-transition temperature of peptide-DiPoPE dispersions shows that both MSI-78 and MSI-594 repress the lamellar-to-inverted hexagonal phase transition by inducing positive curvature strain. 15N NMR data suggest that both the peptides are oriented nearly perpendicular to the bilayer normal, which infers that the peptides most likely do not function via a barrel-stave mechanism of membrane-disruption. Data obtained from 31P NMR measurements using peptide-incorporated POPC and POPG oriented lamellar bilayers show a disorder in the orientation of lipids up to a peptide/lipid ratio of 1:20, and the formation of nonbilayer structures at peptide/lipid ratio>1:8. 2H-NMR experiments with selectively deuterated lipids reveal peptide-induced disorder in the methylene units of the lipid acyl chains. These results are discussed in light of lipid-peptide interactions leading to the disruption of membrane via either a carpet or a toroidal-type mechanism.
Collapse
Affiliation(s)
- Ayyalusamy Ramamoorthy
- Biophysics Research Division and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA.
| | | | | | | | | |
Collapse
|
76
|
Jin Y, Hammer J, Pate M, Zhang Y, Zhu F, Zmuda E, Blazyk J. Antimicrobial activities and structures of two linear cationic peptide families with various amphipathic beta-sheet and alpha-helical potentials. Antimicrob Agents Chemother 2006; 49:4957-64. [PMID: 16304158 PMCID: PMC1315945 DOI: 10.1128/aac.49.12.4957-4964.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many naturally occurring antimicrobial peptides comprise cationic linear sequences with the potential to adopt an amphipathic alpha-helical conformation. We designed a linear 18-residue peptide that adopted an amphipathic beta-sheet structure when it was bound to lipids. In comparison to a 21-residue amphipathic alpha-helical peptide of equal charge and hydrophobicity, this peptide possessed more similar antimicrobial activity and greater selectivity in binding to and inducing leakage in vesicles composed of bacterial membrane lipids than vesicles composed of mammalian membrane lipids (J. Blazyk, R. Weigand, J. Klein, J. Hammer, R. M. Epand, R. F. Epand, W. L. Maloy, and U. P. Kari, J. Biol. Chem. 276:27899-27906, 2001). Here, we compare two systematically designed families of linear cationic peptides to evaluate the importance of amphipathicity for determination of antimicrobial activity. Each peptide contains six lysine residues and is amidated at the carboxyl terminus. The first family consists of five peptides with various capacities to form amphipathic beta-sheet structures. The second family consists of six peptides with various potentials to form amphipathic alpha helices. Only those peptides that can form a highly amphipathic structure (either a beta sheet or an alpha helix) possessed significant antimicrobial activities. Striking differences in the abilities to bind to and induce leakage in membranes and lipid vesicles were observed for the two families. Overall, the amphipathic beta-sheet peptides are less lytic than their amphipathic alpha-helical counterparts, particularly toward membranes containing phosphatidylcholine, a lipid commonly found in mammalian plasma membranes. Thus, it appears that antimicrobial peptides that can form an amphipathic beta-sheet conformation may offer a selective advantage in targeting bacterial cells.
Collapse
Affiliation(s)
- Yi Jin
- Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, 234 Grosvenor Hall, Athens, Ohio 45701, USA
| | | | | | | | | | | | | |
Collapse
|
77
|
Rautenbach M, Gerstner GD, Vlok NM, Kulenkampff J, Westerhoff HV. Analyses of dose-response curves to compare the antimicrobial activity of model cationic alpha-helical peptides highlights the necessity for a minimum of two activity parameters. Anal Biochem 2005; 350:81-90. [PMID: 16434018 DOI: 10.1016/j.ab.2005.11.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 11/16/2005] [Accepted: 11/18/2005] [Indexed: 10/25/2022]
Abstract
To assess and compare different model Leu-Lys-containing cationic alpha-helical peptides, their antimicrobial activities were tested against Escherichia coli as target organism over a broad peptide concentration range. The natural cationic alpha-helical peptides magainin 2 and PGLa and the cyclic cationic peptide gramicidin S were also tested between comparison. The dose-response curves differed widely for these peptides, making it difficult to rank them into an activity order over the whole concentration range. We therefore compared five different inhibition parameters from dose-response curves: IC(min) (lowest concentration leading to growth inhibition), IC(50) (concentration that gives 50% growth inhibition), IC(max) (related to minimum inhibition concentration and minimum bactericidal concentration), inhibition concentration factor (IC(F); describing the increase in concentration of the peptide between minimum and maximum inhibition), and activity slope (A(S); related to the Hill coefficient). We found that these parameters were covariant: two of them sufficed to characterize the dose dependence and hence the activity of the peptides. This was corroborated by showing that the dose dependences followed the Hill equation, with a small, constant aberration. We propose that the activity of antimicrobial peptides can readily be characterized by both IC(50) and IC(F) (or A(S)) rather than by a single parameter and discuss how this may relate to investigations into their mechanisms of action.
Collapse
Affiliation(s)
- Marina Rautenbach
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Republic of South Africa.
| | | | | | | | | |
Collapse
|
78
|
Conlon JM, Abraham B, Galadari S, Knoop FC, Sonnevend A, Pál T. Antimicrobial and cytolytic properties of the frog skin peptide, kassinatuerin-1 and its L- and D-lysine-substituted derivatives. Peptides 2005; 26:2104-10. [PMID: 15885852 DOI: 10.1016/j.peptides.2005.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 04/09/2005] [Accepted: 04/11/2005] [Indexed: 11/19/2022]
Abstract
Kassinatuerin-1, a 21-amino-acid C-terminally alpha-amidated peptide first isolated from the skin of the African frog Kassina senegalensis, adopts an amphipathic alpha-helical conformation in a membrane-mimetic solvent (50% trifluoroethanol) and shows broad-spectrum antimicrobial activity. However, its therapeutic potential is limited by its relatively high cytolytic activity against mammalian cells. The antimicrobial and cytolytic properties of a peptide are determined by an interaction between cationicity, hydrophobicity, alpha-helicity and amphipathicity. Replacement of the C-terminal alpha-amide group in kassinatuerin-1 by carboxylic acid decreased both cationicity and alpha-helicity, resulting in an analog with decreased potency against Escherichia coli (4-fold) and Staphylococcus aureus (16-fold). Low cytolytic activities against human erythrocytes (LD50>400 microM) and L929 fibroblasts (LD50=105 microM) were also observed. Increasing cationicity, while maintaining amphipathic alpha-helical character, by progressively substituting Gly7, Ser18, and Asp19 on the hydrophilic face of the alpha-helix with L-lysine, increased antimicrobial potency against S. aureus and Candida albicans (up to 4-fold) but also increased hemolytic and cytolytic activities. In contrast, analogs with d-lysine at positions 7, 18 and 19 retained activity against Gram-negative bacteria but displayed reduced hemolytic and cytolytic activities. For example, the carboxylic acid derivative of [D-Lys7, D-Lys18, D-Lys19]kassinatuerin-1 was active (minimum inhibitory concentration (MIC)=6-12.5 microM) against a range of strongly antibiotic-resistant strains of E. coli but showed no detectable hemolytic activity at 400 microM and was 4-fold less cytolyic than kassinatuerin-1. However, the reduction in alpha-helicity produced by the D-amino acid substitutions resulted in analogs with reduced potencies against Gram-positive bacteria and against C. albicans.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, P.O. Box 17666, Al Ain, United Arab Emirates.
| | | | | | | | | | | |
Collapse
|
79
|
Pál T, Sonnevend A, Galadari S, Conlon JM. Design of potent, non-toxic antimicrobial agents based upon the structure of the frog skin peptide, pseudin-2. ACTA ACUST UNITED AC 2005; 129:85-91. [PMID: 15927702 DOI: 10.1016/j.regpep.2005.01.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 01/01/2005] [Accepted: 01/27/2005] [Indexed: 11/15/2022]
Abstract
Pseudin-2, a naturally occurring 24 amino-acid-residue antimicrobial peptide first isolated from the skin of the South American paradoxical frog Pseudis paradoxa, has weak hemolytic and cytolytic activity but also relatively low potency against microorganisms. In a membrane-mimetic environment, the peptide exists in an amphipathic alpha-helical conformation. Analogs of the peptide with increased cationicity and alpha-helicity were chemically synthesized by progressively substituting neutral and acidic amino acid residues on the hydrophilic face of the alpha-helix by lysine. Analogs with up to three L-lysine substitutions showed increased potency against a range of gram-negative and gram-positive bacteria (up to 16-fold) whilst retaining low hemolytic activity. The analog [D-Lys3, D-Lys10, D-Lys14]pseudin-2 showed potent activity against gram-negative bacteria (minimum inhibitory concentration, MIC=5 microM against several antibiotic-resistant strains of Escherichia coli) but very low hemolytic activity (HC50>500 microM) and cytolytic activity against L929 fibroblasts (LC50=215 microM). Increasing the number of l-lysines to four and five did not enhance antimicrobial potency further but increased hemolytic activity towards human erythrocytes. Time-kill studies demonstrated that the analog [Lys3, Lys10, Lys14, Lys21]pseudin-2 at a concentration of 1 x MIC was bacteriocidal against E. coli (99.9% cell death after 96 min) but was bacteriostatic against S. aureus. Increasing the hydrophobicity of pseudin-2, while maintaining the amphipathic character of the molecule, by substitution of neutral amino acids on the hydrophobic face of the alpha-helix by L-phenylalanine, had only minor effects on antimicrobial and hemolytic activities.
Collapse
Affiliation(s)
- Tibor Pál
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666 Al-Ain, United Arab Emirates
| | | | | | | |
Collapse
|
80
|
Zelezetsky I, Pacor S, Pag U, Papo N, Shai Y, Sahl HG, Tossi A. Controlled alteration of the shape and conformational stability of alpha-helical cell-lytic peptides: effect on mode of action and cell specificity. Biochem J 2005; 390:177-88. [PMID: 15836439 PMCID: PMC1184573 DOI: 10.1042/bj20042138] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 04/05/2005] [Accepted: 04/19/2005] [Indexed: 11/17/2022]
Abstract
A novel method, based on the rational and systematic modulation of macroscopic structural characteristics on a template originating from a large number of natural, cell-lytic, amphipathic alpha-helical peptides, was used to probe how the depths and shapes of hydrophobic and polar faces and the conformational stability affect antimicrobial activity and selectivity with respect to eukaryotic cells. A plausible mode of action explaining the peptides' behaviour in model membranes, bacteria and host cells is proposed. Cytotoxic activity, in general, correlated strongly with the hydrophobic sector depth, and required a majority of aliphatic residue side chains having more than two carbon atoms. It also correlated significantly with the size of polar sector residues, which determines the penetration depth of the peptide via the so-called snorkel effect. Both an oblique gradient of long to short aliphatic residues along the hydrophobic face and a stabilized helical structure increased activity against host cells but not against bacteria, as revealed by haemolysis, flow cytofluorimetric studies on lymphocytes and surface plasmon resonance studies with model phosphatidylcholine/cholesterol membranes. The mode of interaction changes radically for a peptide with a stable, preformed helical conformation compared with others that form a structure only on membrane binding. The close correlation between effects observed in biological and model systems suggests that the 'carpet model' correctly represents the type of peptides that are bacteria-selective, whereas the behaviour of those that lyse host cells is more complex.
Collapse
Key Words
- amphipathic helix
- antimicrobial peptide
- cell specificity
- cell-lytic peptide
- mode of action
- surface plasmon resonance
- abu, 2-aminobutyric acid
- acp, aminocylcopentanecarboxylic acid
- aib, 2-aminoisobutyric acid
- amp, antimicrobial peptide
- dab, 2,4-diaminobutyric acid
- dap, 2,3-diaminopropionic acid
- deg, diethylglycine
- dpg, dipropylglycine
- fs, forward scattering
- hse, homoserine
- mh, mueller–hinton
- mic, minimum inhibitory concentration
- nle, norleucine
- nva, norvaline
- onpg, o-nitrophenyl β-d-galactopyranoside
- pc, phosphatidylcholine
- pe, phosphatidylethanolamine
- pg, phosphatidylglycerol
- pi, propidium iodide
- sem, scanning electron microscopy
- spr, surface plasmon resonance
- ss, side scattering
- tfe, trifluoroethanol
Collapse
Affiliation(s)
- Igor Zelezetsky
- *Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, I-34127 Trieste, Italy
| | - Sabrina Pacor
- †Department of Biomedical Sciences, University of Trieste, I-34127 Trieste, Italy
| | - Ulrike Pag
- ‡Institute for Medical Microbiology and Immunology, University of Bonn, 53105 Bonn, Germany
| | - Niv Papo
- §Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yechiel Shai
- §Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hans-Georg Sahl
- ‡Institute for Medical Microbiology and Immunology, University of Bonn, 53105 Bonn, Germany
| | - Alessandro Tossi
- *Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, I-34127 Trieste, Italy
| |
Collapse
|
81
|
Conlon JM, Sonnevend A, Patel M, Al-Dhaheri K, Nielsen PF, Kolodziejek J, Nowotny N, Iwamuro S, Pál T. A family of brevinin-2 peptides with potent activity against Pseudomonas aeruginosa from the skin of the Hokkaido frog, Rana pirica. ACTA ACUST UNITED AC 2005; 118:135-41. [PMID: 15003829 DOI: 10.1016/j.regpep.2003.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 12/09/2003] [Accepted: 12/18/2003] [Indexed: 11/24/2022]
Abstract
Nine peptides displaying varying degrees of antimicrobial activity were extracted from the skin of the Hokkaido frog, Rana pirica. Five structurally related peptides were identified as members of the brevinin-2 family. These peptides were active against reference strains of Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Enterobacter cloacae, Klebsiella pneumoniae) and Gram-positive (Staphlococcus aureus) bacteria but displayed relatively low hemolytic activity. The most abundant peptide, brevinin-2PRa (680 nmol/g weight of dry skin) showed high potency [minimal inhibitory concentration (MIC) values between 6 and 12 microM] against a range of clinical isolates of P. aeruginosa. In addition, activity was unaffected by NaCl concentrations up to 200 mM. Cladistic analysis based on the primary structures of brevinin-2 peptides supports a close phylogenetic relationship between R. pirica and Japanese mountain brown frog Rana ornativentris. One peptide of the ranatuerin-2 family and one strongly hemolytic peptide of the brevinin-1 family were also isolated from the extract along with two members of the temporin family, temporin-1PRa (ILPILGNLLNGLL.NH(2)) and temporin-1PRb (ILPILGNLLNSLL.NH(2)) that atypically lacked basic amino acid residues and showed only very weak antimicrobial and hemolytic activity.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates.
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
Cationic host defence (antimicrobial) peptides are an important component of the innate immune systems of a wide variety of plants, animals, and bacteria. Although most of these compounds have direct antimicrobial activities under specific conditions, a greater appreciation for the diversity of functions of these molecules is beginning to develop in the field. In addition to their directly antimicrobial activities, they also have a broad spectrum of activity on the host immune system, with both pro-inflammatory and anti-inflammatory effects being invoked. Increasingly sophisticated approaches to understand the role of host defence peptides in modulating innate immunity are already serving to guide the development of novel therapeutics.
Collapse
Affiliation(s)
- Joseph B McPhee
- Department of Microbiology and Immunology, Lower Mall Research Station, University of British Columbia, Canada
| | | |
Collapse
|
83
|
Conlon JM, Sonnevend A, Davidson C, Demandt A, Jouenne T. Host-defense peptides isolated from the skin secretions of the Northern red-legged frog Rana aurora aurora. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2005; 29:83-90. [PMID: 15325526 DOI: 10.1016/j.dci.2004.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 04/25/2004] [Accepted: 05/04/2004] [Indexed: 05/24/2023]
Abstract
Antimicrobial peptides in the skin secretions of anurans constitute a component of the innate immunity that protects the organism against invading pathogens. Four peptides with antimicrobial activity were isolated in high yield from norepinephrine-stimulated skin secretions of the Northern red-legged frog Rana aurora aurora and their primary structures determined. Ranatuerin-2AUa (GILSSFKGVAKGVAKNLAGKLLDELKCKITGC) showed potent growth-inhibitory activity against a range of Gram-positive and Gram-negative bacteria (minimum inhibitory concentrations < 20 microM) but low hemolytic activity against human erythrocytes (50% hemolysis at 290 microM). Brevinin-1AUa (FLPILAGLAAKLVPKVFCSITKKC) and brevinin-1AUb (FLPILAGLAANILPKVFCSITKKC) also showed potent antimicrobial activity but were strongly hemolytic (HC50 < 10 microM). Temporin-1AUa (FLPIIGQLLSGLL.NH2) atypically lacked a basic amino acid residue and showed very weak antimicrobial and hemolytic activity. Its biological function remains to be established. The primary structures of the antimicrobial peptides are consistent with a close phylogenetic relationship between R. aurora, Rana boylii and Rana luteiventris.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates.
| | | | | | | | | |
Collapse
|
84
|
Conlon JM, Sonnevend A, Patel M, Davidson C, Nielsen PF, Pál T, Rollins-Smith LA. Isolation of peptides of the brevinin-1 family with potent candidacidal activity from the skin secretions of the frog Rana boylii. ACTA ACUST UNITED AC 2004; 62:207-13. [PMID: 14531844 DOI: 10.1034/j.1399-3011.2003.00090.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The emergence of strains of the human pathogen Candida albicans with resistance to commonly used antibiotics has necessitated a search for new types of antifungal agents. Six peptides with antimicrobial activity were isolated from norepinephrine-stimulated skin secretions from the foothill yellow-legged frog Rana boylii. Brevinin-1BYa (FLPILASLAA10KFGPKLF CLV20TKKC) was particularly potent against C. albicans [minimal inhibitory concentration (MIC) = 3 microm] and also active against Escherichia coli (MIC = 17 microm) and Staphylococcus aureus (MIC = 2 microm), but its therapeutic potential for systemic use is limited by its strong hemolytic activity (HC50 = 4 microm). The single amino acid substitution (Phe12 --> Leu) in brevinin-1BYb resulted in a fourfold lower potency against C. albicans and the additional amino acid substitutions (Lys11 --> Thr, Phe17 --> Leu and Val20 --> Ile) in brevinin-1BYc resulted in a ninefold decrease in activity. Two members of the ranatuerin-2 family and one member of the temporin family were also isolated from the secretions but showed relatively low potency against the three microorganisms tested.
Collapse
Affiliation(s)
- J M Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, UAE.
| | | | | | | | | | | | | |
Collapse
|
85
|
Conlon JM, Kolodziejek J, Nowotny N. Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1696:1-14. [PMID: 14726199 DOI: 10.1016/j.bbapap.2003.09.004] [Citation(s) in RCA: 300] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Granular glands in the skins of frogs of the genus Rana, a widely distributed group with over 250 species, synthesize and secrete a remarkably diverse array of peptides with antimicrobial activity that are believed to have arisen as a result of multiple gene duplication events. Almost without exception, these components are hydrophobic, cationic and form an amphipathic alpha-helix in a membrane-mimetic solvent. The peptides can be grouped into families on the basis of structural similarity. To date, brevinin-1, esculentin-1, esculentin-2, and temporin peptides have been found in ranid frogs of both Eurasian and North American origin; ranalexin, ranatuerin-1, ranatuerin-2 and palustrin peptides only in N. American frogs; and brevinin-2, tigerinin, japonicin, nigrocin and melittin-related peptides only in Eurasian frogs. It is generally assumed that this structurally diversity serves to protect the organism against a wide range of pathogens but convincing evidence in support of this hypothesis is still required. The possibility that "antimicrobial peptides" fulfill additional or alternative biological functions should not be rejected. The molecular heterogeneity of the peptide families, particularly brevinin-1, brevinin-2 and ranatuerin-2, may be exploited for the purposes of unequivocal identification of specimens and for an understanding of phylogenetic interrelationships between species. The broad-spectrum antibacterial and antifungal activities of certain peptides, for example esculentin-1, ranalexin-1 and ranatuerin, together with their relatively low hemolytic activity, make them candidates for development into therapeutically useful anti-infective agents.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666 Al-Ain, United Arab Emirates.
| | | | | |
Collapse
|
86
|
Sonnevend A, Knoop FC, Patel M, Pál T, Soto AM, Conlon JM. Antimicrobial properties of the frog skin peptide, ranatuerin-1 and its [Lys-8]-substituted analog. Peptides 2004; 25:29-36. [PMID: 15003353 DOI: 10.1016/j.peptides.2003.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 11/25/2003] [Indexed: 11/29/2022]
Abstract
The predicted conformation of ranatuerin-1 (SMLSVLKNLG(10)KVGLGFVACK(20)INK QC), an antimicrobial peptide first isolated from the skin of the bullfrog Rana catesbeiana, comprises three structural domains: alpha-helix (residues 1-8), beta-sheet (residues 11-16) and beta-turn (residues 20-25). Circular dichroism studies confirm significant alpha-helical character in 50% trifluoroethanol. Replacement of Cys-19 and Cys-25 by serine resulted only in decreased antimicrobial potency but deletion of either the cyclic heptapeptide region [residues (19-25)] or the N-terminal domain [residues (1-8)] produced inactive analogs. Substitution of the glycine residues in the central domain of the [Ser-19, Ser-25] analog by lysine produced inactive peptides despite increased alpha-helical content and cationicity. The substitution Asn-8-->Lys gave a ranatuerin-1 analog with increased alpha-helicity and cationicity and increased potency against a range of Gram-positive and Gram-negative bacteria and against C. albicans but only a small increase (21%) in hemolytic activity. In contrast, increasing alpha-helicity and hydrophobicity by the substitution Asn-22-->Ala resulted in a 3.5-fold increase in hemolytic activity. Effects on antimicrobial potencies of substitutions of neutral amino acids at positions 4, 18, 22, and 24 by lysine were less marked. Strains of pathogenic E. coli from different groups showed varying degrees of sensitivity to ranatuerin-1 (MIC between 5 and 40 microM) but [Lys-8] ranatuerin-1 showed increased potency (between 2- and 8-fold; P < 0.01) against all strains. The data demonstrate that [Lys-8] ranatuerin-1 shows potential as a candidate for drug development.
Collapse
Affiliation(s)
- Agnes Sonnevend
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
| | | | | | | | | | | |
Collapse
|
87
|
|
88
|
Abstract
Antimicrobial peptides have been isolated and characterized from tissues and organisms representing virtually every kingdom and phylum, ranging from prokaryotes to humans. Yet, recurrent structural and functional themes in mechanisms of action and resistance are observed among peptides of widely diverse source and composition. Biochemical distinctions among the peptides themselves, target versus host cells, and the microenvironments in which these counterparts convene, likely provide for varying degrees of selective toxicity among diverse antimicrobial peptide types. Moreover, many antimicrobial peptides employ sophisticated and dynamic mechanisms of action to effect rapid and potent activities consistent with their likely roles in antimicrobial host defense. In balance, successful microbial pathogens have evolved multifaceted and effective countermeasures to avoid exposure to and subvert mechanisms of antimicrobial peptides. A clearer recognition of these opposing themes will significantly advance our understanding of how antimicrobial peptides function in defense against infection. Furthermore, this understanding may provide new models and strategies for developing novel antimicrobial agents, that may also augment immunity, restore potency or amplify the mechanisms of conventional antibiotics, and minimize antimicrobial resistance mechanisms among pathogens. From these perspectives, the intention of this review is to illustrate the contemporary structural and functional themes among mechanisms of antimicrobial peptide action and resistance.
Collapse
Affiliation(s)
- Michael R Yeaman
- Division of Infectious Diseases, Harbor-University of California Los Angeles Medical Center, Torrance, California, USA.
| | | |
Collapse
|
89
|
Li Y, Rosal RV, Brandt-Rauf PW, Fine RL. Correlation between hydrophobic properties and efficiency of carrier-mediated membrane transduction and apoptosis of a p53 C-terminal peptide. Biochem Biophys Res Commun 2002; 298:439-49. [PMID: 12413961 DOI: 10.1016/s0006-291x(02)02470-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two membrane transporters, the 17 amino acid (aa) oligopeptide penetratin derived from the homeodomain of Antennapedia (Ant) and an analogue of the basic domain of TAT (aa 47-57) (TAT-a) from HIV-1, were tested as carriers for a p53 C-terminal peptide (aa 361-382) into human breast cancer cells. The studies were performed to determine whether the membrane-transduction efficiency of membrane carriers: Ant, TAT or TAT analogue (TAT-a) correlated with peptide hydrophobic features. Peptide-sequence analysis clearly demonstrated that the Ant sequence and p53 peptide sequence (p53p) together created a peptide with enhanced hydrophobic characteristics; while the TAT or TAT analogue (TAT-a) and p53p sequence together created a peptide with significantly less hydrophobic qualities. The degree of hydrophobic moment and helical wheel plots for these peptides correlated directly with their ability to transduce the p53 peptide. Western blot analysis revealed that Ant was able to transduce p53 C-terminal peptide into human breast cancer cells as a highly efficient membrane transporter. Compared to Ant, TAT-a fused to the C-terminus of p53 peptide (p53p-TAT-a) was a less efficient carrier into these cells under the conditions of our study. Additionally, N-terminal linked TAT-a to p53p (TAT-a-p53p) showed even lower efficiency as a transporter than p53-TAT-a. Apoptosis assays showed that the p53 peptide, fused at its C-terminus to Ant (p53p-Ant), induced a higher percentage of apoptotic cells in human breast cancer cell lines expressing mutant or wild-type p53 as compared to p53 peptide fused at its C-terminus to the TAT-a sequence (p53p-TAT-a) or when fused at the N-terminus to TAT-a (TAT-a-p53p). These data suggested a direct correlation between hydrophobic characteristics and efficiency as a transporter. Sequence study, using hydrophobic moment and helical wheel analyses, may be useful predictive tools for choosing the best carrier for a peptide.
Collapse
Affiliation(s)
- Yin Li
- Experimental Therapeutics Program, Division of Medical Oncology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons of Columbia University, New York, NY 10032-3702, USA
| | | | | | | |
Collapse
|
90
|
Dathe M, Meyer J, Beyermann M, Maul B, Hoischen C, Bienert M. General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1558:171-86. [PMID: 11779567 DOI: 10.1016/s0005-2736(01)00429-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Model compounds of modified hydrophobicity (Eta), hydrophobic moment (mu) and angle subtended by charged residues (Phi) were synthesized to define the general roles of structural motifs of cationic helical peptides for membrane activity and selectivity. The peptide sets were based on a highly hydrophobic, non-selective KLA model peptide with high antimicrobial and hemolytic activity. Variation of the investigated parameters was found to be a suitable method for modifying peptide selectivity towards either neutral or highly negatively charged lipid bilayers. Eta and mu influenced selectivity preferentially via modification of activity on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) bilayers, while the size of the polar/hydrophobic angle affected the activity against 1-palmitoyl-2-oleoylphosphatidyl-DL-glycerol (POPG). The influence of the parameters on the activity determining step was modest in both lipid systems and the activity profiles were the result of the parameters' influence on the second less pronounced permeabilization step. Thus, the activity towards POPC vesicles was determined by the high permeabilizing efficiency, however, changes in the structural parameters preferentially influenced the relatively moderate affinity. In contrast, intensive peptide accumulation via electrostatic interactions was sufficient for the destabilization of highly negatively charged POPG lipid membranes, but changes in the activity profile, as revealed by the modification of Phi, seem to be preferentially caused by variation of the low permeabilizing efficiency. The parameters proved very effective also in modifying antimicrobial and hemolytic activity. However, their influence on cell selectivity was limited. A threshold value of hydrophobicity seems to exist which restricted the activity modifying potential of mu and Phi on both lipid bilayers and cell membranes.
Collapse
Affiliation(s)
- Margitta Dathe
- Research Institute of Molecular Pharmacology, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
91
|
McIntosh TJ, Vidal A, Simon SA. The energetics of peptide-lipid interactions: Modulation by interfacial dipoles and cholesterol. PEPTIDE-LIPID INTERACTIONS 2002. [DOI: 10.1016/s1063-5823(02)52013-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
92
|
Hällbrink M, Florén A, Elmquist A, Pooga M, Bartfai T, Langel U. Cargo delivery kinetics of cell-penetrating peptides. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1515:101-9. [PMID: 11718666 DOI: 10.1016/s0005-2736(01)00398-4] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A diversity of cell-penetrating peptides (CPPs), is known, but so far the only common denominator for these peptides is the ability to gain cell entry in an energy-independent manner. The mechanism used by CPPs for cell entry is largely unknown, and data comparing the different peptides are lacking. In order to gain more information about the cell-penetrating process, as well as to quantitatively compare the uptake efficiency of different CPPs, we have studied the cellular uptake and cargo delivery kinetics of penetratin, transportan, Tat (48-60) and MAP (KLAL). The respective CPPs (labelled with the fluorescence quencher, 3-nitrotyrosine) are coupled to small a pentapeptide cargo (labelled with the 2-amino benzoic acid fluorophore) via a disulfide bond. The cellular uptake of the cargo is registered as an increase in fluorescence intensity when the disulfide bond of the CPP-S-S-cargo construct is reduced in the intracellular milieu. Our data show that MAP has the fastest uptake, followed by transportan, Tat(48-60) and, last, penetratin. Similarly, MAP has the highest cargo delivery efficiency, followed by transportan, Tat (48-60) and, last, penetratin. Since some CPPs have been found to be toxic at high concentration, we characterized the influence of CPPs on cellular 2-[(3)H]deoxyglucose-6-phosphate leakage. Measurements on this system show that the membrane-disturbing potential appears to be correlated with the hydrophobic moment of the peptides. In summary, the yield and kinetics of cellular cargo delivery for four different CPPs has been quantitatively characterized.
Collapse
Affiliation(s)
- M Hällbrink
- Department of Neurochemistry and Neurotoxicology, Arrhenius Laboratories, Stockholm University, Sweden
| | | | | | | | | | | |
Collapse
|
93
|
Blondelle SE, Lohner K. Combinatorial libraries: a tool to design antimicrobial and antifungal peptide analogues having lytic specificities for structure-activity relationship studies. Biopolymers 2000; 55:74-87. [PMID: 10931443 DOI: 10.1002/1097-0282(2000)55:1<74::aid-bip70>3.0.co;2-s] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the race for supremacy, microbes are sprinting ahead. This warning by the World Health Organization clearly demonstrates that the spread of antibiotic-resistant bacteria leads to a global health problem and that antibiotics never seen before by bacteria are urgently needed. Antimicrobial peptides represent such a source for novel antibiotics due to their rapid lytic activity (within minutes) through disruption of cell membranes. However, due to the similarities between bacterial, fungal, and mammalian plasma cell membranes, a large number of antimicrobial peptides have low lytic specificities and exhibit a broad activity spectrum and/or significant toxic effect toward mammalian cells. Mutation strategies have allowed the development of analogues of existing antimicrobial peptides having greater lytic specificities, although such methods are lengthy and would be more efficient if the molecular mechanisms of action of antimicrobial peptides were clearly elucidated. Synthetic combinatorial library approaches have brought a new dimension to the design of novel biologically active compounds. Thus, a set of peptide analogues were generated based on the screening of a library built around an existing lytic peptide, and on a deconvolution strategy directed toward activity specificity. These peptide analogues also served as model systems to further study the effect of biomembrane mimetic systems on the peptides structural behavior relevant to their biological activities.
Collapse
Affiliation(s)
- S E Blondelle
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA.
| | | |
Collapse
|
94
|
Uematsu N, Matsuzaki K. Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study. Biophys J 2000; 79:2075-83. [PMID: 11023911 PMCID: PMC1301097 DOI: 10.1016/s0006-3495(00)76455-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Various physicochemical properties play important roles in the membrane activities of amphipathic antimicrobial peptides. To examine the effects of the polar angle, two model peptides, thetap100 and thetap180, with polar angles of 100 degrees and 180 degrees, respectively, were designed, and their interactions with membranes were investigated in detail. These peptides have almost identical physicochemical properties except for polar angle. Like naturally occurring peptides, these peptides selectively bind to acidic membranes, assuming amphipathic alpha-helices, and formed peptide-lipid supramolecular complex pores accompanied by lipid flip-flop and peptide translocation. Despite its somewhat lower membrane affinity, thetap100 exhibited higher membrane permeabilization activity, a greater flip-flop rate, as well as more antimicrobial activity due to a higher pore formation rate compared with thetap180. Consistent with these results, the peptide translocation rate of thetap100 was higher. Furthermore, the number of peptides constituting thetap100 pores was less than that of thetap180, and thetap100 pores involved more lipid molecules, as reflected by its cation selectivity. The polar angle was found to be an important parameter determining peptide-lipid interactions.
Collapse
Affiliation(s)
- N Uematsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | |
Collapse
|
95
|
Binding of the antibacterial peptide magainin 2 amide to small and large unilamellar vesicles. Biophys Chem 2000; 85:187-98. [PMID: 10961506 DOI: 10.1016/s0301-4622(00)00120-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The thermodynamics of binding of the antibacterial peptide magainin 2 amide (M2a) to negatively charged small (SUVs) and large (LUVs) unilamellar vesicles has been studied with isothermal titration calorimetry (ITC) and CD spectroscopy at 45 degrees C. The binding isotherms as well as the ability of the peptide to permeabilize membranes were found to be qualitatively and quantitatively similar for both model membranes. The binding isotherms could be described with a surface partition equilibrium where the surface concentration of the peptide immediately above the plane of binding was calculated with the Gouy-Chapman theory. The standard free energy of binding was deltaG0 approximately -22 kJ/mol and was almost identical for LUVs and SUVs. However, the standard enthalpy and entropy of binding were distinctly higher for LUVs (deltaH0 = -15.1 kJ/mol, deltaS0 = 24.7 J/molK) than for SUVs (deltaH0 = -38.5 kJ/mol, deltaS0 = -55.3 J/molK). This enthalpy-entropy compensation mechanism is explained by differences in the lipid packing. The cohesive forces between lipid molecules are larger in well-packed LUVs and incorporation of M2a leads to a stronger disruption of cohesive forces and to a larger increase in the lipid flexibility than peptide incorporation into the more disordered SUVs. At 45 degrees C the peptide easily translocates from the outer to the inner monolayer as judged from the simulation of the ITC curves.
Collapse
|
96
|
Machida S, Niimi S, Shi X, Ando Y, Yu Y. Design of a novel membrane-destabilizing peptide selectively acting on acidic liposomes. Biosci Biotechnol Biochem 2000; 64:985-94. [PMID: 10879468 DOI: 10.1271/bbb.64.985] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The design of amphipathic peptides resulted in a novel peptide with a selective ability to destabilize lipid bilayers of acidic liposomes. The newly synthesized peptide, termed mast 21, is a 21-residue long amino acid chain and can only act effectively on acidic liposomes lacking cholesterol. Moreover, mast 21 killed gram-positive and gram-negative bacteria, and it had no hemolytic activity. The antimicrobial and hemolytic activities paralleled the results of membrane destabilizing activity using liposomes. Circular dichroism and Trp-fluorescence emission spectra showed changes in the peptide conformation and circumstances around the peptide during interaction with liposomes. These changes were consistent with an increased alpha-helical content and a less polar environment for the tryptophan residue of the peptide. Mast 21 was observed under dark-field microscopy in real time attacking liposomes. Acidic liposomes were attacked, which resulted in peeling of the lipid bilayer with its subsequent destruction.
Collapse
Affiliation(s)
- S Machida
- National Food Research Institute, Ministry of Agriculture, Forestry, and Fishery, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
97
|
Lee KH, Oh JE. Design and synthesis of novel antimicrobial pseudopeptides with selective membrane-perturbation activity. Bioorg Med Chem 2000; 8:833-9. [PMID: 10819172 DOI: 10.1016/s0968-0896(00)00019-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By incorporating carbamate bond(s) into a cytolytic peptide, novel pseudopeptides with potent antibacterial activity and low hemolytic activity were synthesized. Circular dichroism spectra suggested that the incorporation of carbamate bond(s) decrease the alpha helical conformation of the peptide in lipid membrane circumstances, which must be regarded as a major factor for the separation of antibacterial activity from cytotoxic activity for mammalian cell. Experiments in which dye was released from vesicles indicated that the potent antibacterial activity and low hemolytic activity of the pseudopeptides must be due to their great lipid membrane selectivity. The present result suggest that backbone modifications can be a great tool for developing pseudopeptides with improved biological activity and bioavailability from cytolytic peptides.
Collapse
Affiliation(s)
- K H Lee
- Protein Chemistry Laboratory, Mogam Biotechnology Research Institute, Yongin-City, Kyonggi-Do, South Korea.
| | | |
Collapse
|
98
|
Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1462:157-83. [PMID: 10590307 DOI: 10.1016/s0005-2736(99)00205-9] [Citation(s) in RCA: 371] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Linear peptide antibiotics have been isolated from amphibians, insects and humans and used as templates to design cheaper and more potent analogues for medical applications. Peptides such as cecropins or magainins are < or = 40 amino acids in length. Many of them have been prepared by solid-phase peptide synthesis with isotopic labels incorporated at selected sites. Structural analysis by solid-state NMR spectroscopy and other biophysical techniques indicates that these peptide antibiotics strongly interact with lipid membranes. In bilayer environments they exhibit amphipathic alpha-helical conformations and alignments of the helix axis parallel to the membrane surface. This contrasts the transmembrane orientations observed for alamethicin or gramicidin A. Models that have been proposed to explain the antibiotic and pore-forming activities of membrane-associated peptides, as well as other experimental results, include transmembrane helical bundles, wormholes, carpets, detergent-like effects or the in-plane diffusion of peptide-induced bilayer instabilities.
Collapse
Affiliation(s)
- B Bechinger
- Max Planck Institute for Biochemistry, Am Klopferspitz 18A, 82152, Martinsried, Germany.
| |
Collapse
|
99
|
Dathe M, Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1462:71-87. [PMID: 10590303 DOI: 10.1016/s0005-2736(99)00201-1] [Citation(s) in RCA: 545] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Antibacterial, membrane-lytic peptides belong to the innate immune system and host defense mechanism of a multitude of animals and plants. The largest group of peptide antibiotics comprises peptides which fold into an amphipathic alpha-helical conformation when interacting with the target. The activity of these peptides is thought to be determined by global structural parameters rather than by the specific amino acid sequence. This review is concerned with the influence of structural parameters, such as peptide helicity, hydrophobicity, hydrophobic moment, peptide charge and the size of the hydrophobic/hydrophilic domain, on membrane activity and selectivity. The potential of these parameters to increase the antibacterial activity and to improve the prokaryotic selectivity of natural and model peptides is assessed. Furthermore, biophysical studies are summarized which elucidated the molecular basis for activity and selectivity modulations on the level of model membranes. Finally, the knowledge about the role of peptide structural parameters is applied to understand the different activity spectra of natural membrane-lytic peptides.
Collapse
Affiliation(s)
- M Dathe
- Research Institute of Molecular Pharmacology, Alfred-Kowalke-Strasse 4, D-10315, Berlin, Germany.
| | | |
Collapse
|
100
|
Sitaram N, Nagaraj R. Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1462:29-54. [PMID: 10590301 DOI: 10.1016/s0005-2736(99)00199-6] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Species right across the evolutionary scale from insects to mammals use peptides as part of their host-defense system to counter microbial infection. The primary structures of a large number of these host-defense peptides have been determined. While there is no primary structure homology, the peptides are characterized by a preponderance of cationic and hydrophobic amino acids. The secondary structures of many of the host-defense peptides have been determined by a variety of techniques. The acyclic peptides tend to adopt helical conformation, especially in media of low dielectric constant, whereas peptides with more than one disulfide bridge adopt beta-structures. Detailed investigations have indicated that a majority of these host-defense peptides exert their action by permeabilizing microbial membranes. In this review, we discuss structural and charge requirements for the interaction of endogenous antimicrobial peptides and short peptides that have been derived from them, with membranes.
Collapse
Affiliation(s)
- N Sitaram
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | |
Collapse
|