51
|
Šíma M, Havelková H, Quan L, Svobodová M, Jarošíková T, Vojtíšková J, Stassen APM, Demant P, Lipoldová M. Genetic control of resistance to Trypanosoma brucei brucei infection in mice. PLoS Negl Trop Dis 2011; 5:e1173. [PMID: 21666791 PMCID: PMC3110168 DOI: 10.1371/journal.pntd.0001173] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 04/04/2011] [Indexed: 11/29/2022] Open
Abstract
Background Trypanosoma brucei brucei infects livestock, with severe effects in horses and dogs. Mouse strains differ greatly in susceptibility to this parasite. However, no genes controlling these differences were mapped. Methods We studied the genetic control of survival after T. b. brucei infection using recombinant congenic (RC) strains, which have a high mapping power. Each RC strain of BALB/c-c-STS/A (CcS/Dem) series contains a different random subset of 12.5% genes from the parental “donor” strain STS/A and 87.5% genes from the “background” strain BALB/c. Although BALB/c and STS/A mice are similarly susceptible to T. b. brucei, the RC strain CcS-11 is more susceptible than either of them. We analyzed genetics of survival in T. b. brucei-infected F2 hybrids between BALB/c and CcS-11. CcS-11 strain carries STS-derived segments on eight chromosomes. They were genotyped in the F2 hybrid mice and their linkage with survival was tested by analysis of variance. Results We mapped four Tbbr (Trypanosoma brucei brucei response) loci that influence survival after T. b. brucei infection. Tbbr1 (chromosome 3) and Tbbr2 (chromosome 12) have effects on survival independent of inter-genic interactions (main effects). Tbbr3 (chromosome 7) influences survival in interaction with Tbbr4 (chromosome 19). Tbbr2 is located on a segment 2.15 Mb short that contains only 26 genes. Conclusion This study presents the first identification of chromosomal loci controlling susceptibility to T. b. brucei infection. While mapping in F2 hybrids of inbred strains usually has a precision of 40–80 Mb, in RC strains we mapped Tbbr2 to a 2.15 Mb segment containing only 26 genes, which will enable an effective search for the candidate gene. Definition of susceptibility genes will improve the understanding of pathways and genetic diversity underlying the disease and may result in new strategies to overcome the active subversion of the immune system by T. b. brucei. Trypanosoma brucei are extracellular protozoa transmitted to mammalian host by the tsetse fly. They developed several mechanisms that subvert host's immune defenses. Therefore analysis of genes affecting host's resistance to infection can reveal critical aspects of host-parasite interactions. Trypanosoma brucei brucei infects many animal species including livestock, with particularly severe effects in horses and dogs. Mouse strains differ greatly in susceptibility to T. b. brucei. However, genes controlling susceptibility to this parasite have not been mapped. We analyzed the genetic control of survival after T. b. brucei infection using CcS/Dem recombinant congenic (RC) strains, each of which contains a different random set of 12.5% genes of their donor parental strain STS/A on the BALB/c genetic background. The RC strain CcS-11 is even more susceptible to parasites than BALB/c or STS/A. In F2 hybrids between BALB/c and CcS-11 we detected and mapped four loci, Tbbr1-4 (Trypanosoma brucei brucei response 1–4), that control survival after T. b. brucei infection. Tbbr1 (chromosome 3) and Tbbr2 (chromosome 12) have independent effects, Tbbr3 (chromosome 7) and Tbbr4 (chromosome 19) were detected by their mutual inter-genic interaction. Tbbr2 was precision mapped to a segment of 2.15 Mb that contains 26 genes.
Collapse
Affiliation(s)
- Matyáš Šíma
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Helena Havelková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lei Quan
- Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | | | - Taťána Jarošíková
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Jarmila Vojtíšková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Alphons P. M. Stassen
- Department of Genetics and Cell Biology/Clinical Genetics, Maastricht University, Maastricht, The Netherlands
| | - Peter Demant
- Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
52
|
Weiss BL, Wang J, Aksoy S. Tsetse immune system maturation requires the presence of obligate symbionts in larvae. PLoS Biol 2011; 9:e1000619. [PMID: 21655301 PMCID: PMC3104962 DOI: 10.1371/journal.pbio.1000619] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 04/11/2011] [Indexed: 12/25/2022] Open
Abstract
Beneficial microbial symbionts serve important functions within their hosts, including dietary supplementation and maintenance of immune system homeostasis. Little is known about the mechanisms that enable these bacteria to induce specific host phenotypes during development and into adulthood. Here we used the tsetse fly, Glossina morsitans, and its obligate mutualist, Wigglesworthia glossinidia, to investigate the co-evolutionary adaptations that influence the development of host physiological processes. Wigglesworthia is maternally transmitted to tsetse's intrauterine larvae through milk gland secretions. We can produce flies that lack Wigglesworthia (Gmm(Wgm-) yet retain their other symbiotic microbes. Such offspring give rise to adults that exhibit a largely normal phenotype, with the exception being that they are reproductively sterile. Our results indicate that when reared under normal environmental conditions Gmm(Wgm-) adults are also immuno-compromised and highly susceptible to hemocoelic E. coli infections while age-matched wild-type individuals are refractory. Adults that lack Wigglesworthia during larval development exhibit exceptionally compromised cellular and humoral immune responses following microbial challenge, including reduced expression of genes that encode antimicrobial peptides (cecropin and attacin), hemocyte-mediated processes (thioester-containing proteins 2 and 4 and prophenoloxidase), and signal-mediating molecules (inducible nitric oxide synthase). Furthermore, Gmm(Wgm-) adults harbor a reduced population of sessile and circulating hemocytes, a phenomenon that likely results from a significant decrease in larval expression of serpent and lozenge, both of which are associated with the process of early hemocyte differentiation. Our results demonstrate that Wigglesworthia must be present during the development of immature progeny in order for the immune system to function properly in adult tsetse. This phenomenon provides evidence of yet another important physiological adaptation that further anchors the obligate symbiosis between tsetse and Wigglesworthia.
Collapse
Affiliation(s)
- Brian L Weiss
- Department of Epidemiology and Public Health, Division of Epidemiology of Microbial Diseases, Yale University School of Medicine, New Haven, Connecticut, United States of America.
| | | | | |
Collapse
|
53
|
Transcriptomics and proteomics in human African trypanosomiasis: current status and perspectives. J Proteomics 2011; 74:1625-43. [PMID: 21316496 DOI: 10.1016/j.jprot.2011.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/23/2011] [Accepted: 01/27/2011] [Indexed: 01/21/2023]
Abstract
Human African trypanosomiasis, or sleeping sickness, is a neglected vector-borne parasitic disease caused by protozoa of the species Trypanosoma brucei sensu lato. Within this complex species, T. b. gambiense is responsible for the chronic form of sleeping sickness in Western and Central Africa, whereas T. b. rhodesiense causes the acute form of the disease in East Africa. Presently, 1.5 million disability-adjusted life years (DALYs) per year are lost due to sleeping sickness. In addition, on the basis of the mortality, the disease is ranked ninth out of 25 human infectious and parasitic diseases in Africa. Diagnosis is complex and needs the intervention of a specialized skilled staff; treatment is difficult and expensive and has potentially life-threatening side effects. The use of transcriptomic and proteomic technologies, currently in rapid development and increasing in sensitivity and discriminating power, is already generating a large panel of promising results. The objective of these technologies is to significantly increase our knowledge of the molecular mechanisms governing the parasite establishment in its vector, the development cycle of the parasite during the parasite's intra-vector life, its interactions with the fly and the other microbial inhabitants of the gut, and finally human host-trypanosome interactions. Such fundamental investigations are expected to provide opportunities to identify key molecular events that would constitute accurate targets for further development of tools dedicated to field work for early, sensitive, and stage-discriminant diagnosis, epidemiology, new chemotherapy, and potentially vaccine development, all of which will contribute to fighting the disease. The present review highlights the contributions of the transcriptomic and proteomic analyses developed thus far in order to identify potential targets (genes or proteins) and biological pathways that may constitute a critical step in the identification of new targets for the development of new tools for diagnostic and therapeutic purposes.
Collapse
|
54
|
Wheeler RJ. The trypanolytic factor-mechanism, impacts and applications. Trends Parasitol 2010; 26:457-64. [PMID: 20646962 DOI: 10.1016/j.pt.2010.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/25/2022]
Abstract
The Trypanosoma brucei subspecies T. brucei brucei is non-human infective due to susceptibility to lysis by trypanolytic factor (TLF) in human serum. Reviewed here are the advances which have revealed apolipoprotein L1 (ApoL1), found in high density lipoprotein, as the lysis-inducing component of TLF, the means of uptake via haptoglobin-related protein receptor and the mechanism of resistance in T. b. rhodesiense via its serum resistance-associated (SRA) protein. The first practical steps to application of these discoveries are now in progress; transgenic animals expressing either baboon or minimally truncated human ApoL1 show resistance to both T. b. brucei and T. b. rhodesiense. This has major implications for treatment and prevention of human and animal African trypanosomiasis.
Collapse
Affiliation(s)
- Richard J Wheeler
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK.
| |
Collapse
|
55
|
Tsetse EP protein protects the fly midgut from trypanosome establishment. PLoS Pathog 2010; 6:e1000793. [PMID: 20221444 PMCID: PMC2832768 DOI: 10.1371/journal.ppat.1000793] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 01/26/2010] [Indexed: 11/22/2022] Open
Abstract
African trypanosomes undergo a complex developmental process in their tsetse fly vector before transmission back to a vertebrate host. Typically, 90% of fly infections fail, most during initial establishment of the parasite in the fly midgut. The specific mechanism(s) underpinning this failure are unknown. We have previously shown that a Glossina-specific, immunoresponsive molecule, tsetse EP protein, is up regulated by the fly in response to gram-negative microbial challenge. Here we show by knockdown using RNA interference that this tsetse EP protein acts as a powerful antagonist of establishment in the fly midgut for both Trypanosoma brucei brucei and T. congolense. We demonstrate that this phenomenon exists in two species of tsetse, Glossina morsitans morsitans and G. palpalis palpalis, suggesting tsetse EP protein may be a major determinant of vector competence in all Glossina species. Tsetse EP protein levels also decline in response to starvation of the fly, providing a possible explanation for increased susceptibility of starved flies to trypanosome infection. As starvation is a common field event, this fact may be of considerable importance in the epidemiology of African trypanosomiasis. In Africa, tsetse flies transmit the trypanosomes causing the devastating diseases sleeping sickness in man and nagana in domesticated animals. These diseases are major causes of underdevelopment in Africa. Paradoxically, most, but not all, flies are resistant to infection with trypanosomes, but we do not have a clear picture of how flies fight off trypanosomes. Here we show that a particular, tsetse-specific immune responsive protein called tsetse EP acts as a powerful antagonist of trypanosome establishment in the fly midgut. It is known that starvation of flies leads to an increase in their susceptibility to trypanosomes and this may be a considerable factor in the epidemiology of the disease in Africa. Here we demonstrate that starvation leads to a decrease in tsetse EP levels, which may explain how starvation of the fly works to increase its susceptibility.
Collapse
|
56
|
Akoda K, Van den Bossche P, Lyaruu EA, De Deken R, Marcotty T, Coosemans M, Van den Abbeele J. Maturation of a Trypanosoma brucei infection to the infectious metacyclic stage is enhanced in nutritionally stressed tsetse flies. JOURNAL OF MEDICAL ENTOMOLOGY 2009; 46:1446-1449. [PMID: 19960695 DOI: 10.1603/033.046.0629] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report on the effect of tsetse fly starvation on the maturation of an established Trypanosoma brucei brucei midgut infection, i.e., the development of procyclic infection into the infectious metacyclic parasites in the tsetse fly salivary glands. Glossina morsitans morsitans flies were nutritionally stressed 10 d after the uptake of a T. b. brucei-infected bloodmeal by depriving these flies from feeding for seven consecutive days, whereas the control fly group (nonstarved group) continued to be fed three times a week. After this period, both fly groups were again fed three times per week on uninfected rabbit. Thirty days after the infected bloodmeal, all surviving flies were dissected and examined for the presence of an immature midgut and a mature salivary gland trypanosome infections. Results showed a significantly increased proportion of flies with salivary gland infection in the nutritionally stressed fly group suggesting an enhanced maturation of the trypanosome infection. These data suggest that environmental factors that cause nutritional stress in a tsetse population do not only make tsetse flies significantly more susceptible to establish a midgut infection as was shown previously but also boost the maturation of these midgut infections.
Collapse
Affiliation(s)
- K Akoda
- Department of Animal Health, Institute of Tropical Medicine Antwerp, Nationalestraat 155, B-2000 Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
57
|
Akoda K, Van Den Abbeele J, Marcotty T, De Deken R, Sidibe I, Van den Bossche P. Nutritional stress of adult female tsetse flies (Diptera: Glossinidae) affects the susceptibility of their offspring to trypanosomal infections. Acta Trop 2009; 111:263-7. [PMID: 19445895 DOI: 10.1016/j.actatropica.2009.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 05/05/2009] [Accepted: 05/06/2009] [Indexed: 10/20/2022]
Abstract
The epidemiology of tsetse-transmitted trypanosomiasis depends, among other factors, on the proportion of infected flies in a tsetse population. A wide range of intrinsic and extrinsic factors seem to determine the ability of a tsetse fly to become infected and to transmit the parasite. In this paper, we investigated the effect of nutritional stress of reproducing female Glossina morsitans morsitans on the susceptibility of their offspring to trypanosomal infections. Adult female flies that were nutritionally stressed by feeding only once a week, produced pupae with a significant lower weight and offspring with a significant lower fat content as well as a lower baseline immune peptide gene expression. Moreover, infection experiments showed that the emerging teneral flies were significantly more susceptible to a Trypanosoma congolense or Trypanosoma brucei brucei infection than flies emerging from non-starved adult females. These findings suggest that in the field, substantial nutritional stress of adult tsetse flies, as is often experienced during the hot dry season, can increase significantly the vectorial capacity of the emerging teneral flies and thus result in an increased infection rate of the tsetse population.
Collapse
|
58
|
Akoda K, Van den Bossche P, Marcotty T, Kubi C, Coosemans M, De Deken R, Van den Abbeele J. Nutritional stress affects the tsetse fly's immune gene expression. MEDICAL AND VETERINARY ENTOMOLOGY 2009; 23:195-201. [PMID: 19712150 DOI: 10.1111/j.1365-2915.2009.00799.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tsetse-transmitted trypanosomiasis poses a serious threat to human and animal health in sub-Saharan Africa. The majority of tsetse flies (Glossina spp.) in a natural population will not develop a mature infection of either Trypanosoma congolense or Trypanosoma brucei sp. because of refractoriness, a phenomenon that is affected by different factors, including the tsetse fly's immune defence. Starvation of tsetse flies significantly increases their susceptibility to the establishment of a trypanosome infection. This paper reports the effects of nutritional stress (starvation) on (a) uninduced baseline levels of gene expression of the antimicrobial peptides attacin, defensin and cecropin in the tsetse fly, and (b) levels of expression induced in response to bacterial (Escherichia coli) or trypanosomal challenge. In newly emerged, unfed tsetse flies, starvation significantly lowers baseline levels of antimicrobial peptide gene expression, especially for attacin and cecropin. In response to trypanosome challenge, only non-starved older flies showed a significant increase in antimicrobial peptide gene expression within 5 days of ingestion of a trypanosome-containing bloodmeal, especially with T. brucei bloodstream forms. These data suggest that a decreased expression of immune genes in newly hatched flies or a lack of immune responsiveness to trypanosomes in older flies, both occurring as a result of fly starvation, may be among the factors contributing to the increased susceptibility of nutritionally stressed tsetse flies to trypanosome infection.
Collapse
Affiliation(s)
- K Akoda
- Department of Animal Health, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
59
|
Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (PGRP-LB) influence trypanosome transmission. Proc Natl Acad Sci U S A 2009; 106:12133-8. [PMID: 19587241 DOI: 10.1073/pnas.0901226106] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tsetse flies, the sole vectors of African trypanosomes, have coevolved with mutualistic endosymbiont Wigglesworthia glossinidiae. Elimination of Wigglesworthia renders tsetse sterile and increases their trypanosome infection susceptibility. We show that a tsetse peptidoglycan recognition protein (PGRP-LB) is crucial for symbiotic tolerance and trypanosome infection processes. Tsetse pgrp-lb is expressed in the Wigglesworthia-harboring organ (bacteriome) in the midgut, and its level of expression correlates with symbiont numbers. Adult tsetse cured of Wigglesworthia infections have significantly lower pgrp-lb levels than corresponding normal adults. RNA interference (RNAi)-mediated depletion of pgrp-lb results in the activation of the immune deficiency (IMD) signaling pathway and leads to the synthesis of antimicrobial peptides (AMPs), which decrease Wigglesworthia density. Depletion of pgrp-lb also increases the host's susceptibility to trypanosome infections. Finally, parasitized adults have significantly lower pgrp-lb levels than flies, which have successfully eliminated trypanosome infections. When both PGRP-LB and IMD immunity pathway functions are blocked, flies become unusually susceptible to parasitism. Based on the presence of conserved amidase domains, tsetse PGRP-LB may scavenge the peptidoglycan (PGN) released by Wigglesworthia and prevent the activation of symbiont-damaging host immune responses. In addition, tsetse PGRP-LB may have an anti-protozoal activity that confers parasite resistance. The symbiotic adaptations and the limited exposure of tsetse to foreign microbes may have led to the considerable differences in pgrp-lb expression and regulation noted in tsetse from that of closely related Drosophila. A dynamic interplay between Wigglesworthia and host immunity apparently is influential in tsetse's ability to transmit trypanosomes.
Collapse
|
60
|
Walshe DP, Lehane SM, Lehane MJ, Haines LR. Prolonged gene knockdown in the tsetse fly Glossina by feeding double stranded RNA. INSECT MOLECULAR BIOLOGY 2009; 18:11-19. [PMID: 19016913 DOI: 10.1111/j.1365-2583.2008.00839.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Reverse genetic studies based on RNA interference (RNAi) have revolutionized analysis of gene function in most insects. However the necessity of injecting double stranded RNA (dsRNA) inevitably compromises many investigations particularly those on immunity. Additionally, injection of tsetse flies often causes significant mortality. We demonstrate, at transcript and protein level, that delivering dsRNA in the bloodmeal to Glossina morsitans morsitans is as effective as injection in knockdown of the immunoresponsive midgut-expressed gene TsetseEP. However, feeding dsRNA fails to knockdown the fat body expressed transferrin gene, 2A192, previously shown to be silenced by dsRNA injection. Mortality rates of the dsRNA fed flies were significantly reduced compared to injected flies 14 days after treatment (Fed: 10.1%+/- 1.8%; injected: 37.9% +/- 3.6% (Mean +/- SEM)). This is the first demonstration in Diptera of gene knockdown by feeding and the first example of knockdown in a blood-sucking insect by including dsRNA in the bloodmeal.
Collapse
Affiliation(s)
- D P Walshe
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA
| | | | | | | |
Collapse
|
61
|
Visualizing trypanosome sex. Trends Parasitol 2008; 24:425-8. [DOI: 10.1016/j.pt.2008.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/20/2008] [Accepted: 06/27/2008] [Indexed: 11/21/2022]
|
62
|
The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly. Appl Environ Microbiol 2008; 74:5965-74. [PMID: 18689507 DOI: 10.1128/aem.00741-08] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tsetse flies (Diptera: Glossinidae) are vectors for trypanosome parasites, the agents of the deadly sleeping sickness disease in Africa. Tsetse also harbor two maternally transmitted enteric mutualist endosymbionts: the primary intracellular obligate Wigglesworthia glossinidia and the secondary commensal Sodalis glossinidius. Both endosymbionts are transmitted to the intrauterine progeny through the milk gland secretions of the viviparous female. We administered various antibiotics either continuously by per os supplementation of the host blood meal diet or discretely by hemocoelic injections into fertile females in an effort to selectively eliminate the symbionts to study their individual functions. A symbiont-specific PCR amplification assay and fluorescence in situ hybridization analysis were used to evaluate symbiont infection outcomes. Tetracycline and rifampin treatments eliminated all tsetse symbionts but reduced the fecundity of the treated females. Ampicillin treatments did not affect the intracellular Wigglesworthia localized in the bacteriome organ and retained female fecundity. The resulting progeny of ampicillin-treated females, however, lacked Wigglesworthia but still harbored the commensal Sodalis. Our results confirm the presence of two physiologically distinct Wigglesworthia populations: the bacteriome-localized Wigglesworthia involved with nutritional symbiosis and free-living Wigglesworthia in the milk gland organ responsible for maternal transmission to the progeny. We evaluated the reproductive fitness, longevity, digestion, and vectorial competence of flies that were devoid of Wigglesworthia. The absence of Wigglesworthia completely abolished the fertility of females but not that of males. Both the male and female Wigglesworthia-free adult progeny displayed longevity costs and were significantly compromised in their blood meal digestion ability. Finally, while the vectorial competence of the young newly hatched adults without Wigglesworthia was comparable to that of their wild-type counterparts, older flies displayed higher susceptibility to trypanosome infections, indicating a role for the mutualistic symbiosis in host immunobiology. The ability to rear adult tsetse that lack the obligate Wigglesworthia endosymbionts will now enable functional investigations into this ancient symbiosis.
Collapse
|
63
|
Akoda K, Harouna S, Marcotty T, De Deken R, Van den Bossche P. Investigations on the transmissibility of Trypanosoma congolense by the tsetse fly Glossina morsitans morsitans during its development in a mammalian host. Acta Trop 2008; 107:17-9. [PMID: 18485324 DOI: 10.1016/j.actatropica.2008.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 04/02/2008] [Accepted: 04/04/2008] [Indexed: 11/16/2022]
Abstract
Experiments were conducted to investigate the effect of the developmental stage of a monomorphic T. congolense IL1180 strain, in a vertebrate host, on its transmissibility by the tsetse fly Glossina morsitans morsitans Westwood (Diptera: Glossinidae). Batches of 160 male teneral tsetse flies were given a single bloodmeal on mice infected with this T. congolense strain 4, 5, 6, 7 or 10 days post-infection. The proportion of infected flies in each of those batches showed that the stage of development of the trypanosome does affect the proportion of flies that develop a mature or immature infection with immature and mature infection rates of flies infected on days 5 or 10 significantly higher. The proportion of infected flies was not affected by the parasitaemia at the moment of infection. Results show that tsetse flies can become infected at any phase of the development of the T. congolense IL 1180 strain but the ease with which trypanosomes develop in the fly depends on the phase in the parasite's development in the host. Those observations suggest that in analogy with the pleomorphic T. brucei s.l. adaptation of the monomorphic T. congolense to development in the fly may also determine the parasite's transmissibility. Moreover, the findings stress the importance of standardising experiments in which the vectorial capacity of tsetse flies is determined and compared.
Collapse
Affiliation(s)
- K Akoda
- Department of Animal Health, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | | | | |
Collapse
|
64
|
Hu C, Rio RVM, Medlock J, Haines LR, Nayduch D, Savage AF, Guz N, Attardo GM, Pearson TW, Galvani AP, Aksoy S. Infections with immunogenic trypanosomes reduce tsetse reproductive fitness: potential impact of different parasite strains on vector population structure. PLoS Negl Trop Dis 2008; 2:e192. [PMID: 18335067 PMCID: PMC2265429 DOI: 10.1371/journal.pntd.0000192] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 01/17/2008] [Indexed: 11/18/2022] Open
Abstract
The parasite Trypanosoma brucei rhodesiense and its insect vector Glossina morsitans morsitans were used to evaluate the effect of parasite clearance (resistance) as well as the cost of midgut infections on tsetse host fitness. Tsetse flies are viviparous and have a low reproductive capacity, giving birth to only 6-8 progeny during their lifetime. Thus, small perturbations to their reproductive fitness can have a major impact on population densities. We measured the fecundity (number of larval progeny deposited) and mortality in parasite-resistant tsetse females and untreated controls and found no differences. There was, however, a typanosome-specific impact on midgut infections. Infections with an immunogenic parasite line that resulted in prolonged activation of the tsetse immune system delayed intrauterine larval development resulting in the production of fewer progeny over the fly's lifetime. In contrast, parasitism with a second line that failed to activate the immune system did not impose a fecundity cost. Coinfections favored the establishment of the immunogenic parasites in the midgut. We show that a decrease in the synthesis of Glossina Milk gland protein (GmmMgp), a major female accessory gland protein associated with larvagenesis, likely contributed to the reproductive lag observed in infected flies. Mathematical analysis of our empirical results indicated that infection with the immunogenic trypanosomes reduced tsetse fecundity by 30% relative to infections with the non-immunogenic strain. We estimate that a moderate infection prevalence of about 26% with immunogenic parasites has the potential to reduce tsetse populations. Potential repercussions for vector population growth, parasite-host coevolution, and disease prevalence are discussed.
Collapse
Affiliation(s)
- Changyun Hu
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Rita V. M. Rio
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jan Medlock
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lee R. Haines
- Department of Biochemistry and Microbiology, Petch Building, University of Victoria, Victoria, British Columbia, Canada
| | - Dana Nayduch
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Amy F. Savage
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Nurper Guz
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Geoffrey M. Attardo
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Terry W. Pearson
- Department of Biochemistry and Microbiology, Petch Building, University of Victoria, Victoria, British Columbia, Canada
| | - Alison P. Galvani
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Serap Aksoy
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
65
|
Lehane MJ, Gibson W, Lehane SM. Differential expression of fat body genes in Glossina morsitans morsitans following infection with Trypanosoma brucei brucei. Int J Parasitol 2008; 38:93-101. [PMID: 17697681 DOI: 10.1016/j.ijpara.2007.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 05/16/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
To determine which fat body genes were differentially expressed following infection of Glossina morsitans morsitans with Trypanosoma brucei brucei we generated four suppression subtractive hybridisation (SSH) libraries. We obtained 52 unique gene fragments (SSH clones) of which 30 had a known orthologue at E-05 or less. Overall the characteristics of the orthologues suggest: (i) that trypanosome infection has a considerable effect on metabolism in the tsetse fly; (ii) that self-cured flies are mounting an oxidative stress response; and (iii) that self-cured flies are displaying increased energy usage. The three most consistently differentially expressed genes were further analysed by gene knockdown (RNAi). Knockdown of Glossina transferrin transcripts, which are upregulated in self-cured flies compared with flies infected with trypanosomes, results in a significant increase in the number of trypanosome infections establishing in the fly midgut, suggesting transferrin plays a role in the protection of tsetse flies from trypanosome infection.
Collapse
Affiliation(s)
- M J Lehane
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | | | |
Collapse
|
66
|
The cell biology of Trypanosoma brucei differentiation. Curr Opin Microbiol 2007; 10:539-46. [PMID: 17997129 DOI: 10.1016/j.mib.2007.09.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 09/21/2007] [Accepted: 09/28/2007] [Indexed: 11/20/2022]
Abstract
Developmental events in the life-cycle of the sleeping sickness parasite comprise integrated changes in cell morphology, metabolism, gene expression and signalling pathways. In each case these processes differ from the eukaryotic norm. In the past three years, understanding of these developmental processes has progressed from a description of the cytological events of differentiation to a discovery of its underlying molecular controls. With an expanding set of reagents for the identification of distinct parasite life-cycle stages in the tsetse, trypanosome differentiation is being studied from the molecular to the organismal and population level. Interestingly, the new molecular discoveries provide insights into the biology of the parasite in the field.
Collapse
|
67
|
Sharma R, Peacock L, Gluenz E, Gull K, Gibson W, Carrington M. Asymmetric cell division as a route to reduction in cell length and change in cell morphology in trypanosomes. Protist 2007; 159:137-51. [PMID: 17931969 DOI: 10.1016/j.protis.2007.07.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 07/14/2007] [Indexed: 01/23/2023]
Abstract
African trypanosomes go through at least five developmental stages during their life cycle. The different cellular forms are classified using morphology, including the order of the nucleus, flagellum and kinetoplast along the anterior-posterior axis of the cell, the predominant cell surface molecules and the location within the host. Here, an asymmetrical cell division cycle that is an integral part of the Trypanosoma brucei life cycle has been characterised in further detail through the use of cell cycle stage specific markers. The cell cycle leading to the asymmetric division includes an exquisitely synchronised mitosis and exchange in relative location of organelles along the anterior-posterior axis of the cell. These events are coupled to a change in cell surface architecture. During the asymmetric division, the behaviour of the new flagellum is consistent with a role in determining the location of the plane of cell division, a function previously characterised in procyclic cells. Thus, the asymmetric cell division cycle provides a mechanism for a change in cell morphology and also an explanation for how a reduction in cell length can occur in a cell shaped by a stable microtubule array.
Collapse
Affiliation(s)
- Reuben Sharma
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | |
Collapse
|
68
|
Palmer GH, Brayton KA. Gene conversion is a convergent strategy for pathogen antigenic variation. Trends Parasitol 2007; 23:408-13. [PMID: 17662656 DOI: 10.1016/j.pt.2007.07.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 05/22/2007] [Accepted: 07/10/2007] [Indexed: 10/23/2022]
Abstract
Recent studies on three unrelated vector-borne pathogens, Anaplasma marginale, Borrelia hermsii and Trypanosoma brucei, illustrate the central importance of gene conversion as a mechanism for antigenic variation, which results in subsequent evasion of the immune response and persistence in the reservoir host. The combination of genome sequence data and in vivo studies tracking variant emergence not only provides insight into the genetic mechanisms for variant generation and hierarchy in variant expression but also highlights gaps in our knowledge regarding variant capacity and usage in vivo.
Collapse
Affiliation(s)
- Guy H Palmer
- Programs in Vector-borne Diseases and Genomics, Washington State University, Pullman, WA 99164-7040, USA.
| | | |
Collapse
|
69
|
Peacock L, Ferris V, Bailey M, Gibson W. Dynamics of infection and competition between two strains of Trypanosoma brucei brucei in the tsetse fly observed using fluorescent markers. KINETOPLASTID BIOLOGY AND DISEASE 2007; 6:4. [PMID: 17553128 PMCID: PMC1899512 DOI: 10.1186/1475-9292-6-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 06/06/2007] [Indexed: 11/23/2022]
Abstract
Background Genetic exchange occurs between Trypanosoma brucei strains during the complex developmental cycle in the tsetse vector, probably within the salivary glands. Successful mating will depend on the dynamics of co-infection with multiple strains, particularly if intraspecific competition occurs. We have previously used T. brucei expressing green fluorescent protein to study parasite development in the vector, enabling even one trypanosome to be visualized. Here we have used two different trypanosome strains transfected with either green or red fluorescent proteins to study the dynamics of co-infection directly in the tsetse fly. Results The majority of infected flies had both trypanosome strains present in the midgut, but the relative proportion of red and green trypanosome strains varied considerably between flies and between different sections of the midgut in individual flies. Colonization of the paired salivary glands revealed greater variability than for midguts, as each gland could be infected with red and/or green trypanosome strains in variable proportions. Salivary glands with a mixed infection appeared to have a higher density of trypanosomes than glands containing a single strain. Comparison of the numbers of red and green trypanosomes in the proventriculus, salivary exudate and glands from individual flies showed no correlation between the composition of the trypanosome population of the proventriculus and foregut and that of the salivary glands. For each compartment examined (midgut, foregut, salivary glands), there was a significantly higher proportion of mixed infections than expected, assuming the null hypothesis that the development of each trypanosome strain is independent. Conclusion Both the trypanosome strains used were fully capable of infecting tsetse, but the probabilities of infection with each strain were not independent, there being a significantly higher proportion of mixed infections than expected in each of three compartments examined: midgut, proventriculus and salivary glands. Hence there was no evidence of competition between trypanosome strains, but instead co-infection was frequent. Infection rates in co-infected flies were no different to those found routinely in flies infected with a single strain, ruling out the possibility that one strain enhanced infection with the other. We infer that each fly is either permissive or non-permissive of trypanosome infection with at least 3 sequential checkpoints imposed by the midgut, proventriculus and salivary glands. Salivary glands containing both trypanosome strains appeared to contain more trypanosomes than singly-infected glands, suggesting that lack of competition enhances the likelihood of genetic exchange.
Collapse
Affiliation(s)
- Lori Peacock
- School of Biological Sciences University of Bristol, Bristol BS8 1UG, UK
- Department of Clinical Veterinary Science, University of Bristol, Langford, Bristol BS40 7DU, UK
| | - Vanessa Ferris
- School of Biological Sciences University of Bristol, Bristol BS8 1UG, UK
- Department of Clinical Veterinary Science, University of Bristol, Langford, Bristol BS40 7DU, UK
| | - Mick Bailey
- Department of Clinical Veterinary Science, University of Bristol, Langford, Bristol BS40 7DU, UK
| | - Wendy Gibson
- School of Biological Sciences University of Bristol, Bristol BS8 1UG, UK
| |
Collapse
|
70
|
Hu C, Aksoy S. Innate immune responses regulate trypanosome parasite infection of the tsetse fly Glossina morsitans morsitans. Mol Microbiol 2007; 60:1194-204. [PMID: 16689795 DOI: 10.1111/j.1365-2958.2006.05180.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tsetse flies transmit the protozoan parasite African trypanosomes, the agents of human sleeping sickness in sub-Saharan Africa. Parasite transmission in the insect is restricted by a natural resistance phenomenon (refractoriness). Understanding the mechanism of parasite resistance is important as strengthening fly's response(s) via transgenic approaches can prevent parasite transmission and lead to the development of novel vector control strategies. Here, we investigated the role of one of the two major pathways regulating innate immunity in invertebrates, the immunodeficiency (Imd) pathway, for Glossina morsitans morsitans's natural defence against Trypanosoma brucei spp. infections. We determined the molecular structure of the Imd pathway transcriptional activator Relish (GmmRel), which shows high amino acid identity and structural similarity to its Drosophila homologue. Through a double-stranded RNA-based interference approach, we showed that the pathogen-induced expression profile of the antimicrobial peptides (AMPs) attacin and cecropin is under the regulation of GmmRel. Unexpectedly, the AMP diptericin appears to be constitutively expressed in tsetse independent of the presence of the Rel factor. Through GmmRel knock-down, we could successfully block the induction of attacin and cecropin expression in the immune responsive tissues fat body and proventriculus (cardia) following microbial challenge. The midgut and salivary gland trypanosome infection prevalence, as well as the intensity of midgut parasite infections were found to be significantly higher in flies when attacin and relish expression were knocked down. Our results provide the first direct evidence for the involvement of antimicrobial peptides in trypanosome transmission in tsetse.
Collapse
Affiliation(s)
- Changyun Hu
- Department of Epidemiology and Public Health, Yale University School of Medicine, 60 College St., 606 LEPH, New Haven, CT 06510, USA
| | | |
Collapse
|
71
|
Kubi C, van den Abbeele J, DE Deken R, Marcotty T, Dorny P, van den Bossche P. The effect of starvation on the susceptibility of teneral and non-teneral tsetse flies to trypanosome infection. MEDICAL AND VETERINARY ENTOMOLOGY 2006; 20:388-92. [PMID: 17199750 DOI: 10.1111/j.1365-2915.2006.00644.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Transmission of vector-borne diseases depends largely on the ability of the insect vector to become infected with the parasite. In tsetse flies, newly emerged or teneral flies are considered the most likely to develop a mature, infective trypanosome infection. This was confirmed during experimental infections where laboratory-reared Glossina morsitans morsitans Westwood (Diptera: Glossinidae) were infected with Trypanosoma congolense or T. brucei brucei. The ability of mature adult tsetse flies to become infected with trypanosomes was significantly lower than that of newly emerged flies for both parasites. However, the nutritional status of the tsetse at the time of the infective bloodmeal affected its ability to acquire either a T. congolense or T. b. brucei infection. Indeed, an extreme period of starvation (3-4 days for teneral flies, 7 days for adult flies) lowers the developmental barrier for a trypanosome infection, especially at the midgut level of the tsetse fly. Adult G. m. morsitans became at least as susceptible as newly emerged flies to infection with T. congolense. Moreover, the susceptibility of adult flies, starved for 7 days, to an infection with T. b. brucei was also significantly increased, but only at the level of maturation of an established midgut infection to a salivary gland infection. The outcome of these experimental infections clearly suggests that, under natural conditions, nutritional stress in adult tsetse flies could contribute substantially to the epidemiology of tsetse-transmitted trypanosomiasis.
Collapse
Affiliation(s)
- C Kubi
- Department of Animal Health, Institute of Tropical medicine, Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
72
|
Dillon RJ, Ivens AC, Churcher C, Holroyd N, Quail MA, Rogers ME, Soares MB, Bonaldo MF, Casavant TL, Lehane MJ, Bates PA. Analysis of ESTs from Lutzomyia longipalpis sand flies and their contribution toward understanding the insect-parasite relationship. Genomics 2006; 88:831-840. [PMID: 16887324 PMCID: PMC2675706 DOI: 10.1016/j.ygeno.2006.06.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 06/16/2006] [Accepted: 06/20/2006] [Indexed: 11/30/2022]
Abstract
An expressed sequence tag library has been generated from a sand fly vector of visceral leishmaniasis, Lutzomyia longipalpis. A normalized cDNA library was constructed from whole adults and 16,608 clones were sequenced from both ends and assembled into 10,203 contigs and singlets. Of these 58% showed significant similarity to known genes from other organisms, < 4% were identical to described sand fly genes, and 42% had no match to any database sequence. Our analyses revealed putative proteins involved in the barrier function of the gut (peritrophins, microvillar proteins, glutamine synthase), digestive physiology (secreted and membrane-anchored hydrolytic enzymes), and the immune response (gram-negative binding proteins, thioester proteins, scavenger receptors, galectins, signaling pathway factors, caspases, serpins, and peroxidases). Sequence analysis of this transcriptome dataset has provided new insights into genes that might be associated with the response of the vector to the development of Leishmania.
Collapse
Affiliation(s)
- Rod J Dillon
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | - Al C Ivens
- The Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Carol Churcher
- The Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Nancy Holroyd
- The Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Michael A Quail
- The Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Matthew E Rogers
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - M Bento Soares
- Children's Memorial Research Center and Northwestern University, Chicago, IL 60611, USA
| | - Maria F Bonaldo
- Children's Memorial Research Center and Northwestern University, Chicago, IL 60611, USA
| | - Thomas L Casavant
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Mike J Lehane
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Paul A Bates
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
73
|
Attardo GM, Strickler-Dinglasan P, Perkin SAH, Caler E, Bonaldo MF, Soares MB, El-Sayeed N, Aksoy S. Analysis of fat body transcriptome from the adult tsetse fly, Glossina morsitans morsitans. INSECT MOLECULAR BIOLOGY 2006; 15:411-24. [PMID: 16907828 DOI: 10.1111/j.1365-2583.2006.00649.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Tsetse flies (Diptera: Glossinidia) are vectors of pathogenic African trypanosomes. To develop a foundation for tsetse physiology, a normalized expressed sequence tag (EST) library was constructed from fat body tissue of immune-stimulated Glossina morsitans morsitans. Analysis of 20,257 high-quality ESTs yielded 6372 unique genes comprised of 3059 tentative consensus (TC) sequences and 3313 singletons (available at http://aksoylab.yale.edu). We analysed the putative fat body transcriptome based on homology to other gene products with known functions available in the public domain. In particular, we describe the immune-related products, reproductive function related yolk proteins and milk-gland protein, iron metabolism regulating ferritins and transferrin, and tsetse's major energy source proline biosynthesis. Expression analysis of the three yolk proteins indicates that all are detected in females, while only the yolk protein with similarity to lipases, is expressed in males. Milk gland protein, apparently important for larval nutrition, however, is primarily synthesized by accessory milk gland tissue.
Collapse
Affiliation(s)
- G M Attardo
- Department of Epidemiology and Public Health, Section of Vector Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Masumu J, Marcotty T, Ndeledje N, Kubi C, Geerts S, Vercruysse J, Dorny P, van den Bossche P. Comparison of the transmissibility ofTrypanosoma congolensestrains, isolated in a trypanosomiasis endemic area of eastern Zambia, byGlossina morsitans morsitans. Parasitology 2006; 133:331-4. [PMID: 16719960 DOI: 10.1017/s0031182006000369] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/05/2006] [Accepted: 03/09/2006] [Indexed: 11/07/2022]
Abstract
Transmission experiments were conducted to compare the transmissibility of genetically differentTrypanosoma congolense(Savannah subgroup) strains isolated from cattle in a trypanosomiasis endemic area of eastern Zambia. A total of 17 strains were compared. Three strains were extremely virulent with a short pre-patent period, high parasitaemia and a short median survival time (between 5 and 9 days) in mice. The remainder of the strains belonged to the moderate (6 strains) or low (8 strains) virulence categories with median survival times between 10 and 30 days and >30 days, respectively. Batches of 40 teneralGlossina morsitans morsitans(Diptera: Glossinidae) were offered a single bloodmeal on mice infected with one of those strains. Flies were dissected to determine their infection status 21 days later. The proportion of flies with procyclic and metacyclic infections differed significantly between trypanosome strains and were significantly higher in flies infected with extremely virulent strains (P=0·033 andP=0·016 for the differences in the procyclic infection rate of strains with moderate and low virulence, respectively andP=0·005 andP=0·019 for the differences in the metacyclic infection rate of strains with moderate and low virulence, respectively). On the other hand, moderately virulent strains had, in general, higher procyclic and metacyclic infection rates compared to low virulent strains. But the differences were not significant (P>0·05). The outcome of those experiments shows clear differences in transmissibility of trypanosome strains associated with their virulence. This observation confirms the theory for the evolution and maintenance of virulence in a parasite population and may explain the persistence of virulent trypanosome strains in a susceptible host population.
Collapse
Affiliation(s)
- J Masumu
- Institute of Tropical Medicine, Animal Health Department, Nationalestraat 155, B-2000 Antwerp, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Peacock L, Ferris V, Bailey M, Gibson W. Multiple effects of the lectin-inhibitory sugars D-glucosamine and N-acetyl-glucosamine on tsetse-trypanosome interactions. Parasitology 2006; 132:651-8. [PMID: 16393366 DOI: 10.1017/s0031182005009571] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 10/24/2005] [Accepted: 10/24/2005] [Indexed: 11/07/2022]
Abstract
We are studying early events in the establishment of Trypanosoma brucei in the tsetse midgut using fluorescent trypanosomes to increase visibility. Feeding flies with the lectin-inhibitory sugars D-glucosamine (GlcN) or N-acetyl-glucosamine (GlcNAc) has previously been shown to enhance fly susceptibility to infection with trypanosomes and, as expected, we found that both sugars increased midgut infection rates of Glossina morsitans morsitans with T. brucei. However, GlcNAc did not show the inhibitory effect on salivary gland infection rate reported previously for GlcN. Both sugars significantly slowed the movement of the bloodmeal along the midgut. GlcN also significantly increased the size of the bloodmeal taken and fly mortality. The most surprising finding was that GlcNAc stimulated trypanosome growth not only in the midgut, but also in vitro in the absence of any factor derived from the fly. Thus our direct comparison of the effects of GlcN and GlcNAc on the trypanosome-tsetse interaction has shown that these sugars impact on trypanosome growth and tsetse physiology in different ways and are not interchangeable as suggested in the literature. The sugars cause multiple effects, not restricted solely to the inhibition of midgut lectins. These findings have implications for current models of tsetse susceptibility to trypanosome infection.
Collapse
Affiliation(s)
- L Peacock
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | | | | | | |
Collapse
|
76
|
Munks RJL, Sant'Anna MRV, Grail W, Gibson W, Igglesden T, Yoshiyama M, Lehane SM, Lehane MJ. Antioxidant gene expression in the blood-feeding fly Glossina morsitans morsitans. INSECT MOLECULAR BIOLOGY 2005; 14:483-91. [PMID: 16164604 DOI: 10.1111/j.1365-2583.2005.00579.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report the characterization of 11 antioxidant genes from the tsetse fly Glossina m. morsitans. Through similarity searches which detected homology we suggest that these genes consist of two superoxide dismutases (one with a putative signal peptide), three thioredoxin peroxidases (one with a putative signal peptide), three peroxiredoxins, one further signal peptide-containing peroxidase with its closest similarity to a glutathione peroxidase, one catalase and one thioredoxin reductase. We describe the changes occurring in the expression levels of these genes during fly development, in different adult tissues, in the adult midgut through the digestive cycle and following trypanosome infection. Overall, nine of the 11 genes studied showed responses to changes in physiological circumstance, with the peroxiredoxin group showing the smallest variations throughout.
Collapse
Affiliation(s)
- R J L Munks
- School of Biological Sciences, University of Wales, Bangor, Gwynedd, UK
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Peacock L, Bailey M, Gibson W. Tetracycline induction of gene expression in Trypanosoma brucei within the tsetse fly vector. Mol Biochem Parasitol 2005; 140:247-9. [PMID: 15760664 DOI: 10.1016/j.molbiopara.2005.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Accepted: 01/14/2005] [Indexed: 10/25/2022]
Affiliation(s)
- Lori Peacock
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| | | | | |
Collapse
|
78
|
Aksoy S, Rio RVM. Interactions among multiple genomes: tsetse, its symbionts and trypanosomes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:691-8. [PMID: 15894186 DOI: 10.1016/j.ibmb.2005.02.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2005] [Indexed: 05/02/2023]
Abstract
Insect-borne diseases exact a high public health burden and have a devastating impact on livestock and agriculture. To date, control has proved to be exceedingly difficult. One such disease that has plagued sub-Saharan Africa is caused by the protozoan African trypanosomes (Trypanosoma species) and transmitted by tsetse flies (Diptera: Glossinidae). This presentation describes the biology of the tsetse fly and its interactions with trypanosomes as well as its symbionts. Tsetse can harbor up to three distinct microbial symbionts, including two enterics (Wigglesworthia glossinidia and Sodalis glossinidius) as well as facultative Wolbachia infections, which influence host physiology. Recent investigations into the genome of the obligate symbiont Wigglesworthia have revealed characteristics indicative of its long co-evolutionary history with the tsetse host species. Comparative analysis of the commensal-like Sodalis with free-living enterics provides examples of adaptations to the host environment (physiology and ecology), reflecting genomic tailoring events during the process of transitioning into a symbiotic lifestyle. From an applied perspective, the extensive knowledge accumulated on the genomic and developmental biology of the symbionts coupled with our ability to both express foreign genes in these microbes in vitro and repopulate tsetse midguts with these engineered microbes now provides a means to interfere with the host physiological traits which contribute to vector competence promising a novel tool for disease management.
Collapse
Affiliation(s)
- Serap Aksoy
- Department of Epidemiology and Public Health, Yale University School of Medicine, 60 College St., 606 LEPH, New Haven, CT 06510, USA.
| | | |
Collapse
|
79
|
Hu Y, Aksoy S. An antimicrobial peptide with trypanocidal activity characterized from Glossina morsitans morsitans. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:105-115. [PMID: 15681221 DOI: 10.1016/j.ibmb.2004.10.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 10/05/2004] [Indexed: 05/24/2023]
Abstract
Tsetse flies (Diptera:Glossinidae) are vectors of African trypanosomes, the protozoan agents of devastating diseases in humans and animals. Prior studies in trypanosome infected Glossina morsitans morsitans have shown induced expression and synthesis of several antimicrobial peptides in fat body tissue. Here, we have expressed one of these peptides, Attacin (GmAttA1) in Drosophila (S2) cells in vitro. We show that the purified recombinant protein (recGmAttA1) has strong antimicrobial activity against Escherichia coli-K12, but not against the enteric gram-negative symbiont of tsetse, Sodalis glossinidius. The recGmAttA1 also demonstrated inhibitory effects against both the mammalian bloodstream form and the insect stage Trypanosoma brucei in vitro (minimal inhibitory concentration MIC50 0.075 microM). When blood meals were supplemented with purified recGmAttA1 during the course of parasite infection, the prevalence of trypanosome infections in tsetse midgut was significantly reduced. Feeding fertile females GmAttA1 did not affect the fecundity or the longevity of mothers, nor did it affect the hatchability of their offspring. We discuss a paratransgenic strategy, which involves the expression of trypanocidal molecules such as recGmAttA1 in the midgut symbiont Sodalis in vivo to reduce trypanosome transmission.
Collapse
Affiliation(s)
- Youjia Hu
- Department of Epidemiology and Public Health, Section of Vector Biology, Yale University, School of Medicine, 60 College St., 606 LEPH, New Haven, CT 06510, USA
| | | |
Collapse
|
80
|
Lehane MJ, Aksoy S, Levashina E. Immune responses and parasite transmission in blood-feeding insects. Trends Parasitol 2004; 20:433-9. [PMID: 15324734 DOI: 10.1016/j.pt.2004.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The detailed model of insect immunity being built for Drosophila, allied to mass sequencing programs for blood-feeding insects, has led to advances in our understanding of the interaction between pathogens and insect vectors. An outline of insect immunity is given here based on the Drosophila studies, which is used as a framework to discuss recent work on Plasmodium-mosquito and Trypanosoma-tsetse interactions.
Collapse
Affiliation(s)
- Michael J Lehane
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | | | | |
Collapse
|
81
|
Hao Z, Kasumba I, Aksoy S. Proventriculus (cardia) plays a crucial role in immunity in tsetse fly (Diptera: Glossinidiae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:1155-1164. [PMID: 14563366 DOI: 10.1016/j.ibmb.2003.07.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fat body and hemocytes play a central role in cellular and humoral responses for systemic infections in invertebrates, similar to the mammalian liver and blood cells. Epithelial surfaces, in particular the midgut, participate in the initial local immune responses in order to aid in the generation of the terminal cytotoxic molecules that mediate non-self recognition. Here, we describe for the first time the immune responses of a cluster of cells at the foregut/midgut junction--known as proventriculus (cardia) in the medically and agriculturally important insect, tsetse fly (Diptera: Glossinidae). We provide evidence for the transcriptional induction of the antimicrobial peptides attacin and defensin as well as for the reactive nitrogen intermediate (RNI) nitric oxide synthase (NOS) upon microbial challenge by either microinjection or feeding. Proventriculus from immune challenged flies also has higher NOS and nitric oxide (NO) activities as well as increased levels of the reactive oxygen intermediate (ROI), hydrogen peroxide (H2O2). In several vector pathogen systems, including tsetse flies and African trypanosomes, stimulation of systemic responses prior to pathogen acquisition has been shown to reduce disease transmission. Furthermore, the induction of systemic immune responses has been documented while pathogens are still differentiating within the midgut environment. While evidence for a close molecular communication between the local and systemic responses is accumulating, the molecular signals that mediate these interactions are at present unknown. Reactive intermediates such as NO or H2O2 may function as immunological signals for mediating the molecular communication between the different insect compartments. We discuss the putative role of the proventriculus in invertebrate immunity and specifically speculate on its significance for trypanosome transmission in tsetse.
Collapse
Affiliation(s)
- Zhengrong Hao
- Department of Epidemiology and Public Health, Section of Vector Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
82
|
Lehane MJ, Aksoy S, Gibson W, Kerhornou A, Berriman M, Hamilton J, Soares MB, Bonaldo MF, Lehane S, Hall N. Adult midgut expressed sequence tags from the tsetse fly Glossina morsitans morsitans and expression analysis of putative immune response genes. Genome Biol 2003; 4:R63. [PMID: 14519198 PMCID: PMC328452 DOI: 10.1186/gb-2003-4-10-r63] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Revised: 06/12/2003] [Accepted: 08/06/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tsetse flies transmit African trypanosomiasis leading to half a million cases annually. Trypanosomiasis in animals (nagana) remains a massive brake on African agricultural development. While trypanosome biology is widely studied, knowledge of tsetse flies is very limited, particularly at the molecular level. This is a serious impediment to investigations of tsetse-trypanosome interactions. We have undertaken an expressed sequence tag (EST) project on the adult tsetse midgut, the major organ system for establishment and early development of trypanosomes. RESULTS A total of 21,427 ESTs were produced from the midgut of adult Glossina morsitans morsitans and grouped into 8,876 clusters or singletons potentially representing unique genes. Putative functions were ascribed to 4,035 of these by homology. Of these, a remarkable 3,884 had their most significant matches in the Drosophila protein database. We selected 68 genes with putative immune-related functions, macroarrayed them and determined their expression profiles following bacterial or trypanosome challenge. In both infections many genes are downregulated, suggesting a malaise response in the midgut. Trypanosome and bacterial challenge result in upregulation of different genes, suggesting that different recognition pathways are involved in the two responses. The most notable block of genes upregulated in response to trypanosome challenge are a series of Toll and Imd genes and a series of genes involved in oxidative stress responses. CONCLUSIONS The project increases the number of known Glossina genes by two orders of magnitude. Identification of putative immunity genes and their preliminary characterization provides a resource for the experimental dissection of tsetse-trypanosome interactions.
Collapse
Affiliation(s)
- M J Lehane
- School of Biological Sciences, University of Wales, Bangor, LL57 2UW, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
TSETSE FLIES (DIPTERA: Glossinidae) are important agricultural and medical vectors transmitting the African trypanosomes, the agents of sleeping sickness disease in humans and various diseases in animals (nagana). While the prevalence of disease has increased to epidemic proportions, lack of a mammalian vaccine and affordable and effective drugs have hindered disease control. Trypanosomiasis management relies heavily on the control of its single insect vector, the tsetse fly. Despite the effectiveness of some of these tools, their impact on disease control has not been sustainable due to their local nature and extensive dependence on community participation. Recent advances in molecular technologies and their application to insects have revolutionized the field of vector biology, and there is hope that such new approaches may form the basis for future tsetse interventions. The success of the genetic approaches aiming to disrupt the transmission cycle of the parasite in their invertebrate host depends on full understanding of the interaction between tsetse and trypanosomes. This article reviews the biology of trypanosome development in the fly and the multiple bacterial symbionts that inhabit the same gut environment. The availability of a genetic transformation system for the midgut symbiont allows for gene products to be expressed in vivo in the tsetse gut where they can produce a hostile environment for pathogen transmission. The characterization of gene product(s) with anti-pathogenic properties and their expression in vivo is discussed. A strategy is outlined where the replacement of susceptible insect phenotypes with their engineered refractory counterparts can result in decreased disease transmission.
Collapse
Affiliation(s)
- Serap Aksoy
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|