51
|
Butchart J, Holmes C. Systemic and central immunity in Alzheimer's disease: therapeutic implications. CNS Neurosci Ther 2011; 18:64-76. [PMID: 22070806 DOI: 10.1111/j.1755-5949.2011.00245.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clinical pharmaceutical trials aimed at modulating the immune system in Alzheimer's Disease have largely focused on either dampening down central proinflammatory innate immunity or have manipulated adaptive immunity to facilitate the removal of centrally deposited beta amyloid. To date, these trials have had mixed clinical therapeutic effects. However, a number of clinical studies have demonstrated disturbances of both systemic and central innate immunity in Alzheimer's Disease and attention has been drawn to the close communication pathways between central and systemic immunity. This paper highlights the need to take into account the potential systemic effects of drugs aimed at modulating central immunity and the possibility of developing novel therapeutic approaches based on the manipulation of systemic immunity and its communication with the central nervous system.
Collapse
Affiliation(s)
- Joseph Butchart
- Clinical Neurosciences Division, University of Southampton, Moorgreen Hospital, UK
| | | |
Collapse
|
52
|
Pisani L, Catto M, Giangreco I, Leonetti F, Nicolotti O, Stefanachi A, Cellamare S, Carotti A. Design, synthesis, and biological evaluation of coumarin derivatives tethered to an edrophonium-like fragment as highly potent and selective dual binding site acetylcholinesterase inhibitors. ChemMedChem 2011; 5:1616-30. [PMID: 20677317 DOI: 10.1002/cmdc.201000210] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A large series of substituted coumarins linked through an appropriate spacer to 3-hydroxy-N,N-dimethylanilino or 3-hydroxy-N,N,N-trialkylbenzaminium moieties were synthesized and evaluated as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. The highest AChE inhibitory potency in the 3-hydroxy-N,N-dimethylanilino series was observed with a 6,7-dimethoxy-3-substituted coumarin derivative, which, along with an outstanding affinity (IC(50)=0.236 nM) exhibits excellent AChE/BChE selectivity (SI>300 000). Most of the synthesized 3-hydroxy-N,N,N-trialkylbenzaminium salts display an AChE affinity in the sub-nanomolar to picomolar range along with excellent AChE/BChE selectivities (SI values up to 138 333). The combined use of docking and molecular dynamics simulations permitted us to shed light on the observed structure-affinity and structure-selectivity relationships, to detect two possible alternative binding modes, and to assess the critical role of pi-pi stacking interactions in the AChE peripheral binding site.
Collapse
Affiliation(s)
- Leonardo Pisani
- Dipartimento Farmaco-chimico, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Wang YJ, Gao CY, Yang M, Liu XH, Sun Y, Pollard A, Dong XY, Wu XB, Zhong JH, Zhou HD, Zhou XF. Intramuscular delivery of a single chain antibody gene prevents brain Aβ deposition and cognitive impairment in a mouse model of Alzheimer's disease. Brain Behav Immun 2010; 24:1281-93. [PMID: 20595065 DOI: 10.1016/j.bbi.2010.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/26/2010] [Accepted: 05/28/2010] [Indexed: 12/30/2022] Open
Abstract
Anti-beta-amyloid (Aβ) immunotherapy is effective in removing brain Aβ, but has shown to be associated with detrimental effects. We have demonstrated that Adeno-associated virus (AAV)-mediated delivery of an anti-Aβ single chain antibody (scFv) gene was effective in clearing brain Aβ without eliciting any inflammatory side effects in old APP(Swe)/PS1dE9 transgenic mice. In the present study, we tested the efficacy and safety of intramuscular delivery of the scFv gene in preventing brain Aβ deposition. The scFv gene was intramuscularly delivered to APP(Swe)/PS1dE9 transgenic mice at 3 months of age, prior to Aβ deposition in the brain. Six months later, we found that the transgenes were expressed in a stable form at the delivered sites, with a small amount of ectopic expression in the liver and olfactory bulb. Brain Aβ plaque formation, Aβ accumulation, AD-type pathologies and cognitive impairment were significantly attenuated in scFv-treated APP(Swe)/PS1dE9 transgenic mice relative to EGFP-treated mice. Intramuscular delivery of scFv gene was well tolerated by the animals, did not cause inflammation or microhemorrhage at the gene expression site and in the brain, and did not induce neutralizing antibodies in the animals. These findings suggest that peripheral application of scFv is effective and safe in preventing the development of Alzheimer's disease (AD), and would be a promising non-inflammatory immunological modality for prevention and treatment of AD.
Collapse
Affiliation(s)
- Yan-Jiang Wang
- Department of Human Physiology, Center for Neuroscience, Flinders University, Adelaide 5042, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Vitti A, Piazzolla G, Condelli V, Nuzzaci M, Lanorte MT, Boscia D, De Stradis A, Antonaci S, Piazzolla P, Tortorella C. Cucumber mosaic virus as the expression system for a potential vaccine against Alzheimer's disease. J Virol Methods 2010; 169:332-40. [PMID: 20691733 DOI: 10.1016/j.jviromet.2010.07.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/28/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
Abstract
A primary therapeutic goal in Alzheimer's disease (AD) is to reduce the quantity of amyloid β protein (Aβ) present in the brain. To develop an effective, safe system for vaccination against Alzheimer's disease, the plant virus Cucumber mosaic virus (CMV) was engineered genetically to express Aβ-derived fragments that stimulate mainly humoral immune responses. Six chimeric constructs, bearing the Aβ1-15 or the Aβ4-15 sequence in positions 248, 392 or 529 of the CMV coat protein (CP) gene, were created. Viral products proved to be able to replicate in their natural host. However, only chimeric Aβ1-15-CMVs were detected by Aβ1-42 antiserum in Western blot analysis. Experimental evidence of Immunoelectron microscopy revealed a complete decoration of Aβ1-15-CMV(248) and Aβ1-15-CMV(392) following incubation with either anti-Aβ1-15 or anti-Aβ1-42 polyclonal antibodies. These two chimeric CMVs appear to be endowed with features making them possible candidates for vaccination against Alzheimer's disease.
Collapse
Affiliation(s)
- A Vitti
- Department of Biology, Plant Protection and Agrobiotechnology, University of Basilicata, Viale dell'Ateneo Lucano, 10, 85100 Potenza, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Anti-11[E]-pyroglutamate-modified amyloid β antibodies cross-react with other pathological Aβ species: relevance for immunotherapy. J Neuroimmunol 2010; 229:248-55. [PMID: 20864186 DOI: 10.1016/j.jneuroim.2010.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/24/2010] [Accepted: 08/26/2010] [Indexed: 12/15/2022]
Abstract
N-truncated/modified forms of amyloid beta (Aß) peptide are found in diffused and dense core plaques in Alzheimer's disease (AD) and Down's syndrome patients as well as animal models of AD, and represent highly desirable therapeutic targets. In the present study we have focused on N-truncated/modified Aβ peptide bearing amino-terminal pyroglutamate at position 11 (AβN11(pE)). We identified two B-cell epitopes recognized by rabbit anti-AβN11(pE) polyclonal antibodies. Interestingly, rabbit anti-AβN11(pE) polyclonal antibodies bound also to full-length Aβ1-42 and N-truncated/modified AβN3(pE), suggesting that the three peptides may share a common B-cell epitope. Importantly, rabbit anti-AβN11(pE) antibodies bound to naturally occurring Aβ aggregates present in brain samples from AD patients. These results are potentially important for developing novel immunogens for targeting N-truncated/modified Aβ aggregates as well, since the most commonly used immunogens in the majority of vaccine studies have been shown to induce antibodies that recognize the N-terminal immunodominant epitope (EFRH) of the full length Aβ, which is absent in N-amino truncated peptides.
Collapse
|
56
|
Abstract
IMPORTANCE OF THE FIELD Alzheimer's disease is the leading cause of dementia in the elderly, and there is no disease-modifying therapy yet available. Immunotherapy directed against the beta-amyloid peptide may be capable of slowing the rate of disease progression. Bapineuzumab, an anti-beta-amyloid monoclonal antibody, will be the first such agent to emerge from Phase III clinical trials. AREAS COVERED IN THIS REVIEW The primary literature on bapineuzumab from 2009 and 2010 is reviewed in its entirety, along with the literature on AN1792, a first-generation anti-beta-amyloid vaccine, from 2003 to 2009. Other Alzheimer's disease immunotherapeutics currently in development, according to www.clinicaltrials.gov , are also discussed. WHAT THE READER WILL GAIN In addition to a critical appraisal of the Phase II trial results for bapineuzumab, this review considers the broader field of immunotherapy for Alzheimer's disease as a whole, including the challenges ahead. TAKE HOME MESSAGE Bapineuzumab appears capable of reducing the cerebral beta-amyloid peptide burden in patients with Alzheimer's disease. However, particularly in APOE 4 carriers, its ability to slow disease progression remains uncertain, and vasogenic edema - a dose-limiting and potentially severe adverse reaction - may limit its clinical applicability.
Collapse
Affiliation(s)
- Geoffrey A Kerchner
- Stanford University School of Medicine, Stanford Center for Memory Disorders, 300 Pasteur Drive, Room A343, Stanford, CA 94305-5235, USA
| | | |
Collapse
|
57
|
Thiam F, Martino CD, Bon F, Charpilienne A, Cachia C, Poncet D, Clements JD, Basset C, Kohli E. Unexpected modulation of recall B and T cell responses after immunization with rotavirus-like particles in the presence of LT-R192G. Toxins (Basel) 2010; 2:2007-27. [PMID: 22069670 PMCID: PMC3153289 DOI: 10.3390/toxins2082007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 08/03/2010] [Indexed: 12/23/2022] Open
Abstract
LT-R192G, a mutant of the thermolabile enterotoxin of E. coli, is a potent adjuvant of immunization. Immune responses are generally analyzed at the end of protocols including at least 2 administrations, but rarely after a prime. To investigate this point, we compared B and T cell responses in mice after one and two intrarectal immunizations with 2/6 rotavirus-like particles (2/6-VLP) and LT-R192G. After a boost, we found, an unexpected lower B cell expansion measured by flow cytometry, despite a secondary antibody response. We then analyzed CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) and CD4(+)CD25(+)Foxp3(-) helper T cells after in vitro (re)stimulation of mesenteric lymph node cells with the antigen (2/6-VLP), the adjuvant (LT-R192G) or both. 2/6-VLP did not activate CD4(+)CD25(+)Foxp3(-) nor Foxp3(+) T cells from non-immunized and 2/6-VLP immunized mice, whereas they did activate both subsets from mice immunized with 2/6-VLP in the presence of adjuvant. LT-R192G dramatically decreased CD4(+)CD25(+)Foxp3(+) T cells from non-immunized and 2/6-VLP immunized mice but not from mice immunized with 2/6-VLP and adjuvant. Moreover, in this case, LT-R192G increased Foxp3 expression on CD4(+)CD25(+)Foxp3(+) cells, suggesting specific Treg activation during the recall. Finally, when both 2/6-VLP and LT-R192G were used for restimulation, LT-R192G clearly suppressed both 2/6-VLP-specific CD4(+)CD25(+)Foxp3(-) and Foxp3(+) T cells. All together, these results suggest that LT-R192G exerts different effects on CD4(+)CD25(+)Foxp3(+) T cells, depending on a first or a second contact. The unexpected immunomodulation observed during the recall should be considered in designing vaccination protocols.
Collapse
Affiliation(s)
- Fatou Thiam
- Laboratoire des Interactions Muqueuses-Agents transmissibles (LIMA), UPR562, UFRs Médecine et Pharmacie, IFR Santé-STIC, Université de Bourgogne, Dijon, France; (F.T.); (C.D.M.); (F.B.); (C.C.); (E.K.)
| | - Cyrille Di Martino
- Laboratoire des Interactions Muqueuses-Agents transmissibles (LIMA), UPR562, UFRs Médecine et Pharmacie, IFR Santé-STIC, Université de Bourgogne, Dijon, France; (F.T.); (C.D.M.); (F.B.); (C.C.); (E.K.)
| | - Fabienne Bon
- Laboratoire des Interactions Muqueuses-Agents transmissibles (LIMA), UPR562, UFRs Médecine et Pharmacie, IFR Santé-STIC, Université de Bourgogne, Dijon, France; (F.T.); (C.D.M.); (F.B.); (C.C.); (E.K.)
| | - Annie Charpilienne
- Virologie Moléculaire et Structurale, UMR CNRS 2472 INRA 1157, Gif/Yvette, France; (A.C.); (D.P.)
| | - Claire Cachia
- Laboratoire des Interactions Muqueuses-Agents transmissibles (LIMA), UPR562, UFRs Médecine et Pharmacie, IFR Santé-STIC, Université de Bourgogne, Dijon, France; (F.T.); (C.D.M.); (F.B.); (C.C.); (E.K.)
| | - Didier Poncet
- Virologie Moléculaire et Structurale, UMR CNRS 2472 INRA 1157, Gif/Yvette, France; (A.C.); (D.P.)
| | - John D. Clements
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA; (J.D.C.)
| | - Christelle Basset
- Laboratoire des Interactions Muqueuses-Agents transmissibles (LIMA), UPR562, UFRs Médecine et Pharmacie, IFR Santé-STIC, Université de Bourgogne, Dijon, France; (F.T.); (C.D.M.); (F.B.); (C.C.); (E.K.)
| | - Evelyne Kohli
- Laboratoire des Interactions Muqueuses-Agents transmissibles (LIMA), UPR562, UFRs Médecine et Pharmacie, IFR Santé-STIC, Université de Bourgogne, Dijon, France; (F.T.); (C.D.M.); (F.B.); (C.C.); (E.K.)
| |
Collapse
|
58
|
Giuffrida ML, Caraci F, De Bona P, Pappalardo G, Nicoletti F, Rizzarelli E, Copani A. The monomer state of beta-amyloid: where the Alzheimer's disease protein meets physiology. Rev Neurosci 2010; 21:83-93. [PMID: 20614800 DOI: 10.1515/revneuro.2010.21.2.83] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
One hundred years of study have identified beta-Amyloid (A beta) as the most interesting feature of Alzheimer's disease (AD). Since the discovery of A beta as the principal component of amyloid plaques, the central challenge in AD research has been the understanding of A beta involvement in the neurodegenerative process of the disease. The ability of A beta to undergo conformational changes and subsequent aggregation has always been a limiting factor in finding out the activities of the peptide. Extensive research has been carried out to study the molecular mechanisms of amyloid self-assembly. The finding that soluble Abeta concentrations in the brain are correlated with the severity of AD, whereas fibrillar density is not /40,42/, has pointed attention toward the oligomeric forms of Abeta, which are generally considered the most toxic and, therefore, the most important species to be addressed. Despite great efforts in basic AD research, none of the currently available treatments is able to treat the devastating effects of the disease, leading to the consideration that there is more to reason than just A beta production and aggregation. Here we summarize the emerging evidence for the physiological functions of A beta, including our recent demonstration that A beta monomers are endowed with neuroprotective activity, and propose that A beta aggregation might contribute to AD pathology through a "loss-of-function" process. Finally, we discuss the current therapeutics targeting the cerebral load of A beta and possible new ones aimed at preserving the biological functions of A beta.
Collapse
Affiliation(s)
- M L Giuffrida
- Department of Pharmaceutical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | | | | | | | | | | | | |
Collapse
|
59
|
Cholera-like enterotoxins and Regulatory T cells. Toxins (Basel) 2010; 2:1774-95. [PMID: 22069660 PMCID: PMC3153266 DOI: 10.3390/toxins2071774] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/23/2010] [Accepted: 06/28/2010] [Indexed: 01/25/2023] Open
Abstract
Cholera toxin (CT) and the heat-labile enterotoxin of E. coli (LT), as well as their non toxic mutants, are potent mucosal adjuvants of immunization eliciting mucosal and systemic responses against unrelated co-administered antigens in experimental models and in humans (non toxic mutants). These enterotoxins are composed of two subunits, the A subunit, responsible for an ADP-ribosyl transferase activity and the B subunit, responsible for cell binding. Paradoxically, whereas the whole toxins have adjuvant properties, the B subunits of CT (CTB) and of LT (LTB) have been shown to induce antigen specific tolerance when administered mucosally with antigens in experimental models as well as, recently, in humans, making them an attractive strategy to prevent or treat autoimmune or allergic disorders. Immunomodulation is a complex process involving many cell types notably antigen presenting cells and regulatory T cells (Tregs). In this review, we focus on Treg cells and cholera-like enterotoxins and their non toxic derivates, with regard to subtype, in vivo/in vitro effects and possible role in the modulation of immune responses to coadministered antigens.
Collapse
|
60
|
Odumosu O, Nicholas D, Yano H, Langridge W. AB toxins: a paradigm switch from deadly to desirable. Toxins (Basel) 2010; 2:1612-45. [PMID: 22069653 PMCID: PMC3153263 DOI: 10.3390/toxins2071612] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 06/08/2010] [Accepted: 06/23/2010] [Indexed: 11/16/2022] Open
Abstract
To ensure their survival, a number of bacterial and plant species have evolved a common strategy to capture energy from other biological systems. Being imperfect pathogens, organisms synthesizing multi-subunit AB toxins are responsible for the mortality of millions of people and animals annually. Vaccination against these organisms and their toxins has proved rather ineffective in providing long-term protection from disease. In response to the debilitating effects of AB toxins on epithelial cells of the digestive mucosa, mechanisms underlying toxin immunomodulation of immune responses have become the focus of increasing experimentation. The results of these studies reveal that AB toxins may have a beneficial application as adjuvants for the enhancement of immune protection against infection and autoimmunity. Here, we examine similarities and differences in the structure and function of bacterial and plant AB toxins that underlie their toxicity and their exceptional properties as immunomodulators for stimulating immune responses against infectious disease and for immune suppression of organ-specific autoimmunity.
Collapse
Affiliation(s)
- Oludare Odumosu
- Center for Health Disparities and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (O.O.)
- Department of Biochemistry, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (D.N.)
| | - Dequina Nicholas
- Center for Health Disparities and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (O.O.)
- Department of Biochemistry, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (D.N.)
| | - Hiroshi Yano
- Department of Biology, University of Redlands, 1200 East Colton Ave, P.O. Box 3080, Redlands, CA 92373, USA; (H.Y.)
| | - William Langridge
- Center for Health Disparities and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (O.O.)
- Department of Biochemistry, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (D.N.)
- Author to whom correspondence should be addressed; ; Tel.: +1-909-558-1000 (81362); Fax: +1-909-558-0177
| |
Collapse
|
61
|
Wang CM, Devries S, Camboni M, Glass M, Martin PT. Immunization with the SDPM1 peptide lowers amyloid plaque burden and improves cognitive function in the APPswePSEN1(A246E) transgenic mouse model of Alzheimer's disease. Neurobiol Dis 2010; 39:409-22. [PMID: 20493257 DOI: 10.1016/j.nbd.2010.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/06/2010] [Accepted: 05/11/2010] [Indexed: 11/19/2022] Open
Abstract
Vaccination has become an important therapeutic approach to the treatment of Alzheimer's disease (AD), however, immunization with Abeta amyloid can have unwanted, potentially lethal, side effects. Here we demonstrate an alternative peptide-mimotope vaccine strategy using the SDPM1 peptide. SDPM1 is a 20 amino acid peptide bounded by cysteines that binds tetramer forms of Abeta(1-40)- and Abeta(1-42)-amyloids and blocks subsequent Abeta amyloid aggregation. Immunization of mice with SDPM1 induced peptide-mimotope antibodies with the same biological activity as the SDPM1 peptide. When done prior to the onset of amyloid plaque formation, SDPM1 vaccination of APPswePSEN1(A246E) transgenic mice reduced amyloid plaque burden and Abeta(1-40) and Abeta(1-42) levels in the brain, improved cognitive performance in Morris water maze tests, and resulted in no increased T cell responses to immunogenic or Abeta peptides or brain inflammation. When done after plaque burden was already significant, SDPM1 immunization still significantly reduced amyloid plaque burden and Abeta(1-40/1-42) peptide levels in APPswePSEN1(A246E) brain without inducing encephalitogenic T cell responses or brain inflammation, but treatment at this stage did not improve cognitive function. These experiments demonstrate the efficacy of a novel vaccine approach for Alzheimer's disease where immunization with an Abeta(1-40/1-42) amyloid-specific binding and blocking peptide is used to inhibit the development of neuropathology and cognitive dysfunction.
Collapse
Affiliation(s)
- Chiou-Miin Wang
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, OH 43205, USA
| | | | | | | | | |
Collapse
|
62
|
Microglia activation and anti-inflammatory regulation in Alzheimer's disease. Mol Neurobiol 2010; 41:115-28. [PMID: 20195797 DOI: 10.1007/s12035-010-8106-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 02/04/2010] [Indexed: 12/16/2022]
Abstract
Inflammatory regulators, including endogenous anti-inflammatory systems, can down-regulate inflammation thus providing negative feedback. Chronic inflammation can result from imbalance between levels of inflammatory mediators and regulators during immune responses. As a consequence, there are heightened inflammatory responses and irreversible tissue damage associated with many age-related chronic diseases. Alzheimer's disease (AD) brain is marked by prominent inflammatory features, in which microglial activation is the driving force for the elaboration of an inflammatory cascade. How the regulation of inflammation loses its effectiveness during AD pathogenesis remains largely unclear. In this article, we will first review current knowledge of microglial activation and its association with AD pathology. We then discuss four examples of anti-inflammatory systems that could play a role in regulating microglial activation: CD200/CD200 receptor, vitamin D receptor, peroxisome proliferator-activated receptors, and soluble receptor for advanced glycation end products. Through this, we hope to illustrate the diverse aspects of inflammatory regulatory systems in brain and neurodegenerative diseases such as AD. We also propose the importance of neuronal defense systems, because they are part of the integral inflammatory and anti-inflammatory systems. Augmenting the anti-inflammatory defenses of neurons can be included in the strategy for restoration of balanced immune responses during aging and neurodegenerative diseases.
Collapse
|
63
|
Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 2009; 4:47. [PMID: 19917131 PMCID: PMC2784760 DOI: 10.1186/1750-1326-4-47] [Citation(s) in RCA: 557] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 11/16/2009] [Indexed: 12/13/2022] Open
Abstract
While peripheral immune access to the central nervous system (CNS) is restricted and tightly controlled, the CNS is capable of dynamic immune and inflammatory responses to a variety of insults. Infections, trauma, stroke, toxins and other stimuli are capable of producing an immediate and short lived activation of the innate immune system within the CNS. This acute neuroinflammatory response includes activation of the resident immune cells (microglia) resulting in a phagocytic phenotype and the release of inflammatory mediators such as cytokines and chemokines. While an acute insult may trigger oxidative and nitrosative stress, it is typically short-lived and unlikely to be detrimental to long-term neuronal survival. In contrast, chronic neuroinflammation is a long-standing and often self-perpetuating neuroinflammatory response that persists long after an initial injury or insult. Chronic neuroinflammation includes not only long-standing activation of microglia and subsequent sustained release of inflammatory mediators, but also the resulting increased oxidative and nitrosative stress. The sustained release of inflammatory mediators works to perpetuate the inflammatory cycle, activating additional microglia, promoting their proliferation, and resulting in further release of inflammatory factors. Neurodegenerative CNS disorders, including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), tauopathies, and age-related macular degeneration (ARMD), are associated with chronic neuroinflammation and elevated levels of several cytokines. Here we review the hallmarks of acute and chronic inflammatory responses in the CNS, the reasons why microglial activation represents a convergence point for diverse stimuli that may promote or compromise neuronal survival, and the epidemiologic, pharmacologic and genetic evidence implicating neuroinflammation in the pathophysiology of several neurodegenerative diseases.
Collapse
|