51
|
Abstract
Vaccination against smallpox may result in a variety of complications, ranging in severity from benign to lethal. Universal vaccination was halted in the US in 1972, so almost half the present population has never been vaccinated. Because side effects occur most often in first-time vaccinees, current plans for rapid large-scale vaccination in the event of bioterrorist attack raise concerns about the occurrence of a large number of adverse events. Most complications result from the excessive replication of vaccinia virus, making them potential targets for antiviral therapy. Effective treatment is especially needed for persons with atopic dermatitis or eczema, who are unusually susceptible to the initiation and spread of vaccinia infection because of defects of innate immunity in the skin, and for individuals with defective cell-mediated immunity, who are unable to eliminate vaccinia infection once it has begun. In the past, many complications were treated with vaccinia immune globulin (VIG) and/or the antiviral drug methisazone, but neither was tested in placebo-controlled trials. New antiviral drugs are now available, but have not yet been evaluated for treating vaccinia infections in humans. Both laboratory research and clinical studies are needed to help prevent serious complications in any major vaccination campaign.
Collapse
Affiliation(s)
- Mike Bray
- Biodefense Clinical Research Branch, Office of Clinical Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
52
|
Abstract
The events of 11 September 2001, in New York City, and subsequent identification of anthrax in the United States Postal System, have generated a new sense of awareness for the potential of biological terrorism, if not warfare. Among those agents identified by the Centers for Disease Control and Prevention as 'Class A Bioterrorist Threats', smallpox is among the most dangerous. The ease of transmission of this agent, the lack of immunity in the population at large to this agent, and rapidity of its spread, if released, all generate significant concern for its deployment. A vaccine directed against smallpox is available but it is also associated with significant adverse events-some of which are life-threatening. Further, no antiviral drug has proven efficacious for therapy of human disease, although one licensed drug, cidofovir, does have in vitro activity. Regardless, heightened awareness should lead to the development of a vaccine without significant adverse events and safe and efficacious antiviral drugs. The availability of a vaccine and antiviral drugs that are safe would significantly remove any major threat of smallpox deployment by a terrorist.
Collapse
Affiliation(s)
- Richard J Whitley
- Department of Pediatrics, Microbiology and Medicine Children's Hospital, The University of Alabama at Birmingham, ACC 616, 1600 7th Avenue South, Birmingham, AL 35233, USA.
| |
Collapse
|
53
|
Neyts J, De Clercq E. Therapy and short-term prophylaxis of poxvirus infections: historical background and perspectives. Antiviral Res 2003; 57:25-33. [PMID: 12615300 DOI: 10.1016/s0166-3542(02)00197-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The era of antiviral chemotherapy started more than 50 years with the findings by Domagk and his colleagues that thiosemicarbazones showed activity against vaccinia virus. One of the derivatives, methisazone, was even investigated in the prophylaxis of smallpox. With the successful implementation of the smallpox vaccine, the use of methisazone was not further pursued. Should there be a threat of smallpox or other poxvirus infections, that could not be immediately controlled by vaccination, a therapeutic intervention could be envisaged based on several therapeutic strategies targeted at such cellular enzymes as IMP dehydrogenase, SAH hydrolase, OMP decarboxylase and CTP synthetase, as well as viral enzymes such as the DNA polymerase. Most advanced as a therapeutic or early prophylactic modality to tackle poxvirus infection is cidofovir, which was found active (i) in vitro against all poxviruses studied so far; (ii) in vivo, against vaccinia and cowpox virus infections in experimental animal models; as well as (iii) some human poxvirus infections, such as molluscum contagiosum. In case of an inadvertent poxvirus epidemic, antiviral therapy (i.e. with cidofovir) will offer the possibility to provide short-term prophylaxis, or therapy. Cidofovir should also allow to treat severe complications of vaccination as may happen in for example immunosuppressed patients.
Collapse
Affiliation(s)
- Johan Neyts
- Rega Institute for Medical Research, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | | |
Collapse
|
54
|
Abstract
Several animal models using mice (most frequently), rabbits, or monkeys have been used to identify compounds active against orthopoxvirus infections. The treatment of vaccinia virus infections has been well studied in models involving infection of scarified skin or eyes, or resulting from intravenous, intraperitoneal, intracerebral, or intranasal virus inoculation. Cowpox virus has been used in intranasal or aerosol infection studies to evaluate the treatment of lethal respiratory infections. Rabbitpox, monkeypox, and variola viruses have been employed to a lesser extent than the other viruses in chemotherapy experiments. A review of the literature over the past 50 years has identified a number of compounds effective in treating one or more of these infections, which include thiosemicarbazones, nucleoside and nucleotide analogs, interferon, interferon inducers, and other unrelated compounds. Substances that appear to have the greatest potential as anti-orthopoxvirus agents are the acyclic nucleotides, (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine (cidofovir, HPMPC) and 1-[((S)-2-hydroxy-2-oxo-1,4,2-dioxaphosphorinan-5-yl)methyl]cytosine (cyclic HPMPC), and the acyclic nucleoside analog, 2-amino-7-[(1,3-dihydroxy-2-propoxy)methyl]purine (S2242). Other classes of compounds that have not been sufficiently studied in lethal infection models and deserve further consideration are thiosemicarbazones related to methisazone, and analogs of adenosine-N(1)-oxide and 1-(benzyloxy)adenosine.
Collapse
Affiliation(s)
- Donald F Smee
- Department of Animal, Dairy and Veterinary Sciences, Institute for Antiviral Research, Utah State University, Logan, UT 84322-5600, USA.
| | | |
Collapse
|
55
|
Gray PM, Parks GD, Alexander-Miller MA. High avidity CD8+ T cells are the initial population elicited following viral infection of the respiratory tract. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:174-81. [PMID: 12496398 DOI: 10.4049/jimmunol.170.1.174] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Following intranasal administration, the model paramyxovirus simian virus 5 (SV5) establishes an infection in the respiratory tract of mice, which is subsequently cleared by CD8+ T cells. In this study, we sought to understand the maturation of the antiviral immune response over time by assessing the functional avidity of the responding T cells and the expansion of immunodominant populations. Surprisingly, we determined that the initial response to Ag at day 3 (d3) in the mediastinal lymph node was exclusively high avidity. However, by d5 postinfection, low avidity cells were approximately 50% of the responding T cell population. Following secondary exposure to SV5, high avidity CD8+ T cells again are the exclusive cell type present at early times postinfection (d2). Similarly, high avidity cells were preferentially elicited at d3 following infection with the unrelated vaccinia virus. We also made the observation that the immunodominance profile has not been established at d3 postinfection with SV5. However, by d5 a clear immunodominance pattern arises and is permanently maintained. These data indicate that high avidity cells are the predominant population responding at early times postinfection following respiratory infection with SV5 or vaccinia virus. However, as the response progresses, low avidity cells are activated/expanded to a greater extent compared with high avidity cells.
Collapse
Affiliation(s)
- Peter M Gray
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
56
|
Abstract
We assessed the activities of 24 different antiviral compounds against smallpox (two strains of variola major and one of variola minor), monkeypox, vaccinia and cowpox viruses by a neutral red uptake assay. To establish assay parameters, we examined viral replication and its inhibition at various times postinfection and at several multiplicities of infection. Drugs were selected to target a range of functions involved in viral replication. Eight compounds (cidofovir, cyclic HPMPC (cHPMPC), HPMPA, ribavirin, tiazofurin, carbocyclic 3-deazaadenosine, 3-deazaneplanocin A and DFBA (1-(2,4-difluorobenzyloxy)adenosine perchlorate)-a derivative of adenosine N1-oxide) inhibited the replication of all three variola strains and the other orthopoxviruses at drug concentrations within a pharmacologically achievable range. Two others (methisazone and bis-POM-PMEA) showed a lesser degree of antiviral effect, while the remainder were inactive. To examine possible naturally occurring drug resistance among a large number of variola isolates obtained from different geographical regions and at different times, we examined the sensitivity of 35 different strains of variola as well as other orthopoxviruses to a subset of three of the most active compounds: cidofovir, cHPMPC, and ribavirin. Preliminary data indicate that nearly all isolates appear to have similar drug sensitivities. These findings are currently being verified and expanded.
Collapse
Affiliation(s)
- Robert O Baker
- Department of Viral Therapeutics, Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA.
| | | | | |
Collapse
|
57
|
Snoeck R, Holý A, Dewolf-Peeters C, Van Den Oord J, De Clercq E, Andrei G. Antivaccinia activities of acyclic nucleoside phosphonate derivatives in epithelial cells and organotypic cultures. Antimicrob Agents Chemother 2002; 46:3356-61. [PMID: 12384336 PMCID: PMC128754 DOI: 10.1128/aac.46.11.3356-3361.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Organotypic "raft" cultures of epithelial cells allow the reconstitution of a skin equivalent that is easily infectible with different viruses with cutaneous tropism. Among these, poxvirus and particularly vaccinia virus (VV) are good candidates for use in antiviral tests, giving histological pictures comparable to those observed in humans infected with smallpox. Therefore, we decided to evaluate a series of phosphonate derivatives for their ability to inhibit VV growth in epithelial cell monolayers, and the most powerful derivatives were tested in the organotypic cultures. The most active compound was 9-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine [(S)-HPMPA], followed by 9-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine, cyclic (S)-HPMPA, 9-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine [(S)-HPMPC; cidofovir, Vistide], and cyclic (S)-HPMPC. Cidofovir, which is on the market for the treatment of human cytomegalovirus retinitis in immunocompromised patients, is potentially a good candidate for the treatment of a poxvirus outbreak, in the absence of any vaccination.
Collapse
Affiliation(s)
- R Snoeck
- Rega Institute for Medical Research, K.U. Leuven. Pathology Department, U.Z. Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
58
|
Abstract
Although it is often stated that only vaccination would be able to contain or protect the population against a catastrophic smallpox outbreak, the acyclic nucleoside phosphonate analog cidofovir offers a valuable alternative for the therapy and short-term pre- and post-exposure prophylaxis, not only of smallpox but also of other poxvirus infections and DNA viruses. Cidofovir has proven effective against vaccinia, cowpox and monkeypox in various animal model infections. In cell culture, cidofovir has demonstrated activity against variola virus, the etiological agent of smallpox, and in patients it has shown marked efficacy against molluscum contagiosum and orf, two poxvirus infections. Cidofovir is available as an aqueous solution for intravenous administration and could be reformulated for topical (cream or gel), intranasal (aerosol) or peroral (as a lipid prodrug) use, should the need arise.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
59
|
Neyts J, Verbeken E, De Clercq E. Effect of 5-iodo-2'-deoxyuridine on vaccinia virus (orthopoxvirus) infections in mice. Antimicrob Agents Chemother 2002; 46:2842-7. [PMID: 12183236 PMCID: PMC127439 DOI: 10.1128/aac.46.9.2842-2847.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is a concern that there may be unregistered stocks of smallpox that can be used for bioterrorism or biological warfare. According to the WHO Advisory Committee on Variola Research, there is a need to develop strategies to treat smallpox infections should they reappear. It would also be important to have an effective drug at hand for the treatment of monkeypox disease in humans. We show here that 5-iodo-2'-deoxyuridine (IDU) is a potent inhibitor of vaccinia virus (VV) replication and that IDU inhibits VV DNA synthesis in a dose-dependent way. The in vivo protective effect of IDU was assessed in the VV tail lesion model in immunocompetent mice and in a lethal model for VV infection in SCID (severe combined immune deficiency) mice that had been infected either intranasally, intraperitoneally, or intravenously. Subcutaneous treatment with IDU at 150 and 100 mg/kg of body weight markedly reduced the number of tail lesions in immunocompetent NMRI mice. Untreated intranasally VV-infected SCID mice died at 20.8 +/- 3.1 days after infection (mean +/- standard deviation). Treatment with IDU (subcutaneously, 150 mg/kg/day [from day 0 to 4] and 75 mg/kg/day [from day 6 to 11]) delayed-virus induced mortality by 15 days (mean day of death +/- standard deviation, 35.8 +/- 6.7; P < 0.0001). This protective effect was associated with (i) an improvement of lung histology and (ii) a marked reduction in lung viral titers. IDU also delayed VV-induced mortality when mice had either been infected intraperitoneally or intravenously. Even when the start of treatment with IDU (in intraperitoneally VV-infected mice) was postponed until 2 or 4 days after infection, an important delay in virus-induced mortality was noted.
Collapse
Affiliation(s)
- Johan Neyts
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
| | | | | |
Collapse
|
60
|
Abstract
Cidofovir [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine, HPMPC] has since 1996 been licensed for clinical use in the treatment of cytomegalovirus (CMV) retinitis in AIDS patients. Cidofovir has broad-spectrum activity against virtually all DNA viruses, including herpes-, adeno-, polyoma-, papilloma- and poxviruses. Among the poxviruses, vaccinia, variola (smallpox), cowpox, monkeypox, camelpox, molluscum contagiosum and orf have proven sensitive to the inhibitory effects of cidofovir. In vivo, cidofovir has shown high efficacy, even after administration of a single systemic (intraperitoneal) or intranasal (aerosolized) dose, in protecting mice from a lethal respiratory infection with either vaccinia or cowpox. Cidofovir has also demonstrated high effectiveness in the treatment of vaccinia virus infection in severe combined immune deficiency mice. In humans, cidofovir has been used successfully in the treatment, by both the topical and intravenous route, of recalcitrant molluscum contagiosum and orf in immunocompromised patients. Taken together, these data indicate that cidofovir should be effective in the therapy and short-term prophylaxis of smallpox and related poxvirus infections in humans, as well as the treatment of the complications of vaccinia that may arise in immunocompromised patients inadvertently inoculated with the smallpox vaccine (vaccinia).
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium.
| |
Collapse
|
61
|
Smee DF, Bailey KW, Sidwell RW. Treatment of lethal cowpox virus respiratory infections in mice with 2-amino-7-[(1,3-dihydroxy-2-propoxy)methyl]purine and its orally active diacetate ester prodrug. Antiviral Res 2002; 54:113-20. [PMID: 12062396 DOI: 10.1016/s0166-3542(01)00217-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The acyclic purine nucleoside analog, 2-amino-7-[(1,3-dihydroxy-2-propoxy)methyl]purine (S2242) and its orally active diacetate ester prodrug (HOE961) were reported to be potent inhibitors of vaccinia virus replication in cell culture and in infected mice. These compounds were evaluated further, using infections with the related cowpox virus. Against a wild-type (WT) cowpox virus strain in mouse C127I cell culture, 50% effective concentrations (EC(50), determined by plaque reduction assays) of S2242 and cidofovir (a positive control) were 3.5 and 1.0 microM, respectively. EC(50) values obtained against a cidofovir-resistant strain of the virus were 33 and 230 microM, respectively. Compounds were at least ten-fold less potent against WT virus in Vero cells than C127I cells. S2242 and cidofovir were 50% inhibitory to the proliferation of uninfected C127I cells at 340 and 180 microM, respectively, but neither compound inhibited Vero cell growth at 1000 microM. Mice were lethally infected with cowpox virus by intranasal inoculation, followed 24 h later by antiviral treatment for 5 consecutive days. Once or twice daily intraperitoneal (i.p.) treatments with either S2242 or HOE961 at 100 mg/kg per day resulted in > or = 70 survival compared with no survivors in the placebo group. Lower doses of these compounds (10 and 30 mg/kg per day) were not protective, however. Cidofovir was 100% protective at 30 mg/kg per day. A 10-day course of treatment gave comparable survival results and demonstrated the oral efficacy of HOE961. Treatments with S2242 (100 mg/kg per day) and cidofovir (30 mg/kg per day) each reduced lung and nasal virus titers by approximately ten-fold, whereas, HOE961 (100 mg/kg per day) was less active. Overall, S2242 and HOE961 were found to be effective against cowpox virus infections in mice but were less potent than cidofovir. Since, HOE961 was orally active, it may have advantages over the other parenterally administered compounds for treating orthopoxvirus infections.
Collapse
Affiliation(s)
- Donald F Smee
- Department of Animal, Dairy and Veterinary Sciences, Institute for Antiviral Research, Utah State University, 84322-5600, Logan, UT 84322-5600, USA.
| | | | | |
Collapse
|
62
|
Smee DF, Bray M, Huggins JW. Antiviral activity and mode of action studies of ribavirin and mycophenolic acid against orthopoxviruses in vitro. Antivir Chem Chemother 2001; 12:327-35. [PMID: 12018677 DOI: 10.1177/095632020101200602] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Two inhibitors of cellular inosine monophosphate dehydrogenase, mycophenolic acid (MPA) and ribavirin, were evaluated for inhibitory activity against orthopoxviruses. Unrelated antipoxvirus agents tested for comparison included 6-azauridine, cidofovir (HPMPC) and cyclic HPMPC. MPA inhibited camelpox, cowpox, monkeypox and vaccinia viruses by 50% in plaque reduction assays at 0.2-3 microM in African green monkey kidney (Vero 76) and mouse 3T3 cells. Ribavirin was considerably more active in 3T3 cells (50% inhibition at 2-12 microM) than in Vero 76 cells (inhibitory at 30-250 microM) against these viruses. In cytotoxicity assays, MPA and ribavirin were more toxic to replicating cells than to stationary cell monolayers, with greater toxicity seen in 3T3 than in Vero 76 cells. The superior antiviral potency and increased toxicity of ribavirin in 3T3 cells was related to greater accumulation of mono-, di- and triphosphate forms of the drug compared with Vero 76 cells. For both MPA and ribavirin, virus inhibition was closely correlated to the extent of suppression of intracellular guanosine triphosphate (GTP) pools. Treatment with extracellular guanosine (which restored intracellular GTP levels) did not lead to complete reversal of the anticowpox virus activity of ribavirin. This suggests that other modes of virus inhibition also appear to contribute to the anti-orthopoxvirus activity of ribavirin. Biological differences in mode of action and immunosuppressive potential between ribavirin and MPA may account for why the former compound is active against orthopoxvirus infections in animals and the latter inhibitor is not.
Collapse
Affiliation(s)
- D F Smee
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA.
| | | | | |
Collapse
|