51
|
Morellini F. Spatial memory tasks in rodents: what do they model? Cell Tissue Res 2013; 354:273-86. [PMID: 23793547 DOI: 10.1007/s00441-013-1668-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/23/2013] [Indexed: 02/08/2023]
Abstract
The analysis of spatial learning and memory in rodents is commonly used to investigate the mechanisms underlying certain forms of human cognition and to model their dysfunction in neuropsychiatric and neurodegenerative diseases. Proper interpretation of rodent behavior in terms of spatial memory and as a model of human cognitive functions is only possible if various navigation strategies and factors controlling the performance of the animal in a spatial task are taken into consideration. The aim of this review is to describe the experimental approaches that are being used for the study of spatial memory in rats and mice and the way that they can be interpreted in terms of general memory functions. After an introduction to the classification of memory into various categories and respective underlying neuroanatomical substrates, I explain the concept of spatial memory and its measurement in rats and mice by analysis of their navigation strategies. Subsequently, I describe the most common paradigms for spatial memory assessment with specific focus on methodological issues relevant for the correct interpretation of the results in terms of cognitive function. Finally, I present recent advances in the use of spatial memory tasks to investigate episodic-like memory in mice.
Collapse
Affiliation(s)
- Fabio Morellini
- AG Experimentelle Neuropädiatrie, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany,
| |
Collapse
|
52
|
Cheng D, Logge W, Low JK, Garner B, Karl T. Novel behavioural characteristics of the APP(Swe)/PS1ΔE9 transgenic mouse model of Alzheimer's disease. Behav Brain Res 2013; 245:120-7. [PMID: 23419740 DOI: 10.1016/j.bbr.2013.02.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/31/2013] [Accepted: 02/05/2013] [Indexed: 02/06/2023]
Abstract
In order to better understand animal models of Alzheimer's disease, novel phenotyping strategies have been established for transgenic mouse models. In line with this, the current study characterised male APPxPS1 transgenic mice on mixed C57BL/6JxC3H/HeJ background for the first time for social recognition memory, sensorimotor gating, and spatial memory using the cheeseboard test as an alternative to the Morris water maze. Furthermore, locomotion, anxiety, and fear conditioning were evaluated in transgenic and wild type-like animals. APPxPS1 males displayed task-dependent hyperlocomotion and anxiety behaviours and exhibited social recognition memory impairments compared to wild type-like littermates. Spatial learning and memory, fear conditioning, and sensorimotor gating were unaffected in APPxPS1 transgenic mice. In conclusion, this study describes for the first time social recognition memory deficits in male APPxPS1 mice and suggests that spatial learning and memory deficits reported in earlier studies are dependent on the sex and genetic background of the APPxPS1 mouse line used. Furthermore, particular test conditions of anxiety and spatial memory paradigms appear to impact on the behavioural response of this transgenic mouse model for Alzheimer's disease.
Collapse
Affiliation(s)
- David Cheng
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | | | | | | | | |
Collapse
|
53
|
Speisman RB, Kumar A, Rani A, Foster TC, Ormerod BK. Daily exercise improves memory, stimulates hippocampal neurogenesis and modulates immune and neuroimmune cytokines in aging rats. Brain Behav Immun 2013; 28:25-43. [PMID: 23078985 PMCID: PMC3545095 DOI: 10.1016/j.bbi.2012.09.013] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/19/2012] [Accepted: 09/26/2012] [Indexed: 01/02/2023] Open
Abstract
We tested whether daily exercise modulates immune and neuroimmune cytokines, hippocampus-dependent behavior and hippocampal neurogenesis in aging male F344 rats (18mo upon arrival). Twelve weeks after conditioned running or control group assignment, the rats were trained and tested in a rapid water maze followed by an inhibitory avoidance task. The rats were BrdU-injected beginning 12days after behavioral testing and killed 3weeks later to quantify cytokines and neurogenesis. Daily exercise increased neurogenesis and improved immediate and 24h water maze discrimination index (DI) scores and 24h inhibitory avoidance retention latencies. Daily exercise decreased cortical VEGF, hippocampal IL-1β and serum MCP-1, GRO-KC and leptin levels but increased hippocampal GRO-KC and IL-18 concentrations. Serum leptin concentration correlated negatively with new neuron number and both DI scores while hippocampal IL-1β concentration correlated negatively with memory scores in both tasks. Cortical VEGF, serum GRO-KC and serum MCP-1 levels correlated negatively with immediate DI score and we found novel positive correlations between hippocampal IL-18 and GRO-KC levels and new neuron number. Pathway analyses revealed distinct serum, hippocampal and cortical compartment cytokine relationships. Our results suggest that daily exercise potentially improves cognition in aging rats by modulating hippocampal neurogenesis and immune and neuroimmune cytokine signaling. Our correlational data begin to provide a framework for systematically manipulating these immune and neuroimmune signaling molecules to test their effects on cognition and neurogenesis across lifespan in future experiments.
Collapse
Affiliation(s)
- Rachel. B. Speisman
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Ashok Kumar
- Department of Neuroscience, University of Florida, Gainesville, FL, USA,McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Asha Rani
- Department of Neuroscience, University of Florida, Gainesville, FL, USA,McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Thomas C. Foster
- Department of Neuroscience, University of Florida, Gainesville, FL, USA,McKnight Brain Institute, University of Florida, Gainesville, FL, USA,Corresponding Author: Brandi K. Ormerod, PhD, Assistant Professor, J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131, USA, Phone: 352-273-8125, Fax: 352-273-9221,
| | - Brandi K. Ormerod
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA,Department of Neuroscience, University of Florida, Gainesville, FL, USA,McKnight Brain Institute, University of Florida, Gainesville, FL, USA,Corresponding Author: Brandi K. Ormerod, PhD, Assistant Professor, J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131, USA, Phone: 352-273-8125, Fax: 352-273-9221,
| |
Collapse
|
54
|
Ferguson SA, Sarkar S, Schmued LC. Longitudinal behavioral changes in the APP/PS1 transgenic Alzheimer's disease model. Behav Brain Res 2013; 242:125-34. [PMID: 23295401 DOI: 10.1016/j.bbr.2012.12.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/24/2012] [Accepted: 12/29/2012] [Indexed: 12/27/2022]
Abstract
The APP/PS1 double transgenic mouse is an Alzheimer's Disease-like model. However, cognitive deficits measured at one age do not necessarily indicate age-related progressions. Further, results of the most widely used behavioral assessment, water maze performance, are generally limited to 1-2 endpoints. Here, male APP/PS1 and noncarrier wildtypes (n=11/group) were assessed at 7-15 months of age for water maze, open field, and motor coordination performance. Body weights and motor coordination were comparable for both groups throughout. Beginning at approximately 9 months of age, the transgenic group exhibited hypoactivity in the open field which continued throughout. Latency to locate the platform and swim path length were longer in the transgenic group; however, these appeared to be more related to increased floating and thigmotactic behavior and only partially related to a cognitive impairment. Age-related decrements in performance were not substantial; however, substantial plaque numbers were measured in six representative 16-month-old transgenic mice. The stability of water maze performance may be related to the longitudinal testing and repetitive experience, which previous research has demonstrated can confer beneficial effects on behavior and plaque deposition in transgenic Alzheimer's Disease models [1]. These results emphasize the importance of measuring multiple water maze endpoints and demonstrate the feasibility of longitudinal assessments in this model.
Collapse
Affiliation(s)
- Sherry A Ferguson
- Division of Neurotoxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, United States.
| | | | | |
Collapse
|
55
|
Kishimoto Y, Higashihara E, Fukuta A, Nagao A, Kirino Y. Early impairment in a water-finding test in a longitudinal study of the Tg2576 mouse model of Alzheimer's disease. Brain Res 2012; 1491:117-26. [PMID: 23142630 DOI: 10.1016/j.brainres.2012.10.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/23/2012] [Accepted: 10/31/2012] [Indexed: 11/26/2022]
Abstract
Behavioral assessments of mouse models of neurodegenerative disorders are useful for investigating the molecular basis of the pathologies of the diseases. Here, we investigated the utility of a water-finding test using a video tracking system as a tool for evaluating cognitive deficits in Alzheimer's disease model mice. Transgenic mice expressing mutant amyloid precursor protein that incorporated the Swedish mutation (Tg2576 mice) were tested for behavioral alterations at 3, 5, 6, or 10 months of age. Tg2576 mice, which are widely used as a model of Alzheimer's disease, exhibited significant cognitive deficits in the water-finding test as early as 5 months of age. The impairments progressively worsened at 6 and 10 months of age. In addition, we analyzed spontaneous physical activities, such as locomotor activity, in the home-cage environment with an automated video analysis system (HomeCageScan). Our longitudinal study revealed that spontaneous behavior was altered in the Tg2576 mice, starting at the age of 10 months. Impairment in the Morris water maze (MWM) task was also first observed in the Tg2576 mice at the age of 10 months. These results indicated that the ability to perform the water-finding test was more susceptible to age-related cognitive deterioration in Tg2576 mice than the MWM test. We therefore propose that the water-finding test is a rapid and sensitive method that can be used to assess cognitive and/or behavioral deficits in mouse models of Alzheimer's disease.
Collapse
Affiliation(s)
- Yasushi Kishimoto
- Laboratory of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, Japan.
| | | | | | | | | |
Collapse
|
56
|
Foster TC, Defazio RA, Bizon JL. Characterizing cognitive aging of spatial and contextual memory in animal models. Front Aging Neurosci 2012; 4:12. [PMID: 22988436 PMCID: PMC3439636 DOI: 10.3389/fnagi.2012.00012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/15/2012] [Indexed: 11/30/2022] Open
Abstract
Episodic memory, especially memory for contextual or spatial information, is particularly vulnerable to age-related decline in humans and animal models of aging. The continuing improvement of virtual environment technology for testing humans signifies that widely used procedures employed in the animal literature for examining spatial memory could be developed for examining age-related cognitive decline in humans. The current review examines cross species considerations for implementing these tasks and translating findings across different levels of analysis. The specificity of brain systems as well as gaps in linking human and animal laboratory models is discussed.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience, Evelyn F. and William L. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | | | | |
Collapse
|
57
|
Environmental enrichment restores neurogenesis and rapid acquisition in aged rats. Neurobiol Aging 2012; 34:263-74. [PMID: 22795793 DOI: 10.1016/j.neurobiolaging.2012.05.023] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 03/19/2012] [Accepted: 05/19/2012] [Indexed: 12/27/2022]
Abstract
Strategies combatting cognitive decline among the growing aging population are vital. We tested whether environmental enrichment could reverse age-impaired rapid spatial search strategy acquisition concomitantly with hippocampal neurogenesis in rats. Young (5-8 months) and aged (20-22 months) male Fischer 344 rats were pair-housed and exposed to environmental enrichment (n = 7 young, 9 aged) or housed individually (n = 7 young, 7 aged) for 10 weeks. After 5 weeks, hidden platform trials (5 blocks of 3 trials; 15 m inter-block interval), a probe trial, and then visible platform trials (5 blocks of 3 trials; 15 m inter-block interval) commenced in the water maze. One week after testing, rats were given 5 daily intraperitoneal bromodeoxyuridine (50 mg/kg) injections and perfused 4 weeks later to quantify neurogenesis. Although young rats outperformed aged rats, aged enriched rats outperformed aged individually housed rats on all behavioral measures. Neurogenesis decreased with age but enrichment enhanced new cell survival, regardless of age. The novel correlation between new neuron number and behavioral measures obtained in a rapid water maze task among aged rats, suggests that environmental enrichment increases their ability to rapidly acquire and flexibly use spatial information along with neurogenesis.
Collapse
|
58
|
Guilarte TR, Opler M, Pletnikov M. Is lead exposure in early life an environmental risk factor for Schizophrenia? Neurobiological connections and testable hypotheses. Neurotoxicology 2012; 33:560-74. [PMID: 22178136 PMCID: PMC3647679 DOI: 10.1016/j.neuro.2011.11.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/30/2011] [Accepted: 11/30/2011] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a devastating neuropsychiatric disorder of unknown etiology. There is general agreement in the scientific community that schizophrenia is a disorder of neurodevelopmental origin in which both genes and environmental factors come together to produce a schizophrenia phenotype later in life. The challenging questions have been which genes and what environmental factors? Although there is evidence that different chromosome loci and several genes impart susceptibility for schizophrenia; and epidemiological studies point to broad aspects of the environment, only recently there has been an interest in studying gene × environment interactions. Recent evidence of a potential association between prenatal lead (Pb(2+)) exposure and schizophrenia precipitated the search for plausible neurobiological connections. The most promising connection is that in schizophrenia and in developmental Pb(2+) exposure there is strong evidence for hypoactivity of the N-methyl-d-aspartate (NMDA) subtype of excitatory amino acid receptors as an underlying neurobiological mechanism in both conditions. A hypofunction of the NMDA receptor (NMDAR) complex during critical periods of development may alter neurobiological processes that are essential for brain growth and wiring, synaptic plasticity and cognitive and behavioral outcomes associated with schizophrenia. We also describe on-going proof of concept gene-environment interaction studies of early life Pb(2+) exposure in mice expressing the human mutant form of the disrupted in schizophrenia 1 (DISC-1) gene, a gene that is strongly associated with schizophrenia and allied mental disorders.
Collapse
Affiliation(s)
- Tomás R Guilarte
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, United States.
| | | | | |
Collapse
|
59
|
Kato T, Funakoshi H, Kadoyama K, Noma S, Kanai M, Ohya-Shimada W, Mizuno S, Doe N, Taniguchi T, Nakamura T. Hepatocyte growth factor overexpression in the nervous system enhances learning and memory performance in mice. J Neurosci Res 2012; 90:1743-55. [PMID: 22535512 DOI: 10.1002/jnr.23065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 03/01/2012] [Accepted: 03/13/2012] [Indexed: 12/27/2022]
Abstract
Hepatocyte growth factor (HGF) and its receptor, c-Met, play pivotal roles in the nervous system during development and in disease states. However, the physiological roles of HGF in the adult brain are not well understood. In the present study, to assess its role in learning and memory function, we used transgenic mice that overexpress HGF in a neuron-specific manner (HGF-Tg) to deliver HGF into the brain without injury. HGF-Tg mice displayed increased alternation rates in the Y-maze test compared with age-matched wild-type (WT) controls. In the Morris water maze (MWM) test, HGF-Tg mice took less time to find the platform on the first day, whereas the latency to escape to the hidden platform was decreased over training days compared with WT mice. A transfer test revealed that the incidence of arrival at the exact location of the platform was higher for HGF-Tg mice compared with WT mice. These results demonstrate that overexpression of HGF leads to an enhancement of both short- and long-term memory. Western blot analyses revealed that the levels of N-methyl-D-aspartate (NMDA) receptor subunits NR2A and NR2B, but not NR1, were increased in the hippocampus of HGF-Tg mice compared with WT controls, suggesting that an upregulation of NR2A and NR2B could represent one mechanism by which HGF enhances learning and memory performance. These results demonstrate that modulation of learning and memory performance is an important physiological function of HGF that contributes to normal CNS plasticity, and we propose HGF as a novel regulator of higher brain functions.
Collapse
Affiliation(s)
- Takashi Kato
- Kringle Pharma Joint Research Division for Regenerative Drug Discovery, Center for Advanced Science and Innovation, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Recinto P, Samant ARH, Chavez G, Kim A, Yuan CJ, Soleiman M, Grant Y, Edwards S, Wee S, Koob GF, George O, Mandyam CD. Levels of neural progenitors in the hippocampus predict memory impairment and relapse to drug seeking as a function of excessive methamphetamine self-administration. Neuropsychopharmacology 2012; 37:1275-87. [PMID: 22205547 PMCID: PMC3306889 DOI: 10.1038/npp.2011.315] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 11/02/2011] [Accepted: 11/13/2011] [Indexed: 12/18/2022]
Abstract
Methamphetamine affects the hippocampus, a brain region crucial for learning and memory, as well as relapse to drug seeking. Rats self-administered methamphetamine for 1 h twice weekly (intermittent-short-I-ShA), 1 h daily (limited-short-ShA), or 6 h daily (extended-long-LgA) for 22 sessions. After 22 sessions, rats from each access group were withdrawn from self-administration and underwent spatial memory (Y-maze) and working memory (T-maze) tests followed by extinction and reinstatement to methamphetamine seeking or received one intraperitoneal injection of 5-bromo-2'-deoxyuridine (BrdU) to label progenitors in the hippocampal subgranular zone (SGZ) during the synthesis phase. Two-hour-old and 28-day-old surviving BrdU-immunoreactive cells were quantified. I-ShA rats performed better on the Y-maze and had a greater number of 2-h-old SGZ BrdU cells than nondrug controls. LgA rats, but not ShA rats, performed worse on the Y- and T-maze and had a fewer number of 2-h-old SGZ BrdU cells than nondrug and I-ShA rats, suggesting that new hippocampal progenitors, decreased by methamphetamine, were correlated with impairment in the acquisition of new spatial cues. Analyses of addiction-related behaviors after withdrawal and extinction training revealed methamphetamine-primed reinstatement of methamphetamine-seeking behavior in all three groups (I-ShA, ShA, and LgA), and this effect was enhanced in LgA rats compared with I-ShA and ShA rats. Protracted withdrawal from self-administration enhanced the survival of SGZ BrdU cells, and methamphetamine seeking during protracted withdrawal enhanced Fos expression in the dentate gyrus and medial prefrontal cortex in LgA rats to a greater extent than in ShA and I-ShA rats. These results indicate that changes in the levels of the proliferation and survival of hippocampal neural progenitors and neuronal activation of hippocampal granule cells predict the effects of methamphetamine self-administration (limited vs extended access) on cognitive performance and relapse to drug seeking and may contribute to the impairments that perpetuate the addiction cycle.
Collapse
Affiliation(s)
- Patrick Recinto
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California San Diego, La Jolla, CA, USA
| | - Anjali Rose H Samant
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Gustavo Chavez
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Airee Kim
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Clara J Yuan
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California San Diego, La Jolla, CA, USA
| | - Matthew Soleiman
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Yanabel Grant
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Scott Edwards
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Sunmee Wee
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - George F Koob
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California San Diego, La Jolla, CA, USA
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Olivier George
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Chitra D Mandyam
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California San Diego, La Jolla, CA, USA
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
61
|
Cognitive phenotyping of amyloid precursor protein transgenic J20 mice. Behav Brain Res 2012; 228:392-7. [DOI: 10.1016/j.bbr.2011.12.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 12/08/2011] [Accepted: 12/12/2011] [Indexed: 02/08/2023]
|
62
|
Foster TC. Dissecting the age-related decline on spatial learning and memory tasks in rodent models: N-methyl-D-aspartate receptors and voltage-dependent Ca2+ channels in senescent synaptic plasticity. Prog Neurobiol 2012; 96:283-303. [PMID: 22307057 DOI: 10.1016/j.pneurobio.2012.01.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
In humans, heterogeneity in the decline of hippocampal-dependent episodic memory is observed during aging. Rodents have been employed as models of age-related cognitive decline and the spatial water maze has been used to show variability in the emergence and extent of impaired hippocampal-dependent memory. Impairment in the consolidation of intermediate-term memory for rapidly acquired and flexible spatial information emerges early, in middle-age. As aging proceeds, deficits may broaden to include impaired incremental learning of a spatial reference memory. The extent and time course of impairment has been be linked to senescence of calcium (Ca²⁺) regulation and Ca²⁺-dependent synaptic plasticity mechanisms in region CA1. Specifically, aging is associated with altered function of N-methyl-D-aspartate receptors (NMDARs), voltage-dependent Ca²⁺ channels (VDCCs), and ryanodine receptors (RyRs) linked to intracellular Ca²⁺ stores (ICS). In young animals, NMDAR activation induces long-term potentiation of synaptic transmission (NMDAR-LTP), which is thought to mediate the rapid consolidation of intermediate-term memory. Oxidative stress, starting in middle-age, reduces NMDAR function. In addition, VDCCs and ICS can actively inhibit NMDAR-dependent LTP and oxidative stress enhances the role of VDCC and RyR-ICS in regulating synaptic plasticity. Blockade of L-type VDCCs promotes NMDAR-LTP and memory in older animals. Interestingly, pharmacological or genetic manipulations to reduce hippocampal NMDAR function readily impair memory consolidation or rapid learning, generally leaving incremental learning intact. Finally, evidence is mounting to indicate a role for VDCC-dependent synaptic plasticity in associative learning and the consolidation of remote memories. Thus, VDCC-dependent synaptic plasticity and extrahippocampal systems may contribute to incremental learning deficits observed with advanced aging.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience, Evelyn F. and William L. McKnight Brain Institute, University of Florida, PO Box 100244, Gainesville, FL 32610-0244, USA. ,
| |
Collapse
|
63
|
Jouandot DJ, Echevarria DJ, Lamb EA. The utility of the T-maze in assessing learning, memory, and models of neurological disorders in the zebrafish. BEHAVIOUR 2012. [DOI: 10.1163/1568539x-00003027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
64
|
Feeding behaviors and ORXR–β-GABAAR subunit interactions in Carassius auratus. Neurotoxicol Teratol 2011; 33:641-50. [DOI: 10.1016/j.ntt.2011.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 09/28/2011] [Accepted: 09/29/2011] [Indexed: 01/30/2023]
|
65
|
McCoy JG, Strecker RE. The cognitive cost of sleep lost. Neurobiol Learn Mem 2011; 96:564-82. [PMID: 21875679 DOI: 10.1016/j.nlm.2011.07.004] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/12/2011] [Accepted: 07/25/2011] [Indexed: 11/25/2022]
Abstract
A substantial body of literature supports the intuitive notion that a good night's sleep can facilitate human cognitive performance the next day. Deficits in attention, learning & memory, emotional reactivity, and higher-order cognitive processes, such as executive function and decision making, have all been documented following sleep disruption in humans. Thus, whilst numerous clinical and experimental studies link human sleep disturbance to cognitive deficits, attempts to develop valid and reliable rodent models of these phenomena are fewer, and relatively more recent. This review focuses primarily on the cognitive impairments produced by sleep disruption in rodent models of several human patterns of sleep loss/sleep disturbance. Though not an exclusive list, this review will focus on four specific types of sleep disturbance: total sleep deprivation, experimental sleep fragmentation, selective REM sleep deprivation, and chronic sleep restriction. The use of rodent models can provide greater opportunities to understand the neurobiological changes underlying sleep loss induced cognitive impairments. Thus, this review concludes with a description of recent neurobiological findings concerning the neuroplastic changes and putative brain mechanisms that may underlie the cognitive deficits produced by sleep disturbances.
Collapse
Affiliation(s)
- John G McCoy
- VA Boston Healthcare System, Research Service and Harvard Medical School, Department of Psychiatry, 940 Belmont St., Brockton, MA 02301-5596, USA.
| | | |
Collapse
|
66
|
Giralt A, Saavedra A, Carretón O, Xifró X, Alberch J, Pérez-Navarro E. Increased PKA signaling disrupts recognition memory and spatial memory: role in Huntington's disease. Hum Mol Genet 2011; 20:4232-47. [PMID: 21835884 DOI: 10.1093/hmg/ddr351] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) patients and mouse models show learning and memory impairment even before the onset of motor symptoms. However, the molecular events involved in this cognitive decline are still poorly understood. Here, using three different paradigms, the novel object recognition test, the T-maze spontaneous alternation task and the Morris water maze, we detected severe cognitive deficits in the R6/1 mouse model of HD before the onset of motor symptoms. When we examined the putative molecular pathways involved in these alterations, we observed hippocampal cAMP-dependent protein kinase (PKA) hyper-activation in naïve R6/1 mice compared with wild-type (WT) mice, whereas extracellular signal-regulated kinase 1/2 and calcineurin activities were not modified. Increased PKA activity resulted in hyper-phosphorylation of its substrates N-methyl-D-aspartate receptor subunit 1, Ras-guanine nucleotide releasing factor-1 and striatal-enriched protein tyrosine phosphatase, but not cAMP-responsive element binding protein or the microtubule-associated protein tau. In correlation with the over-activation of the PKA pathway, we found a down-regulation of the protein levels of some phosphodiesterase (PDE) 4 family members. Similar molecular changes were found in the hippocampus of R6/2 mice and HD patients. Furthermore, chronic treatment of WT mice with the PDE4 inhibitor rolipram up-regulated PKA activity, and induced learning and memory deficits similar to those seen in R6 mice, but had no effect on R6/1 mice cognitive impairment. Importantly, hippocampal PKA inhibition by infusion of Rp-cAMPS restored long-term memory in R6/2 mice. Thus, our results suggest that occlusion of PKA-dependent processes is one of the molecular mechanisms underlying cognitive decline in R6 animals.
Collapse
Affiliation(s)
- Albert Giralt
- Departament de Biologia Cel.lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
67
|
Henrich-Noack P, Krautwald K, Reymann KG, Wetzel W. Effects of transient global ischaemia on freezing behaviour and activity in a context-dependent fear conditioning task – Implications for memory investigations. Brain Res Bull 2011; 85:346-53. [DOI: 10.1016/j.brainresbull.2011.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 04/05/2011] [Accepted: 04/09/2011] [Indexed: 10/18/2022]
|
68
|
Cuadrado-Tejedor M, Ricobaraza A, Del Río J, Frechilla D, Franco R, Pérez-Mediavilla A, Garcia-Osta A. Chronic mild stress in mice promotes cognitive impairment and CDK5-dependent tau hyperphosphorylation. Behav Brain Res 2011; 220:338-43. [DOI: 10.1016/j.bbr.2011.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 12/22/2010] [Accepted: 01/10/2011] [Indexed: 11/30/2022]
|
69
|
Nuclear Calcium-VEGFD Signaling Controls Maintenance of Dendrite Arborization Necessary for Memory Formation. Neuron 2011; 71:117-30. [DOI: 10.1016/j.neuron.2011.04.022] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2011] [Indexed: 01/17/2023]
|
70
|
Orejana L, Barros-Miñones L, Jordán J, Puerta E, Aguirre N. Sildenafil ameliorates cognitive deficits and tau pathology in a senescence-accelerated mouse model. Neurobiol Aging 2011; 33:625.e11-20. [PMID: 21546125 DOI: 10.1016/j.neurobiolaging.2011.03.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/14/2011] [Accepted: 03/22/2011] [Indexed: 01/03/2023]
Abstract
Aging is associated with a deterioration of cognitive performance and with increased risk of neurodegenerative disorders. In the present study we tested whether the specific phosphodiesterase 5 inhibitor sildenafil could ameliorate the age-dependent cognitive impairments shown by the senescence-accelerated mouse prone-8 (SAMP8). Sildenafil administration (7.5 mg/kg for 4 weeks) to 5-month-old SAMP8 mice attenuated spatial learning and memory impairments shown by these mice in the Morris Water Maze. Tau hyperphosphorylation (AT8 but not PHF-1 epitope) shown by SAMP8 mice at this age was also decreased in the hippocampus of sildenafil-treated mice, an effect probably related to a decrease in cyclin-dependent kinase 5 protein expression and activity (p25/p35 ratio). Interestingly, sildenafil also phosphorylated Akt, which was associated with an increase of glycogen synthase kinase-3β phosphorylation, providing a plausible explanation for the reductions in tau hyperphosphorylation (AT8 and PHF-1 epitopes) and attenuation of cognitive deficits shown by 9-month-old SAMP8 mice. Overall, sildenafil might be beneficial in age-related brain dysfunction and could be an emerging candidate for the treatment of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Lourdes Orejana
- Department of Pharmacology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
71
|
Statistical and theoretical considerations for the platform re-location water maze. J Neurosci Methods 2011; 198:44-52. [DOI: 10.1016/j.jneumeth.2011.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/04/2011] [Accepted: 03/04/2011] [Indexed: 11/21/2022]
|
72
|
Vignisse J, Steinbusch HWM, Bolkunov A, Nunes J, Santos AI, Grandfils C, Bachurin S, Strekalova T. Dimebon enhances hippocampus-dependent learning in both appetitive and inhibitory memory tasks in mice. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:510-22. [PMID: 21163318 DOI: 10.1016/j.pnpbp.2010.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 11/25/2022]
Abstract
Pre-clinical and clinical studies on dimebon (dimebolin or latrepirdine) have demonstrated its use as a cognitive enhancer. Here, we show that dimebon administered to 3-month-old C57BL6N mice 15 min prior to training in both appetitive and inhibitory learning tasks via repeated (0.1 mg/kg) and acute (0.5 mg/kg) i.p. injections, respectively, increases memory scores. Acute treatment with dimebon was found to enhance inhibitory learning, as also shown in the step-down avoidance paradigm in 7-month-old mice. Bolus administration of dimebon did not affect the animals' locomotion, exploration or anxiety-like behaviour, with the exception of exploratory behaviour in older mice in the novel cage test. In a model of appetitive learning, a spatial version of the Y-maze, dimebon increased the rate of correct choices and decreased the latency of accessing a water reward after water deprivation, and increased the duration of drinking behaviour during training/testing procedures. Repeated treatment with dimebon did not alter the behaviours in other tests or water consumption. Acute treatment of water-deprived and non-water-deprived mice with dimebon also did not affect their water intake. Our data suggest that dimebon enhances hippocampus-dependent learning in both appetitive and inhibitory tasks in mice.
Collapse
Affiliation(s)
- Julie Vignisse
- School for Mental Health and Neuroscience, Department of Neuroscience, Maastricht University, Universiteitssingel 50, NL 6229 ER Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Automated test of behavioral flexibility in mice using a behavioral sequencing task in IntelliCage. Behav Brain Res 2011; 221:172-81. [PMID: 21377499 DOI: 10.1016/j.bbr.2011.02.037] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 11/20/2022]
Abstract
There has been a long-standing need to develop efficient and standardized behavioral test methods for evaluating higher-order brain functions in mice. Here, we developed and validated a behavioral flexibility test in mice using IntelliCage, a fully automated behavioral analysis system for mice in a group-housed environment. We first developed a "behavioral sequencing task" in the IntelliCage that enables us to assess the learning ability of place discrimination and behavioral sequence for reward acquisition. In the serial reversal learning using the task, the discriminated spatial patterns of the rewarded and never-rewarded places were serially reversed, and thus, mice were accordingly expected to realign the previously acquired behavioral sequence. In general, the tested mice showed rapid acquisition of the behavioral sequencing task and behavioral flexibility in the subsequent serial reversal stages both in intra- and inter-session analyses. It was found that essentially the same results were obtained among three different laboratories, which confirm the high stability of the present test protocol in different strains of mice (C57BL/6, DBA/2, and ICR). In particular, the most trained cohort of C57BL/6 mice achieved a markedly rapid adaptation to the reversal task in the final phase of the long-term serial reversal test, which possibly indicated that the mice adapted to the "reversal rule" itself. In conclusion, the newly developed behavioral test was shown to be a valid assay of behavioral flexibility in mice, and is expected to be utilized in tests of mouse models of cognitive deficits.
Collapse
|
74
|
Sison M, Gerlai R. Behavioral performance altering effects of MK-801 in zebrafish (Danio rerio). Behav Brain Res 2011; 220:331-7. [PMID: 21333690 DOI: 10.1016/j.bbr.2011.02.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 02/11/2011] [Indexed: 12/23/2022]
Abstract
MK-801, a non-competitive NMDA-R antagonist, has been utilized in the analysis of mammalian learning and memory. The zebrafish is a novel vertebrate study species that has been proposed for the analysis of the mechanisms of learning and memory. Although learning paradigms have been developed for this species, psychopharmacological characterization of its behavioral responses is rudimentary. Before one attempts the analysis of the effects of MK-801 on learning and memory in zebrafish, one needs to know whether this drug affects motor function, perception and/or motivation, factors that may influence performance in learning tasks. Here we conduct dose response analyses investigating the effects of 0, 2, 20 and 100 μM MK-801 administered 24h or 30 min before the behavioral test, or during the test. We analyze responses in the open tank to measure motor and posture patterns, in the light dark paradigm to evaluate visual perception, and in a group preference task to attempt to quantify motivation. Our results show a significant performance alteration only in the highest (100 μM) dose groups. These fish spent more time on the bottom of their tank, showed elevated Erratic movement, increased their clockwise and counterclockwise turning frequency, and reduced the time spent near a shoal stimulus, behavioral alterations that also depended upon the timing of drug administration. Thus, using the current delivery procedures and outbred zebrafish population, the highest dose that may not lead to significant performance deficits is 20 μM, a concentration we propose to use in a future learning study in zebrafish.
Collapse
Affiliation(s)
- Margarette Sison
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada
| | | |
Collapse
|
75
|
Khuman J, Meehan WP, Zhu X, Qiu J, Hoffmann U, Zhang J, Giovannone E, Lo EH, Whalen MJ. Tumor necrosis factor alpha and Fas receptor contribute to cognitive deficits independent of cell death after concussive traumatic brain injury in mice. J Cereb Blood Flow Metab 2011; 31:778-89. [PMID: 20940727 PMCID: PMC3049532 DOI: 10.1038/jcbfm.2010.172] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tumor necrosis factor alpha (TNFα) and Fas receptor contribute to cell death and cognitive dysfunction after focal traumatic brain injury (TBI). We examined the role of TNFα/Fas in postinjury functional outcome independent of cell death in a novel closed head injury (CHI) model produced with weight drop and free rotational head movement in the anterior-posterior plane. The CHI produced no cerebral edema or blood-brain barrier damage at 24 to 48 hours, no detectable cell death, occasional axonal injury (24 hours), and no brain atrophy or hippocampal cell loss (day 60). Microglia and astrocytes were activated (48 to 72 hours). Tumor necrosis factor-α mRNA, Fas mRNA, and TNFα protein were increased in the brain at 3 to 6 hours after injury (P<0.001 versus sham injured). In wild-type (WT) mice, CHI produced hidden platform (P=0.009) and probe deficits (P=0.001) in the Morris water maze versus sham. Surprisingly, injured TNFα/Fas knockout (KO) mice performed worse in hidden platform trials (P=0.036) but better in probe trials than did WT mice (P=0.0001). Administration of recombinant TNFα to injured TNFα/Fas KO mice reduced probe trial performance to that of WT. Thus, TNFα/Fas influence cognitive deficits independent of cell death after CHI. Therapies targeting TNFα/Fas together may be inappropriate for patients with concussive TBI.
Collapse
Affiliation(s)
- Jugta Khuman
- Neuroscience Center, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Meneses A, Perez-Garcia G, Ponce-Lopez T, Tellez R, Castillo C. Serotonin transporter and memory. Neuropharmacology 2011; 61:355-63. [PMID: 21276807 DOI: 10.1016/j.neuropharm.2011.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/15/2010] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
Abstract
The serotonin transporter (SERT) has been associated to diverse functions and diseases, though seldom to memory. Therefore, we made an attempt to summarize and discuss the available publications implicating the involvement of the SERT in memory, amnesia and anti-amnesic effects. Evidence indicates that Alzheimer's disease and drugs of abuse like d-methamphetamine (METH) and (+/-)3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") have been associated to decrements in the SERT expression and memory deficits. Several reports have indicated that memory formation and amnesia affected the SERT expression. The SERT expression seems to be a reliable neural marker related to memory mechanisms, its alterations and potential treatment. The pharmacological, neural and molecular mechanisms associated to these changes are of great importance for investigation.
Collapse
Affiliation(s)
- Alfredo Meneses
- Depto. de Farmacobiología, CINVESTAV-IPN, Tenorios 235, Granjas Coapa, Mexico City 14330, Mexico.
| | | | | | | | | |
Collapse
|
77
|
Abstract
The zebrafish has been one of the primary study species utilized in developmental biology. However, it is also gaining increasing amount of interest in other disciplines of biology including behavioral neuroscience; the numerous genetic tools developed and the large amount of genetic information accumulated for this species by now make it an excellent tool for the analysis of the mechanisms of complex central nervous system characteristics. Although several studies have investigated the biological and genetic underpinnings of associative learning (and memory), given the complexity of these phenomena, much remains to be discovered. In the past, the zebrafish has been employed particularly successfully in screening applications where a large number of mutations or drug effects had to be analyzed. Briefly, the practical simplicity and system complexity of the zebrafish may make this species an excellent tool also for the analysis of the mechanisms of associative learning. Screening, however, requires appropriate phenotypical (in this case behavioral) paradigms. A step in this direction is the characterization of learning abilities of zebrafish. The number of studies focused on cognitive and/or mnemonic characteristics of zebrafish is orders of magnitude smaller than those with rats or mice, but recently zebrafish has also started to be utilized in this research. The current chapter reviews these most recent developments. It also discusses certain unique features of zebrafish that must be taken into account when designing an associative learning task and how these tasks may be made high throughput.
Collapse
|
78
|
Endothelin receptor-A (ETa) inhibition fails to improve neonatal hypoxic-ischemic brain injury in rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 111:207-12. [PMID: 21725757 DOI: 10.1007/978-3-7091-0693-8_35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cerebral hypoxia-ischemia (HI) is an important cause of mortality and disability in newborns. It is a result of insufficient oxygen and glucose circulation to the brain, initiating long-term cerebral damage and cell death. Emerging evidence suggests that endothelin receptor-A (ETA) activation can play an important role in mediating brain damage. In this study, we investigated the role of ETA receptor inhibition using ABT-627 in neonatal HI injured rats. Postnatal day 10 Sprague-Dawley rat pups (n=91) were assigned to the following groups: sham (n=28), HI (vehicle, n=32), and HI with ABT-627 at 3 mg/kg (n=31). The Rice-Vannucci model was used to induce ischemia by ligating the right common carotid artery, followed by a 2 h hypoxic episode using 8% oxygen in a 37°C chamber. Postoperative assessment was conducted at 48 h after injury and again at 4 weeks. At the acute time point, investigative markers included cerebral edema, infarction volume, and body weight change. Neurobehavioral testing was measured at 4 weeks post-injury. Our findings indicated that ABT-627 had no effect on the measured parameters. This study suggests that ETA receptor blockade using ABT-627 post-treatment fails to improve neurological outcomes in neonatal HI injured rats.
Collapse
|
79
|
Cheng O, Ostrowski RP, Wu B, Liu W, Chen C, Zhang JH. Cyclooxygenase-2 mediates hyperbaric oxygen preconditioning in the rat model of transient global cerebral ischemia. Stroke 2010; 42:484-90. [PMID: 21164135 DOI: 10.1161/strokeaha.110.604421] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND PURPOSE Hyperbaric oxygen (HBO) preconditioning (PC) allows brain protection against transient global ischemia. In the present study, we hypothesize that the mechanism of HBO-PC involves the induction of cyclooxygenase-2 (COX-2) in cerebral tissues before ischemia, which leads to a suppression of COX-2 and its downstream targets after global ischemic insult. METHODS One hundred twenty-nine male Sprague Dawley rats (body weight 280-300 grams) were allocated to the naive control group and the sham operation group, and 3 groups of animals were subjected to 15-minute 4-vessel occlusion: untreated, preconditioned with HBO 2.5 atmospheres absolutes for 1 hour daily for 5 days, preconditioned as mentioned and administered with COX-2 inhibitor NS-398 (1 mg/kg body weight intraperitoneal) before each preconditioning session, and normal rats preconditioned with HBO without ischemia. The mortality, the incidence of seizures, and T-maze scores were recorded. The quantitative cell count in Nissl stain and TUNEL was conducted on day 7 after ischemia. The brain expression of COX-2 was analyzed with Western blotting and immunofluorescence staining. RESULTS HBO-PC increased the number of surviving neurons in the Cornu Ammonis area 1, which was associated with the reduced COX-2 expression in the hippocampus and in the cerebral cortex at 1 and 3 days after ischemia. HBO-PC improved functional performance and tended to decrease mortality and the frequency of seizures. These beneficial effects of HBO-PC were abolished by the COX-2 selective inhibitor NS-398. CONCLUSIONS HBO-PC reduced COX-2 expression and provided brain protection after global ischemia. Administration of COX-2 inhibitor with HBO before ischemia abolished preconditioning effect, thereby implicating COX-2 as a mediator of HBO-PC in the ischemic brain.
Collapse
Affiliation(s)
- Oumei Cheng
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | | | | | |
Collapse
|
80
|
Abstract
Neurobehavioral and pathological evaluations of the nervous system are complementary components of basic research and toxicity testing of pharmaceutical and environmental chemicals. While neuropathological assessments provide insight as to cellular changes in neurons, behavioral and physiological methods evaluate the functional consequences of disruption of neuronal communications. The underlying causes of certain behavioral alterations may be understood, but many do not have known direct associations with specific brain pathologies. In some cases, however, rapidly expanding mouse models (transgenic, knock-out) are providing considerable information on behavioral phenotypes of altered pathology. Behavior represents the integrated sum of activities mediated by the nervous system, and functional tests used for neurotoxicity testing tap different behavioral repertoires. These tests have an advantage over pathologic measures in that they permit repeated evaluation of a single animal over time to determine the onset, progression, duration, and reversibility of a neurotoxic injury. Functional assays range from a screening-level battery of tests to refined procedures to tap specific forms of learning and/or memory. This article reviews common procedures for behavioral toxicity testing and provides examples of chemical-specific neurobehavioral-pathological correlations in order to inform interpretation and integration of neuropathological and behavioral outcomes.
Collapse
Affiliation(s)
- Virginia C Moser
- Neurotoxicity Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
81
|
Yang J, You Z, Kim HH, Hwang SK, Khuman J, Guo S, Lo EH, Whalen MJ. Genetic analysis of the role of tumor necrosis factor receptors in functional outcome after traumatic brain injury in mice. J Neurotrauma 2010; 27:1037-46. [PMID: 20205514 DOI: 10.1089/neu.2009.1229] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We previously reported that tumor necrosis factor-alpha (TNF-alpha) and Fas receptor induce acute cellular injury, tissue damage, and motor and cognitive deficits after controlled cortical impact (CCI) in mice (Bermpohl et al. 2007 ); however, the TNF receptors (TNFR) involved are unknown. Using a CCI model and novel mutant mice deficient in TNFR1/Fas, TNFR2/Fas, or TNFR1/TNFR2/Fas, we tested the hypothesis that the combination of TNFR2/Fas is protective, whereas TNFR1/Fas is detrimental after CCI. Uninjured knockout (KO) mice showed no differences in baseline physiological variables or motor or cognitive function. Following CCI, mice deficient in TNFR2/Fas had worse post-injury motor and Morris water maze (MWM) performance than wild-type (WT) mice (p < 0.05 group effect for wire grip score and MWM performance by repeated measures ANOVA). No differences in motor or cognitive outcome were observed in TNFR1/Fas KO, or in TNFR2 or TNFR1 single KO mice, versus WT mice. Additionally, no differences in propidium iodide (PI)-positive cells (at 6 h) or lesion size (at 14 days) were observed between WT and TNFR1/Fas or TNFR2/Fas KO mice. Somewhat surprisingly, mice deficient in TNFR1/TNFR2/Fas also had PI-positive cells, lesion size, and motor and MWM deficits similar to those of WT mice. These data suggest a protective role for TNFR2/Fas in the pathogenesis of TBI. Further studies are needed to determine whether direct or indirect effects of TNFR1 deletion in TNFR2/Fas KO mice mediate improved functional outcome in TNFR1/TNFR2/Fas KO mice after CCI.
Collapse
Affiliation(s)
- Jinsheng Yang
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Escribano L, Simón AM, Gimeno E, Cuadrado-Tejedor M, López de Maturana R, García-Osta A, Ricobaraza A, Pérez-Mediavilla A, Del Río J, Frechilla D. Rosiglitazone rescues memory impairment in Alzheimer's transgenic mice: mechanisms involving a reduced amyloid and tau pathology. Neuropsychopharmacology 2010; 35:1593-604. [PMID: 20336061 PMCID: PMC3055461 DOI: 10.1038/npp.2010.32] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Clinical studies suggest that agonists at peroxisome proliferator-activated receptor gamma (PPARgamma) may exert beneficial effects in patients with mild-to-moderate Alzheimer's disease (AD), but the mechanism for the potential therapeutic interest of this class of drugs has not yet been elucidated. Here, in mice overexpressing mutant human amyloid precursor protein, we found that chronic treatment with rosiglitazone, a high-affinity agonist at PPARgamma, facilitated beta-amyloid peptide (Abeta) clearance. Rosiglitazone not only reduced Abeta burden in the brain but, importantly, almost completely removed the abundant amyloid plaques observed in the hippocampus and entorhinal cortex of 13-month-old transgenic mice. In the hippocampus, neuropil threads containing phosphorylated tau, probably corresponding to dystrophic neurites, were also decreased by the drug. Rosiglitazone switched on the activated microglial phenotype, promoting its phagocytic ability, reducing the expression of proinflammatory markers and inducing factors for alternative differentiation. The decreased amyloid pathology may account for the reduction of p-tau-containing neuropil threads and for the rescue of impaired recognition and spatial memory in the transgenic mice. This study provides further insights into the mechanisms for the beneficial effect of rosiglitazone in AD patients.
Collapse
Affiliation(s)
- Luis Escribano
- Division of Neurosciences, CIMA, University of Navarra, Pamplona, CIBERNED, Spain
| | - Ana-María Simón
- Division of Neurosciences, CIMA, University of Navarra, Pamplona, CIBERNED, Spain
| | - Esther Gimeno
- Division of Neurosciences, CIMA, University of Navarra, Pamplona, CIBERNED, Spain
| | - Mar Cuadrado-Tejedor
- Division of Neurosciences, CIMA, University of Navarra, Pamplona, CIBERNED, Spain
| | | | - Ana García-Osta
- Division of Neurosciences, CIMA, University of Navarra, Pamplona, CIBERNED, Spain
| | - Ana Ricobaraza
- Division of Neurosciences, CIMA, University of Navarra, Pamplona, CIBERNED, Spain
| | | | - Joaquín Del Río
- Division of Neurosciences, CIMA, University of Navarra, Pamplona, CIBERNED, Spain
| | - Diana Frechilla
- Division of Neurosciences, CIMA, University of Navarra, Pamplona, CIBERNED, Spain,Division of Neurosciences, CIMA, University of Navarra, CIBERNED, Av. Pio XII 55, Pamplona 31008, Spain, Tel: +349 4819 4700, Fax: +349 4819 4715, E-mail:
| |
Collapse
|
83
|
Fathali N, Lekic T, Zhang JH, Tang J. Long-term evaluation of granulocyte-colony stimulating factor on hypoxic-ischemic brain damage in infant rats. Intensive Care Med 2010; 36:1602-8. [PMID: 20461500 DOI: 10.1007/s00134-010-1913-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 03/26/2010] [Indexed: 11/24/2022]
Abstract
PURPOSE Hypoxia-ischemia (HI), as a major cause of fetal brain damage, has long-lasting neurological implications. Therefore, therapeutic interventions that attenuate the neuropathological outcome of HI while also improving the neurofunctional outcome are of paramount clinical importance. The aim of this study was to investigate the long-term functional and protective actions of granulocyte-colony stimulating factor (G-CSF) treatment in an experimental model of cerebral HI. METHODS Postnatal day-7 Sprague-Dawley rats were subjected to HI surgery, which entailed ligation of the right common carotid artery followed by 2 h of hypoxia (8% O(2)). Treatment consisted of subcutaneous injection of G-CSF at 1 h after hypoxia followed by an additional one injection per day for 5 days (6 total injections) or for 10 days (11 total injections). Animals were euthanized 5 weeks post-insult for extensive evaluation of neurological deficits and assessment of brain, spleen, heart, and liver damage. RESULTS G-CSF treatment promoted somatic growth and prevented brain atrophy and underdevelopment of the heart. Moreover, reflexes, limb placing, muscle strength, motor coordination, short-term memory, and exploratory behavior were all significantly improved by both G-CSF dosing regimens. CONCLUSIONS Long-term neuroprotection afforded by G-CSF in both morphological and functional parameters after a hypoxic-ischemic event in the neonate provides a rationale for exploring clinical translation.
Collapse
Affiliation(s)
- Nancy Fathali
- Department of Human Pathology and Anatomy, Loma Linda University, Loma Linda, CA, USA
| | | | | | | |
Collapse
|
84
|
Gerlai R. Zebrafish antipredatory responses: a future for translational research? Behav Brain Res 2010; 207:223-31. [PMID: 19836422 PMCID: PMC3203216 DOI: 10.1016/j.bbr.2009.10.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/05/2009] [Accepted: 10/07/2009] [Indexed: 12/11/2022]
Abstract
Human neuropsychiatric conditions associated with abnormally exaggerated or misdirected fear (anxiety disorders and phobias) still represent a large unmet medical need because the biological mechanisms underlying these diseases are not well understood. Animal models have been proposed to facilitate this research. Here I review the literature with a focus on zebrafish, an upcoming laboratory organism in behavioral brain research. I argue that abnormal human fear responses are likely the result of the malfunction of neurobiological mechanisms (brain areas, circuits and/or molecular mechanisms) that originally evolved to support avoidance of predators or other harm in nature. I also argue that the understanding of the normal as well as pathological functioning of such mechanisms may be best achieved if one utilizes naturalistic experimental approaches. In case of laboratory model organisms, this may entail presenting stimuli associated with predators and measuring species-specific antipredatory responses. Although zebrafish is a relatively new subject of such inquiry, I review the recently rapidly increasing number of zebrafish studies in this area, and conclude that zebrafish is a promising research tool for the analysis of the neurobiology and genetics of vertebrate fear responses.
Collapse
Affiliation(s)
- Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada. robert
| |
Collapse
|
85
|
Sison M, Gerlai R. Associative learning in zebrafish (Danio rerio) in the plus maze. Behav Brain Res 2010; 207:99-104. [PMID: 19800919 PMCID: PMC2814798 DOI: 10.1016/j.bbr.2009.09.043] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/25/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
Zebrafish has been gaining increasing amount of interest in behavioral neuroscience as this species may represent a good compromise between system complexity and practical simplicity. Particularly successful have been those studies that utilized zebrafish as a screening tool. Given the complexity of the mechanisms of learning, for example, forward genetic screens with zebrafish could potentially reveal previously unknown genes and molecular pathways that subserve this function. These screens, however, require appropriate phenotypical (e.g. behavioral) paradigms. A step in this direction is the characterization of learning abilities of zebrafish. Here we employ two classical learning tasks in a plus maze. In the first, zebrafish are required to associate a visible cue with food reward irrespective of the location of this pairing. In the second, zebrafish are required to associate the spatial location of food reward irrespective of intra-maze cues. Our results demonstrate that zebrafish perform well in both tasks and show significant acquisition of the association between cue and reward as well as between location and reward. We conclude that zebrafish, similar to classical laboratory rodents, may have utility in the biological analysis of simple as well as complex forms of associative learning.
Collapse
Affiliation(s)
- Margarette Sison
- Department of Psychology, University of Toronto, 3359 Mississauga Road North, Mississauga, Ontario, Canada
| | | |
Collapse
|
86
|
Miyamoto N, Tanaka R, Shimura H, Watanabe T, Mori H, Onodera M, Mochizuki H, Hattori N, Urabe T. Phosphodiesterase III inhibition promotes differentiation and survival of oligodendrocyte progenitors and enhances regeneration of ischemic white matter lesions in the adult mammalian brain. J Cereb Blood Flow Metab 2010; 30:299-310. [PMID: 19826432 PMCID: PMC2949130 DOI: 10.1038/jcbfm.2009.210] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vascular dementia is caused by blockage of blood supply to the brain, which causes ischemia and subsequent lesions primarily in the white matter, a key characteristic of the disease. In this study, we used a chronic cerebral hypoperfusion rat model to show that the regeneration of white matter damaged by hypoperfusion is enhanced by inhibiting phosphodiesterase III. A rat model of chronic cerebral hypoperfusion was prepared by bilateral common carotid artery ligation. Performance at the Morris water-maze task, immunohistochemistry for bromodeoxyuridine, as well as serial neuronal and glial markers were analyzed until 28 days after hypoperfusion. There was a significant increase in the number of oligodendrocyte progenitor cells in the brains of patients with vascular dementia as well as in rats with cerebral hypoperfusion. The oligodendrocyte progenitor cells subsequently underwent cell death and the number of oligodendrocytes decreased. In the rat model, treatment with a phosphodiesterase III inhibitor prevented cell death, markedly increased the mature oligodendrocytes, and promoted restoration of white matter and recovery of cognitive decline. These effects were cancelled by using protein kinase A/C inhibitor in the phosphodiesterase III inhibitor group. The results of our study indicate that the mammalian brain white matter tissue has the capacity to regenerate after ischemic injury.
Collapse
Affiliation(s)
- Nobukazu Miyamoto
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Cheng O, Ostrowski RP, Liu W, Zhang JH. Activation of liver X receptor reduces global ischemic brain injury by reduction of nuclear factor-kappaB. Neuroscience 2010; 166:1101-9. [PMID: 20096333 DOI: 10.1016/j.neuroscience.2010.01.024] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 01/13/2010] [Indexed: 12/11/2022]
Abstract
Recent studies have found that liver X receptors (LXRs) agonists decrease brain inflammation and exert neuroprotective effect. The aim of this study was to examine the mechanisms of action of liver X receptor agonist GW3965 against brain injury following global cerebral ischemia in the rat. The 48 male SD (Sprague-Dawley) rats were randomly partitioned into three groups: sham, global ischemia (4-vessel occlusion for 15 min; 4VO) treated with vehicle and global ischemia treated with GW3965 (20 mg/kg, via i.p. injection at 10 min after reperfusion). The functional outcome was determined by neurological evaluation at 24 h post ischemia and by testing rats in T maze at 3 and 7 days after reperfusion. The rats' daily body weight, incidence of seizures and 72 h mortality were also determined. After Nissl staining and TUNEL in coronal brain sections, the numbers of intact and damaged cells were counted in the CA1 sector of the hippocampus. The expression of phosphorylated inhibitor of kappaB (p-IkappaBalpha), nuclear factor-kappaB (NF-kappaB) subunit p65, and cyclo-oxygenase-2 (COX-2) were analyzed with Western blot at 12 h after reperfusion. GW3965 tended to reduce 72 h mortality and the incidence of post-ischemic seizures. GW3965-treated rats showed an improved neuronal survivability in CA1 and a significant increase in the percentage of spontaneous alternations detected in T-maze on day 7 after ischemia. GW3965-induced neuroprotection was associated with a significant reduction in nuclear translocation of NF-kB p65 subunit and a decrease in the hippocampal expression of NF-kB target gene, COX-2. LXR receptor agonist protects against neuronal damage following global cerebral ischemia. The mechanism of neuroprotection may include blockade of NF-kappaB activation and the subsequent suppression of COX-2 in the post ischemic brain.
Collapse
Affiliation(s)
- O Cheng
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
88
|
Zhang Y, Wang W, Sun Z, Feng D, Deng Y, Liu Y, Zhao G, Wang H, Huang Y. Granulocyte Colony-Stimulating Factor Treatment Prevents Cognitive Impairment Following Status Epilepticus in Rats. Biol Pharm Bull 2010; 33:572-9. [DOI: 10.1248/bpb.33.572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yong Zhang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University
- Department of Neurology, The PLA 187th Hospital
| | - WenYong Wang
- Department of Pathology, The Fourth Military Medical University
| | - ZhiJian Sun
- Department of Histology and Embryology, The Fourth Military Medical University
| | - DongYun Feng
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University
| | - YanChun Deng
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University
| | - YongHong Liu
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University
| | - HuaNing Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University
| | - YuanGui Huang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University
| |
Collapse
|
89
|
Gómez-Laplaza LM, Gerlai R. Latent learning in zebrafish (Danio rerio). Behav Brain Res 2009; 208:509-15. [PMID: 20043955 DOI: 10.1016/j.bbr.2009.12.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
Abstract
The zebrafish may represent an excellent compromise between system complexity and practical simplicity for behavioral brain research. It may be particularly appropriate for large scale screening studies whose aim is to identify mutants with altered phenotypes or novel compounds with particular efficacy. For example, the zebrafish may have utility in the analysis of the biological mechanisms of learning and memory. Although learning and memory have been extensively studied and hundreds of underlying molecular mechanisms have been identified, this number may represent only the fraction of genes involved in these complex brain functions. Thus large scale mutagenesis screens may have utility. In order for such screens to succeed, appropriate screening paradigms must be developed. The first step in this research is the characterization of learning and memory capabilities of zebrafish and the development of automatable tasks. Here we show that zebrafish is capable of latent learning, i.e. can acquire memory of their environment after being allowed to explore it. For example, we found experimental zebrafish that experienced an open left tunnel or an open right tunnel of a maze during the unrewarded exploration phase of the test to show the appropriate side bias during a probe trial when they had to swim to a group of conspecifics (the reward). Given that exploration of the maze does not require the presence of the experimenter and the probe trial, during which the subjects are video-recorded and their memory is tested, is short, we argue that the paradigm has utility in high-throughput screening.
Collapse
|
90
|
BMP signaling mediates effects of exercise on hippocampal neurogenesis and cognition in mice. PLoS One 2009; 4:e7506. [PMID: 19841742 PMCID: PMC2759555 DOI: 10.1371/journal.pone.0007506] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 09/24/2009] [Indexed: 12/30/2022] Open
Abstract
Exposure to exercise or to environmental enrichment increases the generation of new neurons in the adult hippocampus and promotes certain kinds of learning and memory. While the precise role of neurogenesis in cognition has been debated intensely, comparatively few studies have addressed the mechanisms linking environmental exposures to cellular and behavioral outcomes. Here we show that bone morphogenetic protein (BMP) signaling mediates the effects of exercise on neurogenesis and cognition in the adult hippocampus. Elective exercise reduces levels of hippocampal BMP signaling before and during its promotion of neurogenesis and learning. Transgenic mice with decreased BMP signaling or wild type mice infused with a BMP inhibitor both exhibit remarkable gains in hippocampal cognitive performance and neurogenesis, mirroring the effects of exercise. Conversely, transgenic mice with increased BMP signaling have diminished hippocampal neurogenesis and impaired cognition. Exercise exposure does not rescue these deficits, suggesting that reduced BMP signaling is required for environmental effects on neurogenesis and learning. Together, these observations show that BMP signaling is a fundamental mechanism linking environmental exposure with changes in cognitive function and cellular properties in the hippocampus.
Collapse
|
91
|
The differential role of alpha1- and alpha5-containing GABA(A) receptors in mediating diazepam effects on spontaneous locomotor activity and water-maze learning and memory in rats. Int J Neuropsychopharmacol 2009; 12:1179-93. [PMID: 19265570 PMCID: PMC2778330 DOI: 10.1017/s1461145709000108] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The clinical use of benzodiazepines (BZs) is hampered by sedation and cognitive deterioration. Although genetic and pharmacological studies suggest that alpha1- and alpha5-containing GABA(A) receptors mediate and/or modulate these effects, their molecular substrate is not fully elucidated. By the use of two selective ligands: the alpha1-subunit affinity-selective antagonist beta-CCt, and the alpha5-subunit affinity- and efficacy-selective antagonist XLi093, we examined the mechanisms of behavioural effects of diazepam in the tests of spontaneous locomotor activity and water-maze acquisition and recall, the two paradigms indicative of sedative- and cognition-impairing effects of BZs, respectively. The locomotor-activity decreasing propensity of diazepam (significant at 1.5 and 5 mg/kg) was antagonized by beta-CCt (5 and 15 mg/kg), while it tended to be potentiated by XLi093 in doses of 10 mg/kg, and especially 20 mg/kg. Diazepam decreased acquisition and recall in the water maze, with a minimum effective dose of 1.5 mg/kg. Both antagonists reversed the thigmotaxis induced by 2 mg/kg diazepam throughout the test, suggesting that both GABA(A) receptor subtypes participate in BZ effects on the procedural component of the task. Diazepam-induced impairment in the declarative component of the task, as assessed by path efficiency, the latency and distance before finding the platform across acquisition trials, and also by the spatial parameters in the probe trial, was partially prevented by both, 15 mg/kg beta-CCt and 10 mg/kg XLi093. Combining a BZ with beta-CCt results in the near to control level of performance of a cognitive task, without sedation, and may be worth testing on human subjects.
Collapse
|
92
|
The impact of flavonoids on spatial memory in rodents: from behaviour to underlying hippocampal mechanisms. GENES AND NUTRITION 2009; 4:251-70. [PMID: 19727888 DOI: 10.1007/s12263-009-0137-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 07/28/2009] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggests that a group of dietary-derived phytochemicals known as flavonoids are able to induce improvements in memory, learning and cognition. Flavonoids have been shown to modulate critical neuronal signalling pathways involved in processes of memory, and therefore are likely to affect synaptic plasticity and long-term potentiation mechanisms, widely considered to provide a basis for memory. Animal dietary supplementation studies have further shown that flavonoid-rich foods are able to reverse age-related spatial memory and spatial learning impairments. A more accurate understanding of how a particular spatial memory task works and of which aspects of memory and learning can be assessed in each case, are necessary for a correct interpretation of data relating to diet-cognition experiments. Further understanding of how specific behavioural tasks relate to the functioning of hippocampal circuitry during learning processes might be also elucidative of the specific observed memory improvements. The overall goal of this review is to give an overview of how the hippocampal circuitry operates as a memory system during behavioural tasks, which we believe will provide a new insight into the underlying mechanisms of the action of flavonoids on cognition.
Collapse
|
93
|
Jeon H, Ai J, Sabri M, Tariq A, Shang X, Chen G, Macdonald RL. Neurological and neurobehavioral assessment of experimental subarachnoid hemorrhage. BMC Neurosci 2009; 10:103. [PMID: 19706182 PMCID: PMC2749856 DOI: 10.1186/1471-2202-10-103] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 08/25/2009] [Indexed: 01/14/2023] Open
Abstract
About 50% of humans with aneurysmal subarachnoid hemorrhage (SAH) die and many survivors have neurological and neurobehavioral dysfunction. Animal studies usually focused on cerebral vasospasm and sometimes neuronal injury. The difference in endpoints may contribute to lack of translation of treatments effective in animals to humans. We reviewed prior animal studies of SAH to determine what neurological and neurobehavioral endpoints had been used, whether they differentiated between appropriate controls and animals with SAH, whether treatment effects were reported and whether they correlated with vasospasm. Only a few studies in rats examined learning and memory. It is concluded that more studies are needed to fully characterize neurobehavioral performance in animals with SAH and assess effects of treatment.
Collapse
Affiliation(s)
- Hyojin Jeon
- Division of Neurosurgery, St. Michael's Hospital, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
94
|
Ueno Y, Zhang N, Miyamoto N, Tanaka R, Hattori N, Urabe T. Edaravone attenuates white matter lesions through endothelial protection in a rat chronic hypoperfusion model. Neuroscience 2009; 162:317-27. [DOI: 10.1016/j.neuroscience.2009.04.065] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 04/07/2009] [Accepted: 04/25/2009] [Indexed: 11/25/2022]
|
95
|
Ricobaraza A, Cuadrado-Tejedor M, Pérez-Mediavilla A, Frechilla D, Del Río J, García-Osta A. Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer's disease mouse model. Neuropsychopharmacology 2009; 34:1721-32. [PMID: 19145227 DOI: 10.1038/npp.2008.229] [Citation(s) in RCA: 307] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatin modification through histone acetylation is a molecular pathway involved in the regulation of transcription underlying memory storage. Sodium 4-phenylbutyrate (4-PBA) is a well-known histone deacetylase inhibitor, which increases gene transcription of a number of genes, and also exerts neuroprotective effects. In this study, we report that administration of 4-PBA reversed spatial learning and memory deficits in an established mouse model of Alzheimer's disease (AD) without altering beta-amyloid burden. We also observed that the phosphorylated form of tau was decreased in the AD mouse brain after 4-PBA treatment, an effect probably due to an increase in the inactive form of the glycogen synthase kinase 3beta (GSK3beta). Interestingly, we found a dramatic decrease in brain histone acetylation in the transgenic mice that may reflect an indirect transcriptional repression underlying memory impairment. The administration of 4-PBA restored brain histone acetylation levels and, as a most likely consequence, activated the transcription of synaptic plasticity markers such as the GluR1 subunit of the AMPA receptor, PSD95, and microtubule-associated protein-2. The results suggest that 4-PBA, a drug already approved for clinical use, may provide a novel approach for the treatment of AD.
Collapse
Affiliation(s)
- Ana Ricobaraza
- Division of Neurosciences, CIMA, University of Navarra, Pamplona, CIBERNED, Spain
| | | | | | | | | | | |
Collapse
|
96
|
The "Down syndrome critical region" is sufficient in the mouse model to confer behavioral, neurophysiological, and synaptic phenotypes characteristic of Down syndrome. J Neurosci 2009; 29:5938-48. [PMID: 19420260 DOI: 10.1523/jneurosci.1547-09.2009] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Down syndrome (DS) can be modeled in mice segmentally trisomic for mouse chromosome 16. Ts65Dn and Ts1Cje mouse models have been used to study DS neurobiological phenotypes including changes in cognitive ability, induction of long-term potentiation (LTP) in the fascia dentata (FD), the density and size of dendritic spines, and the structure of synapses. To explore the genetic basis for these phenotypes, we examined Ts1Rhr mice that are trisomic for a small subset of the genes triplicated in Ts65Dn and Ts1Cje mice. The 33 trisomic genes in Ts1Rhr represent a "DS critical region" that was once predicted to be sufficient to produce most DS phenotypes. We discovered significant alterations in an open field test, a novel object recognition test and in a T-maze task. As in Ts65Dn and Ts1Cje mice, LTP in FD of Ts1Rhr could be induced only after blocking GABA(A)-dependent inhibitory neurotransmission. In addition, widespread enlargement of dendritic spines and decreased density of spines in FD were preserved in Ts1Rhr. Twenty of 48 phenotypes showed significant differences between Ts1Rhr and 2N controls. We conclude that important neurobiological phenotypes characteristic of DS are conserved in Ts1Rhr mice. The data support the view that biologically significant trisomic phenotypes occur because of dosage effects of genes in the Ts1Rhr trisomic segment and that increased dosage is sufficient to produce these changes. The stage is now set for studies to decipher the gene(s) that play a conspicuous role in creating these phenotypes.
Collapse
|
97
|
Hein AM, O'Banion MK. Neuroinflammation and memory: the role of prostaglandins. Mol Neurobiol 2009; 40:15-32. [PMID: 19365736 DOI: 10.1007/s12035-009-8066-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 03/26/2009] [Indexed: 12/17/2022]
Abstract
Neuroinflammation is a complex response to brain injury involving the activation of glia, release of inflammatory mediators within the brain, and recruitment of peripheral immune cells. Interestingly, memory deficits have been observed following many inflammatory states including infection, traumatic brain injury (TBI), normal aging, and Alzheimer's disease (AD). Prostaglandins (PGs), a class of lipid mediators which can have inflammatory actions, are upregulated by these inflammatory challenges and can impair memory. In this paper, we critically review the success of nonsteroidal anti-inflammatory drugs, which prevent the formation of PGs, in preventing neuroinflammation-induced memory deficits following lipopolysaccharide injection, TBI, aging, and experimental models of AD in rodents and propose a mechanism by which PGs could disrupt memory formation.
Collapse
Affiliation(s)
- Amy M Hein
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | | |
Collapse
|
98
|
Zhou Y, Fathali N, Lekic T, Tang J, Zhang JH. Glibenclamide improves neurological function in neonatal hypoxia-ischemia in rats. Brain Res 2009; 1270:131-9. [PMID: 19306849 DOI: 10.1016/j.brainres.2009.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 11/26/2022]
Abstract
Recent studies demonstrated that sulfonylurea receptor 1 (SUR 1) regulated nonselective cation channel, the NC(Ca-ATP) channel, is involved in brain injury in rodent models of stroke. Block of SUR 1 with sulfonylurea such as glibenclamide has been shown to be highly effective in reducing cerebral edema, infarct volume and mortality in adult rat models of ischemic stroke. In this study, we tested glibenclamide in both severe and moderate models of neonatal hypoxia-ischemia (HI) in postnatal day 10 Sprague-Dawley rat pups. A total of 150 pups were used in the present study. Pups were subjected to unilateral carotid artery ligation followed by 2.5 or 2 h of hypoxia in the severe and moderate HI models, respectively. In the severe HI model, glibenclamide, administered immediately after HI and on postoperative Day 1, was not effective in attenuating short-term effects (brain edema and infarct volume) or long-term effects (brain weight and neurological function) of neonatal HI. In the moderate HI model, when injected immediately after HI and on postoperative Day 1, glibenclamide at 0.01 mg/kg improved several neurological parameters at 3 weeks after HI. We conclude that glibenclamide provided some long-term neuroprotective effect after neonatal HI.
Collapse
Affiliation(s)
- Yilin Zhou
- Department of Anesthesiology, Loma Linda University, Loma Linda, California 92354, USA
| | | | | | | | | |
Collapse
|
99
|
Fitsanakis VA, Thompson KN, Deery SE, Milatovic D, Shihabi ZK, Erikson KM, Brown RW, Aschner M. A chronic iron-deficient/high-manganese diet in rodents results in increased brain oxidative stress and behavioral deficits in the morris water maze. Neurotox Res 2009; 15:167-78. [PMID: 19384579 DOI: 10.1007/s12640-009-9017-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 06/30/2008] [Accepted: 07/01/2008] [Indexed: 11/25/2022]
Abstract
Iron deficiency (ID) is especially common in pregnant women and may even persist following childbirth. This is of concern in light of reports demonstrating that ID may be sufficient to produce homeostatic dysregulation of other metals, including manganese (Mn). These results are particularly important considering the potential introduction of the Mn-containing gas additive, methyl cyclopentadienyl manganese tricarbonyl (MMT), in various countries around the world. In order to model this potentially vulnerable population, we fed female rats fed either control (35 mg Fe/kg chow; 10 mg Mn/kg chow) or low iron/high-manganese (IDMn; 3.5 mg Fe/kg chow; 100 mg Mn/kg chow) diet, and examined whether these changes had any long-term behavioral effects on the animals' spatial abilities, as tested by the Morris water maze (MWM). We also analyzed behavioral performance on auditory sensorimotor gating utilizing prepulse inhibition (PPI), which may be related to overall cognitive performance. Furthermore, brain and blood metal levels were assessed, as well as regional brain isoprostane production. We found that treated animals were slightly ID, with statistically significant increases in both iron (Fe) and Mn in the hippocampus, but statistically significantly less Fe in the cerebellum. Additionally, isoprostane levels, markers of oxidative stress, were increased in the brain stem of IDMn animals. Although treated animals were indistinguishable from controls in the PPI experiments, they performed less well than controls in the MWM. Taken together, our data suggest that vulnerable ID populations exposed to high levels of Mn may indeed be at risk of potentially dangerous alterations in brain metal levels which could also lead to behavioral deficits.
Collapse
|
100
|
Maren S. Pavlovian fear conditioning as a behavioral assay for hippocampus and amygdala function: cautions and caveats. Eur J Neurosci 2009; 28:1661-6. [PMID: 18973583 DOI: 10.1111/j.1460-9568.2008.06485.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pavlovian fear conditioning has become an important model for investigating the neural substrates of learning and memory in rats, mice and humans. The hippocampus and amygdala are widely believed to be essential for fear conditioning to contexts and discrete cues, respectively. Indeed, this parsing of function within the fear circuit has been used to leverage fear conditioning as a behavioral assay of hippocampal and amygdala function, particularly in transgenic mouse models. Recent work, however, blurs the anatomical segregation of cue and context conditioning and challenges the necessity for the hippocampus and amygdala in fear learning. Moreover, nonassociative factors may influence the performance of fear responses under a variety of conditions. Caution must therefore be exercised when using fear conditioning as a behavioral assay for hippocampal- and amygdala-dependent learning.
Collapse
Affiliation(s)
- Stephen Maren
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109-1043, USA.
| |
Collapse
|