51
|
Doluca O, Withers JM, Filichev VV. Molecular engineering of guanine-rich sequences: Z-DNA, DNA triplexes, and G-quadruplexes. Chem Rev 2013; 113:3044-83. [PMID: 23391174 DOI: 10.1021/cr300225q] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Osman Doluca
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | | | | |
Collapse
|
52
|
Fujimoto K, Yoshinaga H, Yoshio Y, Sakamoto T. Quick and reversible photocrosslinking reaction of 3-cyanovinylcarbazole nucleoside in a DNA triplex. Org Biomol Chem 2013; 11:5065-8. [DOI: 10.1039/c3ob40915e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
53
|
Hari Y, Akabane M, Obika S. 2′,4′-BNA bearing a chiral guanidinopyrrolidine-containing nucleobase with potent ability to recognize the CG base pair in a parallel-motif DNA triplex. Chem Commun (Camb) 2013; 49:7421-3. [DOI: 10.1039/c3cc44030c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
54
|
Papadakis G, Gizeli E. In silico search of DNA drugs targeting oncogenes. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2012; 9:1826-1830. [PMID: 23221090 DOI: 10.1109/tcbb.2012.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Triplex forming oligonucleotides (TFOs) represent a class of drug candidates for antigene therapy. Based on strict criteria, we investigated the potential of 25 known oncogenes to be regulated by TFOs in the mRNA synthesis level and we report specific target sequences found in seven of these genes.
Collapse
Affiliation(s)
- George Papadakis
- Department of Biology, University of Crete and Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), 100 Nikolaou Plastira str, Heraklion 70013, Greece.
| | | |
Collapse
|
55
|
Lampronti I, Khan MTH, Borgatti M, Bianchi N, Gambari R. Inhibitory Effects of Bangladeshi Medicinal Plant Extracts on Interactions between Transcription Factors and Target DNA Sequences. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 5:303-12. [PMID: 18830455 PMCID: PMC2529391 DOI: 10.1093/ecam/nem042] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 03/14/2007] [Indexed: 01/04/2023]
Abstract
Several transcription factors (TFs) play crucial roles in governing the expression of different genes involved in the immune response, embryo or cell lineage development, cell apoptosis, cell cycle progression, oncogenesis, repair and fibrosis processes and inflammation. As far as inflammation, TFs playing pivotal roles are nuclear factor kappa B (NF-kB), activator protein (AP-1), signal transducer and activator of transcription (STATs), cAMP response element binding protein (CREB) and GATA-1 factors. All these TFs regulate the expression of pro-inflammatory cytokines and are involved in the pathogenesis of a number of human disorders, particularly those with an inflammatory component. Since several medicinal plants can be employed to produce extracts exhibiting biological effects and because alteration of gene transcription represents a very interesting approach to control the expression of selected genes, this study sought to verify the ability of several extracts derived from Bangladeshi medicinal plants in interfering with molecular interactions between different TFs and specific DNA sequences. We first analyzed the antiproliferative activity of 19 medicinal plants on different human cell lines, including erythroleukemia K562, B lymphoid Raji and T lymphoid Jurkat cell lines. Secondly, we employed the electrophoretic mobility shift assay as a suitable technique for a fast screening of plant extracts altering the binding between NF-kB, AP-1, GATA-1, STAT-3, CREB and the relative target DNA elements.
Collapse
Affiliation(s)
- Ilaria Lampronti
- ER-GenTech, Department of Biochemistry and Molecular Biology, University of Ferrara, Italy, University of Science and Technology of Chittagong, Bangladesh, Laboratory for the Development of Pharmacologic and Pharmacogenomic Therapy of Thalassemia, Biothecnology Center and Center of Excellence on Inflammation, University of Ferrara, Italy
| | | | | | | | | |
Collapse
|
56
|
Marcélis L, Ghesquière J, Garnir K, Kirsch-De Mesmaeker A, Moucheron C. Photo-oxidizing RuII complexes and light: Targeting biomolecules via photoadditions. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.02.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
57
|
Hari Y, Obika S, Imanishi T. Towards the Sequence-Selective Recognition of Double-Stranded DNA Containing Pyrimidine-Purine Interruptions by Triplex-Forming Oligonucleotides. European J Org Chem 2012. [DOI: 10.1002/ejoc.201101821] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
58
|
Hari Y, Nakahara M, Obika S. A 2-AMINO-6-METHYLPYRIDIN-5-YL NUCLEOBASE FOR GC BASE PAIR RECOGNITION IN THE PARALLEL TRIPLEX DNA. HETEROCYCLES 2012. [DOI: 10.3987/com-12-s(n)68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
59
|
|
60
|
Kanamori T, Masaki Y, Mizuta M, Tsunoda H, Ohkubo A, Sekine M, Seio K. DNA duplexes and triplex-forming oligodeoxynucleotides incorporating modified nucleosides forming stable and selective triplexes. Org Biomol Chem 2011; 10:1007-13. [PMID: 22146807 DOI: 10.1039/c1ob06411h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have previously reported DNA triplexes containing the unnatural base triad G-PPI·C3, in which PPI is an indole-fused cytosine derivative incorporated into DNA duplexes and C3 is an abasic site in triplex-forming oligonucleotides (TFOs) introduced by a propylene linker. In this study, we developed a new unnatural base triad A-ψ·C(R1) where ψ and C(R1) are base moieties 2'-deoxypseudouridine and 5-substituted deoxycytidine, respectively. We examined several electron-withdrawing substituents for R1 and found that 5-bromocytosine (C(Br)) could selectively recognize ψ. In addition, we developed a new PPI derivative, PPI(Me), having a methyl group on the indole ring in order to achieve selective triplex formation between DNA duplexes incorporating various Watson-Crick base pairs, such as T-A, C-G, A-ψ, and G-PPI(Me), and TFOs containing T, C, C(Br), and C3. We studied the selective triplex formation between these duplexes and TFOs using UV-melting and gel mobility shift assays.
Collapse
|
61
|
Yang N, Singh S, Mahato RI. Targeted TFO delivery to hepatic stellate cells. J Control Release 2011; 155:326-30. [PMID: 21763370 PMCID: PMC3347642 DOI: 10.1016/j.jconrel.2011.06.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/04/2011] [Accepted: 06/26/2011] [Indexed: 12/27/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) represent an antigene approach for gene regulation through direct interaction with genomic DNA. While this strategy holds great promise owing to the fact that only two alleles need silencing to impact gene regulation, delivering TFOs to target cells in vivo is still a challenge. Our recent efforts have focused on conjugating TFOs to carrier molecules like cholesterol to enhance their cellular uptake and mannose-6-phosphate-bovine serum albumin (M6P-BSA) to target TFO delivery to hepatic stellate cells (HSCs) for treating liver fibrosis. These approaches however are rendered less effective owing to a lack of targeted delivery, as seen with lipid-conjugates, and the potential immune reactions due to repeated dosing with high molecular weight BSA conjugated TFO. In this review, we discuss our latest efforts to enhance the effectiveness of TFO for treating liver fibrosis. We have shown that conjugation of TFOs to M6P-HPMA can enhance TFO delivery to HSCs and has the potential to treat liver fibrosis by inhibiting collagen synthesis. This TFO conjugate shows negligible immunogenicity owing to the use of HPMA, one of the least immunogenic copolymers, thereby making it a suitable and more effective candidate for antifibrotic therapy.
Collapse
Affiliation(s)
- Ningning Yang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38103
| | - Saurabh Singh
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38103
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38103
| |
Collapse
|
62
|
Doluca O, Boutorine AS, Filichev VV. Triplex-Forming Twisted Intercalating Nucleic Acids (TINAs): Design Rules, Stabilization of Antiparallel DNA Triplexes and Inhibition of G-Quartet-Dependent Self-Association. Chembiochem 2011; 12:2365-74. [DOI: 10.1002/cbic.201100354] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
63
|
Ma DL, Chan DSH, Lee P, Kwan MHT, Leung CH. Molecular modeling of drug–DNA interactions: Virtual screening to structure-based design. Biochimie 2011; 93:1252-66. [PMID: 21514356 DOI: 10.1016/j.biochi.2011.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/01/2011] [Indexed: 12/11/2022]
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | | | | | | | | |
Collapse
|
64
|
Aiba Y, Sumaoka J, Komiyama M. Artificial DNA cutters for DNA manipulation and genome engineering. Chem Soc Rev 2011; 40:5657-68. [PMID: 21566825 DOI: 10.1039/c1cs15039a] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This tutorial review provides recent developments in artificial cutters for site-selective scission of DNA with the focus on chemistry-based DNA cutters. They are useful tools for molecular biology and biotechnology, since their site-selectivity of scission is much higher than that of naturally occurring restriction enzymes and also their scission site is freely chosen. In order to prepare these cutters, a DNA-cutting molecule is combined with a sequence-recognizing molecule in a covalent or non-covalent way. At targeted sites in single-stranded and double-stranded DNAs, the scission occurs via either oxidative cleavage of nucleotides or hydrolysis of phosphodiester linkages. Among many successful examples, an artificial restriction DNA cutter, prepared from Ce(iv)/EDTA and pseudo-complementary peptide nucleic acid, hydrolyzed double-stranded DNA at the target site. The scission site and scission specificity are determined simply in terms of the Watson-Crick rule so that even the whole genome of human beings was selectively cut at one predetermined site. Consistently, homologous recombination in human cells was successfully promoted by this tool. For the purpose of comparison, protein-based DNA cutters (e.g., zinc finger nucleases) are also briefly described. The potential applications of these cutters and their future aspects are discussed.
Collapse
Affiliation(s)
- Yuichiro Aiba
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | | | | |
Collapse
|
65
|
Andrushchenko V, Bouř P. Applications of the Cartesian coordinate tensor transfer technique in the simulations of vibrational circular dichroism spectra of oligonucleotides. Chirality 2011; 22 Suppl 1:E96-E114. [PMID: 21038400 DOI: 10.1002/chir.20872] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The application of the Cartesian coordinate tensor transfer (CCT) technique for simulations of the IR absorption and vibrational circular dichroism (VCD) spectra of relatively large nucleic acid fragments is demonstrated on several case studies. The approach is based on direct ab initio calculations of atomic tensors, determining molecular properties, for relatively small fragments, and subsequent transfer of these tensors to the larger systems in Cartesian coordinates. This procedure enables precise computations of vibrational spectra for large biomolecular systems, currently with up to several thousands of atoms. The versatile ability of the CCT methods is emphasized on the examples of VCD and IR absorption spectra calculations for B- and Z-forms of DNA, single-, double-, and triple-stranded RNA helices and DNA structures with different base content and sequences. The development and recent improvements of the methodology are followed, including utilization of the constrained normal mode optimization (NMO) strategy and combined quantum mechanics and molecular dynamics simulations. Advantages, drawbacks, and recommendations for future improvements of the CCT method as applied to nucleic acid spectra calculations are discussed.
Collapse
Affiliation(s)
- Valery Andrushchenko
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
66
|
Hari Y, Akabane M, Hatanaka Y, Nakahara M, Obika S. A 4-[(3R,4R)-dihydroxypyrrolidino]pyrimidin-2-one nucleobase for a CG base pair in triplex DNA. Chem Commun (Camb) 2011; 47:4424-6. [PMID: 21390385 DOI: 10.1039/c1cc10138b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to expand target sequences in triplex DNA formation, the development of a nucleobase that recognizes a CG base pair in dsDNA was attempted. A 4-[(3R,4R)-dihydroxypyrrolidino]pyrimidin-2-one nucleobase was found to recognize a CG base pair with high sequence-selectivity.
Collapse
Affiliation(s)
- Yoshiyuki Hari
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan.
| | | | | | | | | |
Collapse
|
67
|
Nagatsugi F, Imoto S. Induced cross-linking reactions to target genes using modified oligonucleotides. Org Biomol Chem 2011; 9:2579-85. [PMID: 21373696 DOI: 10.1039/c0ob00819b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Synthetic oligonucleotides (ONs) are valuable tools that interfere with gene expression by specifically binding to target genes in a sequence-specific manner. Reactive ONs containing cross-linking agents are expected to induce efficient inhibition because they bind covalently to target genes. In recent years, researchers have reported several cross-linking reactions that target DNA induced by external stimuli. This short review highlights recently developed novel cross-linking reactions, focusing particularly on nucleoside derivatives developed by our group.
Collapse
Affiliation(s)
- Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577, Japan.
| | | |
Collapse
|
68
|
Holt PA, Buscaglia R, Trent JO, Chaires JB. A Discovery Funnel for Nucleic Acid Binding Drug Candidates. Drug Dev Res 2011; 72:178-186. [PMID: 21566705 PMCID: PMC3090163 DOI: 10.1002/ddr.20414] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Computational approaches are becoming increasingly popular for the discovery of drug candidates against a target of interest. Proteins have historically been the primary targets of many virtual screening efforts. While in silico screens targeting proteins has proven successful, other classes of targets, in particular DNA, remain largely unexplored using virtual screening methods. With the realization of the functional importance of many non-cannonical DNA structures such as G-quadruplexes, increased efforts are underway to discover new small molecules that can bind selectively to DNA structures. Here, we describe efforts to build an integrated in silico and in vitro platform for discovering compounds that may bind to a chosen DNA target. Millions of compounds are initially screened in silico for selective binding to a particular structure and ranked to identify several hundred best hits. An important element of our strategy is the inclusion of an array of possible competing structures in the in silico screen. The best hundred or so hits are validated experimentally for binding to the actual target structure by a high-throughput 96-well thermal denaturation assay to yield the top ten candidates. Finally, these most promising candidates are thoroughly characterized for binding to their DNA target by rigorous biophysical methods, including isothermal titration calorimetry, differential scanning calorimetry, spectroscopy and competition dialysis.This platform was validated using quadruplex DNA as a target and a newly discovered quadruplex binding compound with possible anti-cancer activity was discovered. Some considerations when embarking on virtual screening and in silico experiments are also discussed.
Collapse
Affiliation(s)
- Patrick A. Holt
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Robert Buscaglia
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - John O. Trent
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Jonathan B. Chaires
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| |
Collapse
|
69
|
de Almagro MC, Mencia N, Noé V, Ciudad CJ. Coding polypurine hairpins cause target-induced cell death in breast cancer cells. Hum Gene Ther 2011; 22:451-63. [PMID: 20942657 DOI: 10.1089/hum.2010.102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Polypurine reverse-Hoogsteen hairpins (PPRHs) are double-stranded DNA molecules formed by two polypurine stretches linked by a pentathymidine loop, with intramolecular reverse-Hoogsteen bonds that allow a hairpin structure. PPRHs bind to polypyrimidine targets by Watson-Crick bonds maintaining simultaneously a hairpin structure due to intramolecular Hoogsteen bonds. Previously, we described the ability of Template-PPRHs to decrease mRNA levels because these PPRHs target the template DNA strand interfering with the transcription process. Now, we designed Coding-PPRHs, a new type of PPRHs that directly target the pre-mRNA. The dihydrofolate reductase (dhfr) gene was selected as a target in breast cancer therapy. These PPRHs caused a high degree of cytotoxicity and a decrease in DHFR mRNA and protein levels, but by a different mechanism of action than Template-PPRHs. Coding-PPRHs interfere with the splicing process by competing with U2 auxiliary factor 65 for binding to the polypyrimidine target sequence, leading to a lower amount of mature mRNA. These new PPRHs showed high specificity as no off-target effects were found. The application of these molecules as therapeutic tools was tested in breast cancer cells resistant to methotrexate, obtaining a noticeable cytotoxicity even though the dhfr locus was amplified. Coding-PPRHs can be considered as new molecules to decrease gene expression at the mRNA level and an alternative to other antisense molecules.
Collapse
Affiliation(s)
- M Cristina de Almagro
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
70
|
Nagatsugi F. Development of the Highly Selective Reactions to Target Gene for the Control of the Gene Expression in Cells. J SYN ORG CHEM JPN 2011. [DOI: 10.5059/yukigoseikyokaishi.69.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
71
|
Cao SQ, Okamoto I, Tsunoda H, Ohkubo A, Seio K, Sekine M. Synthesis and triplex-forming properties of oligonucleotides containing thio-substituted C-nucleoside 4-thiopseudoisocytidine. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2010.11.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
72
|
Gerrard SR, Edrees MM, Bouamaied I, Fox KR, Brown T. CG base pair recognition within DNA triple helices by modified N-methylpyrrolo-dC nucleosides. Org Biomol Chem 2010; 8:5087-96. [PMID: 20835452 DOI: 10.1039/c0ob00119h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
3-Aminophenyl-modified analogues of the bicyclic nucleoside N-methyl-3H-pyrrolo[2,3-d]pyrimidin-2(7H)-one were synthesised and incorporated directly into triplex-forming oligonucleotides in order to utilise their extended hydrogen bonding motif for recognition of the CG base pair. All analogues demonstrated strong binding affinity and very good selectivity for CG from pH 6.2 to 7.0; a marked improvement on previous modifications.
Collapse
Affiliation(s)
- Simon R Gerrard
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | | | | | | | | |
Collapse
|
73
|
Lou C, Xiao Q, Brennan L, Light ME, Vergara-Irigaray N, Atkinson EM, Holden-Dye LM, Fox KR, Brown T. Synthesis and properties of triplex-forming oligonucleotides containing 2'-O-(2-methoxyethyl)-5-(3-aminoprop-1-ynyl)-uridine. Bioorg Med Chem 2010; 18:6389-97. [PMID: 20674370 DOI: 10.1016/j.bmc.2010.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 07/01/2010] [Accepted: 07/06/2010] [Indexed: 10/19/2022]
Abstract
2'-O-(2-Methoxyethyl)-5-(3-aminoprop-1-ynyl)-uridine phosphoramidite (MEPU) has been synthesized from d-ribose and 5-iodouracil and incorporated into triplex-forming oligonucleotides (TFOs) by automated solid-phase oligonucleotide synthesis. The TFOs gave very high triplex stability with their target duplexes as measured by ultraviolet/fluorescence melting and DNase I footprinting. The incorporation of MEPU into TFOs renders them resistant to degradation by serum nucleases.
Collapse
Affiliation(s)
- Chenguang Lou
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Xue L, Xi H, Kumar S, Gray D, Davis E, Hamilton P, Skriba M, Arya DP. Probing the recognition surface of a DNA triplex: binding studies with intercalator-neomycin conjugates. Biochemistry 2010; 49:5540-52. [PMID: 20499878 DOI: 10.1021/bi100071j] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thermodynamic studies on the interactions between intercalator-neomycin conjugates and a DNA polynucleotide triplex [poly(dA).2poly(dT)] were conducted. To draw a complete picture of such interactions, naphthalene diimide-neomycin (3) and anthraquinone-neomycin (4) conjugates were synthesized and used together with two other analogues, previously synthesized pyrene-neomycin (1) and BQQ-neomycin (2) conjugates, in our investigations. A combination of experiments, including UV denaturation, circular dichroism (CD) titration, differential scanning calorimetry (DSC), and isothermal titration calorimetry (ITC), revealed that all four conjugates (1-4) stabilized poly(dA).2poly(dT) much more than its parent compound, neomycin. UV melting experiments clearly showed that the temperature (T(m3-->2)) at which poly(dA).2poly(dT) dissociated into poly(dA).poly(dT) and poly(dT) increased dramatically (>12 degrees C) in the presence of intercalator-neomycin conjugates (1-4) even at a very low concentration (2 muM). In contrast to intercalator-neomycin conjugates, the increment of T(m3-->2) of poly(dA).2poly(dT) induced by neomycin was negligible under the same conditions. The binding preference of intercalator-neomycin conjugates (1-4) to poly(dA).2poly(dT) was also confirmed by competition dialysis and a fluorescent intercalator displacement assay. Circular dichroism titration studies revealed that compounds 1-4 had slightly larger binding site size ( approximately 7-7.5) with poly(dA).2poly(dT) as compared to neomycin ( approximately 6.5). The thermodynamic parameters of these intercalator-neomycin conjugates with poly(dA).2poly(dT) were derived from an integrated van't Hoff equation using the T(m3-->2) values, the binding site size numbers, and other parameters obtained from DSC and ITC. The binding affinity of all tested ligands with poly(dA).2poly(dT) increased in the following order: neomycin < 1 < 3 < 4 < 2. Among them, the binding constant [(2.7 +/- 0.3) x 10(8) M(-1)] of 2 with poly(dA).2poly(dT) was the highest, almost 1000-fold greater than that of neomycin. The binding of compounds 1-4 with poly(dA).2poly(dT) was mostly enthalpy-driven and gave negative DeltaC(p) values. The results described here suggest that the binding affinity of intercalator-neomycin conjugates for poly(dA).2poly(dT) increases as a function of the surface area of the intercalator moiety.
Collapse
Affiliation(s)
- Liang Xue
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Ghosh S, Majumder P, Pradhan SK, Dasgupta D. Mechanism of interaction of small transcription inhibitors with DNA in the context of chromatin and telomere. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:795-809. [PMID: 20638489 DOI: 10.1016/j.bbagrm.2010.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/23/2010] [Accepted: 06/30/2010] [Indexed: 01/13/2023]
Abstract
Small molecules from natural and synthetic sources have long been employed as human drugs. The transcription inhibitory potential of one class of these molecules has paved their use as anticancer drugs. The principal mode of action of these molecules is via reversible interaction with genomic DNA, double and multiple stranded. In this article we have revisited the mechanism of the interaction in the context of chromatin and telomere. The established modes of association of these molecules with double helical DNA provide a preliminary mechanism of their transcription inhibitory potential, but the scenario assumes a different dimension when the genomic DNA is associated with proteins in the transcription apparatus of both prokaryotic and eukaryotic organisms. We have discussed this altered scenario as a prelude to understand the chemical biology of their action in the cell. For the telomeric quadruplex DNA, we have reviewed the mechanism of their association with the quadruplex and resultant cellular consequence.
Collapse
Affiliation(s)
- Saptaparni Ghosh
- Biophysics Division, Saha Institute of Nuclear Physics, Sector-I, Block-AF, Bidhan Nagar, Kolkata Pin, 700064, India
| | | | | | | |
Collapse
|
76
|
Nagatsugi F, Sasaki S. Synthesis of Reactive Oligonucleotides for Gene Targeting and Their Application to Gene Expression Regulation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2010. [DOI: 10.1246/bcsj.20100010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
77
|
Magat Juan EC, Shimizu S, Ma X, Kurose T, Haraguchi T, Zhang F, Tsunoda M, Ohkubo A, Sekine M, Shibata T, Millington CL, Williams DM, Takénaka A. Insights into the DNA stabilizing contributions of a bicyclic cytosine analogue: crystal structures of DNA duplexes containing 7,8-dihydropyrido [2,3-d]pyrimidin-2-one. Nucleic Acids Res 2010; 38:6737-45. [PMID: 20554855 PMCID: PMC2965239 DOI: 10.1093/nar/gkq519] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The incorporation of the bicyclic cytosine analogue 7,8-dihydropyrido[2,3-d]pyrimidin-2-one (X) into DNA duplexes results in a significant enhancement of their stability (3–4 K per modification). To establish the effects of X on the local hydrogen-bonding and base stacking interactions and the overall DNA conformation, and to obtain insights into the correlation between the structure and stability of X-containing DNA duplexes, the crystal structures of [d(CGCGAATT-X-GCG)]2 and [d(CGCGAAT-X-CGCG)]2 have been determined at 1.9–2.9 Å resolutions. In all of the structures, the analogue X base pairs with the purine bases on the opposite strands through Watson–Crick and/or wobble type hydrogen bonds. The additional ring of the X base is stacked on the thymine bases at the 5′-side and overall exhibits greatly enhanced stacking interactions suggesting that this is a major contribution to duplex stabilization.
Collapse
Affiliation(s)
- Ella Czarina Magat Juan
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Jain AK, Bhattacharya S. Groove Binding Ligands for the Interaction with Parallel-Stranded ps-Duplex DNA and Triplex DNA. Bioconjug Chem 2010; 21:1389-403. [PMID: 20509695 DOI: 10.1021/bc900247s] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Akash K. Jain
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India, Chemical Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India, Chemical Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India
| |
Collapse
|
79
|
Synthesis of a new intercalating nucleic acid analogue with pyrenol insertions and the thermal stability of the resulting oligonucleotides towards DNA over RNA. MONATSHEFTE FUR CHEMIE 2010. [DOI: 10.1007/s00706-010-0320-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
80
|
Xi H, Kumar S, Dosen-Micovic L, Arya DP. Calorimetric and spectroscopic studies of aminoglycoside binding to AT-rich DNA triple helices. Biochimie 2010; 92:514-29. [PMID: 20167243 PMCID: PMC3977217 DOI: 10.1016/j.biochi.2010.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Accepted: 02/08/2010] [Indexed: 11/21/2022]
Abstract
Calorimetric and fluorescence techniques were used to characterize the binding of aminoglycosides-neomycin, paromomycin, and ribostamycin, with 5'-dA(12)-x-dT(12)-x-dT(12)-3' intramolecular DNA triplex (x = hexaethylene glycol) and poly(dA).2poly(dT) triplex. Our results demonstrate the following features: (1) UV thermal analysis reveals that the T(m) for triplex decreases with increasing pH value in the presence of neomycin, while the T(m) for the duplex remains unchanged. (2) The binding affinity of neomycin decreases with increased pH, although there is an increase in observed binding enthalpy. (3) ITC studies conducted in two buffers (sodium cacodylate and MOPS) yield the number of protonated drug amino groups (Deltan) as 0.29 and 0.40 for neomycin and paromomycin interaction with 5'-dA(12)-x-dT(12)-x-dT(12)-3', respectively. (4) The specific heat capacity change (DeltaC(p)) determined by ITC studies is negative, with more negative values at lower salt concentrations. From 100 mM to 250 mM KCl, the DeltaC(p) ranges from -402 to -60 cal/(mol K) for neomycin. At pH 5.5, a more positive DeltaC(p) is observed, with a value of -98 cal/(mol K) at 100 mM KCl. DeltaC(p) is not significantly affected by ionic strength. (5) Salt dependence studies reveal that there are at least three amino groups of neomycin participating in the electrostatic interactions with the triplex. (6) FID studies using thiazole orange were used to derive the AC(50) (aminoglycoside concentration needed to displace 50% of the dye from the triplex) values. Neomycin shows a seven fold higher affinity than paromomycin and eleven fold higher affinity than ribostamycin at pH 6.8. (7) Modeling studies, consistent with UV and ITC results, show the importance of an additional positive charge in triplex recognition by neomycin. The modeling and thermodynamic studies indicate that neomycin binding to the DNA triplex depends upon significant contributions from charge as well as shape complementarity of the drug to the DNA triplex Watson-Hoogsteen groove.
Collapse
Affiliation(s)
- Hongjuan Xi
- Contribution from the Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Sunil Kumar
- Contribution from the Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Ljiljana Dosen-Micovic
- Contribution from the Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Dev P. Arya
- Contribution from the Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
81
|
Singh Y, Murat P, Defrancq E. Recent developments in oligonucleotide conjugation. Chem Soc Rev 2010; 39:2054-70. [PMID: 20393645 DOI: 10.1039/b911431a] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Synthetic oligonucleotides (ONs) are being investigated for various therapeutic and diagnostic applications. The interest in ONs arises because of their capability to cause selective inhibition of gene expression by binding to the target DNA/RNA sequences through mechanisms such as antigene, antisense, and RNA interference. ONs with catalytic activity (ribozymes and DNAzymes) against the target sequences, and ability to bind to the target molecules (aptamers), ranging from small molecules to proteins, are also known. Therefore ONs are considered potentially useful for the treatment of viral diseases and cancer. ONs also find use in the design of DNA microchips (a powerful bio-analytical tool) and novel materials in nanotechnology. However, the clinical success achieved so far with ONs has not been satisfactory, and the major impediments have been recognised as their instability against nucleases, lack of target specificity, and poor uptake and targeted delivery. Tremendous efforts have been made to improve the ON properties by either incorporating chemical modifications in the ON structure or covalently linking (conjugation) reporter groups, with biologically relevant properties, to ONs. Conjugation is of great interest because it can be used not only to improve the existing ON properties but also to impart entirely new properties. This tutorial review focuses on the recent developments in ON conjugation, and describes the key challenges in efficient ON conjugation and major synthetic approaches available for successful ON conjugate syntheses. In addition, an overview on major classes of ON conjugates along with their use in therapeutics, diagnostics and nanotechnology is provided.
Collapse
Affiliation(s)
- Yashveer Singh
- Départment of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| | | | | |
Collapse
|
82
|
Song G, Ren J. Recognition and regulation of unique nucleic acid structures by small molecules. Chem Commun (Camb) 2010; 46:7283-94. [DOI: 10.1039/c0cc01312a] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
83
|
Amblard F, Cho JH, Schinazi RF. Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem Rev 2009; 109:4207-20. [PMID: 19737023 PMCID: PMC2741614 DOI: 10.1021/cr9001462] [Citation(s) in RCA: 668] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, Georgia 30033, USA
| | | | | |
Collapse
|
84
|
Buchmann W, Boutorine A, Halby L, Tortajada J, De Pauw E. A new method for the determination of the relative affinity of a ligand against various DNA sequences by electrospray ionization mass spectrometry. Application to a polyamide minor groove binder. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:1171-1181. [PMID: 19408249 DOI: 10.1002/jms.1592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A new method for the determination of the relative affinity of a ligand against various dsDNA sequences is presented by using electrospray ionization time-of-flight mass spectrometry (ESI-QTOF) mass spectrometry. The principle is described here through the complexation of double-stranded DNA by a polyamide ligand including twelve N-methylpyrrole rings. However this method could be applied to other ligands especially when dissociation constants (Kd) are in nanomolar range. This method does not require knowing the ligand concentration accurately. It allows determination of the relative affinity of a ligand against various dsDNA sequences for 1 : 1 complex stoichiometries in a quick manner without labeling.
Collapse
Affiliation(s)
- William Buchmann
- Université d'Evry val d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, (CNRS UMR 8587/CEA), Bâtiment Maupertuis, Bd. François Mitterrand, 91025 Evry, France.
| | | | | | | | | |
Collapse
|
85
|
Rakotondradany F, Sleiman H, Whitehead MA. Hydrogen-bond self-assembly of DNA-base analogues — Experimental results. CAN J CHEM 2009. [DOI: 10.1139/v09-028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel biomimetic DNA analogue with fluorescence has been synthesized to generate functional supramolecular architectures. Experimental studies show that triaminopyrimidine nucleoside (2) undergoes a sterically controlled self-assembly into hydrogen-bonded linear tapes and hexameric rosettes. Self-association of the hydrogen-bonded triaminopyrimidine–cyanuric acid complex into elongated, rodlike nanostructures was shown by dynamic light scattering and transmission electron microscopy, suggesting hierarchical formation of higher-order, π-stacked assemblies. The hydrogen-bond self-assembly of the DNA analogue decreased the fluorescence of the nucleosides. This guest-induced fluorescence quenching can be used to develop DNA-hybridization probes. MM+ molecular modelling and semi-empirical molecular orbital PM3 calculations (1) predicted the incorporation of triaminopyrimidine nucleoside into new types of artificial DNA strands and triplex formation with natural, complementary DNA strands containing thymine (1).
Collapse
Affiliation(s)
- Felaniaina Rakotondradany
- Department of Chemistry, McGill University, Otto Maass Chemistry Building, 801 Sherbrooke St. West, Montreal, QC H3A 2K6, Canada
- Imperial Oil Resources, Oil Sands Development and Research, 3535 Research Road NW, Calgary, AB T2L 2K8, Canada
| | - Hanadi Sleiman
- Department of Chemistry, McGill University, Otto Maass Chemistry Building, 801 Sherbrooke St. West, Montreal, QC H3A 2K6, Canada
- Imperial Oil Resources, Oil Sands Development and Research, 3535 Research Road NW, Calgary, AB T2L 2K8, Canada
| | - M. A. Whitehead
- Department of Chemistry, McGill University, Otto Maass Chemistry Building, 801 Sherbrooke St. West, Montreal, QC H3A 2K6, Canada
- Imperial Oil Resources, Oil Sands Development and Research, 3535 Research Road NW, Calgary, AB T2L 2K8, Canada
| |
Collapse
|
86
|
Ramreddy T, Kombrabail M, Krishnamoorthy G, Rao BJ. Site-Specific Dynamics in TAT Triplex DNA As Revealed by Time-Domain Fluorescence of 2-Aminopurine. J Phys Chem B 2009; 113:6840-6. [DOI: 10.1021/jp901216h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T. Ramreddy
- Department of Chemical Science and Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | - Mamata Kombrabail
- Department of Chemical Science and Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | - G. Krishnamoorthy
- Department of Chemical Science and Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | - B. J. Rao
- Department of Chemical Science and Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| |
Collapse
|
87
|
The First Postsynthetic 5′-5′ Intercalators in Triplex DNA - Solid-Phase PostsyntheticSonogashiraReaction and Homocouplings on Arylacetylenes. Helv Chim Acta 2009. [DOI: 10.1002/hlca.200800397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
88
|
Stereoselective synthesis of highly functionalised P-stereogenic nucleosides via palladium-catalysed P–C cross-coupling reactions. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.09.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
89
|
Inhibition of human prostate cancer xenograft growth by 125I labeled triple-helin forming oligonucleotide directed against androgen receptor. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200811020-00014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
90
|
Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB. The triple helix: 50 years later, the outcome. Nucleic Acids Res 2008; 36:5123-38. [PMID: 18676453 PMCID: PMC2532714 DOI: 10.1093/nar/gkn493] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Triplex-forming oligonucleotides constitute an interesting DNA sequence-specific tool that can be used to target cleaving or cross-linking agents, transcription factors or nucleases to a chosen site on the DNA. They are not only used as biotechnological tools but also to induce modifications on DNA with the aim to control gene expression, such as by site-directed mutagenesis or DNA recombination. Here, we report the state of art of the triplex-based anti-gene strategy 50 years after the discovery of such a structure, and we show the importance of the actual applications and the main challenges that we still have ahead of us.
Collapse
Affiliation(s)
- Maria Duca
- LCMBA CNRS UMR6001, University of Nice-Sophia Antipolis, Parc Valrose, 06108 NICE Cedex 2, France
| | | | | | | | | |
Collapse
|
91
|
Jain A, Wang G, Vasquez KM. DNA triple helices: biological consequences and therapeutic potential. Biochimie 2008; 90:1117-30. [PMID: 18331847 PMCID: PMC2586808 DOI: 10.1016/j.biochi.2008.02.011] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/08/2008] [Indexed: 01/25/2023]
Abstract
DNA structure is a critical element in determining its function. The DNA molecule is capable of adopting a variety of non-canonical structures, including three-stranded (i.e. triplex) structures, which will be the focus of this review. The ability to selectively modulate the activity of genes is a long-standing goal in molecular medicine. DNA triplex structures, either intermolecular triplexes formed by binding of an exogenously applied oligonucleotide to a target duplex sequence, or naturally occurring intramolecular triplexes (H-DNA) formed at endogenous mirror repeat sequences, present exploitable features that permit site-specific alteration of the genome. These structures can induce transcriptional repression and site-specific mutagenesis or recombination. Triplex-forming oligonucleotides (TFOs) can bind to duplex DNA in a sequence-specific fashion with high affinity, and can be used to direct DNA-modifying agents to selected sequences. H-DNA plays important roles in vivo and is inherently mutagenic and recombinogenic, such that elements of the H-DNA structure may be pharmacologically exploitable. In this review we discuss the biological consequences and therapeutic potential of triple helical DNA structures. We anticipate that the information provided will stimulate further investigations aimed toward improving DNA triplex-related gene targeting strategies for biotechnological and potential clinical applications.
Collapse
Affiliation(s)
- Aklank Jain
- Department of Carcinogenesis, University of Texas, M.D. Anderson Cancer Center, Science Park--Research Division, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957, USA
| | | | | |
Collapse
|
92
|
McKenzie F, Faulds K, Graham D. LNA functionalized gold nanoparticles as probes for double stranded DNA through triplex formation. Chem Commun (Camb) 2008:2367-9. [PMID: 18473072 DOI: 10.1039/b802163e] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nanoparticle modified LNA probes have been used for colorimetric identification of double stranded DNA via parallel triplex formation, eliminating the need for prior denaturation of the target duplex.
Collapse
Affiliation(s)
- Fiona McKenzie
- Centre for Molecular Nanometrology, WestCHEM, Glasgow, UK
| | | | | |
Collapse
|
93
|
Seela F, Sirivolu VR, Chittepu P. Modification of DNA with octadiynyl side chains: synthesis, base pairing, and formation of fluorescent coumarin dye conjugates of four nucleobases by the alkyne--azide "click" reaction. Bioconjug Chem 2007; 19:211-24. [PMID: 18020404 DOI: 10.1021/bc700300f] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligonucleotides incorporating 5-(octa-1,7-diynyl)-2'-deoxycytidine 1a, 5-(octa-1,7-diynyl)-2'-deoxyuridine 2a and 7-deaza-7-(octa-1,7-diynyl)-2'-deoxyguanosine 3a, 7-deaza-7-(octa-1,7-diynyl)-2'-deoxyadenosine 4a were prepared. For this, the phosphoramidites 7, 10, and 13 were synthesized and employed in solid-phase oligonucleotide synthesis. The octa-1,7-diynyl nucleosides 1a- 4a were obtained from their corresponding iodo derivatives using the palladium-assisted Sonogashira cross-coupling reaction. The Tm values demonstrated that DNA duplexes containing octa-1,7-diynyl nucleosides show a positive influence on the DNA duplex stability when they are introduced at the 5-position of pyrimidines or at the 7-position of 7-deazapurines. The terminal alkyne residue of oligonucleotides were selectively conjugated to the azide residue of the nonfluorescent 3-azido-7-hydroxycoumarin ( 38) using the protocol of copper(I)-catalyzed [3 + 2] Huisgen--Sharpless--Meldal cycloaddition "click chemistry" resulting in the formation of strongly fluorescent 1,2,3-triazole conjugates. The fluorescence properties of oligonucleotides with covalently linked coumarin--nucleobase assemblies were investigated. Among the four modified bases, the 7-deazapurines show stronger fluorescence quenching than that of pyrimidines.
Collapse
Affiliation(s)
- Frank Seela
- Laboratory for Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany.
| | | | | |
Collapse
|
94
|
The oxime bond formation as an efficient tool for the conjugation of ruthenium complexes to oligonucleotides and peptides. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.08.088] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
95
|
Sumino M, Ohkubo A, Taguchi H, Seio K, Sekine M. Synthesis and properties of oligodeoxynucleotides containing 5-carboxy-2'-deoxycytidines. Bioorg Med Chem Lett 2007; 18:274-7. [PMID: 18023346 DOI: 10.1016/j.bmcl.2007.10.081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/22/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
Abstract
5-Carboxy-2'-deoxycytidine (dC(COO-)) was synthesized as an anion-carrier to seek a new possibility of modified oligodeoxynucleotides capable of stabilization of duplexes and triplexes. The base pairing properties of this compound were evaluated by use of ab initio calculations. These calculations suggest that the Hoogsteen-type base pair of dC(COO-)-G is less stable than that of the canonical C+-G pair and the Watson-Crick-type base pair of dC(COO-)-G is slightly more stable than the natural G-C base pair. The modified cytosine base showed a basicity similar to that of cytosine (pKa 4.2). It turned out that oligodeoxynucleotides 13mer and 14mer incorporating dC(COO-) could form duplexes with the complementary DNA oligomer, which were more stable than the unmodified duplex. In contrast, it formed a relatively unstable triplex with the target ds DNA.
Collapse
Affiliation(s)
- Masanori Sumino
- Department of Life Science, Tokyo Institute of Technology, CREST, JST, Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
96
|
Tian YH, Xiong CL, Wan H, Huang DH, Guan HT, Ding XF, Shang XJ. Inhibition of the urokinase-type plasminogen activator by triplex-forming oligonucleotides in rat Sertoli cells: a new contraceptive alternative? Oligonucleotides 2007; 17:174-88. [PMID: 17638522 DOI: 10.1089/oli.2006.0068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Urokinase-type plasminogen activator (uPA), expressed in Sertoli cells in the testis, is closely related with tight junctions of blood-testis barrier (BTB), and it has been considered as a potential contraceptive target. In the present study, the antigene effects of triplex-forming oligodeoxynucleotides (TFO) targeting uPA in rat Sertoli cells were investigated in vitro. The stable triplexes, formed by uPA specific TFOs under physiological conditions, were tested by means of electrophoretic mobility shift assays (EMSA). Although tPA, another form of plasminogen activators (PAs), partially compensated the lose of PAs activities, uPA mRNA and protein were significantly reduced as demonstrated by real-time reverse transcription PCR and a chromogenic assay, after the treatment of Sertoli cells with uPA specific TFOs at a concentration of 330 nM. The capacity of TFOs resistance to nuclease degradation was enhanced by the phosphorothioated on the backbone of the oligonucleotides. Our results indicated that the TFOs can downregulate uPA expression and uPA might be an alternative contraceptive target.
Collapse
Affiliation(s)
- Yong-Hong Tian
- Center of Reproductive Medicine, Institute of Family Planning Research, Tongji Medical College, Huazhong Science and Technology University, Wuhan, Hubei Province, 430030, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
97
|
Halby L, Ryabinin VA, Sinyakov AN, Novopashina DS, Venyaminova AG, Grokhovsky SL, Surovaya AN, Gursky GV, Boutorine AS. Head-to-head bis-hairpin polyamide minor groove binders and their conjugates with triplex-forming oligonucleotides: studies of interaction with target double-stranded DNA. J Biomol Struct Dyn 2007; 25:61-76. [PMID: 17676939 DOI: 10.1080/07391102.2007.10507156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two hairpin hexa(N-methylpyrrole)carboxamide DNA minor groove binders (MGB) were linked together via their N-termini in head-to-head orientation. Complex formation between these bis-MGB conjugates and target DNA has been studied using DNase I footprinting, circular dichroism, thermal dissociation, and molecular modeling. DNase I footprint revealed binding of these conjugates to all the sites of 492 b.p. DNA fragment containing (A/T)(n)X(m)(A/T)(p) sequences, where n>3, p>3; m=1,2; X = A,T,G, or C. Binding affinity depended on the sequence context of the target. CD experiments and molecular modeling showed that oligo(N-methylpyrrole)carboxamide moieties in the complex form two short antiparallel hairpins rather than a long parallel head-to-head hairpin. Binding of bis-MGB also stabilized a target duplex thermodynamically. Sequence specificity of bis-MGB/DNA binding was validated using bis-conjugates of sequence-specific hairpin (N-methylpyrrole)/(N-methylimidazole) carboxamides. In order to increase the size of recognition sequence, the conjugates of bis-MGB with triplex-forming oligonucleotides (TFO) were synthesized and compared to TFO conjugated with single MGB hairpin unit. Bis-MGB-oligonucleotide conjugates also bind to two blocks of three and more A.T/T.A pairs similarly to bis-MGB alone, independently of the oligonucleotide moiety, but with lower affinity. However, the role of TFO in DNA recognition was demonstrated for mono-MGB-TFO conjugate where the binding was detected mainly in the area of the target sequence consisting of both MGB and TFO recognition sites. Basing on the molecular modeling, three-dimensional models of both target DNA/bis-MGB and target DNA/TFO-bis-MGB complexes were built, where bis-MGB forms two antiparallel hairpins. According to the second model, one MGB hairpin is in the minor groove of 5'-adjacent A/T sequence next to the triplex-forming region, whereas the other one occupies the minor groove of the TFO binding polypurine tract. All these data together give a key information for the construction of MGB-MGB and MGB-oligonucleotide conjugates possessing high specificity and affinity for the target double-stranded DNA.
Collapse
Affiliation(s)
- Ludovic Halby
- Museum National d'Histoire Naturelle, RDDM, USM 0503, 57 rue Cuvier, B.P. 26, Paris Cedex 05, F-75231 France
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Shikiya R, Marky LA. Calorimetric unfolding of intramolecular triplexes: length dependence and incorporation of single AT --> TA substitutions in the duplex domain. J Phys Chem B 2007; 109:18177-83. [PMID: 16853334 DOI: 10.1021/jp052327y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA triplexes have been the subject of great interest due to their ability to interfere with gene expression. The inhibition of gene expression involves the design of stable triplexes under physiological conditions; therefore, it is important to have a clear understanding of the energetic contributions controlling their stability. We have used a combination of UV spectroscopy and differential scanning calorimetric (DSC) techniques to investigate the unfolding of intramolecular triplexes, d(A(n)C5T(n)C5T(n)), where n is 5-7, 9, and 11, and related triplexes with a single AT --> TA substitution in their duplex stem. Specifically, we obtain standard thermodynamic profiles for the unfolding of each triplex in buffer solutions containing 0.1 M or 1 M NaCl. The triplexes unfold in monophasic or biphasic transitions (triplex --> duplex --> coil) depending on the concentration of salt used and position of the substitution, and their transition temperatures are independent of strand concentration. The DSC curves of the unsubstituted triplexes yielded an unfolding heat of 13.9 kcal/mol for a TAT/TAT base-triplet stack and a heat capacity of 505 cal/ degrees C.mol. The incorporation of a single substitution destabilizes triplex formation (association of the third strand) to a larger extent in 0.1 M NaCl, and the magnitude of the effects also depends on the position of the substitution. The combined results show that a single AT --> TA substitution in a homopurine/homopyrimidine duplex does not allow triplex formation of the neighboring five TAT base triplets, indicating that the in vivo formation of triplexes, such as H-DNA, is exclusive to homopurine/homopyrimidine sequences.
Collapse
Affiliation(s)
- Ronald Shikiya
- Department of Pharmaceutical Sciences and Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | |
Collapse
|
99
|
Belotserkovskii BP, De Silva E, Tornaletti S, Wang G, Vasquez KM, Hanawalt PC. A triplex-forming sequence from the human c-MYC promoter interferes with DNA transcription. J Biol Chem 2007; 282:32433-41. [PMID: 17785457 DOI: 10.1074/jbc.m704618200] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Naturally occurring DNA sequences that are able to form unusual DNA structures have been shown to be mutagenic, and in some cases the mutagenesis induced by these sequences is enhanced by their transcription. It is possible that transcription-coupled DNA repair induced at sites of transcription arrest might be involved in this mutagenesis. Thus, it is of interest to determine whether there are correlations between the mutagenic effects of such noncanonical DNA structures and their ability to arrest transcription. We have studied T7 RNA polymerase transcription through the sequence from the nuclease-sensitive element of the human c-MYC promoter, which is mutagenic in mammalian cells (Wang, G., and Vasquez, K. M. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 13448-13453). This element has two mirror-symmetric homopurine-homopyrimidine blocks that potentially can form either DNA triplex (H-DNA) or quadruplex structures. We detected truncated transcription products indicating partial transcription arrest within and closely downstream of the element. The arrest required negative supercoiling and was much more pronounced when the pyrimidine-rich strand of the element served as the template. The exact positions of arrest sites downstream from the element depended upon the downstream flanking sequences. We made various nucleotide substitutions in the wild-type sequence from the c-MYC nuclease-sensitive element that specifically destabilize either the triplex or the quadruplex structure. When these substitutions were ranked for their effects on transcription, the results implicated the triplex structure in the transcription arrest. We suggest that transcription-induced triplex formation enhances pre-existing weak transcription pause sites within the flanking sequences by creating steric obstacles for the transcription machinery.
Collapse
|
100
|
Mayer A, Leumann CJ. Pyrrolidino DNA with Bases Corresponding to the 2-Oxo Deletion Mutants of Thymine and Cytosine: Synthesis and Triplex-Forming Properties. European J Org Chem 2007. [DOI: 10.1002/ejoc.200700217] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|