51
|
Improved tolerance of Escherichia coli to oxidative stress by expressing putative response regulator homologs from Antarctic bacteria. J Microbiol 2019; 58:131-141. [PMID: 31872373 DOI: 10.1007/s12275-020-9290-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
Response regulator (RR) is known a protein that mediates cell's response to environmental changes. The effect of RR from extremophiles was still under investigation. In this study, response regulator homologs were mined from NGS data of Antarctic bacteria and overexpressed in Escherichia coli. Sixteen amino acid sequences were annotated corresponding to response regulators related to the two-component regulatory systems; of these, 3 amino acid sequences (DRH632, DRH1601 and DRH577) with high homology were selected. These genes were cloned in pRadGro and expressed in E. coli. The transformant strains were subjected to various abiotic stresses including oxidative, osmotic, thermal stress, and acidic stress. There was found that the robustness of E. coli to abiotic stress was increased in the presence of these response regulator homologs. Especially, recombinant E. coli overexpressing drh632 had the highest survival rate in oxidative, hypothermic, osmotic, and acidic conditions. Recombinant E. coli overexpressing drh1601 showed the highest tolerance level to osmotic stress. These results will be applicable for development of recombinant strains with high tolerance to abiotic stress.
Collapse
|
52
|
Vidovic S, Liu X, An R, Mendoza KM, Abrahante JE, Johny AK, Reed KM. Transcriptional Profiling and Molecular Characterization of the yccT Mutant Link: A Novel STY1099 Protein with the Peroxide Stress Response and Cell Division of Salmonella enterica Serovar Enteritidis. BIOLOGY 2019; 8:biology8040086. [PMID: 31766267 PMCID: PMC6955953 DOI: 10.3390/biology8040086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 11/16/2022]
Abstract
Uncharacterized protein STY1099, encoded by the yccT gene, was previously identified as the most altered (i.e., upregulated) protein among the ZnO nanoparticle (NP) stimulon of Salmonella enterica serovar Enteritidis. Here we combined various stress response-related assays with functional genetics, global transcriptomic and proteomic analyses to characterize the yccT gene and its STY1099 product. Exposure of S. enterica Enteritidis to H2O2 (i.e., hydrogen peroxide) resulted in a significant (p < 0.0001) upregulation of the yccT gene, whereas exposure to paraquat (i.e., superoxide) did not alter the expression of the yccT gene. The ∆yccT mutant of S. enterica Enteritidis exposed to 0.75 mM H2O2, showed significantly reduced (p < 0.05) viability compared to the wild type strain. Further, comparative transcriptome analyses supported by Co-immunoprecipitation (Co-IP) assay revealed that STY1099 protein plays a role in redox homeostasis during the peroxide stress assault via involvement in the processes of respiratory nitrate reductase, oxidoreductase activities, cellular uptake and stress response. In addition, we found that the STY1099 protein has the monopolar subcellular location and that it interacts with key cell division proteins, MinD, and FtsH, as well as with a rod shape-determining protein MerB.
Collapse
Affiliation(s)
- Sinisa Vidovic
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA; (X.L.); (R.A.); (K.M.M.); (K.M.R.)
- Correspondence: ; Tel.: +1-612-626-3669
| | - Xiaoying Liu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA; (X.L.); (R.A.); (K.M.M.); (K.M.R.)
| | - Ran An
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA; (X.L.); (R.A.); (K.M.M.); (K.M.R.)
| | - Kristelle M. Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA; (X.L.); (R.A.); (K.M.M.); (K.M.R.)
| | - Juan E. Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Anup K. Johny
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Kent M. Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA; (X.L.); (R.A.); (K.M.M.); (K.M.R.)
| |
Collapse
|
53
|
Upregulation of PBP1B and LpoB in cysB Mutants Confers Mecillinam (Amdinocillin) Resistance in Escherichia coli. Antimicrob Agents Chemother 2019; 63:AAC.00612-19. [PMID: 31332059 PMCID: PMC6761508 DOI: 10.1128/aac.00612-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/12/2019] [Indexed: 11/20/2022] Open
Abstract
Mecillinam (amdinocillin) is a β-lactam antibiotic that inhibits the essential penicillin-binding protein 2 (PBP2). In clinical isolates of Escherichia coli from urinary tract infections, inactivation of the cysB gene (which encodes the main regulator of cysteine biosynthesis, CysB) is the major cause of resistance. How a nonfunctional CysB protein confers resistance is unknown, however, and in this study we wanted to examine the mechanism of resistance. Mecillinam (amdinocillin) is a β-lactam antibiotic that inhibits the essential penicillin-binding protein 2 (PBP2). In clinical isolates of Escherichia coli from urinary tract infections, inactivation of the cysB gene (which encodes the main regulator of cysteine biosynthesis, CysB) is the major cause of resistance. How a nonfunctional CysB protein confers resistance is unknown, however, and in this study we wanted to examine the mechanism of resistance. Results show that cysB mutations cause a gene regulatory response that changes the expression of ∼450 genes. Among the proteins that show increased levels are the PBP1B, LpoB, and FtsZ proteins, which are known to be involved in peptidoglycan biosynthesis. Artificial overexpression of either PBP1B or LpoB in a wild-type E. coli strain conferred mecillinam resistance; conversely, inactivation of either the mrcB gene (which encodes PBP1B) or the lpoB gene (which encodes the PBP1B activator LpoB) made cysB mutants susceptible. These results show that expression of the proteins PBP1B and LpoB is both necessary and sufficient to confer mecillinam resistance. The addition of reducing agents to a cysB mutant converted it to full susceptibility, with associated downregulation of PBP1B, LpoB, and FtsZ. We propose a model in which cysB mutants confer mecillinam resistance by inducing a response that causes upregulation of the PBP1B and LpoB proteins. The higher levels of these two proteins can then rescue cells with mecillinam-inhibited PBP2. Our results also show how resistance can be modulated by external conditions such as reducing agents.
Collapse
|
54
|
Wu S, Kim E, Li J, Bentley WE, Shi XW, Payne GF. Catechol-Based Capacitor for Redox-Linked Bioelectronics. ACS APPLIED ELECTRONIC MATERIALS 2019; 1:1337-1347. [PMID: 32090203 PMCID: PMC7034937 DOI: 10.1021/acsaelm.9b00272] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A common bioelectronics goal is to enable communication between biology and electronics, and success is critically dependent on the communication modality. When a biorelevant modality aligns with instrumentation capabilities, remarkable successes have been observed (e.g., electrodes provide a powerful tool to observe and actuate biology through its ion-based electrical modality). Emerging biological research demonstrates that redox is another biologically relevant modality, and recent research has shown that advanced electrochemical methods enable biodevice communication through this redox modality. Here, we briefly summarize the biological relevance of this redox modality and the use of redox mediators to enable access to this modality through electrochemical measurements. Next, we describe the fabrication of a catechol-chitosan redox capacitor that is redox-active but nonconducting and thus offers a unique set of molecular electronic properties that enhance access to redox-based information. Finally, we cite several recent studies that demonstrate the broad potential for this capacitor to access redox-based biological information. In summary, we envision the redox capacitor will become a vital component in the integrated circuitry of redox-linked bioelectronics.
Collapse
Affiliation(s)
- Si Wu
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| | - Jinyang Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering and Research, University of Maryland, College Park, Maryland 20742, United States
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering and Research, University of Maryland, College Park, Maryland 20742, United States
| | - Xiao-Wen Shi
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
55
|
Aunins TR, Eller KA, Courtney CM, Levy M, Goodman SM, Nagpal P, Chatterjee A. Isolating the Escherichia coli Transcriptomic Response to Superoxide Generation from Cadmium Chalcogenide Quantum Dots. ACS Biomater Sci Eng 2019; 5:4206-4218. [PMID: 33417778 DOI: 10.1021/acsbiomaterials.9b01087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanomaterials have been extensively used in the biomedical field and have recently garnered attention as potential antimicrobial agents. Cadmium telluride quantum dots (QDs) with a bandgap of 2.4 eV (CdTe-2.4) were previously shown to inhibit multidrug-resistant clinical isolates of bacterial pathogens via light-activated superoxide generation. Here we investigate the transcriptomic response of Escherichia coli to phototherapeutic CdTe-2.4 QDs both with and without illumination, as well as in comparison with the non-superoxide-generating cadmium selenide QDs (CdSe-2.4) as a negative control. Our analysis sought to separate the transcriptomic response of E. coli to the generation of superoxide by the CdTe-2.4 QDs from the presence of cadmium chalcogenide nanoparticles alone. We used comparisons between illuminated CdTe-2.4 conditions and all others to establish the superoxide generation response and used comparisons between all QD conditions and the no treatment condition to establish the cadmium chalcogenide QD response. In our analysis of the gene expression experiments, we found eight genes to be consistently differentially expressed as a response to superoxide generation, and these genes demonstrate a consistent association with the DNA damage response and deactivation of iron-sulfur clusters. Each of these responses is characteristic of a bacterial superoxide response. We found 18 genes associated with the presence of cadmium chalcogenide QDs but not the generation of superoxide by CdTe-2.4, including several that implicated metabolism of amino acids in the E. coli response. To explore each of these gene sets further, we performed both gene knockout and amino acid supplementation experiments. We identified the importance of leucyl-tRNA downregulation as a cadmium chalcogenide QD response and reinforced the relationship between CdTe-2.4 stress and iron-sulfur clusters through examination of the gene tusA. This study demonstrates the transcriptomic response of E. coli to CdTe-2.4 and CdSe-2.4 QDs and parses the different effects of superoxide versus material effects on the bacteria. Our findings may provide useful information toward the development of QD-based antibacterial therapy in the future.
Collapse
|
56
|
Adaptation to Adversity: the Intermingling of Stress Tolerance and Pathogenesis in Enterococci. Microbiol Mol Biol Rev 2019; 83:83/3/e00008-19. [PMID: 31315902 DOI: 10.1128/mmbr.00008-19] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Enterococcus is a diverse and rugged genus colonizing the gastrointestinal tract of humans and numerous hosts across the animal kingdom. Enterococci are also a leading cause of multidrug-resistant hospital-acquired infections. In each of these settings, enterococci must contend with changing biophysical landscapes and innate immune responses in order to successfully colonize and transit between hosts. Therefore, it appears that the intrinsic durability that evolved to make enterococci optimally competitive in the host gastrointestinal tract also ideally positioned them to persist in hospitals, despite disinfection protocols, and acquire new antibiotic resistances from other microbes. Here, we discuss the molecular mechanisms and regulation employed by enterococci to tolerate diverse stressors and highlight the role of stress tolerance in the biology of this medically relevant genus.
Collapse
|
57
|
Zhang B, Gu H, Yang Y, Bai H, Zhao C, Si M, Su T, Shen X. Molecular Mechanisms of AhpC in Resistance to Oxidative Stress in Burkholderia thailandensis. Front Microbiol 2019; 10:1483. [PMID: 31338075 PMCID: PMC6626918 DOI: 10.3389/fmicb.2019.01483] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022] Open
Abstract
Burkholderia thailandensis is a model organism for human pathogens Burkholderia mallei and Burkholderia pseudomallei. The study of B. thailandensis peroxiredoxin is helpful for understanding the survival, pathogenic infection, and antibiotic resistance of its homologous species. Alkyl hydroperoxide reductase subunit C (AhpC) is an important peroxiredoxin involved in oxidative damage defense. Here, we report that BthAhpC exhibits broad specificity for peroxide substrates, including inorganic and organic peroxides and peroxynitrite. AhpC catalyzes the reduction of oxidants using the N-terminal conserved Cys57 as a peroxidatic Cys and the C-terminal conserved Cys171 and Cys173 as resolving Cys. These three conserved Cys residues play critical roles in the catalytic mechanism. AhpD directly interacts with AhpC as an electron donor, and the conserved Cys residues in active site of AhpD are important for AhpC reduction. AhpC is directly repressed by OxyR as shown by identifying the OxyR binding site in the ahpC promoter with a DNA binding assay. This work sheds light on the function of AhpC in the peroxides and peroxynitrite damage response in B. thailandensis and homologous species.
Collapse
Affiliation(s)
- Bing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Huawei Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yantao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Haonan Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Chao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Meiru Si
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Tao Su
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
58
|
Chai L, Ding C, Li J, Yang Z, Shi Y. Multi-omics response of Pannonibacter phragmitetus BB to hexavalent chromium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:63-73. [PMID: 30878863 DOI: 10.1016/j.envpol.2019.03.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 05/27/2023]
Abstract
The release of hexavalent chromium [Cr(VI)] into water bodies poses a major threat to the environment and human health. However, studies of the biological response to Cr(VI) are limited. In this study, a toxic bacterial mechanism of Cr(VI) was investigated using Pannonibacter phragmitetus BB (hereafter BB), which was isolated from chromate slag. The maximum Cr(VI) concentrations with respect to the resistance and reduction by BB are 4000 mg L-1 and 2500 mg L-1, respectively. In the BB genome, more genes responsible for Cr(VI) resistance and reduction are observed compared with other P. phragmitetus strains. A total of 361 proteins were upregulated to respond to Cr(VI) exposure, including enzymes for Cr(VI) uptake, intracellular reduction, ROS detoxification, DNA repair, and Cr(VI) efflux and proteins associated with novel mechanisms involving extracellular reduction mediated by electron transfer, quorum sensing, and chemotaxis. Based on metabolomic analysis, 174 metabolites were identified. Most of the upregulated metabolites are involved in amino acid, glucose, lipid, and energy metabolisms. The results show that Cr(VI) induces metabolite production, while metabolites promote Cr(VI) reduction. Overall, multi-enzyme expression and metabolite production by BB contribute to its high ability to resist/reduce Cr(VI). This study provides details supporting the theory of Cr(VI) reduction and a theoretical basis for the efficient bioremoval of Cr(VI) from the environment.
Collapse
Affiliation(s)
- Liyuan Chai
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China
| | - Chunlian Ding
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Jiawei Li
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Zhihui Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China
| | - Yan Shi
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China.
| |
Collapse
|
59
|
Noster J, Persicke M, Chao TC, Krone L, Heppner B, Hensel M, Hansmeier N. Impact of ROS-Induced Damage of TCA Cycle Enzymes on Metabolism and Virulence of Salmonella enterica serovar Typhimurium. Front Microbiol 2019; 10:762. [PMID: 31105651 PMCID: PMC6491894 DOI: 10.3389/fmicb.2019.00762] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/26/2019] [Indexed: 01/10/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (STM) is exposed to reactive oxygen species (ROS) originating from aerobic respiration, antibiotic treatment, and the oxidative burst occurring inside the Salmonella-containing vacuole (SCV) within host cells. ROS damage cellular compounds, thereby impairing bacterial viability and inducing cell death. Proteins containing iron–sulfur (Fe–S) clusters are particularly sensitive and become non-functional upon oxidation. Comprising five enzymes with Fe–S clusters, the TCA cycle is a pathway most sensitive toward ROS. To test the impact of ROS-mediated metabolic perturbations on bacterial physiology, we analyzed the proteomic and metabolic profile of STM deficient in both cytosolic superoxide dismutases (ΔsodAB). Incapable of detoxifying superoxide anions (SOA), endogenously generated SOA accumulate during growth. ΔsodAB showed reduced abundance of aconitases, leading to a metabolic profile similar to that of an aconitase-deficient strain (ΔacnAB). Furthermore, we determined a decreased expression of acnA in STM ΔsodAB. While intracellular proliferation in RAW264.7 macrophages and survival of methyl viologen treatment were not reduced for STM ΔacnAB, proteomic profiling revealed enhanced stress response. We conclude that ROS-mediated reduced expression and damage of aconitase does not impair bacterial viability or virulence, but might increase ROS amounts in STM, which reinforces the bactericidal effects of antibiotic treatment and immune responses of the host.
Collapse
Affiliation(s)
- Janina Noster
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Marcus Persicke
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Tzu-Chiao Chao
- Institute of Environmental Change and Society, University of Regina, Regina, SK, Canada
| | - Lena Krone
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Bianca Heppner
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Nicole Hansmeier
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany.,Institute of Environmental Change and Society, University of Regina, Regina, SK, Canada.,Luther College, University of Regina, Regina, SK, Canada
| |
Collapse
|
60
|
Durán RE, Méndez V, Rodríguez-Castro L, Barra-Sanhueza B, Salvà-Serra F, Moore ERB, Castro-Nallar E, Seeger M. Genomic and Physiological Traits of the Marine Bacterium Alcaligenes aquatilis QD168 Isolated From Quintero Bay, Central Chile, Reveal a Robust Adaptive Response to Environmental Stressors. Front Microbiol 2019; 10:528. [PMID: 31024465 PMCID: PMC6460240 DOI: 10.3389/fmicb.2019.00528] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
Alcaligenes aquatilis QD168 is a marine, aromatic hydrocarbon-degrading bacterium, isolated from an oil-polluted sediment of Quintero Bay, an industrial-coastal zone that has been chronically impacted by diverse pollutants. The aims of this study were to characterize the phylogenomic positions of Alcaligenes spp. and to characterize the genetic determinants and the physiological response of A. aquatilis QD168 to model environmental stressors (benzene, oxidizing agents, and salt). Phylogenomic analyses, using 35 housekeeping genes, clustered A. aquatilis QD168 with four other strains of Alcaligenes spp. (A. aquatilis BU33N, A. faecalis JQ135, A. faecalis UBA3227, and A. faecalis UBA7629). Genomic sequence analyses of A. aquatilis QD168 with 25 Alcaligenes spp., using ANIb, indicated that A. aquatilis BU33N is the closest related strain, with 96.8% ANIb similarity. Strain QD168 harbors 95 genes encoding proteins of seven central catabolic pathways, as well as sixteen peripheral catabolic pathways/reactions for aromatic compounds. A. aquatilis QD168 was able to grow on 3-hydroxybenzoate, 4-hydroxybenzoate, benzoate, benzene, 3-hydroxycinnamate, cinnamate, anthranilate, benzamide, 4-aminobenzoate, nicotinate, toluene, biphenyl and tryptophan, as sole carbon or nitrogen source. Benzene degradation was further analyzed by growth, metabolite identification and gene expression analyses. Benzene strongly induced the expression of the genes encoding phenol hydroxylase (dmpP) and catechol 1,2-dioxygenase (catA). Additionally, 30 genes encoding transcriptional regulators, scavenging enzymes, oxidative damage repair systems and isozymes involved in oxidative stress response were identified. Oxidative stress response of strain QD168 to hydrogen peroxide and paraquat was characterized, demonstrating that A. aquatilis QD168 is notably more resistant to paraquat than to H2O2. Genetic determinants (47 genes) for osmoprotective responses were identified, correlating with observed high halotolerance by strain QD168. The physiological adaptation of A. aquatilis QD168 to environmental stressors such as pollutants, oxidative stress and salinity may be exploited for bioremediation of oil-polluted saline sites.
Collapse
Affiliation(s)
- Roberto E Durán
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química - Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Valentina Méndez
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química - Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Laura Rodríguez-Castro
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química - Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Bárbara Barra-Sanhueza
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química - Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Culture Collection University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden.,Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Edward R B Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Culture Collection University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química - Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
61
|
OxyR and the hydrogen peroxide stress response in Caulobacter crescentus. Gene 2019; 700:70-84. [PMID: 30880241 DOI: 10.1016/j.gene.2019.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 11/22/2022]
Abstract
Oxidative stress generated by hydrogen peroxide is faced by bacteria when encountering hostile environments. In order to define the physiological and regulatory networks controlling the oxidative stress response in the free-living bacterium Caulobacter crescentus, a whole transcriptome analysis of wild type and ΔoxyR strains in the presence of hydrogen peroxide for two different exposure times was carried out. The C. crescentus response to H2O2 includes a decrease of the assimilative sulfate reduction and a shift in the amino acid synthesis pathways into favoring the synthesis of histidine. Moreover, the expression of genes encoding enzymes for the depolymerization of polyhydroxybutyrate was increased, and the RpoH-dependent genes were severely repressed. Based on the expression pattern and sequence analysis, we postulate that OxyR is probably directly required for the induction of three genes (katG, ahpCF). The putative binding of OxyR to the ahpC regulatory region could be responsible for the use of one of two alternative promoters in response to oxidative stress. Nevertheless, OxyR is required for the expression of 103 genes in response to H2O2. Fur and part of its regulon were differentially expressed in response to hydrogen peroxide independently of OxyR. The non-coding RNA OsrA was upregulated in both strains, and an in silico analysis indicated that it may have a regulatory role. This work characterizes the physiological response to H2O2 in C. crescentus, the regulatory networks and differentially regulated genes in oxidative stress and the participation of OxyR in this process. It is proposed that besides OxyR, a second layer of regulation may be achieved by a small regulatory RNA and other transcriptional regulators.
Collapse
|
62
|
Mitosch K, Rieckh G, Bollenbach T. Temporal order and precision of complex stress responses in individual bacteria. Mol Syst Biol 2019; 15:e8470. [PMID: 30765425 PMCID: PMC6375286 DOI: 10.15252/msb.20188470] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 12/28/2018] [Accepted: 01/22/2019] [Indexed: 01/27/2023] Open
Abstract
Sudden stress often triggers diverse, temporally structured gene expression responses in microbes, but it is largely unknown how variable in time such responses are and if genes respond in the same temporal order in every single cell. Here, we quantified timing variability of individual promoters responding to sublethal antibiotic stress using fluorescent reporters, microfluidics, and time-lapse microscopy. We identified lower and upper bounds that put definite constraints on timing variability, which varies strongly among promoters and conditions. Timing variability can be interpreted using results from statistical kinetics, which enable us to estimate the number of rate-limiting molecular steps underlying different responses. We found that just a few critical steps control some responses while others rely on dozens of steps. To probe connections between different stress responses, we then tracked the temporal order and response time correlations of promoter pairs in individual cells. Our results support that, when bacteria are exposed to the antibiotic nitrofurantoin, the ensuing oxidative stress and SOS responses are part of the same causal chain of molecular events. In contrast, under trimethoprim, the acid stress response and the SOS response are part of different chains of events running in parallel. Our approach reveals fundamental constraints on gene expression timing and provides new insights into the molecular events that underlie the timing of stress responses.
Collapse
Affiliation(s)
- Karin Mitosch
- IST Austria, Klosterneuburg, Austria
- EMBL Heidelberg, Heidelberg, Germany
| | - Georg Rieckh
- IST Austria, Klosterneuburg, Austria
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA
| | | |
Collapse
|
63
|
Hendiani S, Pornour M, Kashef N. Quorum-sensing-regulated virulence factors in Pseudomonas aeruginosa are affected by sub-lethal photodynamic inactivation. Photodiagnosis Photodyn Ther 2019; 26:8-12. [PMID: 30753921 DOI: 10.1016/j.pdpdt.2019.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/02/2019] [Accepted: 02/08/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND Photodynamic inactivation (PDI) is recognized as a new antimicrobial approach. It is likely that in human hosts receiving this therapy, pathogens may encounter sub-lethal doses of PDI (sPDI), which may affect microbial virulence. This study was aimed to evaluate the effect of sPDI using methylene blue (MB) on the expression of genes belonging to two quorum sensing (QS) operons (rhl and las systems) and two genes necessary for pyocyanin and rhamnolipid production (phzM and rhlA) under QS control in Pseudomonas aeruginosa. METHODS Ability of pyocyanin and rhamnolipid production of P. aeruginosa ATCC 27853 and clinical isolates exposed to sPDI (MB at 0.012 mM and light dose of 23 J/cm2 was evaluated. The effect of sPDI on expression of rhlI, rhlR, lasI, lasR, phzM and rhlA were also evaluated by quantitative real time polymerase chain reaction. RESULTS sPDI led to the down-regulation of the expression of all four QS genes (lasI, lasR, rhlI and rhlR) and rhamnolipid gene (rhlA). However, up-regulation of pyocyanin gene (phzM) was observed after sPDI. These results were consistent with phenotypic changes. CONCLUSION This study suggests that oxidative stress induced by sPDI can affect QS-regulated virulence factors of P. aeruginosa such as pyocyanin and rhamnolipids in different ways.
Collapse
Affiliation(s)
- Saghar Hendiani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Majid Pornour
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
| | - Nasim Kashef
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
64
|
Wang Y, Lu J, Mao L, Li J, Yuan Z, Bond PL, Guo J. Antiepileptic drug carbamazepine promotes horizontal transfer of plasmid-borne multi-antibiotic resistance genes within and across bacterial genera. THE ISME JOURNAL 2019; 13:509-522. [PMID: 30291330 PMCID: PMC6331567 DOI: 10.1038/s41396-018-0275-x] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/18/2018] [Accepted: 08/26/2018] [Indexed: 02/02/2023]
Abstract
Antibiotic resistance is a severe global threat for public health, causing around 700,000 deaths per year. Horizontal gene transfer (HGT) is one of the most significant pathways to disseminate antibiotic resistance. It is commonly acknowledged that sub-minimum inhibition concentrations of antibiotics are major contributors in promoting antibiotic resistance through HGT. Pharmaceuticals are occurring in our environments at increased levels, yet little is known whether non-antibiotic pharmaceuticals cause or accelerate the dissemination of antibiotic resistance. Here, we report for the first time that the antiepileptic drug, carbamazepine, promotes conjugative transfer of antibiotic resistance genes. It was seen that environmentally relevant concentrations of carbamazepine (e.g., 0.05 mg/L) significantly enhanced the conjugative transfer of multiresistance genes carried by plasmid within and across bacterial genera. The underlying mechanisms of the enhanced HGT were revealed by detecting oxidative stress and cell membrane permeability, in combination with MinION DNA sequencing, genome-wide RNA sequencing, and proteomic analysis. Carbamazepine induced a series of acute responses, including increased levels of reactive oxygen species, the SOS response; increased cell membrane permeability, and pilus generation. Expressional levels of genes related to these processes were significantly upregulated during carbamazepine exposure. Given that HGT occurs widely among different species in various environments, these findings are an early warning for a wide assessment of the roles of non-antibiotic pharmaceuticals in the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Yue Wang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Ji Lu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Likai Mao
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Jie Li
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
65
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out multiple functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters with small/redox-active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial reprogramming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances: Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high-resolution structural data. Although this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
66
|
Pan X, Wu J, Xu S, Duan T, Duan Y, Wang J, Zhang F, Zhou M. Contribution of OxyR Towards Differential Sensitivity to Antioxidants in Xanthomonas oryzae pathovars oryzae and oryzicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1244-1256. [PMID: 29905495 DOI: 10.1094/mpmi-03-18-0074-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
OxyR and SoxR are two transcriptional regulators in response to oxidative stress in most bacteria, and SoxR has been reported to be activated by the endogenous redox-cycling compound phenazine in phenazine-producing organisms. However, which transcriptional regulator is activated in pathogens treated with the antibiotic phenazine-1-carboxylic acid (PCA) has not been determined. In this study, we found that PCA treatment activated OxyR rather than SoxR in the phytopathogenic bacteria Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola. We also found that X. oryzae pv. oryzae was much more sensitive to PCA and H2O2 and had a defective antioxidant system (i.e., less of total antioxidant capacity and total catalase activity than X. oryzae pv. oryzicola, although X. oryzae pvs. oryzae and oryzicola are very closely related). Based on KEGG sequences, OxyR differs in 10 amino acids in X. oryzae pv. oryzae versus X. oryzae pv. oryzicola. By exchanging OxyR between X. oryzae pvs. oryzae and oryzicola, we elucidated that OxyR contributed to the differences in antioxidant capacity, total catalase activity, and sensitivity to PCA and H2O2. We also found that OxyR affected X. oryzae pvs. oryzae and oryzicola growth in a nutrient-poor medium, virulence on host plants (rice), and the hypersensitive response on nonhost plants (Nicotiana benthamiana). Thus, OxyR is a critical regulator that relates to the differences in antioxidative stress between X. oryzae pvs. oryzae and oryzicola and contributes to the differences in survival of them against oxidative stress.
Collapse
Affiliation(s)
- Xiayan Pan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shu Xu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Duan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yabing Duan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianxin Wang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Zhang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingguo Zhou
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
67
|
Chen LS, Li C, You XX, Lin YW, Wu YM. The mpn668 gene of Mycoplasma pneumoniae encodes a novel organic hydroperoxide resistance protein. Int J Med Microbiol 2018; 308:776-783. [DOI: 10.1016/j.ijmm.2018.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/18/2018] [Accepted: 04/26/2018] [Indexed: 02/03/2023] Open
|
68
|
Wang J, Yu Z, Xu Z, Hu S, Li Y, Xue X, Cai Q, Zhou X, Shen J, Lan Y, Cheng C. Antimicrobial mechanism and the effect of atmospheric pressure N 2 plasma jet on the regeneration capacity of Staphylococcus aureus biofilm. BIOFOULING 2018; 34:935-949. [PMID: 30477343 DOI: 10.1080/08927014.2018.1530350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/13/2018] [Accepted: 09/18/2018] [Indexed: 06/09/2023]
Abstract
This study systematically assessed the inactivation mechanism on Staphylococcus aureus biofilms by a N2 atmospheric-pressure plasma jet and the effect on the biofilm regeneration capacity from the bacteria which survived, and their progenies. The total bacterial populations were 7.18 ± 0.34 log10 CFU ml-1 in biofilms and these were effectively inactivated (>5.5-log10 CFU ml-1) within 30 min of exposure. Meanwhile, >80% of the S. aureus biofilm cells lost their metabolic capacity. In comparison, ∼20% of the plasma-treated bacteria entered a viable but non-culturable state. Moreover, the percentage of membrane-intact bacteria declined to ∼30%. Scanning electron microscope images demonstrated cell shrinkage and deformation post-treatment. The total amount of intracellular reactive oxygen species was observed to have significantly increased in membrane-intact bacterial cells with increasing plasma dose. Notably, the N2 plasma treatment could effectively inhibit the biofilm regeneration ability of the bacteria which survived, leading to a long-term phenotypic response and dose-dependent inactivation effect on S. aureus biofilms, in addition to the direct rapid bactericidal effect.
Collapse
Affiliation(s)
- Jiaquan Wang
- a School of Resources and Environmental Engineering , Hefei University of Technology , Hefei , Anhui Province , PR China
| | - Zhiyuan Yu
- a School of Resources and Environmental Engineering , Hefei University of Technology , Hefei , Anhui Province , PR China
| | - Zimu Xu
- a School of Resources and Environmental Engineering , Hefei University of Technology , Hefei , Anhui Province , PR China
- b Institute of Plasma Physics , Chinese Academy of Sciences , Hefei , PR China
- c Center of Medical Physics and Technology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , PR China
- d Anhui Province Key Laboratory of Medical Physics and Technology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , PR China
| | - Shuheng Hu
- a School of Resources and Environmental Engineering , Hefei University of Technology , Hefei , Anhui Province , PR China
| | - Yunxia Li
- a School of Resources and Environmental Engineering , Hefei University of Technology , Hefei , Anhui Province , PR China
| | - Xiaojuan Xue
- a School of Resources and Environmental Engineering , Hefei University of Technology , Hefei , Anhui Province , PR China
| | - Qiuchen Cai
- a School of Resources and Environmental Engineering , Hefei University of Technology , Hefei , Anhui Province , PR China
| | - Xiaoxia Zhou
- a School of Resources and Environmental Engineering , Hefei University of Technology , Hefei , Anhui Province , PR China
| | - Jie Shen
- b Institute of Plasma Physics , Chinese Academy of Sciences , Hefei , PR China
- c Center of Medical Physics and Technology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , PR China
- d Anhui Province Key Laboratory of Medical Physics and Technology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , PR China
| | - Yan Lan
- b Institute of Plasma Physics , Chinese Academy of Sciences , Hefei , PR China
- c Center of Medical Physics and Technology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , PR China
- d Anhui Province Key Laboratory of Medical Physics and Technology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , PR China
| | - Cheng Cheng
- b Institute of Plasma Physics , Chinese Academy of Sciences , Hefei , PR China
- c Center of Medical Physics and Technology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , PR China
- d Anhui Province Key Laboratory of Medical Physics and Technology , Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei , PR China
| |
Collapse
|
69
|
In vitro antimicrobial effects and mechanisms of direct current air-liquid discharge plasma on planktonic Staphylococcus aureus and Escherichia coli in liquids. Bioelectrochemistry 2018; 121:125-134. [DOI: 10.1016/j.bioelechem.2018.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
|
70
|
Megahed A, Aldridge B, Lowe J. The microbial killing capacity of aqueous and gaseous ozone on different surfaces contaminated with dairy cattle manure. PLoS One 2018; 13:e0196555. [PMID: 29758045 PMCID: PMC5951574 DOI: 10.1371/journal.pone.0196555] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/16/2018] [Indexed: 11/19/2022] Open
Abstract
A high reactivity and leaving no harmful residues make ozone an effective disinfectant for farm hygiene and biosecurity. Our objectives were therefore to (1) characterize the killing capacity of aqueous and gaseous ozone at different operational conditions on dairy cattle manure-based pathogens (MBP) contaminated different surfaces (plastic, metal, nylon, rubber, and wood); (2) determine the effect of microbial load on the killing capacity of aqueous ozone. In a crossover design, 14 strips of each material were randomly assigned into 3 groups, treatment (n = 6), positive-control (n = 6), and negative-control (n = 2). The strips were soaked in dairy cattle manure with an inoculum level of 107–108 for 60 minutes. The treatment strips were exposed to aqueous ozone of 2, 4, and 9 ppm and gaseous ozone of 1and 9 ppm for 2, 4, and 8 minutes exposure. 3M™ Petrifilm™ rapid aerobic count plate and plate reader were used for bacterial culture. On smooth surfaces, plastic and metal, aqueous ozone at 4 ppm reduced MBP to a safe level (≥5-log10) within 2 minutes (6.1 and 5.1-log10, respectively). However, gaseous ozone at 9 ppm for 4 minutes inactivated 3.3-log10 of MBP. Aqueous ozone of 9 ppm is sufficient to reduce MBP to a safe level, 6.0 and 5.4- log10, on nylon and rubber surfaces within 2 and 8 minutes, respectively. On complex surfaces, wood, both aqueous and gaseous ozone at up to 9 ppm were unable to reduce MBP to a safe level (3.6 and 0.8-log10, respectively). The bacterial load was a strong predictor for reduction in MBP (P<0.0001, R2 = 0.72). We conclude that aqueous ozone of 4 and 9 ppm for 2 minutes may provide an efficient method to reduce MBP to a safe level on smooth and moderately rough surfaces, respectively. However, ozone alone may not an adequate means of controlling MBP on complex surfaces.
Collapse
Affiliation(s)
- Ameer Megahed
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Animal Medicine, Internal Medicine, Faculty of Veterinary Medicine, Benha University, Moshtohor-Toukh, Kalyobiya, Egypt
| | - Brian Aldridge
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - James Lowe
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
71
|
Zhang Y, Gu AZ, Cen T, Li X, Li D, Chen J. Petrol and diesel exhaust particles accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes. ENVIRONMENT INTERNATIONAL 2018; 114:280-287. [PMID: 29524923 DOI: 10.1016/j.envint.2018.02.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 05/25/2023]
Abstract
Particles exhausted from petrol and diesel consumptions are major components of urban air pollution that can be exposed to human via direct inhalation or other routes due to atmospheric deposition into water and soil. Antimicrobial resistance is one of the most serious threats to modern health care. However, how the petrol and diesel exhaust particles affect the development and spread of antimicrobial resistance genes (ARGs) in various environments remain largely unknown. This study investigated the effects and potential mechanisms of four representative petrol and diesel exhaust particles, namely 97 octane petrol, 93 octane petrol, light diesel oil, and marine heavy diesel oil, on the horizontal transfer of ARGs between two opportunistic Escherichia coli (E. coli) strains, E. coli S17-1 (donor) and E. coli K12 (recipient). The results demonstrated that these four representative types of nano-scale particles induced concentration-dependent increases in conjugative transfer rates compared with the controls. The underlying mechanisms involved in the accelerated transfer of ARGs were also identified, including the generation of intracellular reactive oxygen species (ROS) and the consequent induction of oxidative stress, SOS response, changes in cell morphology, and the altered mRNA expression of membrane protein genes and those involved in the promotion of conjugative transfer. The findings provide new evidences and mechanistic insights into the antimicrobial resistance risks posed by petrol and diesel exhaust particles, and highlight the implications and need for stringent strategies on alternative fuels to mitigate air pollution and health risks.
Collapse
Affiliation(s)
- Ye Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Tianyu Cen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiangyang Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
72
|
Fu LH, Wei ZZ, Hu KD, Hu LY, Li YH, Chen XY, Han Z, Yao GF, Zhang H. Hydrogen sulfide inhibits the growth of Escherichia coli through oxidative damage. J Microbiol 2018; 56:238-245. [DOI: 10.1007/s12275-018-7537-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 10/17/2022]
|
73
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out a wide range of functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters towards small/redox active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial re-programming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances. Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high resolution structural data. Though this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- School of Chemistry , University of East Anglia , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| | - Nick E Le Brun
- University of East Anglia, School of Chemistry , University plain , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| |
Collapse
|
74
|
Ghosh S, Dureja C, Khatri I, Subramanian S, Raychaudhuri S, Ghosh S. Identification of novel small RNAs in Burkholderia cenocepacia KC-01 expressed under iron limitation and oxidative stress conditions. MICROBIOLOGY-SGM 2017; 163:1924-1936. [PMID: 29099689 DOI: 10.1099/mic.0.000566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Small RNA (sRNA)-mediated regulation of gene expression is a major tool to understand bacterial responses to environmental changes. In particular, pathogenic bacteria employ sRNAs to adapt to the host environment and establish infection. Members of the Burkholderia cepacia complex, normally present in soil microbiota, cause nosocomial lung infection especially in hospitalized cystic fibrosis patients. We sequenced the draft genome of Burkholderia cenocepacia KC-01, isolated from the coastal saline soil, and identified several potential sRNAs in silico. Expression of seven small RNAs (Bc_KC_sr1-7) was subsequently confirmed. Two sRNAs (Bc_KC_sr1 and Bc_KC_sr2) were upregulated in response to iron depletion by 2,2'-bipyridyl and another two (Bc_KC_sr3 and Bc_KC_sr4) responded to the presence of 60 µM H2O2 in the culture media. Bc_Kc_sr5, 6 and 7 remained unchanged under these conditions. Expression of Bc_KC_sr2, 3 and 4 also altered with a change in temperature and incubation time. A search in the Rfam and BSRD databases identified Bc_Kc_sr4 as candidate738 in B. pseudomallei D286 and assigned Bc_Kc_sr5 and 6 as tmRNA and 6S RNA, respectively. The novel sRNAs were conserved in Burkholderiaceae but did not have any homologue in other genera. Bc_KC_sr1 and 4 were transcribed independently while the rest were part of the 3' UTR of their upstream genes. TargetRNA2 predicted that these sRNAs could target a host of cellular messages with very high stringency. Intriguingly, regions surrounding the translation initiation site for several enzymes involved in Fe-S cluster and siderophore biosynthesis, ROS homeostasis, porins, transcription and translation regulators, were among the suggested putative binding sites for these sRNAs.
Collapse
Affiliation(s)
- Suparna Ghosh
- Department of Microbiology, University of Calcutta, Kolkata 700 019, India
| | - Chetna Dureja
- CSIR-Institute of Microbial Technology, Chandigarh 160 036, India
| | - Indu Khatri
- CSIR-Institute of Microbial Technology, Chandigarh 160 036, India
| | | | | | - Sagarmoy Ghosh
- Department of Microbiology, University of Calcutta, Kolkata 700 019, India
| |
Collapse
|
75
|
Spiteri D, Chot-Plassot C, Sclear J, Karatzas K, Scerri C, Valdramidis V. Ultrasound processing of liquid system(s) and its antimicrobial mechanism of action. Lett Appl Microbiol 2017; 65:313-318. [DOI: 10.1111/lam.12776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 11/27/2022]
Affiliation(s)
- D. Spiteri
- Department of Food Studies and Environmental Health; University of Malta; Msida Malta
- Centre for Molecular Medicine and Biobanking; University of Malta; Msida Malta
| | - C. Chot-Plassot
- Department of Food Studies and Environmental Health; University of Malta; Msida Malta
| | - J. Sclear
- Department of Food Studies and Environmental Health; University of Malta; Msida Malta
| | - K.A. Karatzas
- Department of Food and Nutritional Science; University of Reading; Reading UK
| | - C. Scerri
- Centre for Molecular Medicine and Biobanking; University of Malta; Msida Malta
- Department of Physiology and Biochemistry; University of Malta; Msida Malta
| | - V.P. Valdramidis
- Department of Food Studies and Environmental Health; University of Malta; Msida Malta
- Centre for Molecular Medicine and Biobanking; University of Malta; Msida Malta
| |
Collapse
|
76
|
Abstract
Descriptions of the changeable, striking colors associated with secreted natural products date back well over a century. These molecules can serve as extracellular electron shuttles (EESs) that permit microbes to access substrates at a distance. In this review, we argue that the colorful world of EESs has been too long neglected. Rather than simply serving as a diagnostic attribute of a particular microbial strain, redox-active natural products likely play fundamental, underappreciated roles in the biology of their producers, particularly those that inhabit biofilms. Here, we describe the chemical diversity and potential distribution of EES producers and users, discuss the costs associated with their biosynthesis, and critically evaluate strategies for their economical usage. We hope this review will inspire efforts to identify and explore the importance of EES cycling by a wide range of microorganisms so that their contributions to shaping microbial communities can be better assessed and exploited.
Collapse
Affiliation(s)
- Nathaniel R Glasser
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125; , ,
| | - Scott H Saunders
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125; , ,
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125; , , .,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
77
|
Li H, Wang Q, Wang R, Zhang Y, Wang X, Wang H. Global regulator SoxR is a negative regulator of efflux pump gene expression and affects antibiotic resistance and fitness in Acinetobacter baumannii. Medicine (Baltimore) 2017; 96:e7188. [PMID: 28614259 PMCID: PMC5478344 DOI: 10.1097/md.0000000000007188] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SoxR is a global regulator contributing to multidrug resistance in Enterobacteriaceae. However, the contribution of SoxR to antibiotic resistance and fitness in Acinetobacter baumannii has not yet been studied. Comparisons of molecular characteristics were performed between 32 multidrug-resistant A. baumannii isolates and 11 susceptible isolates. A soxR overexpression mutant was constructed, and its resistance phenotype was analyzed. The impact of SoxR on efflux pump gene expression was measured at the transcription level. The effect of SoxR on the growth and fitness of A. baumannii was analyzed using a growth rate assay and an in vitro competition assay. The frequency of the Gly39Ser mutation in soxR was higher in multidrug-resistant A. baumannii, whereas the soxS gene was absent in all strains analyzed. SoxR overexpression led to increased susceptibility to chloramphenicol (4-fold), tetracycline (2-fold), tigecycline (2-fold), ciprofloxacin (2-fold), amikacin (2-fold), and trimethoprim (2-fold), but it did not influence imipenem susceptibility. Decreased expression of abeS (3.8-fold), abeM (1.3-fold), adeJ (2.4-fold), and adeG (2.5-fold) were correlated with soxR overexpression (P < .05). However, the expression levels of adeB and craA showed no obvious difference in the soxR-overexpression mutant. Competitive growth test results showed that soxR overexpression led to a lower growth rate, which was associated with a significant fitness cost in vitro. These results reveal that the global regulator SoxR is a negative regulator of efflux pump gene expression, and contributes to antibiotic resistance and fitness in A. baumannii.
Collapse
|
78
|
Gao T, Li Y, Ding M, Chai Y, Wang Q. The phosphotransferase system gene ptsI in Bacillus cereus regulates expression of sodA2 and contributes to colonization of wheat roots. Res Microbiol 2017; 168:524-535. [PMID: 28478075 DOI: 10.1016/j.resmic.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/01/2017] [Accepted: 04/04/2017] [Indexed: 12/21/2022]
Abstract
Plant growth-promoting rhizobacteria effectively enhance plant growth and root colonization by the bacteria is a prerequisite during the process. Bacillus cereus 905, a rhizosphere bacterium originally isolated from wheat roots, colonizes the wheat rhizosphere with a large population size. We previously showed that a manganese-containing superoxide dismutase (MnSOD2), encoded by the sodA2 gene, plays an important role in colonization of the wheat rhizosphere by B. cereus 905. In this study, we identified a gene, ptsI, which positively regulates transcription of sodA2. ptsI encodes Enzyme I of the phosphotransferase system (PTS), a major regulator of carbohydrate uptake in bacteria. Assays of β-galactosidase activity and real-time quantitative PCR showed that loss of ptsI caused a 70% reduction in sodA2 expression. The ΔptsI mutant also showed a 1000-fold reduction in colonization of wheat roots, as well as a reduced growth rate in minimal media with either glucose or succinate as the sole carbon source. Artificial induction of sodA2 in the ΔptsI mutant partially restored root colonizing ability and utilization of succinate, but not glucose. These results suggest that the PTS plays an important role in rhizosphere colonization by both promoting nutrient utilization and regulating sodA2 expression in B. cereus 905.
Collapse
Affiliation(s)
- Tantan Gao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02215, USA
| | - Yan Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Mingzheng Ding
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yunrong Chai
- Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02215, USA.
| | - Qi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
79
|
Zhang Y, Wen T, Guo F, Geng Y, Liu J, Peng T, Guan G, Tian J, Li Y, Li J, Ju J, Jiang W. The Disruption of an OxyR-Like Protein Impairs Intracellular Magnetite Biomineralization in Magnetospirillum gryphiswaldense MSR-1. Front Microbiol 2017; 8:208. [PMID: 28261169 PMCID: PMC5308003 DOI: 10.3389/fmicb.2017.00208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/30/2017] [Indexed: 11/13/2022] Open
Abstract
Magnetotactic bacteria synthesize intracellular membrane-enveloped magnetite bodies known as magnetosomes which have been applied in biotechnology and medicine. A series of proteins involved in ferric ion transport and redox required for magnetite formation have been identified but the knowledge of magnetosome biomineralization remains very limited. Here, we identify a novel OxyR homolog (named OxyR-Like), the disruption of which resulted in low ferromagnetism and disfigured nano-sized iron oxide crystals. High resolution-transmission electron microscopy showed that these nanoparticles are mainly composed of magnetite accompanied with ferric oxide including α-Fe2O3 and 𝜀-Fe2O3. Electrophoretic mobility shift assay and DNase I footprinting showed that OxyR-Like binds the conserved 5'-GATA-N{9}-TATC-3' region within the promoter of pyruvate dehydrogenase (pdh) complex operon. Quantitative real-time reverse transcriptase PCR indicated that not only the expression of pdh operon but also genes related to magnetosomes biosynthesis and tricarboxylic acid cycle decreased dramatically, suggesting a link between carbon metabolism and magnetosome formation. Taken together, our results show that OxyR-Like plays a key role in magnetosomes formation.
Collapse
Affiliation(s)
- Yunpeng Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Tong Wen
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Fangfang Guo
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Yuanyuan Geng
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Junquan Liu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Tao Peng
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Guohua Guan
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Jiesheng Tian
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Ying Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Jilun Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Jing Ju
- College of Chemistry and Molecular Engineering, Peking University Beijing, China
| | - Wei Jiang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| |
Collapse
|
80
|
Honn M, Lindgren H, Bharath GK, Sjöstedt A. Lack of OxyR and KatG Results in Extreme Susceptibility of Francisella tularensis LVS to Oxidative Stress and Marked Attenuation In vivo. Front Cell Infect Microbiol 2017; 7:14. [PMID: 28174696 PMCID: PMC5258697 DOI: 10.3389/fcimb.2017.00014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022] Open
Abstract
Francisella tularensis is an intracellular bacterium and as such is expected to encounter a continuous attack by reactive oxygen species (ROS) in its intracellular habitat and efficiently coping with oxidative stress is therefore essential for its survival. The oxidative stress response system of F. tularensis is complex and includes multiple antioxidant enzymes and pathways, including the transcriptional regulator OxyR and the H2O2-decomposing enzyme catalase, encoded by katG. The latter is regulated by OxyR. A deletion of either of these genes, however, does not severely compromise the virulence of F. tularensis and we hypothesized that if the bacterium would be deficient of both catalase and OxyR, then the oxidative defense and virulence of F. tularensis would become severely hampered. To test this hypothesis, we generated a double deletion mutant, ΔoxyR/ΔkatG, of F. tularensis LVS and compared its phenotype to the parental LVS strain and the corresponding single deletion mutants. In accordance with the hypothesis, ΔoxyR/ΔkatG was distinctly more susceptible than ΔoxyR and ΔkatG to H2O2, ONOO−, and O2-, moreover, it hardly grew in mouse-derived BMDM or in mice, whereas ΔkatG and ΔoxyR grew as well as F. tularensis LVS in BMDM and exhibited only slight attenuation in mice. Altogether, the results demonstrate the importance of catalase and OxyR for a robust oxidative stress defense system and that they act cooperatively. The lack of both functions render F. tularensis severely crippled to handle oxidative stress and also much attenuated for intracellular growth and virulence.
Collapse
Affiliation(s)
- Marie Honn
- Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Umeå University Umeå, Sweden
| | - Helena Lindgren
- Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Umeå University Umeå, Sweden
| | - Gurram K Bharath
- Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Umeå University Umeå, Sweden
| | - Anders Sjöstedt
- Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Department of Clinical Microbiology, Umeå University Umeå, Sweden
| |
Collapse
|
81
|
Park SH, Singh H, Appukuttan D, Jeong S, Choi YJ, Jung JH, Narumi I, Lim S. PprM, a Cold Shock Domain-Containing Protein from Deinococcus radiodurans, Confers Oxidative Stress Tolerance to Escherichia coli. Front Microbiol 2017; 7:2124. [PMID: 28119668 PMCID: PMC5222802 DOI: 10.3389/fmicb.2016.02124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/15/2016] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli is a representative microorganism that is frequently used for industrial biotechnology; thus its cellular robustness should be enhanced for the widespread application of E. coli in biotechnology. Stress response genes from the extremely radioresistant bacterium Deinococcus radiodurans have been used to enhance the stress tolerance of E. coli. In the present study, we introduced the cold shock domain-containing protein PprM from D. radiodurans into E. coli and observed that the tolerance to hydrogen peroxide (H2O2) was significantly increased in recombinant strains (Ec-PprM). The overexpression of PprM in E. coli elevated the expression of some OxyR-dependent genes, which play important roles in oxidative stress tolerance. Particularly, mntH (manganese transporter) was activated by 9-fold in Ec-PprM, even in the absence of H2O2 stress, which induced a more than 2-fold increase in the Mn/Fe ratio compared with wild type. The reduced production of highly reactive hydroxyl radicals (·OH) and low protein carbonylation levels (a marker of oxidative damage) in Ec-PprM indicate that the increase in the Mn/Fe ratio contributes to the protection of cells from H2O2 stress. PprM also conferred H2O2 tolerance to E. coli in the absence of OxyR. We confirmed that the H2O2 tolerance of oxyR mutants reflected the activation of the ycgZ-ymgABC operon, whose expression is activated by H2O2 in an OxyR-independent manner. Thus, the results of the present study showed that PprM could be exploited to improve the robustness of E. coli.
Collapse
Affiliation(s)
- Sun-Ha Park
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Harinder Singh
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Deepti Appukuttan
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Sunwook Jeong
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Yong Jun Choi
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Jong-Hyun Jung
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| | - Issay Narumi
- Radiation Microbiology Laboratory, Department of Life Sciences, Faculty of Life Sciences, Toyo University Gunma, Japan
| | - Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute Jeongeup, South Korea
| |
Collapse
|
82
|
Kim J, Park C, Imlay JA, Park W. Lineage-specific SoxR-mediated Regulation of an Endoribonuclease Protects Non-enteric Bacteria from Redox-active Compounds. J Biol Chem 2017; 292:121-133. [PMID: 27895125 PMCID: PMC5217672 DOI: 10.1074/jbc.m116.757500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/17/2016] [Indexed: 11/06/2022] Open
Abstract
Bacteria use redox-sensitive transcription factors to coordinate responses to redox stress. The [2Fe-2S] cluster-containing transcription factor SoxR is particularly tuned to protect cells against redox-active compounds (RACs). In enteric bacteria, SoxR is paired with a second transcription factor, SoxS, that activates downstream effectors. However, SoxS is absent in non-enteric bacteria, raising questions as to how SoxR functions. Here, we first show that SoxR of Acinetobacter oleivorans displayed similar activation profiles in response to RACs as did its homolog from Escherichia coli but controlled a different set of target genes, including sinE, which encodes an endoribonuclease. Expression, gel mobility shift, and mutational analyses indicated that sinE is a direct target of SoxR. Redox potentials and permeability of RACs determined optimal sinE induction. Bioinformatics suggested that only a few γ- and β-proteobacteria might have SoxR-regulated sinE Purified SinE, in the presence of Mg2+ ions, degrades rRNAs, thus inhibiting protein synthesis. Similarly, pretreatment of cells with RACs demonstrated a role for SinE in promoting persistence in the presence of antibiotics that inhibit protein synthesis. Our data improve our understanding of the physiology of soil microorganisms by suggesting that both non-enteric SoxR and its target SinE play protective roles in the presence of RACs and antibiotics.
Collapse
Affiliation(s)
- Jisun Kim
- From the Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea and
| | - Chulwoo Park
- From the Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea and
| | - James A Imlay
- the Department of Microbiology, University of Illinois, Urbana, Illinois 61801
| | - Woojun Park
- From the Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea and
| |
Collapse
|
83
|
Leung YH, Xu X, Ma APY, Liu F, Ng AMC, Shen Z, Gethings LA, Guo MY, Djurišić AB, Lee PKH, Lee HK, Chan WK, Leung FCC. Toxicity of ZnO and TiO 2 to Escherichia coli cells. Sci Rep 2016; 6:35243. [PMID: 27731373 PMCID: PMC5378928 DOI: 10.1038/srep35243] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022] Open
Abstract
We performed a comprehensive investigation of the toxicity of ZnO and TiO2 nanoparticles using Escherichia coli as a model organism. Both materials are wide band gap n-type semiconductors and they can interact with lipopolysaccharide molecules present in the outer membrane of E. coli, as well as produce reactive oxygen species (ROS) under UV illumination. Despite the similarities in their properties, the response of the bacteria to the two nanomaterials was fundamentally different. When the ROS generation is observed, the toxicity of nanomaterial is commonly attributed to oxidative stress and cell membrane damage caused by lipid peroxidation. However, we found that significant toxicity does not necessarily correlate with up-regulation of ROS-related proteins. TiO2 exhibited significant antibacterial activity, but the protein expression profile of bacteria exposed to TiO2 was different compared to H2O2 and the ROS-related proteins were not strongly expressed. On the other hand, ZnO exhibited lower antibacterial activity compared to TiO2, and the bacterial response involved up-regulating ROS-related proteins similar to the bacterial response to the exposure to H2O2. Reasons for the observed differences in toxicity and bacterial response to the two metal oxides are discussed.
Collapse
Affiliation(s)
- Yu Hang Leung
- Dept. of Physics, Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Xiaoying Xu
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Angel P. Y. Ma
- School of Biological Sciences, Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Fangzhou Liu
- Dept. of Physics, Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Alan M. C. Ng
- Dept. of Physics, Univ. of Hong Kong, Pokfulam Road, Hong Kong
- Dept. of Physics, South University of Science and Technology of China, Shenzhen, China
| | - Zhiyong Shen
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Lee A. Gethings
- Pharmaceutical and Life Sciences Division, Waters Corporation, Manchester, UK
| | - Mu Yao Guo
- Dept. of Physics, Univ. of Hong Kong, Pokfulam Road, Hong Kong
- Dept. of Physics, South University of Science and Technology of China, Shenzhen, China
| | | | - Patrick K. H. Lee
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Hung Kay Lee
- Dept. of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Wai Kin Chan
- Dept. of Chemistry, Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | | |
Collapse
|
84
|
Frávega J, Álvarez R, Díaz F, Inostroza O, Tejías C, Rodas PI, Paredes-Sabja D, Fuentes JA, Calderón IL, Gil F. SalmonellaTyphimurium exhibits fluoroquinolone resistance mediated by the accumulation of the antioxidant molecule H2S in a CysK-dependent manner. J Antimicrob Chemother 2016; 71:3409-3415. [DOI: 10.1093/jac/dkw311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/23/2016] [Accepted: 07/05/2016] [Indexed: 01/06/2023] Open
|
85
|
The Na+-Translocating NADH:Quinone Oxidoreductase Enhances Oxidative Stress in the Cytoplasm of Vibrio cholerae. J Bacteriol 2016; 198:2307-17. [PMID: 27325677 DOI: 10.1128/jb.00342-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/05/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED We searched for a source of reactive oxygen species (ROS) in the cytoplasm of the human pathogen Vibrio cholerae and addressed the mechanism of ROS formation using the dye 2',7'-dichlorofluorescein diacetate (DCFH-DA) in respiring cells. By comparing V. cholerae strains with or without active Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR), this respiratory sodium ion redox pump was identified as a producer of ROS in vivo The amount of cytoplasmic ROS detected in V. cholerae cells producing variants of Na(+)-NQR correlated well with rates of superoxide formation by the corresponding membrane fractions. Membranes from wild-type V. cholerae showed increased superoxide production activity (9.8 ± 0.6 μmol superoxide min(-1) mg(-1) membrane protein) compared to membranes from the mutant lacking Na(+)-NQR (0.18 ± 0.01 μmol min(-1) mg(-1)). Overexpression of plasmid-encoded Na(+)-NQR in the nqr deletion strain resulted in a drastic increase in the formation of superoxide (42.6 ± 2.8 μmol min(-1) mg(-1)). By analyzing a variant of Na(+)-NQR devoid of quinone reduction activity, we identified the reduced flavin adenine dinucleotide (FAD) cofactor of cytoplasmic NqrF subunit as the site for intracellular superoxide formation in V. cholerae The impact of superoxide formation by the Na(+)-NQR on the virulence of V. cholerae is discussed. IMPORTANCE In several studies, it was demonstrated that the Na(+)-NQR in V. cholerae affects virulence in a yet unknown manner. We identified the reduced FAD cofactor in the NADH-oxidizing NqrF subunit of the Na(+)-NQR as the site of superoxide formation in the cytoplasm of V. cholerae Our study provides the framework to understand how reactive oxygen species formed during respiration could participate in the regulated expression of virulence factors during the transition from aerobic to microaerophilic (intestinal) habitats. This hypothesis may turn out to be right for many other pathogens which, like V. cholerae, depend on the Na(+)-NQR as the sole electrogenic NADH dehydrogenase.
Collapse
|
86
|
Zhang Y, Chen S, Hao X, Su JQ, Xue X, Yan Y, Zhu YG, Ye J. Transcriptomic Analysis Reveals Adaptive Responses of an Enterobacteriaceae Strain LSJC7 to Arsenic Exposure. Front Microbiol 2016; 7:636. [PMID: 27199962 PMCID: PMC4852401 DOI: 10.3389/fmicb.2016.00636] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 04/18/2016] [Indexed: 11/13/2022] Open
Abstract
Arsenic (As) resistance determinant ars operon is present in many bacteria and has been demonstrated to enhance As(V) resistance of bacteria. However, whole molecular mechanism adaptations of bacteria in response to As(V) stress remain largely unknown. In this study, transcriptional profiles of Enterobacteriaceae strain LSJC7 responding to As(V) stress were analyzed using RNA-seq and qRT-PCR. As expected, genes involved in As(V) uptake were down-regulated, those involved in As(V) reduction and As(III) efflux were up-regulated, which avoided cellular As accumulation. Reactive oxygen species and nitric oxide (NO) were induced, which caused cellular damages including DNA, protein, and Fe–S cluster damage in LSJC7. The expression of specific genes encoding transcriptional regulators, such as nsrR and soxRS were also induced. NsrR and SoxRS modulated many critical metabolic activities in As(V) stressed LSJC7 cells, including reactive species scavenging and repairing damaged DNA, proteins, and Fe–S clusters. Therefore, besides As uptake, reduction, and efflux; oxidative stress defense and damage repair were the main cellular adaptive responses of LSJC7 to As(V) stress.
Collapse
Affiliation(s)
- Yingjiao Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences Xiamen, China
| | - Songcan Chen
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| | - Xiuli Hao
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences Xiamen, China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences Xiamen, China
| | - Ximei Xue
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences Xiamen, China
| | - Yu Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences Xiamen, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of SciencesXiamen, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, China
| | - Jun Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences Xiamen, China
| |
Collapse
|
87
|
Endogenous hydrogen peroxide increases biofilm formation by inducing exopolysaccharide production in Acinetobacter oleivorans DR1. Sci Rep 2016; 6:21121. [PMID: 26884212 PMCID: PMC4756669 DOI: 10.1038/srep21121] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/05/2016] [Indexed: 12/15/2022] Open
Abstract
In this study, we investigated differentially expressed proteins in Acinetobacter oleivorans cells during planktonic and biofilm growth by using 2-dimensional gel electrophoresis combined with matrix-assisted laser desorption time-of-flight mass spectrometry. We focused on the role of oxidative stress resistance during biofilm formation using mutants defective in alkyl hydroperoxide reductase (AhpC) because its production in aged biofilms was enhanced compared to that in planktonic cells. Results obtained using an ahpC promoter-gfp reporter vector showed that aged biofilms expressed higher ahpC levels than planktonic cells at 48 h. However, at 24 h, ahpC expression was higher in planktonic cells than in biofilms. Deletion of ahpC led to a severe growth defect in rich media that was not observed in minimal media and promoted early biofilm formation through increased production of exopolysaccharide (EPS) and EPS gene expression. Increased endogenous H2O2 production in the ahpC mutant in rich media enhanced biofilm formation, and this enhancement was not observed in the presence of antioxidants. Exogenous addition of H2O2 promoted biofilm formation in wild type cells, which suggested that biofilm development is linked to defense against H2O2. Collectively, our data showed that EPS production caused by H2O2 stress enhances biofilm formation in A. oleivorans.
Collapse
|
88
|
Liu X, Marrakchi M, Jahne M, Rogers S, Andreescu S. Real-time investigation of antibiotics-induced oxidative stress and superoxide release in bacteria using an electrochemical biosensor. Free Radic Biol Med 2016; 91:25-33. [PMID: 26655038 DOI: 10.1016/j.freeradbiomed.2015.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/16/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022]
Abstract
The involvement of oxidative stress in the mechanism of antibiotics-meditated cell death is unclear and subject to debate. The kinetic profile and a quantitative relationship between the release of reactive oxygen species (ROS), bacteria and antibiotic type remain elusive. Here we report direct measurements and analytical quantification of the release of superoxide radicals (O2(·-)), a major contributor to ROS, in antibiotics-treated bacterial cultures using a cytochrome c electrochemical biosensor. The specificity of electrochemical measurements was established by the addition of superoxide dismutase (SOD) which decreased the O2(·-) signal. Measurements using a general ROS-specific fluorescence dye and colony forming units (CFU) assays were performed side-by-side to determine the total ROS and establish the relationship between ROS and the degree of lethality. Exposure of Escherichia coli and Listeria monocytogenes cultures to antibiotics increased the release of O2(·-) radicals in a dose-dependent manner, suggesting that the transmembrane generation of ROS may occur as part of the antibiotic action. The study provides a quantitative methodology and fundamental knowledge to further explore the role of oxidative stress in antibiotics-meditated bacterial death and to assess physiological changes associated with the complex metabolic events related to oxidative stress and bacterial resistance.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810, USA
| | - Mouna Marrakchi
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810, USA; University of Carthage, Laboratoire d'Ecologie et Technologie Microbienne (LETMi), Institut National des Sciences Appliquées et de Technologie (INSAT), 1080 Tunis, Tunisia; Tunis El Manar University, Higher Institute of Applied Biological Science of Tunis (ISSBAT), 1006 Tunis, Tunisia
| | - Michael Jahne
- Department of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5710, USA
| | - Shane Rogers
- Department of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5710, USA
| | - Silvana Andreescu
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810, USA.
| |
Collapse
|
89
|
Ishiga Y, Ichinose Y. Pseudomonas syringae pv. tomato OxyR Is Required for Virulence in Tomato and Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:119-31. [PMID: 26554736 DOI: 10.1094/mpmi-09-15-0204-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Reactive oxygen species (ROS) have been shown to have a crucial role in plant defense responses and signaling pathways. In addition, ROS also have direct toxicity against pathogens. However, the molecular mechanisms of plant ROS in the direct effects against pathogens is still unclear. To investigate the function of plant ROS in the interactions of plant and bacterial pathogens, we focused on oxyR, encoding an oxidative stress-regulated transcription factor in Pseudomonas syringae pv. tomato DC3000 (DC3000), and generated an ΔoxyR mutant. The DC3000 ΔoxyR mutant showed high sensitivity to oxidative stress in comparison with wild type and the complemented line. The host plants of DC3000, including tomato and Arabidopsis inoculated with the ΔoxyR mutant, clearly showed reduced disease symptoms as well as reduced bacterial populations. Expression profiles of DC3000 genes revealed that OxyR could regulate the expression of genes encoding ROS-detoxifying enzymes, including catalases (KatB and KatG), in response to ROS. We also demonstrated that the expression of katB could be regulated by OxyR during the infection of DC3000 in Arabidopsis. These results suggest that OxyR has an important role in the virulence of DC3000 by regulating the expression of genes related to oxidative stress.
Collapse
Affiliation(s)
- Yasuhiro Ishiga
- 1 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yuki Ichinose
- 2 Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| |
Collapse
|
90
|
Primary Amine Oxidase of Escherichia coli Is a Metabolic Enzyme that Can Use a Human Leukocyte Molecule as a Substrate. PLoS One 2015; 10:e0142367. [PMID: 26556595 PMCID: PMC4640556 DOI: 10.1371/journal.pone.0142367] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/21/2015] [Indexed: 12/17/2022] Open
Abstract
Escherichia coli amine oxidase (ECAO), encoded by the tynA gene, catalyzes the oxidative deamination of aromatic amines into aldehydes through a well-established mechanism, but its exact biological role is unknown. We investigated the role of ECAO by screening environmental and human isolates for tynA and characterizing a tynA-deletion strain using microarray analysis and biochemical studies. The presence of tynA did not correlate with pathogenicity. In tynA+ Escherichia coli strains, ECAO enabled bacterial growth in phenylethylamine, and the resultant H2O2 was released into the growth medium. Some aminoglycoside antibiotics inhibited the enzymatic activity of ECAO, which could affect the growth of tynA+ bacteria. Our results suggest that tynA is a reserve gene used under stringent environmental conditions in which ECAO may, due to its production of H2O2, provide a growth advantage over other bacteria that are unable to manage high levels of this oxidant. In addition, ECAO, which resembles the human homolog hAOC3, is able to process an unknown substrate on human leukocytes.
Collapse
|
91
|
Transcriptomic Analysis of 3-Hydroxypropanoic Acid Stress in Escherichia coli. Appl Biochem Biotechnol 2015; 178:527-43. [PMID: 26472673 DOI: 10.1007/s12010-015-1892-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
The stress response of Escherichia coli to 3-hydroxypropanoic acid (3-HP) was elucidated through global transcriptomic analysis. Around 375 genes showed difference of more than 2-fold in 3-HP-treated samples. Further analysis revealed that the toxicity effect of 3-HP was due to the cation and anion components of this acid and some effects-specific to 3-HP. Genes related to the oxidative stress, DNA protection, and repair were upregulated in treated cells due to the lowered cytoplasmic pH caused by accumulated cations. 3-HP-treated E. coli used the arginine acid tolerance mechanism to increase the cytoplasmic pH. Additionally, the anion effects were manifested as imbalance in the osmotic pressure. Analysis of top ten highly upregulated genes suggests the formation of 3-hydroxypropionaldehyde under 3-HP stress. The transcriptomic analysis shed light on the global genetic reprogramming due to 3-HP stress and suggests strategies for increasing the tolerance of E. coli toward 3-HP.
Collapse
|
92
|
Svenningsen NB, Pérez-Pantoja D, Nikel PI, Nicolaisen MH, de Lorenzo V, Nybroe O. Pseudomonas putida mt-2 tolerates reactive oxygen species generated during matric stress by inducing a major oxidative defense response. BMC Microbiol 2015; 15:202. [PMID: 26445482 PMCID: PMC4595014 DOI: 10.1186/s12866-015-0542-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/02/2015] [Indexed: 01/09/2023] Open
Abstract
Background Soil bacteria typically thrive in water-limited habitats that cause an inherent matric stress to the cognate cells. Matric stress gives rise to accumulation of intracellular reactive oxygen species (ROS), which in turn may induce oxidative stress, and even promote mutagenesis. However, little is known about the impact of ROS induced by water limitation on bacteria performing important processes as pollutant biodegradation in the environment. We have rigorously examined the physiological consequences of the rise of intracellular ROS caused by matric stress for the toluene- and xylene-degrading soil bacterium Pseudomonas putida mt-2. Methods For the current experiments, controlled matric potential stress was delivered to P. putida cells by addition of polyethylene glycol to liquid cultures, and ROS formation in individual cells monitored by a specific dye. The physiological response to ROS was then quantified by both RT-qPCR of RNA transcripts from genes accredited as proxies of oxidative stress and the SOS response along with cognate transcriptional GFP fusions to the promoters of the same genes. Results Extensive matric stress at −1.5 MPa clearly increased intracellular accumulation of ROS. The expression of the two major oxidative defense genes katA and ahpC, as well as the hydroperoxide resistance gene osmC, was induced under matric stress. Different induction profiles of the reporters were related to the severity of the stress. To determine if matric stress lead to induction of the SOS-response, we constructed a DNA damage-inducible bioreporter based on the LexA-controlled phage promoter PPP3901. According to bioreporter analysis, this gene was expressed during extensive matric stress. Despite this DNA-damage mediated gene induction, we observed no increase in the mutation frequency as monitored by emergence of rifampicin-resistant colonies. Conclusions Under conditions of extensive matric stress, we observed a direct link between matric stress, ROS formation, induction of ROS-detoxifying functions and (partial) activation of the SOS system. However, such a stress-response regime did not translate into a general DNA mutagenesis status. Taken together, the data suggest that P. putida mt-2 can cope with this archetypal environmental stress while preserving genome stability, a quality that strengthens the status of this bacterium for biotechnological purposes.
Collapse
Affiliation(s)
- Nanna B Svenningsen
- Department of Plant and Environmental Sciences, Section of Genetics and Microbiology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Danilo Pérez-Pantoja
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), C/ Darwin 3, 28049, Madrid, Spain.
| | - Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), C/ Darwin 3, 28049, Madrid, Spain.
| | - Mette H Nicolaisen
- Department of Plant and Environmental Sciences, Section of Genetics and Microbiology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), C/ Darwin 3, 28049, Madrid, Spain.
| | - Ole Nybroe
- Department of Plant and Environmental Sciences, Section of Genetics and Microbiology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
93
|
Mehta HH, Liu Y, Zhang MQ, Spiro S. Genome-wide analysis of the response to nitric oxide in uropathogenic Escherichia coli CFT073. Microb Genom 2015; 1:e000031. [PMID: 28348816 PMCID: PMC5320621 DOI: 10.1099/mgen.0.000031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/07/2015] [Indexed: 12/30/2022] Open
Abstract
Uropathogenic Escherchia coli (UPEC) is the causative agent of urinary tract infections. Nitric oxide (NO) is a toxic water-soluble gas that is encountered by UPEC in the urinary tract. Therefore, UPEC probably requires mechanisms to detoxify NO in the host environment. Thus far, flavohaemoglobin (Hmp), an NO denitrosylase, is the only demonstrated NO detoxification system in UPEC. Here we show that, in E. coli strain CFT073, the NADH-dependent NO reductase flavorubredoxin (FlRd) also plays a major role in NO scavenging. We generated a mutant that lacks all known and candidate NO detoxification pathways (Hmp, FlRd and the respiratory nitrite reductase, NrfA). When grown and assayed anaerobically, this mutant expresses an NO-inducible NO scavenging activity, pointing to the existence of a novel detoxification mechanism. Expression of this activity is inducible by both NO and nitrate, and the enzyme is membrane-associated. Genome-wide transcriptional profiling of UPEC grown under anaerobic conditions in the presence of nitrate (as a source of NO) highlighted various aspects of the response of the pathogen to nitrate and NO. Several virulence-associated genes are upregulated, suggesting that host-derived NO is a potential regulator of UPEC virulence. Chromatin immunoprecipitation and sequencing was used to evaluate the NsrR regulon in CFT073. We identified 49 NsrR binding sites in promoter regions in the CFT073 genome, 29 of which were not previously identified in E. coli K-12. NsrR may regulate some CFT073 genes that do not have homologues in E. coli K-12.
Collapse
Affiliation(s)
- Heer H. Mehta
- Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Yuxuan Liu
- Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
- Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Michael Q. Zhang
- Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
- Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Stephen Spiro
- Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| |
Collapse
|
94
|
Molecular mechanism involved in the response to hydrogen peroxide stress in Acinetobacter oleivorans DR1. Appl Microbiol Biotechnol 2015; 99:10611-26. [PMID: 26298700 DOI: 10.1007/s00253-015-6914-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/26/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
Abstract
Two-dimensional gel electrophoresis was conducted to investigate the effect of H2O2 on whole protein expression in Acinetobacter oleivorans DR1. Functional classification of 13 upregulated proteins using MALDI-TOF mass spectrometry showed relationships with oxidative stress, energy production and conversion, nucleotide and amino acid metabolism, membrane-related, ion transport, and chaperone-related functions. Alignment of OxyR-binding regions from Pseudomonas aeruginosa and Escherichia coli with promoters of identified proteins revealed that only ahpC, ahpF, and trxB (thioredoxin-disulfide reductase) genes, along with a newly found oprC (putative outer membrane receptor protein) gene, have OxyR-binding sites. The oxyR and ahpC mutants were more sensitive to H2O2 and showed growth defects in both nutritional and n-hexadecane-amended media. Four catalases present in the genome of A. oleivorans DR1 were not detected, which led us to confirm the expression and activity of those catalases in the presence of H2O2. The expression patterns of the four catalase genes differed at different concentrations of H2O2. Interestingly, the promoters of both known OxyR-controlled katG gene (AOLE_17390) and putative small catalase gene (AOLE_09800) have OxyR-binding sites. Gel-shift assay confirmed OxyR binding to the promoter regions of newly identified OxyR-controlled genes encoding OprC and a putative catalase. Hierarchical expression and OxyR-binding of several OxyR-controlled genes suggested that concentration is an important factor in inducing the set of genes under H2O2 stress.
Collapse
|
95
|
Rosario-Cruz Z, Chahal HK, Mike LA, Skaar EP, Boyd JM. Bacillithiol has a role in Fe-S cluster biogenesis in Staphylococcus aureus. Mol Microbiol 2015; 98:218-42. [PMID: 26135358 DOI: 10.1111/mmi.13115] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2015] [Indexed: 01/20/2023]
Abstract
Staphylococcus aureus does not produce the low-molecular-weight (LMW) thiol glutathione, but it does produce the LMW thiol bacillithiol (BSH). To better understand the roles that BSH plays in staphylococcal metabolism, we constructed and examined strains lacking BSH. Phenotypic analysis found that the BSH-deficient strains cultured either aerobically or anaerobically had growth defects that were alleviated by the addition of exogenous iron (Fe) or the amino acids leucine and isoleucine. The activities of the iron-sulfur (Fe-S) cluster-dependent enzymes LeuCD and IlvD, which are required for the biosynthesis of leucine and isoleucine, were decreased in strains lacking BSH. The BSH-deficient cells also had decreased aconitase and glutamate synthase activities, suggesting a general defect in Fe-S cluster biogenesis. The phenotypes of the BSH-deficient strains were exacerbated in strains lacking the Fe-S cluster carrier Nfu and partially suppressed by multicopy expression of either sufA or nfu, suggesting functional overlap between BSH and Fe-S carrier proteins. Biochemical analysis found that SufA bound and transferred Fe-S clusters to apo-aconitase, verifying that it serves as an Fe-S cluster carrier. The results presented are consistent with the hypothesis that BSH has roles in Fe homeostasis and the carriage of Fe-S clusters to apo-proteins in S. aureus.
Collapse
Affiliation(s)
- Zuelay Rosario-Cruz
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Harsimranjit K Chahal
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Laura A Mike
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
96
|
Martin NL, Bass P, Liss SN. Antibacterial Properties and Mechanism of Activity of a Novel Silver-Stabilized Hydrogen Peroxide. PLoS One 2015; 10:e0131345. [PMID: 26154263 PMCID: PMC4496041 DOI: 10.1371/journal.pone.0131345] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/01/2015] [Indexed: 11/18/2022] Open
Abstract
Huwa-San peroxide (hydrogen peroxide; HSP) is a NSF Standard 60 (maximum 8 mg/L(-1)) new generation peroxide stabilized with ionic silver suitable for continuous disinfection of potable water. Experiments were undertaken to examine the mechanism of HSP against planktonic and biofilm cultures of indicator bacterial strains. Contact/kill time (CT) relationships that achieve effective control were explored to determine the potential utility in primary disinfection. Inhibitory assays were conducted using both nutrient rich media and a medium based on synthetic wastewater. Assays were compared for exposures to three disinfectants (HSP, laboratory grade hydrogen peroxide (HP) and sodium hypochlorite) at concentrations of 20 ppm (therefore at 2.5 and 5 times the NSF limit for HP and sodium hypochlorite, respectively) and at pH 7.0 and 8.5 in dechlorinated tap water. HSP was found to be more or equally effective as hypochlorite or HP. Results from CT assays comparing HSP and HP at different bacterial concentrations with neutralization of residual peroxide with catalase suggested that at a high bacterial concentration HSP, but not HP, was protected from catalase degradation possibly through sequestration by bacterial cells. Consistent with this hypothesis, at a low bacterial cell density residual HSP was more effectively neutralized as less HSP was associated with bacteria and therefore accessible to catalase. Silver in HSP may facilitate this association through electrostatic interactions at the cell surface. This was supported by experiments where the addition of mono (K(+)) and divalent (Ca(+2)) cations (0.005-0.05M) reduced the killing efficacy of HSP but not HP. Experiments designed to distinguish any inhibitory effect of silver from that of peroxide in HSP were carried out by monitoring the metabolic activity of established P. aeruginosa PAO1 biofilms. Concentrations of 70-500 ppm HSP had a pronounced effect on metabolic activity while the equivalent concentrations of ionic silver (50- 375 ppb) had a negligible effect, demonstrating that the microbiocidal activity of HSP was due to peroxide rather than silver. Overall, it was found that the antimicrobial activity of HSP is enhanced over that of hydrogen peroxide; the presence of the ionic silver enhances interactions of HSP with the bacterial cell surface rather than acting directly as a biocide at the tested concentrations.
Collapse
Affiliation(s)
- Nancy L. Martin
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Paul Bass
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Steven N. Liss
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
97
|
Srijaruskul K, Charoenlap N, Namchaiw P, Chattrakarn S, Giengkam S, Mongkolsuk S, Vattanaviboon P. Regulation by SoxR of mfsA, Which Encodes a Major Facilitator Protein Involved in Paraquat Resistance in Stenotrophomonas maltophilia. PLoS One 2015; 10:e0123699. [PMID: 25915643 PMCID: PMC4411124 DOI: 10.1371/journal.pone.0123699] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 03/06/2015] [Indexed: 11/18/2022] Open
Abstract
Stenotrophomonas maltophilia MfsA (Smlt1083) is an efflux pump in the major facilitator superfamily (MFS). Deletion of mfsA renders the strain more susceptible to paraquat, but no alteration in the susceptibility levels of other oxidants is observed. The expression of mfsA is inducible upon challenge with redox cycling/superoxide-generating drug (paraquat, menadione and plumbagin) treatments and is directly regulated by SoxR, which is a transcription regulator and sensor of superoxide-generating agents. Analysis of mfsA expression patterns in wild-type and a soxR mutant suggests that oxidized SoxR functions as a transcription activator of the gene. soxR (smlt1084) is located in a head-to-head fashion with mfsA, and these genes share the -10 motif of their promoter sequences. Purified SoxR specifically binds to the putative mfsA promoter motifs that contain a region that is highly homologous to the consensus SoxR binding site, and mutation of the SoxR binding site abolishes binding of purified SoxR protein. The SoxR box is located between the putative -35 and -10 promoter motifs of mfsA; and this position is typical for a promoter in which SoxR acts as a transcriptional activator. At the soxR promoter, the SoxR binding site covers the transcription start site of the soxR transcript; thus, binding of SoxR auto-represses its own transcription. Taken together, our results reveal for the first time that mfsA is a novel member of the SoxR regulon and that SoxR binds and directly regulates its expression.
Collapse
Affiliation(s)
- Kriangsuk Srijaruskul
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Nisanart Charoenlap
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Poommaree Namchaiw
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Sorayut Chattrakarn
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Suparat Giengkam
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Emerging Bacterial Infection, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology, Bangkok, Thailand
| | - Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| |
Collapse
|
98
|
Shimizu K. Metabolic Regulation and Coordination of the Metabolism in Bacteria in Response to a Variety of Growth Conditions. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:1-54. [PMID: 25712586 DOI: 10.1007/10_2015_320] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Living organisms have sophisticated but well-organized regulation system. It is important to understand the metabolic regulation mechanisms in relation to growth environment for the efficient design of cell factories for biofuels and biochemicals production. Here, an overview is given for carbon catabolite regulation, nitrogen regulation, ion, sulfur, and phosphate regulations, stringent response under nutrient starvation as well as oxidative stress regulation, redox state regulation, acid-shock, heat- and cold-shock regulations, solvent stress regulation, osmoregulation, and biofilm formation, and quorum sensing focusing on Escherichia coli metabolism and others. The coordinated regulation mechanisms are of particular interest in getting insight into the principle which governs the cell metabolism. The metabolism is controlled by both enzyme-level regulation and transcriptional regulation via transcription factors such as cAMP-Crp, Cra, Csr, Fis, P(II)(GlnB), NtrBC, CysB, PhoR/B, SoxR/S, Fur, MarR, ArcA/B, Fnr, NarX/L, RpoS, and (p)ppGpp for stringent response, where the timescales for enzyme-level and gene-level regulations are different. Moreover, multiple regulations are coordinated by the intracellular metabolites, where fructose 1,6-bisphosphate (FBP), phosphoenolpyruvate (PEP), and acetyl-CoA (AcCoA) play important roles for enzyme-level regulation as well as transcriptional control, while α-ketoacids such as α-ketoglutaric acid (αKG), pyruvate (PYR), and oxaloacetate (OAA) play important roles for the coordinated regulation between carbon source uptake rate and other nutrient uptake rate such as nitrogen or sulfur uptake rate by modulation of cAMP via Cya.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan. .,Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
| |
Collapse
|
99
|
Puranik S, Purohit HJ. Dynamic interactive events in gene regulation using E. coli dehydrogenase as a model. Funct Integr Genomics 2014; 15:175-88. [PMID: 25433707 DOI: 10.1007/s10142-014-0418-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 11/13/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
Different approaches in gene expression analysis always provide a snapshot view of cellular events. During the bacterial growth, the decisions are dynamically made with participation of various genes and their interactions with modulating factors. We have selected Escherichia coli dehydrogenases as a model to capture these interactions. We have treated the cells with hydrogen peroxide with very low level and asked the questions how cellular physiology has modulated itself to survive post-shock conditions. We hypothesized that while global regulators and associated gene network dictate the overall cellular intelligence, specific redox-sensitive classes of enzymes like dehydrogenase-mediated modulation could provide the option to cell for survival under peroxide after-effect. To understand the dynamic gene interaction, we used multidimensional scaling of genes and overlaid with minimum spanning tree to understand the clustering patterns under different conditions. Study shows that under peroxide after-effect, it is the interplay of ArcA (global regulator), with ldhA (involved in intermediary metabolism) and ndh (managing co-factor NADH), that emerges as modulating association. Knockout mutants of global regulators confirmed the promoter activity trend through gene expression change for dehydrogenases.
Collapse
Affiliation(s)
- Sampada Puranik
- Environmental Genomics Division, CSIR-National Environmental Engineering Research Institute, 440020, Nehru Marg, India
| | | |
Collapse
|
100
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part II. {[Fe2S2](SγCys)4} proteins. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|