51
|
Yang C, Zhou Y, Marcus S, Formenti G, Bergeron LA, Song Z, Bi X, Bergman J, Rousselle MMC, Zhou C, Zhou L, Deng Y, Fang M, Xie D, Zhu Y, Tan S, Mountcastle J, Haase B, Balacco J, Wood J, Chow W, Rhie A, Pippel M, Fabiszak MM, Koren S, Fedrigo O, Freiwald WA, Howe K, Yang H, Phillippy AM, Schierup MH, Jarvis ED, Zhang G. Evolutionary and biomedical insights from a marmoset diploid genome assembly. Nature 2021; 594:227-233. [PMID: 33910227 PMCID: PMC8189906 DOI: 10.1038/s41586-021-03535-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/12/2021] [Indexed: 01/23/2023]
Abstract
The accurate and complete assembly of both haplotype sequences of a diploid organism is essential to understanding the role of variation in genome functions, phenotypes and diseases1. Here, using a trio-binning approach, we present a high-quality, diploid reference genome, with both haplotypes assembled independently at the chromosome level, for the common marmoset (Callithrix jacchus), an primate model system that is widely used in biomedical research2,3. The full spectrum of heterozygosity between the two haplotypes involves 1.36% of the genome-much higher than the 0.13% indicated by the standard estimation based on single-nucleotide heterozygosity alone. The de novo mutation rate is 0.43 × 10-8 per site per generation, and the paternal inherited genome acquired twice as many mutations as the maternal. Our diploid assembly enabled us to discover a recent expansion of the sex-differentiation region and unique evolutionary changes in the marmoset Y chromosome. In addition, we identified many genes with signatures of positive selection that might have contributed to the evolution of Callithrix biological features. Brain-related genes were highly conserved between marmosets and humans, although several genes experienced lineage-specific copy number variations or diversifying selection, with implications for the use of marmosets as a model system.
Collapse
Affiliation(s)
- Chentao Yang
- BGI-Shenzhen, Shenzhen, China.,Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Stephanie Marcus
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Giulio Formenti
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA.,Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Lucie A Bergeron
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zhenzhen Song
- University of the Chinese Academy of Sciences, Beijing, China
| | | | - Juraj Bergman
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | | | | | | | - Yuan Deng
- BGI-Shenzhen, Shenzhen, China.,Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Duo Xie
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Bettina Haase
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Jennifer Balacco
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | | | | | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | | | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Winrich A Freiwald
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA.,Center for Brains, Minds and Machines (CBMM), The Rockefeller University, New York, NY, USA
| | | | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China.,University of the Chinese Academy of Sciences, Beijing, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China.,Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, China
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA.,Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Guojie Zhang
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark. .,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,China National GeneBank, BGI-Shenzhen, Shenzhen, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
52
|
Yap ZY, Park YH, Wortmann SB, Gunning AC, Ezer S, Lee S, Duraine L, Wilichowski E, Wilson K, Mayr JA, Wagner M, Li H, Kini U, Black ED, Monaghan KG, Lupski JR, Ellard S, Westphal DS, Harel T, Yoon WH. Functional interpretation of ATAD3A variants in neuro-mitochondrial phenotypes. Genome Med 2021; 13:55. [PMID: 33845882 PMCID: PMC8042885 DOI: 10.1186/s13073-021-00873-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/17/2021] [Indexed: 12/20/2022] Open
Abstract
Background ATPase family AAA-domain containing protein 3A (ATAD3A) is a nuclear-encoded mitochondrial membrane-anchored protein involved in diverse processes including mitochondrial dynamics, mitochondrial DNA organization, and cholesterol metabolism. Biallelic deletions (null), recessive missense variants (hypomorph), and heterozygous missense variants or duplications (antimorph) in ATAD3A lead to neurological syndromes in humans. Methods To expand the mutational spectrum of ATAD3A variants and to provide functional interpretation of missense alleles in trans to deletion alleles, we performed exome sequencing for identification of single nucleotide variants (SNVs) and copy number variants (CNVs) in ATAD3A in individuals with neurological and mitochondrial phenotypes. A Drosophila Atad3a Gal4 knockin-null allele was generated using CRISPR-Cas9 genome editing technology to aid the interpretation of variants. Results We report 13 individuals from 8 unrelated families with biallelic ATAD3A variants. The variants included four missense variants inherited in trans to loss-of-function alleles (p.(Leu77Val), p.(Phe50Leu), p.(Arg170Trp), p.(Gly236Val)), a homozygous missense variant p.(Arg327Pro), and a heterozygous non-frameshift indel p.(Lys568del). Affected individuals exhibited findings previously associated with ATAD3A pathogenic variation, including developmental delay, hypotonia, congenital cataracts, hypertrophic cardiomyopathy, and cerebellar atrophy. Drosophila studies indicated that Phe50Leu, Gly236Val, Arg327Pro, and Lys568del are severe loss-of-function alleles leading to early developmental lethality. Further, we showed that Phe50Leu, Gly236Val, and Arg327Pro cause neurogenesis defects. On the contrary, Leu77Val and Arg170Trp are partial loss-of-function alleles that cause progressive locomotion defects and whose expression leads to an increase in autophagy and mitophagy in adult muscles. Conclusion Our findings expand the allelic spectrum of ATAD3A variants and exemplify the use of a functional assay in Drosophila to aid variant interpretation.
Collapse
Affiliation(s)
- Zheng Yie Yap
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Yo Han Park
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Saskia B Wortmann
- Institute of Human Genetics, Technical University Munich, Munich, Germany.,University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria.,Radboud Centre for Mitochondrial Medicine (RCMM), Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Adam C Gunning
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, EX2 5DW, UK.,Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, EX2 5DW, UK
| | - Shlomit Ezer
- Department of Genetics, Hadassah Medical Center, POB 12000, 9112001, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, POB 12000, 9112001, Jerusalem, Israel
| | - Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Lita Duraine
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Ekkehard Wilichowski
- Department of Pediatrics and Pediatric Neurology, University Medical Center Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Kate Wilson
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Johannes A Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Matias Wagner
- Institute of Human Genetics, Technical University Munich, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hong Li
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA.,Department of Pediatrics, School of Medicine, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Emily Davis Black
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | | | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, EX2 5DW, UK.,Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, EX2 5DW, UK
| | - Dominik S Westphal
- Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, POB 12000, 9112001, Jerusalem, Israel. .,Faculty of Medicine, Hebrew University of Jerusalem, POB 12000, 9112001, Jerusalem, Israel.
| | - Wan Hee Yoon
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
53
|
A study of transposable element-associated structural variations (TASVs) using a de novo-assembled Korean genome. Exp Mol Med 2021; 53:615-630. [PMID: 33833373 PMCID: PMC8102501 DOI: 10.1038/s12276-021-00586-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Advances in next-generation sequencing (NGS) technology have made personal genome sequencing possible, and indeed, many individual human genomes have now been sequenced. Comparisons of these individual genomes have revealed substantial genomic differences between human populations as well as between individuals from closely related ethnic groups. Transposable elements (TEs) are known to be one of the major sources of these variations and act through various mechanisms, including de novo insertion, insertion-mediated deletion, and TE–TE recombination-mediated deletion. In this study, we carried out de novo whole-genome sequencing of one Korean individual (KPGP9) via multiple insert-size libraries. The de novo whole-genome assembly resulted in 31,305 scaffolds with a scaffold N50 size of 13.23 Mb. Furthermore, through computational data analysis and experimental verification, we revealed that 182 TE-associated structural variation (TASV) insertions and 89 TASV deletions contributed 64,232 bp in sequence gain and 82,772 bp in sequence loss, respectively, in the KPGP9 genome relative to the hg19 reference genome. We also verified structural differences associated with TASVs by comparative analysis with TASVs in recent genomes (AK1 and TCGA genomes) and reported their details. Here, we constructed a new Korean de novo whole-genome assembly and provide the first study, to our knowledge, focused on the identification of TASVs in an individual Korean genome. Our findings again highlight the role of TEs as a major driver of structural variations in human individual genomes. A novel strategy for genome analysis offers insights into the distribution and impact on genome variation of transposable elements, DNA sequences that can replicate and relocate themselves at different chromosomal regions. These sequences, also known as ‘jumping genes’, comprise up to 50% of the genome, but it has proven challenging to map them with existing techniques. Seyoung Mun of Dankook University, Cheonan, South Korea, and coworkers have developed a sequencing and computational analysis strategy that allowed them to accurately map transposable elements across the genome of a Korean individual. These data revealed hundreds of insertion and deletion events relative to an existing reference map of the genome, showing significant alterations in the chromosomal structure. The authors speculate that such widespread transposition events could potentially contribute to individual differences in gene expression and risk of disease.
Collapse
|
54
|
Belyeu JR, Brand H, Wang H, Zhao X, Pedersen BS, Feusier J, Gupta M, Nicholas TJ, Brown J, Baird L, Devlin B, Sanders SJ, Jorde LB, Talkowski ME, Quinlan AR. De novo structural mutation rates and gamete-of-origin biases revealed through genome sequencing of 2,396 families. Am J Hum Genet 2021; 108:597-607. [PMID: 33675682 PMCID: PMC8059337 DOI: 10.1016/j.ajhg.2021.02.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/12/2021] [Indexed: 01/05/2023] Open
Abstract
Each human genome includes de novo mutations that arose during gametogenesis. While these germline mutations represent a fundamental source of new genetic diversity, they can also create deleterious alleles that impact fitness. Whereas the rate and patterns of point mutations in the human germline are now well understood, far less is known about the frequency and features that impact de novo structural variants (dnSVs). We report a family-based study of germline mutations among 9,599 human genomes from 33 multigenerational CEPH-Utah families and 2,384 families from the Simons Foundation Autism Research Initiative. We find that de novo structural mutations detected by alignment-based, short-read WGS occur at an overall rate of at least 0.160 events per genome in unaffected individuals, and we observe a significantly higher rate (0.206 per genome) in ASD-affected individuals. In both probands and unaffected samples, nearly 73% of de novo structural mutations arose in paternal gametes, and we predict most de novo structural mutations to be caused by mutational mechanisms that do not require sequence homology. After multiple testing correction, we did not observe a statistically significant correlation between parental age and the rate of de novo structural variation in offspring. These results highlight that a spectrum of mutational mechanisms contribute to germline structural mutations and that these mechanisms most likely have markedly different rates and selective pressures than those leading to point mutations.
Collapse
Affiliation(s)
- Jonathan R Belyeu
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02114, USA
| | - Harold Wang
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02114, USA
| | - Xuefang Zhao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02114, USA
| | - Brent S Pedersen
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Julie Feusier
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Meenal Gupta
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas J Nicholas
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Joseph Brown
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Lisa Baird
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02114, USA.
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
55
|
Koczkodaj D, Muzyka-Kasietczuk J, Chocholska S, Podhorecka M. Prognostic significance of isochromosome 17q in hematologic malignancies. Oncotarget 2021; 12:708-718. [PMID: 33868591 PMCID: PMC8021031 DOI: 10.18632/oncotarget.27914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/19/2021] [Indexed: 11/29/2022] Open
Abstract
Isochromosome 17q [i(17q)] with its two identical long arms is formed by duplication of the q arm and loss of the short p arm. The breakpoint in chromosome 17 that allows the formation of this isochromosome is located at 17p11.2, and the ~240 kb region with its large, palindromic, low-copy repeat sequences are present here. The region is highly unstable and susceptible to a variety of genomic alterations which may be induced by or without toxic agents. One molecular consequence of i(17q) development is the obligatory loss of a single TP53 allele of the tumor suppressor P53 protein located at 17p13.1. Isochromosome 17q is involved in cancer development and progression. It occurs in combination with other chromosomal defects (complex cytogenetics), and rarely as a single mutation. The i(17q) rearrangement has been described as the most common chromosomal aberration in primitive neuroectodermal tumors and medulloblastomas. This isochromosome is also detected in different hematological disorders. In this article, we analyze literature data on the presence of i(17q) in proliferative disorders of the hematopoietic system in the context of its role as a prognostic factor of disease progression. The case reports are added to support the presented data. Currently, there are no indications for the use of specific treatment regimens in the subjects with a presence of the isochromosome 17q. Thus, it is of importance to continue studies on the prognostic role of this abnormality and even single cases should be reported as they may be used for further statistical analyses or meta-analyses.
Collapse
Affiliation(s)
- Dorota Koczkodaj
- Department of Cancer Genetics with the Cytogenetic Laboratory, Medical University of Lublin, Lublin, Poland
| | - Justyna Muzyka-Kasietczuk
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Sylwia Chocholska
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Monika Podhorecka
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
56
|
Copy number variation: Characteristics, evolutionary and pathological aspects. Biomed J 2021; 44:548-559. [PMID: 34649833 PMCID: PMC8640565 DOI: 10.1016/j.bj.2021.02.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Copy number variants (CNVs) were the subject of extensive research in the past years. They are common features of the human genome that play an important role in evolution, contribute to population diversity, development of certain diseases, and influence host–microbiome interactions. CNVs have found application in the molecular diagnosis of many diseases and in non-invasive prenatal care, but their full potential is only emerging. CNVs are expected to have a tremendous impact on screening, diagnosis, prognosis, and monitoring of several disorders, including cancer and cardiovascular disease. Here, we comprehensively review basic definitions of the term CNV, outline mechanisms and factors involved in CNV formation, and discuss their evolutionary and pathological aspects. We suggest a need for better defined distinguishing criteria and boundaries between known types of CNVs.
Collapse
|
57
|
Zhang Y, Liu X, Gao H, He R, Zhao Y. Identifying of 22q11.2 variations in Chinese patients with development delay. BMC Med Genomics 2021; 14:26. [PMID: 33482818 PMCID: PMC7821542 DOI: 10.1186/s12920-020-00849-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND 22q11.2 variation is a significant genetic factor relating to development delay and/or intellectual disability. However, the prevalence, genetic characteristics and clinical phenotype in Chinese patients are unknown. METHODS In total 6034 patients with development delay and/or intellectual disability were screened by multiplex ligation-dependent probe amplification (MLPA) P245 and G-band karyotyping. The positive patients with 22q11.2 imbalance were confirmed by MLPA P250 assay. RESULTS 52 (0.86%) patients were found to carry different levels of 22q11.2 variations, in which 37 cases (71.2%) had heterozygous deletions, whereas 15 (28.8%) had heterogeneous duplications. 34 cases (65.4%) carried typical imbalance from low copy repeat (LCR) 22 A to D. The other cases had atypical variations, relating to LCR22 A-B, LCR22 C-D, LCR22 B-D, LCR22 D-E, LCR22 E-F and LCR22 B-F region. The phenotypes of these 52 patients were variable, including development delay, language delay, facial anomalies, heart defects, psychiatric/behavior problems, epilepsy, periventricular leukomalacia, hearing impairment, growth delay etc. CONCLUSION: These data revealed the prevalence and variability of 22q11.2 genomic imbalance in Chinese patients with development delay and/or intellectual disability. It suggested that genetic detection of 22q11.2 is necessary, especially for the patients with mental retardation and development disorders, which deserves the attention of all pediatricians in their daily work.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoliang Liu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haiming Gao
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rong He
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanyan Zhao
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
58
|
Gualtieri CT. Genomic Variation, Evolvability, and the Paradox of Mental Illness. Front Psychiatry 2021; 11:593233. [PMID: 33551865 PMCID: PMC7859268 DOI: 10.3389/fpsyt.2020.593233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
Twentieth-century genetics was hard put to explain the irregular behavior of neuropsychiatric disorders. Autism and schizophrenia defy a principle of natural selection; they are highly heritable but associated with low reproductive success. Nevertheless, they persist. The genetic origins of such conditions are confounded by the problem of variable expression, that is, when a given genetic aberration can lead to any one of several distinct disorders. Also, autism and schizophrenia occur on a spectrum of severity, from mild and subclinical cases to the overt and disabling. Such irregularities reflect the problem of missing heritability; although hundreds of genes may be associated with autism or schizophrenia, together they account for only a small proportion of cases. Techniques for higher resolution, genomewide analysis have begun to illuminate the irregular and unpredictable behavior of the human genome. Thus, the origins of neuropsychiatric disorders in particular and complex disease in general have been illuminated. The human genome is characterized by a high degree of structural and behavioral variability: DNA content variation, epistasis, stochasticity in gene expression, and epigenetic changes. These elements have grown more complex as evolution scaled the phylogenetic tree. They are especially pertinent to brain development and function. Genomic variability is a window on the origins of complex disease, neuropsychiatric disorders, and neurodevelopmental disorders in particular. Genomic variability, as it happens, is also the fuel of evolvability. The genomic events that presided over the evolution of the primate and hominid lineages are over-represented in patients with autism and schizophrenia, as well as intellectual disability and epilepsy. That the special qualities of the human genome that drove evolution might, in some way, contribute to neuropsychiatric disorders is a matter of no little interest.
Collapse
|
59
|
Smirnov E, Chmúrčiaková N, Liška F, Bažantová P, Cmarko D. Variability of Human rDNA. Cells 2021; 10:cells10020196. [PMID: 33498263 PMCID: PMC7909238 DOI: 10.3390/cells10020196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
In human cells, ribosomal DNA (rDNA) is arranged in ten clusters of multiple tandem repeats. Each repeat is usually described as consisting of two parts: the 13 kb long ribosomal part, containing three genes coding for 18S, 5.8S and 28S RNAs of the ribosomal particles, and the 30 kb long intergenic spacer (IGS). However, this standard scheme is, amazingly, often altered as a result of the peculiar instability of the locus, so that the sequence of each repeat and the number of the repeats in each cluster are highly variable. In the present review, we discuss the causes and types of human rDNA instability, the methods of its detection, its distribution within the locus, the ways in which it is prevented or reversed, and its biological significance. The data of the literature suggest that the variability of the rDNA is not only a potential cause of pathology, but also an important, though still poorly understood, aspect of the normal cell physiology.
Collapse
|
60
|
Sproul JS, Barton LM, Maddison DR. Repetitive DNA Profiles Reveal Evidence of Rapid Genome Evolution and Reflect Species Boundaries in Ground Beetles. Syst Biol 2021; 69:1137-1148. [PMID: 32267949 DOI: 10.1093/sysbio/syaa030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Genome architecture is a complex, multidimensional property of an organism defined by the content and spatial organization of the genome's component parts. Comparative study of entire genome architecture in model organisms is shedding light on mechanisms underlying genome regulation, evolution, and diversification, but such studies require costly analytical approaches which make extensive comparative study impractical for most groups. However, lower-cost methods that measure a single architectural component (e.g., distribution of one class of repeats) have potential as a new data source for evolutionary studies insofar as that measure correlates with more complex biological phenomena, and for which it could serve as part of an explanatory framework. We investigated copy number variation (CNV) profiles in ribosomal DNA (rDNA) as a simple measure reflecting the distribution of rDNA subcomponents across the genome. We find that signatures present in rDNA CNV profiles strongly correlate with species boundaries in the breve species group of Bembidion, and vary across broader taxonomic sampling in Bembidion subgenus Plataphus. Profiles of several species show evidence of re-patterning of rDNA-like sequences throughout the genome, revealing evidence of rapid genome evolution (including among sister pairs) not evident from analysis of traditional data sources such as multigene data sets. Major re-patterning of rDNA-like sequences has occurred frequently within the evolutionary history of Plataphus. We confirm that CNV profiles represent an aspect of genomic architecture (i.e., the linear distribution of rDNA components across the genome) via fluorescence in-situ hybridization. In at least one species, novel rDNA-like elements are spread throughout all chromosomes. We discuss the potential of copy number profiles of rDNA, or other repeats, as a low-cost tool for incorporating signal of genomic architecture variation in studies of species delimitation and genome evolution. [Bembidion; Carabidae; copy number variation profiles; rapid genome evolution; ribosomal DNA; species delimitation.].
Collapse
Affiliation(s)
- John S Sproul
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA.,Department of Biology, University of Rochester, 402 Hutchison Hall, PO Box 270211, Rochester, NY 14627, USA
| | - Lindsey M Barton
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| | - David R Maddison
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| |
Collapse
|
61
|
Understanding the clinical manifestations of 16p11.2 deletion syndrome: a series of developmental case reports in children. Psychiatr Genet 2020; 30:136-140. [PMID: 32732550 PMCID: PMC7497286 DOI: 10.1097/ypg.0000000000000259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Copy number variants (CNVs) are genetic rearrangements, such as deletions and duplications, which result in a deviation from the normal number of copies of a given gene segment. CNVs are implicated in many neuropsychiatric disorders. Deletions of the human chromosomal region 16p11.2 are one of the most common genetic linkages to autism spectrum disorders (ASD). However, ASD is not the only presenting feature, and many patients with 16p11.2 deletions present with a variable clinical spectrum. METHODS To better understand the nature and presentation of the syndrome throughout development, we present three different, unrelated clinical cases of children with 16p11.2 deletion and provide a detailed description of their clinical manifestations. RESULTS Cognitive and motor impairments were characteristic of all three patients with 16p11.2 deletion, despite the differences in the extent and clinical presentation of impairment. Two patients had a clinical diagnosis of ASD and one showed several ASD traits. In addition, two patients also had severe speech and language impairments, which is in line with previous reports on 16p11.2 phenotypes. Although epilepsy and obesity have been frequently associated with 16p11.2 deletion, only one patient had a diagnosis of epilepsy and none of the three cases were obese. CONCLUSION This variation in clinical phenotype renders correct clinical interpretation and diagnosis challenging. Therefore, it is critical to elucidate the variable clinical phenotypes of rare CNVs, including 16p11.2 deletions, to help guide clinical monitoring and counselling of patients and families.
Collapse
|
62
|
Cherezov RO, Vorontsova JE, Simonova OB. TBP-Related Factor 2 as a Trigger for Robertsonian Translocations and Speciation. Int J Mol Sci 2020; 21:E8871. [PMID: 33238614 PMCID: PMC7700478 DOI: 10.3390/ijms21228871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022] Open
Abstract
Robertsonian (centric-fusion) translocation is the form of chromosomal translocation in which two long arms of acrocentric chromosomes are fused to form one metacentric. These translocations reduce the number of chromosomes while preserving existing genes and are considered to contribute to speciation. We asked whether hypomorphic mutations in genes that disrupt the formation of pericentromeric regions could lead to centric fusion. TBP-related factor 2 (Trf2) encodes an alternative general transcription factor. A decrease of TRF2 expression disrupts the structure of the pericentromeric regions and prevents their association into chromocenter. We revealed several centric fusions in two lines of Drosophila melanogaster with weak Trf2 alleles in genetic experiments. We performed an RNAi-mediated knock-down of Trf2 in Drosophila and S2 cells and demonstrated that Trf2 upregulates expression of D1-one of the major genes responsible for chromocenter formation and nuclear integrity in Drosophila. Our data, for the first time, indicate that Trf2 may be involved in transcription program responsible for structuring of pericentromeric regions and may contribute to new karyotypes formation in particular by promoting centric fusion. Insight into the molecular mechanisms of Trf2 function and its new targets in different tissues will contribute to our understanding of its phenomenon.
Collapse
Affiliation(s)
| | | | - Olga B. Simonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, 119991 Moscow, Russia; (R.O.C.); (J.E.V.)
| |
Collapse
|
63
|
Abstract
Mutation of the human genome results in three classes of genomic variation: single nucleotide variants; short insertions or deletions; and large structural variants (SVs). Some mutations occur during normal processes, such as meiotic recombination or B cell development, and others result from DNA replication or aberrant repair of breaks in sequence-specific contexts. Regardless of mechanism, mutations are subject to selection, and some hotspots can manifest in disease. Here, we discuss genomic regions prone to mutation, mechanisms contributing to mutation susceptibility, and the processes leading to their accumulation in normal and somatic genomes. With further, more accurate human genome sequencing, additional mutation hotspots, mechanistic details of their formation, and the relevance of hotspots to evolution and disease are likely to be discovered.
Collapse
|
64
|
Lai S, Zhang X, Feng L, He M, Wang S. The prenatal diagnosis and genetic counseling of chromosomal micro-duplication on 10q24.3 in a fetus: A case report and a brief review of the literature. Medicine (Baltimore) 2020; 99:e22533. [PMID: 33080687 PMCID: PMC7571886 DOI: 10.1097/md.0000000000022533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Split-hand/split-foot malformation (SHFM), also known as ectrodactyly, is a congenital limb malformation affecting the central rays of the autopod extending to syndactyly, median clefts of the hands and feet, aplasia/hypoplasia of phalanges, metacarpals and metatarsals. Duplication of this 10q24 region is associated with SHFM3. While the clinical and genetic heterogeneity of SHFM makes the prenatal diagnosis and genetic counseling more challenging and difficult. PATIENT CONCERNS A physically normal pregnant woman had a systemic ultrasound at the second trimester, only identified the deformity of both hands and feet on the fetus. DIAGNOSES The fetus was diagnosed as sporadic SHFM3. INTERVENTIONS After seeking advice from genetic counseling, she decided to terminate the pregnancy. The induction of infant was done after appearance of bipedal clefts, lobster-claw appearance and partial loss of phalanges and metacarpals, leaving behind 2nd finger in the left hand and the 5th in the right hand. Furthermore, collection of umbilical cord is recommended to this fetus for genome-wide detection. OUTCOMES An outcome of the gene detection from abortion shows that there is variation in copy number in genome of chromosome 1 and chromosome 10. LESSONS This case study confirms an association between SHFM3 and chromosomal micro-duplication on 10q24.3, and the extension of clinical spectrum of SHFM3. It also proposes some prenatal diagnosis and genetic counseling to help in planning and management in affected pregnancy. This will reduce the congenital and development abnormalities in birth rate, as well as relive the economic, psychological, and physical burden to the affected families.
Collapse
Affiliation(s)
- Shaoyang Lai
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen
| | - Xueqin Zhang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzhou He
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoshuai Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
65
|
Tinker RJ, Burghel GJ, Garg S, Steggall M, Cuvertino S, Banka S. Haploinsufficiency of ATP6V0C possibly underlies 16p13.3 deletions that cause microcephaly, seizures, and neurodevelopmental disorder. Am J Med Genet A 2020; 185:196-202. [PMID: 33090716 DOI: 10.1002/ajmg.a.61905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/11/2022]
Abstract
We recently contributed to the description of eight individuals with a novel condition caused by 16p13.3 microdeletions encompassing TBC1D24, ATP6V0C, and PDPK1 and resulting in epilepsy, microcephaly and neurodevelopmental problems. The phenotypic spectrum, the minimum overlapping region and the underlying disease mechanism for this disorder remain to be clarified. Here we report a 3.5-year-old male, with microcephaly, autism spectrum disorder and a de novo 16p13.3 microdeletion. We performed detailed in silico analysis to show that the minimum overlapping region for the condition is ~80Kb encompassing five protein coding genes. Analysis of loss of function constraint metrics, transcript-aware evaluation of the population variants, GeVIR scores, analysis of reported pathogenic point variants, detailed review of the known functions of gene products and their animal models showed that the haploinsufficiency of ATP6V0C likely underlies the phenotype of this condition. Protein-protein interaction network, gene phenology and analysis of topologically associating domain showed that it was unlikely that the disorder has an epistatic or regulatory basis. 16p13.3 deletions encompassing ATP6V0C cause a neurodevelopmental disorder. Our results broaden the phenotypic spectrum of this disorder and clarify the likely underlying disease mechanism for the condition.
Collapse
Affiliation(s)
- Rory J Tinker
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Foundation NHS Trust, Manchester, UK
| | - George J Burghel
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Foundation NHS Trust, Manchester, UK
| | - Shruti Garg
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Greater Manchester Mental Health NHS Trust, Manchester, UK
- Department of Child and Adolescent Psychiatry, Royal Manchester Children's Hospital, Manchester, UK
| | - Maggie Steggall
- Department of Paediatric Medicine, Royal Manchester Children's Hospital, Manchester, UK
| | - Sara Cuvertino
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Foundation NHS Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
66
|
Implications of germline copy-number variations in psychiatric disorders: review of large-scale genetic studies. J Hum Genet 2020; 66:25-37. [PMID: 32958875 DOI: 10.1038/s10038-020-00838-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Copy number variants (CNVs), defined as genome sequences of ≥50 bp that differ in copy number from that in a reference genome, are a common form of structural variation. Germline CNVs account for some of the missing heritability that single nucleotide polymorphisms could not account for. Recent technological advances have had a huge impact on CNV research. Microarray technology enables relatively low-cost, high-throughput, genome-wide measurements, and short-read sequencing technology enables the detection of short CNVs that cannot be detected by microarrays. As a result, large-scale genetic studies have been able to identify a variety of common and rare germline CNVs and their associations with diseases. Rare germline CNVs have been reported to be associated with neuropsychiatric disorders. In this review, we focused on germline CNVs and briefly described their functional characteristics, formation mechanisms, detection methods, related databases, and the latest findings. Finally, we introduced recent large-scale genetic studies to assess associations of CNVs with diseases, especially psychiatric disorders, and discussed the use of CNV-based animal models to investigate the molecular and cellular mechanisms underlying these disorders. The development and implementation of improved detection methods, such as long-read single-molecule sequencing, are expected to provide additional insight into the molecular basis of psychiatric disorders and other complex diseases, thus facilitating basic and clinical research on CNVs.
Collapse
|
67
|
Li L, Zhang X, Shi Q, Li L, Jiang Y, Liu R, Zhang H. Ultrasonographic findings and prenatal diagnosis of complete trisomy 17p syndrome: A case report and review of the literature. J Clin Lab Anal 2020; 35:e23582. [PMID: 32951212 PMCID: PMC7843288 DOI: 10.1002/jcla.23582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background Trisomy of the short arm of chromosome 17 is a rare genomic disorder. The clinical features of complete trisomy 17p syndrome have been described. Most cases of this syndrome have been found in infants and children, but only a few cases were found by ultrasound in the prenatal period. Methods We report a case of complete trisomy 17p syndrome, which was inherited from paternal balanced translocation t(15;17)(q11.2;q11.2). A pregnant woman underwent an ultrasound examination at 24 weeks of gestation. Amniotic fluid was collected by amniocentesis. Cytogenetic and single nucleotide polymorphism array analyses were performed. We further reviewed the relationship between duplication regions and the clinical phenotype. Results Ultrasonographic evaluation showed intrauterine growth retardation and a right choroid plexus cyst, but the gallbladder was not observed. The fetal karyotype was 46,XX,der(17)t(15;17)(q11.2;q11.2)pat. The father's karyotype was 46,XY,t(15;17)(q11.2;q11.2). The single nucleotide polymorphism array results showed arr[GRCh37] 17p13.3q11.1(525‐25309337)×3, which indicated a 25.309‐Mb duplication. Conclusion Complete trisomy 17p syndrome shows severe malformations. Intrauterine growth retardation is the most typical manifestation of this syndrome as shown by ultrasonography in the second trimester of pregnancy. The genotype‐phenotype relationships of complete trisomy 17p syndrome are not completely consistent. To further determine these relationships, additional cases are necessary to provide more information from ultrasonographic findings during pregnancy.
Collapse
Affiliation(s)
- Linlin Li
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Xinyue Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Qingyang Shi
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Leilei Li
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Yuting Jiang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Ruizhi Liu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Hongguo Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
68
|
An Adolescent with a Rare De Novo Distal Trisomy 6p and Distal Monosomy 6q Chromosomal Combination. Case Rep Genet 2020; 2020:8857628. [PMID: 32934853 PMCID: PMC7479479 DOI: 10.1155/2020/8857628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/11/2020] [Accepted: 08/23/2020] [Indexed: 11/17/2022] Open
Abstract
We report on a 12-year-old female with both a partial duplication and deletion involving chromosome 6. The duplication involves 6p25.3p24.3 (7.585 Mb) while the deletion includes 6q27q27 (6.244 Mb). This chromosomal abnormality is also described as distal trisomy 6p and distal monosomy 6q. The patient has a Chiari II malformation, hydrocephalus, agenesis of the corpus callosum, microcephaly, bilateral renal duplicated collecting system, scoliosis, and myelomeningocele associated with a neurogenic bladder and bladder reflux. Additional features have included seizures, feeding dysfunction, failure to thrive, sleep apnea, global developmental delay, intellectual disability, and absent speech. To our knowledge, our report is just the sixth case in the literature with concomitant distal 6p duplication and distal 6q deletion. Although a majority of chromosomal duplication-deletion cases have resulted from a parental pericentric inversion, the parents of our case have normal chromosomes. This is the first reported de novo case of distal 6p duplication and distal 6q deletion. Alternate explanations for the origin of the patient's chromosome abnormalities include parental gonadal mosaicism, nonallelic homologous recombination, or potentially intrachromosomal transposition of the telomeres of chromosome 6. Nonpaternity was considered but ruled out by whole exome sequencing analysis.
Collapse
|
69
|
Greenman CD, Penso-Dolfin L, Wu T. The complexity of genome rearrangement combinatorics under the infinite sites model. J Theor Biol 2020; 501:110335. [DOI: 10.1016/j.jtbi.2020.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 04/16/2020] [Accepted: 05/14/2020] [Indexed: 11/30/2022]
|
70
|
Li D, Bupp C, March ME, Hakonarson H, Levine MA. Intragenic Deletions of GNAS in Pseudohypoparathyroidism Type 1A Identify a New Region Affecting Methylation of Exon A/B. J Clin Endocrinol Metab 2020; 105:5841615. [PMID: 32436958 PMCID: PMC7947960 DOI: 10.1210/clinem/dgaa286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Pseudohypoparathyroidism type 1A (PHP1A) and pseudopseudohypoparathyroidism (PPHP) are caused by inactivating mutations in the exons of GNAS that encode the alpha-subunit of the stimulatory G protein (Gsα). In some cases abnormal methylation of exon A/B of GNAS, a hallmark of PHP1B, has been reported. OBJECTIVE To identify the underlying genetic basis for PHP1A/PPHP in patients in whom molecular defects were not detected by GNAS sequencing and microarray-based analysis of copy number variations. METHODS Whole genome sequencing (WGS) and pyrosequencing of differentially methylated regions (DMRs) of GNAS using genomic deoxyribonucleic acid from affected patients. RESULTS We identified 2 novel heterozygous GNAS deletions: a 6.4 kb deletion that includes exon 2 of GNAS in the first proband that was associated with normal methylation (57%) of exon A/B DMR, and a 1438 bp deletion in a second PHP1A patient that encompasses the promoter region and 5' untranslated region of Gsα transcripts, which was inherited from his mother with PPHP. This deletion was associated with reduced methylation (32%) of exon A/B DMR. CONCLUSIONS WGS can detect exonic and intronic mutations, including deletions that are too small to be identified by microarray analysis, and therefore is more sensitive than other techniques for molecular analysis of PHP1A/PPHP. One of the deletions we identified led to reduced methylation of exon A/B DMR, further refining a region needed for normal imprinting of this DMR. We propose that deletion of this region can explain why some PHP1A patients have reduced of methylation of the exon A/B DMR.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Michael E March
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Michael A Levine
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Correspondence and Reprint Requests: Michael A. Levine, MD, Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Abramson Research Center, Room 510A, 3615 Civic Center Boulevard, Philadelphia, PA 19104. E-mail:
| |
Collapse
|
71
|
Population prevalence and inheritance pattern of recurrent CNVs associated with neurodevelopmental disorders in 12,252 newborns and their parents. Eur J Hum Genet 2020; 29:205-215. [PMID: 32778765 PMCID: PMC7852900 DOI: 10.1038/s41431-020-00707-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/19/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022] Open
Abstract
Recurrent copy number variations (CNVs) are common causes of neurodevelopmental disorders (NDDs) and associated with a range of psychiatric traits. These CNVs occur at defined genomic regions that are particularly prone to recurrent deletions and duplications and often exhibit variable expressivity and incomplete penetrance. Robust estimates of the population prevalence and inheritance pattern of recurrent CNVs associated with neurodevelopmental disorders (NDD CNVs) are lacking. Here we perform array-based CNV calling in 12,252 mother–father–child trios from the Norwegian Mother, Father, and Child Cohort Study (MoBa) and analyse the inheritance pattern of 26 recurrent NDD CNVs in 13 genomic regions. We estimate the total prevalence of recurrent NDD CNVs (duplications and deletions) in live-born children to 0.48% (95% C.I.: 0.37–0.62%), i.e., ~1 in 200 newborns has either a deletion or duplication in these NDDs associated regions. Approximately a third of the newborn recurrent NDD CNVs (34%, N = 20/59) are de novo variants. We provide prevalence estimates and inheritance information for each of the 26 NDD CNVs and find higher prevalence than previously reported for 1q21.1 deletions (~1:2000), 15q11.2 duplications (~1:4000), 15q13.3 microdeletions (~1:2500), 16p11.2 proximal microdeletions (~1:2000) and 17q12 deletions (~1:4000) and lower than previously reported prevalence for the 22q11.2 deletion (~1:12,000). In conclusion, our analysis of an unselected and representative population of newborns and their parents provides a clearer picture of the rate of recurrent microdeletions/duplications implicated in neurodevelopmental delay. These results will provide an important resource for genetic diagnostics and counseling.
Collapse
|
72
|
Lengyel A, Pinti É, Pikó H, Jávorszky E, David D, Tihanyi M, Gönczi É, Kiss E, Tóth Z, Tory K, Fekete G, Haltrich I. Clinical and genetic findings in Hungarian pediatric patients carrying chromosome 16p copy number variants and a review of the literature. Eur J Med Genet 2020; 63:104027. [PMID: 32758661 DOI: 10.1016/j.ejmg.2020.104027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/10/2020] [Accepted: 07/25/2020] [Indexed: 11/27/2022]
Abstract
The short arm of chromosome 16 (16p) is enriched for segmental duplications, making it susceptible to recurrent, reciprocal rearrangements implicated in the etiology of several phenotypes, including intellectual disability, speech disorders, developmental coordination disorder, autism spectrum disorders, attention deficit hyperactivity disorders, obesity and congenital skeletal disorders. In our clinical study 73 patients were analyzed by chromosomal microarray, and results were confirmed by fluorescence in situ hybridization or polymerase chain reaction. All patients underwent detailed clinical evaluation, with special emphasis on behavioral symptoms. 16p rearrangements were identified in 10 individuals. We found six pathogenic deletions and duplications of the recurrent regions within 16p11.2: one patient had a deletion of the distal 16p11.2 region associated with obesity, while four individuals had duplications, and one patient a deletion of the proximal 16p11.2 region. The other four patients carried 16p variations as second-site genomic alterations, acting as possible modifying genetic factors. We present the phenotypic and genotypic results of our patients and discuss our findings in relation to the available literature.
Collapse
Affiliation(s)
- Anna Lengyel
- II Department of Pediatrics, Semmelweis University, Budapest, Hungary.
| | - Éva Pinti
- II Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Henriett Pikó
- I Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Eszter Jávorszky
- I Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Dezső David
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, Lisbon, Portugal
| | - Mariann Tihanyi
- Department of Genetics, Zala County Hospital, Zalaegerszeg, Hungary
| | - Éva Gönczi
- II Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Eszter Kiss
- II Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Zsuzsa Tóth
- II Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Kálmán Tory
- I Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - György Fekete
- II Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Irén Haltrich
- II Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
73
|
Frazier AE, Compton AG, Kishita Y, Hock DH, Welch AE, Amarasekera SSC, Rius R, Formosa LE, Imai-Okazaki A, Francis D, Wang M, Lake NJ, Tregoning S, Jabbari JS, Lucattini A, Nitta KR, Ohtake A, Murayama K, Amor DJ, McGillivray G, Wong FY, van der Knaap MS, Jeroen Vermeulen R, Wiltshire EJ, Fletcher JM, Lewis B, Baynam G, Ellaway C, Balasubramaniam S, Bhattacharya K, Freckmann ML, Arbuckle S, Rodriguez M, Taft RJ, Sadedin S, Cowley MJ, Minoche AE, Calvo SE, Mootha VK, Ryan MT, Okazaki Y, Stroud DA, Simons C, Christodoulou J, Thorburn DR. Fatal perinatal mitochondrial cardiac failure caused by recurrent de novo duplications in the ATAD3 locus. MED 2020; 2:49-73. [PMID: 33575671 DOI: 10.1016/j.medj.2020.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background In about half of all patients with a suspected monogenic disease, genomic investigations fail to identify the diagnosis. A contributing factor is the difficulty with repetitive regions of the genome, such as those generated by segmental duplications. The ATAD3 locus is one such region, in which recessive deletions and dominant duplications have recently been reported to cause lethal perinatal mitochondrial diseases characterized by pontocerebellar hypoplasia or cardiomyopathy, respectively. Methods Whole exome, whole genome and long-read DNA sequencing techniques combined with studies of RNA and quantitative proteomics were used to investigate 17 subjects from 16 unrelated families with suspected mitochondrial disease. Findings We report six different de novo duplications in the ATAD3 gene locus causing a distinctive presentation including lethal perinatal cardiomyopathy, persistent hyperlactacidemia, and frequently corneal clouding or cataracts and encephalopathy. The recurrent 68 Kb ATAD3 duplications are identifiable from genome and exome sequencing but usually missed by microarrays. The ATAD3 duplications result in the formation of identical chimeric ATAD3A/ATAD3C proteins, altered ATAD3 complexes and a striking reduction in mitochondrial oxidative phosphorylation complex I and its activity in heart tissue. Conclusions ATAD3 duplications appear to act in a dominant-negative manner and the de novo inheritance infers a low recurrence risk for families, unlike most pediatric mitochondrial diseases. More than 350 genes underlie mitochondrial diseases. In our experience the ATAD3 locus is now one of the five most common causes of nuclear-encoded pediatric mitochondrial disease but the repetitive nature of the locus means ATAD3 diagnoses may be frequently missed by current genomic strategies. Funding Australian NHMRC, US Department of Defense, Japanese AMED and JSPS agencies, Australian Genomics Health Alliance and Australian Mito Foundation.
Collapse
Affiliation(s)
- Ann E Frazier
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia.,These authors contributed equally: A.E. Frazier, A.G. Compton
| | - Alison G Compton
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia.,These authors contributed equally: A.E. Frazier, A.G. Compton
| | - Yoshihito Kishita
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Daniella H Hock
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3052, Australia
| | - AnneMarie E Welch
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Sumudu S C Amarasekera
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Rocio Rius
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Atsuko Imai-Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, 113-8421, Japan.,Division of Genomic Medicine Research, Medical Genomics Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - David Francis
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Min Wang
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Nicole J Lake
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia.,Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Simone Tregoning
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Jafar S Jabbari
- Australian Genome Research Facility Ltd, Victorian Comprehensive Cancer Centre, Melbourne VIC 3052, Australia
| | - Alexis Lucattini
- Australian Genome Research Facility Ltd, Victorian Comprehensive Cancer Centre, Melbourne VIC 3052, Australia
| | - Kazuhiro R Nitta
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Saitama Medical University Hospital, Saitama, 350-0495, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba, 266-0007, Japan
| | - David J Amor
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Flora Y Wong
- Ritchie Centre, Hudson Institute of Medical Research; Department of Paediatrics, Monash University; and Monash Newborn, Monash Children's Hospital, Melbourne, VIC 3168, Australia
| | - Marjo S van der Knaap
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands.,Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit and Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - R Jeroen Vermeulen
- Department of Neurology, Maastricht University Medical Center, 6229 HX, Maastricht, The Netherlands
| | - Esko J Wiltshire
- Department of Paediatrics and Child Health, University of Otago Wellington and Capital and Coast District Health Board, Wellington 6021, New Zealand
| | - Janice M Fletcher
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia
| | - Barry Lewis
- Department of Clinical Biochemistry, PathWest Laboratory Medicine Western Australia, Nedlands, WA 6009, Australia
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies and Genetic Services of Western Australia and King Edward Memorial Hospital for Women Perth, Subiaco, WA 6008, Australia.,Telethon Kids Institute and School of Paediatrics and Child Health, The University of Western Australia, Perth, WA 6009, Australia
| | - Carolyn Ellaway
- Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia.,Disciplines of Genomic Medicine and Child and Adolescent Health, Sydney Medical School, University of Sydney, NSW 2145, Australia
| | - Shanti Balasubramaniam
- Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Kaustuv Bhattacharya
- Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia.,Disciplines of Genomic Medicine and Child and Adolescent Health, Sydney Medical School, University of Sydney, NSW 2145, Australia
| | | | - Susan Arbuckle
- Department of Histopathology, The Children's Hospital at Westmead, Sydney Children's Hospital Network, Sydney, NSW 2145, Australia
| | - Michael Rodriguez
- Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Simon Sadedin
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Mark J Cowley
- Children's Cancer Institute, Kensington, NSW 2750, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - André E Minoche
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Sarah E Calvo
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02446, USA
| | - Vamsi K Mootha
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02446, USA
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - David A Stroud
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Cas Simons
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Disciplines of Genomic Medicine and Child and Adolescent Health, Sydney Medical School, University of Sydney, NSW 2145, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia.,Lead contact
| |
Collapse
|
74
|
Lalonde E, Rentas S, Lin F, Dulik MC, Skraban CM, Spinner NB. Genomic Diagnosis for Pediatric Disorders: Revolution and Evolution. Front Pediatr 2020; 8:373. [PMID: 32733828 PMCID: PMC7360789 DOI: 10.3389/fped.2020.00373] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Powerful, recent advances in technologies to analyze the genome have had a profound impact on the practice of medical genetics, both in the laboratory and in the clinic. Increasing utilization of genome-wide testing such as chromosomal microarray analysis and exome sequencing have lead a shift toward a "genotype-first" approach. Numerous techniques are now available to diagnose a particular syndrome or phenotype, and while traditional techniques remain efficient tools in certain situations, higher-throughput technologies have become the de facto laboratory tool for diagnosis of most conditions. However, selecting the right assay or technology is challenging, and the wrong choice may lead to prolonged time to diagnosis, or even a missed diagnosis. In this review, we will discuss current core technologies for the diagnosis of classic genetic disorders to shed light on the benefits and disadvantages of these strategies, including diagnostic efficiency, variant interpretation, and secondary findings. Finally, we review upcoming technologies posed to impart further changes in the field of genetic diagnostics as we move toward "genome-first" practice.
Collapse
Affiliation(s)
- Emilie Lalonde
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Stefan Rentas
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Fumin Lin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew C. Dulik
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Cara M. Skraban
- Division of Human Genetics, Department of Pediatrics, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Nancy B. Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
75
|
Yang Q, Shen Y, Shao C, Liu Y, Xu H, Zhou Y, Liu Z, Sun K, Tang Q, Xie J. Genetic analysis of tri-allelic patterns at the CODIS STR loci. Mol Genet Genomics 2020; 295:1263-1268. [DOI: 10.1007/s00438-020-01701-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/09/2020] [Indexed: 11/28/2022]
|
76
|
Identifying NAHR mechanism between two distinct Alu elements through breakpoint junction mapping by NGS. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
77
|
Babbs C, Brown J, Horsley SW, Slater J, Maifoshie E, Kumar S, Ooijevaar P, Kriek M, Dixon-McIver A, Harteveld CL, Traeger-Synodinos J, Wilkie AOM, Higgs DR, Buckle VJ. ATR-16 syndrome: mechanisms linking monosomy to phenotype. J Med Genet 2020; 57:414-421. [PMID: 32005695 PMCID: PMC7279195 DOI: 10.1136/jmedgenet-2019-106528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Deletions removing 100s-1000s kb of DNA, and variable numbers of poorly characterised genes, are often found in patients with a wide range of developmental abnormalities. In such cases, understanding the contribution of the deletion to an individual's clinical phenotype is challenging. METHODS Here, as an example of this common phenomenon, we analysed 41 patients with simple deletions of ~177 to ~2000 kb affecting one allele of the well-characterised, gene dense, distal region of chromosome 16 (16p13.3), referred to as ATR-16 syndrome. We characterised deletion extents and screened for genetic background effects, telomere position effect and compensatory upregulation of hemizygous genes. RESULTS We find the risk of developmental and neurological abnormalities arises from much smaller distal chromosome 16 deletions (~400 kb) than previously reported. Beyond this, the severity of ATR-16 syndrome increases with deletion size, but there is no evidence that critical regions determine the developmental abnormalities associated with this disorder. Surprisingly, we find no evidence of telomere position effect or compensatory upregulation of hemizygous genes; however, genetic background effects substantially modify phenotypic abnormalities. CONCLUSIONS Using ATR-16 as a general model of disorders caused by CNVs, we show the degree to which individuals with contiguous gene syndromes are affected is not simply related to the number of genes deleted but depends on their genetic background. We also show there is no critical region defining the degree of phenotypic abnormalities in ATR-16 syndrome and this has important implications for genetic counselling.
Collapse
Affiliation(s)
- Christian Babbs
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jill Brown
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sharon W Horsley
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Joanne Slater
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Evie Maifoshie
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Paul Ooijevaar
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Kriek
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Cornelis L Harteveld
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Traeger-Synodinos
- Department of Medical Genetics, National and Kapodistrian University of Athens, Athens, Greece
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Craniofacial Unit, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Veronica J Buckle
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
78
|
Gandhi JM, Sankhe S, Udmale P. Pontine Tegmental Cap Dysplasia- the Role of MRI and DTI in Diagnosis. Neurol India 2020; 68:691-693. [PMID: 32643691 DOI: 10.4103/0028-3886.289019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Shilpa Sankhe
- Department of Radiology, Neuroradiology Unit, KEM Hosiptal, Mumbai, Maharastra, India
| | - Prasad Udmale
- Department of Radiology, Neuroradiology Unit, KEM Hosiptal, Mumbai, Maharastra, India
| |
Collapse
|
79
|
Takahashi KK, Innan H. Duplication with structural modification through extrachromosomal circular and lariat DNA in the human genome. Sci Rep 2020; 10:7150. [PMID: 32345992 PMCID: PMC7188851 DOI: 10.1038/s41598-020-63665-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/30/2020] [Indexed: 12/02/2022] Open
Abstract
Duplication plays an important role in creating drastic changes in genome evolution. In addition to well-known tandem duplication, duplication can occur such that a duplicated DNA fragment is inserted at another location in the genome. Here, we report several genomic regions in the human genome that could be best explained by two types of insertion-based duplication mechanisms, where a duplicated DNA fragment was modified structurally and then inserted into the genome. In one process, the DNA fragment is turned into an extrachromosomal circular DNA, cut somewhere in the circle, and reintegrated into another location in the genome. And in the other, the DNA fragment forms a “lariat structure” with a “knot”, the strand is swapped at the knot, and is then reintegrated into the genome. Our results suggest that insertion-based duplication may not be a simple process; it may involve a complicated procedures such as structural modification before reintegration. However, the molecular mechanism has yet to be fully understood.
Collapse
Affiliation(s)
- Kazuki K Takahashi
- SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa, 240-0193, Japan.,Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideki Innan
- SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa, 240-0193, Japan.
| |
Collapse
|
80
|
Hou HT, Chen HX, Wang XL, Yuan C, Yang Q, Liu ZG, He GW. Genetic characterisation of 22q11.2 variations and prevalence in patients with congenital heart disease. Arch Dis Child 2020; 105:367-374. [PMID: 31666243 DOI: 10.1136/archdischild-2018-316634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/22/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The 22q11.2 deletion syndrome is considered the most frequent chromosomal microdeletion syndrome in humans and the second leading chromosomal cause of congenital heart disease (CHD). We aimed to identify the prevalence and the detailed genetic characterisation of 22q11.2 region in children with CHD including simple defects and to explore the genotype-phenotype relationship between deletion/amplification type and clinical data. METHODS Patients with CHD for surgery were screened by multiplex ligation-dependent probe amplification and capillary electrophoresis methods. Universal Probe Library technology was applied for validation. RESULTS In 354 patients with CHD, 40 (11.3%) carried different levels of deletions/amplifications at the 22q11.2 region with various phenotypes. The affected genes at this region include CDC45 (15 patients), TBX1 (8), USP18 (8), RTDR1 (7), SNAP29 (6), TOP3B (6), ZNF74 (4) and other genes with less frequency. Among those, two patients carried 3 Mb typically deleted region from CLTCL1 to LZTR1 (low copy repeats A-D) or 1.5 Mb deletions from CLTCL1 to MED15 (low copy repeats A-C). Clinical facial manifestations were found in 12 patients. CONCLUSIONS This study revealed an unexpected high prevalence of chromosome 22q11.2 variations in patients with CHD even in simple defects. The genotype-phenotype relationship analysis suggests that genetic detection of 22q11.2 may become necessary in all patients with CHD and that detection of unique deletions or amplifications may provide useful insight into personalised management in patients with CHD.
Collapse
Affiliation(s)
- Hai-Tao Hou
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huan-Xin Chen
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiu-Li Wang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chao Yuan
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qin Yang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhi-Gang Liu
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Guo-Wei He
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Zhejiang University & Wannan Medical College, Hangzhou & Wuhu, China
- Department of Surgery, Oregon Health and Science University, Portland, Oregon, United States
| |
Collapse
|
81
|
Casamassa A, Ferrari D, Gelati M, Carella M, Vescovi AL, Rosati J. A Link between Genetic Disorders and Cellular Impairment, Using Human Induced Pluripotent Stem Cells to Reveal the Functional Consequences of Copy Number Variations in the Central Nervous System-A Close Look at Chromosome 15. Int J Mol Sci 2020; 21:ijms21051860. [PMID: 32182809 PMCID: PMC7084702 DOI: 10.3390/ijms21051860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/28/2022] Open
Abstract
Recent cutting-edge human genetics technology has allowed us to identify copy number variations (CNVs) and has provided new insights for understanding causative mechanisms of human diseases. A growing number of studies show that CNVs could be associated with physiological mechanisms linked to evolutionary trigger, as well as to the pathogenesis of various diseases, including cancer, autoimmune disease and mental disorders such as autism spectrum disorders, schizophrenia, intellectual disabilities or attention-deficit/hyperactivity disorder. Their incomplete penetrance and variable expressivity make diagnosis difficult and hinder comprehension of the mechanistic bases of these disorders. Additional elements such as co-presence of other CNVs, genomic background and environmental factors are involved in determining the final phenotype associated with a CNV. Genetically engineered animal models are helpful tools for understanding the behavioral consequences of CNVs. However, the genetic background and the biology of these animal model systems have sometimes led to confusing results. New cellular models obtained through somatic cellular reprogramming technology that produce induced pluripotent stem cells (iPSCs) from human subjects are being used to explore the mechanisms involved in the pathogenic consequences of CNVs. Considering the vast quantity of CNVs found in the human genome, we intend to focus on reviewing the current literature on the use of iPSCs carrying CNVs on chromosome 15, highlighting advantages and limits of this system with respect to mouse model systems.
Collapse
Affiliation(s)
- Alessia Casamassa
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy;
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Viale Abramo Lincoln 5, 81100 Caserta, Italy
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy;
| | - Maurizio Gelati
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
| | - Massimo Carella
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
| | - Angelo Luigi Vescovi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy;
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
- Correspondence: (A.L.V.); (J.R.)
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy;
- Correspondence: (A.L.V.); (J.R.)
| |
Collapse
|
82
|
Karolak JA, Gambin T, Honey EM, Slavik T, Popek E, Stankiewicz P. A de novo 2.2 Mb recurrent 17q23.1q23.2 deletion unmasks novel putative regulatory non-coding SNVs associated with lethal lung hypoplasia and pulmonary hypertension: a case report. BMC Med Genomics 2020; 13:34. [PMID: 32143628 PMCID: PMC7060516 DOI: 10.1186/s12920-020-0701-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Application of whole genome sequencing (WGS) enables identification of non-coding variants that play a phenotype-modifying role and are undetectable by exome sequencing. Recently, non-coding regulatory single nucleotide variants (SNVs) have been reported in patients with lethal lung developmental disorders (LLDDs) or congenital scoliosis with recurrent copy-number variant (CNV) deletions at 17q23.1q23.2 or 16p11.2, respectively. CASE PRESENTATION Here, we report a deceased newborn with pulmonary hypertension and pulmonary interstitial emphysema with features suggestive of pulmonary hypoplasia, resulting in respiratory failure and neonatal death soon after birth. Using the array comparative genomic hybridization and WGS, two heterozygous recurrent CNV deletions: ~ 2.2 Mb on 17q23.1q23.2, involving TBX4, and ~ 600 kb on 16p11.2, involving TBX6, that both arose de novo on maternal chromosomes were identified. In the predicted lung-specific enhancer upstream to TBX4, we have detected seven novel putative regulatory non-coding SNVs that were absent in 13 control individuals with the overlapping deletions but without any structural lung anomalies. CONCLUSIONS Our findings further support a recently reported model of complex compound inheritance of LLDD in which both non-coding and coding heterozygous TBX4 variants contribute to the lung phenotype. In addition, this is the first report of a patient with combined de novo heterozygous recurrent 17q23.1q23.2 and 16p11.2 CNV deletions.
Collapse
Affiliation(s)
- Justyna A Karolak
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-781, Poznan, Poland
| | - Tomasz Gambin
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Institute of Computer Science, Warsaw University of Technology, 00-665, Warsaw, Poland
| | - Engela M Honey
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Science, University of Pretoria, Pretoria, South Africa
| | - Tomas Slavik
- Ampath Pathology Laboratories, and Department of Anatomical Pathology, University of Pretoria, Pretoria, South Africa
| | - Edwina Popek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
83
|
Perez-Rodriguez D, Kalyva M, Leija-Salazar M, Lashley T, Tarabichi M, Chelban V, Gentleman S, Schottlaender L, Franklin H, Vasmatzis G, Houlden H, Schapira AHV, Warner TT, Holton JL, Jaunmuktane Z, Proukakis C. Investigation of somatic CNVs in brains of synucleinopathy cases using targeted SNCA analysis and single cell sequencing. Acta Neuropathol Commun 2019; 7:219. [PMID: 31870437 PMCID: PMC6929293 DOI: 10.1186/s40478-019-0873-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Synucleinopathies are mostly sporadic neurodegenerative disorders of partly unexplained aetiology, and include Parkinson's disease (PD) and multiple system atrophy (MSA). We have further investigated our recent finding of somatic SNCA (α-synuclein) copy number variants (CNVs, specifically gains) in synucleinopathies, using Fluorescent in-situ Hybridisation for SNCA, and single-cell whole genome sequencing for the first time in a synucleinopathy. In the cingulate cortex, mosaicism levels for SNCA gains were higher in MSA and PD than controls in neurons (> 2% in both diseases), and for MSA also in non-neurons. In MSA substantia nigra (SN), we noted SNCA gains in > 3% of dopaminergic (DA) neurons (identified by neuromelanin) and neuromelanin-negative cells, including olig2-positive oligodendroglia. Cells with CNVs were more likely to have α-synuclein inclusions, in a pattern corresponding to cell categories mostly relevant to the disease: DA neurons in Lewy-body cases, and other cells in the striatonigral degeneration-dominant MSA variant (MSA-SND). Higher mosaicism levels in SN neuromelanin-negative cells may correlate with younger onset in typical MSA-SND, and in cingulate neurons with younger death in PD. Larger sample sizes will, however, be required to confirm these putative findings. We obtained genome-wide somatic CNV profiles from 169 cells from the substantia nigra of two MSA cases, and pons and putamen of one. These showed somatic CNVs in ~ 30% of cells, with clonality and origins in segmental duplications for some. CNVs had distinct profiles based on cell type, with neurons having a mix of gains and losses, and other cells having almost exclusively gains, although control data sets will be required to determine possible disease relevance. We propose that somatic SNCA CNVs may contribute to the aetiology and pathogenesis of synucleinopathies, and that genome-wide somatic CNVs in MSA brain merit further study.
Collapse
Affiliation(s)
- Diego Perez-Rodriguez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Maria Kalyva
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Melissa Leija-Salazar
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, 1 Wakefield street, London, WC1N 1PJ, UK
| | - Maxime Tarabichi
- The Francis Crick Institute, Midland Road 1, London, NW1 1AT, UK
| | - Viorica Chelban
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | | | - Lucia Schottlaender
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Hannah Franklin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - George Vasmatzis
- Center for Individualized Medicine, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, 1 Wakefield street, London, WC1N 1PJ, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Janice L Holton
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, 1 Wakefield street, London, WC1N 1PJ, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, 1 Wakefield street, London, WC1N 1PJ, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
84
|
Distinct patterns of complex rearrangements and a mutational signature of microhomeology are frequently observed in PLP1 copy number gain structural variants. Genome Med 2019; 11:80. [PMID: 31818324 PMCID: PMC6902434 DOI: 10.1186/s13073-019-0676-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/10/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND We investigated the features of the genomic rearrangements in a cohort of 50 male individuals with proteolipid protein 1 (PLP1) copy number gain events who were ascertained with Pelizaeus-Merzbacher disease (PMD; MIM: 312080). We then compared our new data to previous structural variant mutagenesis studies involving the Xq22 region of the human genome. The aggregate data from 159 sequenced join-points (discontinuous sequences in the reference genome that are joined during the rearrangement process) were studied. Analysis of these data from 150 individuals enabled the spectrum and relative distribution of the underlying genomic mutational signatures to be delineated. METHODS Genomic rearrangements in PMD individuals with PLP1 copy number gain events were investigated by high-density customized array or clinical chromosomal microarray analysis and breakpoint junction sequence analysis. RESULTS High-density customized array showed that the majority of cases (33/50; ~ 66%) present with single duplications, although complex genomic rearrangements (CGRs) are also frequent (17/50; ~ 34%). Breakpoint mapping to nucleotide resolution revealed further previously unknown structural and sequence complexities, even in single duplications. Meta-analysis of all studied rearrangements that occur at the PLP1 locus showed that single duplications were found in ~ 54% of individuals and that, among all CGR cases, triplication flanked by duplications is the most frequent CGR array CGH pattern observed. Importantly, in ~ 32% of join-points, there is evidence for a mutational signature of microhomeology (highly similar yet imperfect sequence matches). CONCLUSIONS These data reveal a high frequency of CGRs at the PLP1 locus and support the assertion that replication-based mechanisms are prominent contributors to the formation of CGRs at Xq22. We propose that microhomeology can facilitate template switching, by stabilizing strand annealing of the primer using W-C base complementarity, and is a mutational signature for replicative repair.
Collapse
|
85
|
Savory K, Manivannan S, Zaben M, Uzun O, Syed YA. Impact of copy number variation on human neurocognitive deficits and congenital heart defects: A systematic review. Neurosci Biobehav Rev 2019; 108:83-93. [PMID: 31682886 DOI: 10.1016/j.neubiorev.2019.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/26/2019] [Indexed: 12/16/2022]
Abstract
Copy number variant (CNV) syndromes are often associated with both neurocognitive deficits (NCDs) and congenital heart defects (CHDs). Children and adults with cardiac developmental defects likely to have NCDs leading to increased risk of hospitalisation and reduced level of independence. To date, the association between these two phenotypes have not been explored in relation to CNV syndromes. In order to address this question, we systematically reviewed the prevalence of CHDs in a range of CNV syndromes associated with NCDs. A meta-analysis showed a relationship with the size of CNV and its association with both NCDs and CHDs, and also inheritance pattern. To our knowledge, this is the first review to establish association between NCD and CHDs in CNV patients, specifically in relation to the severity of NCD. Importantly, we also found specific types of CHDs were associated with severe neurocognitive deficits. Finally, we discuss the implications of these results for patients in the clinical setting which warrants further exploration of this association in order to lead an improvement in the quality of patient's life.
Collapse
Affiliation(s)
- Katrina Savory
- Neuroscience and Mental Health Research Institute (NMHRI), Hadyn Ellis Building, Cathays, CF24 4HQ, Cardiff, UK; School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK
| | - Susruta Manivannan
- Neuroscience and Mental Health Research Institute (NMHRI), Hadyn Ellis Building, Cathays, CF24 4HQ, Cardiff, UK
| | - Malik Zaben
- Neuroscience and Mental Health Research Institute (NMHRI), Hadyn Ellis Building, Cathays, CF24 4HQ, Cardiff, UK
| | - Orhan Uzun
- University Hospital of Wales, Heath Park, Cardiff, CF10 3AX, UK
| | - Yasir Ahmed Syed
- Neuroscience and Mental Health Research Institute (NMHRI), Hadyn Ellis Building, Cathays, CF24 4HQ, Cardiff, UK; School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK.
| |
Collapse
|
86
|
Varadharajan S, Rastas P, Löytynoja A, Matschiner M, Calboli FCF, Guo B, Nederbragt AJ, Jakobsen KS, Merilä J. A High-Quality Assembly of the Nine-Spined Stickleback (Pungitius pungitius) Genome. Genome Biol Evol 2019; 11:3291-3308. [PMID: 31687752 PMCID: PMC7145574 DOI: 10.1093/gbe/evz240] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2019] [Indexed: 12/22/2022] Open
Abstract
The Gasterosteidae fish family hosts several species that are important models for eco-evolutionary, genetic, and genomic research. In particular, a wealth of genetic and genomic data has been generated for the three-spined stickleback (Gasterosteus aculeatus), the "ecology's supermodel," whereas the genomic resources for the nine-spined stickleback (Pungitius pungitius) have remained relatively scarce. Here, we report a high-quality chromosome-level genome assembly of P. pungitius consisting of 5,303 contigs (N50 = 1.2 Mbp) with a total size of 521 Mbp. These contigs were mapped to 21 linkage groups using a high-density linkage map, yielding a final assembly with 98.5% BUSCO completeness. A total of 25,062 protein-coding genes were annotated, and about 23% of the assembly was found to consist of repetitive elements. A comprehensive analysis of repetitive elements uncovered centromere-specific tandem repeats and provided insights into the evolution of retrotransposons. A multigene phylogenetic analysis inferred a divergence time of about 26 million years ago (Ma) between nine- and three-spined sticklebacks, which is far older than the commonly assumed estimate of 13 Ma. Compared with the three-spined stickleback, we identified an additional duplication of several genes in the hemoglobin cluster. Sequencing data from populations adapted to different environments indicated potential copy number variations in hemoglobin genes. Furthermore, genome-wide synteny comparisons between three- and nine-spined sticklebacks identified chromosomal rearrangements underlying the karyotypic differences between the two species. The high-quality chromosome-scale assembly of the nine-spined stickleback genome obtained with long-read sequencing technology provides a crucial resource for comparative and population genomic investigations of stickleback fishes and teleosts.
Collapse
Affiliation(s)
- Srinidhi Varadharajan
- Department of Biology, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Norway
| | - Pasi Rastas
- Ecological Genetics Research Unit, Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Finland
| | - Michael Matschiner
- Department of Biology, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Norway
- Department of Paleontology and Museum, University of Zurich, Switzerland
| | - Federico C F Calboli
- Ecological Genetics Research Unit, Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Baocheng Guo
- Ecological Genetics Research Unit, Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences, Beijing, China
| | - Alexander J Nederbragt
- Department of Biology, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Norway
- Biomedical Informatics Research Group, Department of Informatics, University of Oslo, Norway
| | - Kjetill S Jakobsen
- Department of Biology, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Norway
| | - Juha Merilä
- Ecological Genetics Research Unit, Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| |
Collapse
|
87
|
Varadharajan S, Rastas P, Löytynoja A, Matschiner M, Calboli FCF, Guo B, Nederbragt AJ, Jakobsen KS, Merilä J. A High-Quality Assembly of the Nine-Spined Stickleback (Pungitius pungitius) Genome. Genome Biol Evol 2019. [PMID: 31687752 DOI: 10.1101/741751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
The Gasterosteidae fish family hosts several species that are important models for eco-evolutionary, genetic, and genomic research. In particular, a wealth of genetic and genomic data has been generated for the three-spined stickleback (Gasterosteus aculeatus), the "ecology's supermodel," whereas the genomic resources for the nine-spined stickleback (Pungitius pungitius) have remained relatively scarce. Here, we report a high-quality chromosome-level genome assembly of P. pungitius consisting of 5,303 contigs (N50 = 1.2 Mbp) with a total size of 521 Mbp. These contigs were mapped to 21 linkage groups using a high-density linkage map, yielding a final assembly with 98.5% BUSCO completeness. A total of 25,062 protein-coding genes were annotated, and about 23% of the assembly was found to consist of repetitive elements. A comprehensive analysis of repetitive elements uncovered centromere-specific tandem repeats and provided insights into the evolution of retrotransposons. A multigene phylogenetic analysis inferred a divergence time of about 26 million years ago (Ma) between nine- and three-spined sticklebacks, which is far older than the commonly assumed estimate of 13 Ma. Compared with the three-spined stickleback, we identified an additional duplication of several genes in the hemoglobin cluster. Sequencing data from populations adapted to different environments indicated potential copy number variations in hemoglobin genes. Furthermore, genome-wide synteny comparisons between three- and nine-spined sticklebacks identified chromosomal rearrangements underlying the karyotypic differences between the two species. The high-quality chromosome-scale assembly of the nine-spined stickleback genome obtained with long-read sequencing technology provides a crucial resource for comparative and population genomic investigations of stickleback fishes and teleosts.
Collapse
Affiliation(s)
- Srinidhi Varadharajan
- Department of Biology, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Norway
| | - Pasi Rastas
- Ecological Genetics Research Unit, Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Finland
| | - Michael Matschiner
- Department of Biology, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Norway
- Department of Paleontology and Museum, University of Zurich, Switzerland
| | - Federico C F Calboli
- Ecological Genetics Research Unit, Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Baocheng Guo
- Ecological Genetics Research Unit, Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences, Beijing, China
| | - Alexander J Nederbragt
- Department of Biology, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Norway
- Biomedical Informatics Research Group, Department of Informatics, University of Oslo, Norway
| | - Kjetill S Jakobsen
- Department of Biology, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Norway
| | - Juha Merilä
- Ecological Genetics Research Unit, Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| |
Collapse
|
88
|
Breakpoint junction features of seven DMD deletion mutations. Hum Genome Var 2019; 6:39. [PMID: 31645977 PMCID: PMC6804640 DOI: 10.1038/s41439-019-0070-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/25/2022] Open
Abstract
Duchenne muscular dystrophy is an inherited muscle wasting disease with severe symptoms and onset in early childhood. Duchenne muscular dystrophy is caused by loss-of-function mutations, most commonly deletions, within the DMD gene. Characterizing the junction points of large genomic deletions facilitates a more detailed model of the origins of these mutations and allows for a greater understanding of phenotypic variations associated with particular genotypes, potentially providing insights into the deletion mechanism. Here, we report sequencing of breakpoint junctions for seven patients with intragenic, whole-exon DMD deletions. Of the seven junction sequences identified, we found one instance of a “clean” break, three instances of microhomology (2–5 bp) at the junction site, and three complex rearrangements involving local sequences. Bioinformatics analysis of the upstream and downstream breakpoint regions revealed a possible role of short inverted repeats in the initiation of some of these deletion events. Researchers in Australia have identified new examples of the genomic factors and mechanisms that lead to deletions linked with Duchenne muscular dystrophy (DMD). DMD is an inherited neuromuscular disease which causes progressive deterioration of muscles and, in some cases, intellectual impairment. Using samples from seven DMD patients, Niall Keegan of Murdoch University in Perth and colleagues sequenced the DNA left behind around the deletions in the DMD gene which cause the disease. They found one clean break, three sections with short repeated sequences, and three with more complex rearrangements. The diversity of these findings led them to suggest that the deletions resulted from a diversity of genomic factors and repair mechanisms. Future work could incorporate these findings into a model to predict where deletions will occur, expanding our understanding of DMD and its causes.
Collapse
|
89
|
Aguirre M, Rivas MA, Priest J. Phenome-wide Burden of Copy-Number Variation in the UK Biobank. Am J Hum Genet 2019; 105:373-383. [PMID: 31353025 PMCID: PMC6699064 DOI: 10.1016/j.ajhg.2019.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022] Open
Abstract
Copy-number variations (CNVs) represent a significant proportion of the genetic differences between individuals and many CNVs associate causally with syndromic disease and clinical outcomes. Here, we characterize the landscape of copy-number variation and their phenome-wide effects in a sample of 472,228 array-genotyped individuals from the UK Biobank. In addition to population-level selection effects against genic loci conferring high mortality, we describe genetic burden from potentially pathogenic and previously uncharacterized CNV loci across more than 3,000 quantitative and dichotomous traits, with separate analyses for common and rare classes of variation. Specifically, we highlight the effects of CNVs at two well-known syndromic loci 16p11.2 and 22q11.2, previously uncharacterized variation at 9p23, and several genic associations in the context of acute coronary artery disease and high body mass index. Our data constitute a deeply contextualized portrait of population-wide burden of copy-number variation, as well as a series of dosage-mediated genic associations across the medical phenome.
Collapse
Affiliation(s)
- Matthew Aguirre
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Manuel A Rivas
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - James Priest
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA 94305, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94035, USA.
| |
Collapse
|
90
|
Swenson KM, Blanchette M. Large-scale mammalian genome rearrangements coincide with chromatin interactions. Bioinformatics 2019; 35:i117-i126. [PMID: 31510664 PMCID: PMC6612848 DOI: 10.1093/bioinformatics/btz343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Motivation Genome rearrangements drastically change gene order along great stretches of a chromosome. There has been initial evidence that these apparently non-local events in the 1D sense may have breakpoints that are close in the 3D sense. We harness the power of the Double Cut and Join model of genome rearrangement, along with Hi-C chromosome conformation capture data to test this hypothesis between human and mouse. Results We devise novel statistical tests that show that indeed, rearrangement scenarios that transform the human into the mouse gene order are enriched for pairs of breakpoints that have frequent chromosome interactions. This is observed for both intra-chromosomal breakpoint pairs, as well as for inter-chromosomal pairs. For intra-chromosomal rearrangements, the enrichment exists from close (<20 Mb) to very distant (100 Mb) pairs. Further, the pattern exists across multiple cell lines in Hi-C data produced by different laboratories and at different stages of the cell cycle. We show that similarities in the contact frequencies between these many experiments contribute to the enrichment. We conclude that either (i) rearrangements usually involve breakpoints that are spatially close or (ii) there is selection against rearrangements that act on spatially distant breakpoints. Availability and implementation Our pipeline is freely available at https://bitbucket.org/thekswenson/locality. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Krister M Swenson
- Laboratoire d'Informatique, de Robotique, et de Microelectronique de Montpellier (LIRMM), Université Montpellier, Montpellier, France.,Centre Nationale de la Recherche Scientifique (CNRS), France
| | | |
Collapse
|
91
|
Palacios-Flores K, Castillo A, Uribe C, García Sotelo J, Boege M, Dávila G, Flores M, Palacios R, Morales L. Prediction and identification of recurrent genomic rearrangements that generate chimeric chromosomes in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2019; 116:8445-8450. [PMID: 30962378 PMCID: PMC6486755 DOI: 10.1073/pnas.1819585116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genomes are dynamic structures. Different mechanisms participate in the generation of genomic rearrangements. One of them is nonallelic homologous recombination (NAHR). This rearrangement is generated by recombination between pairs of repeated sequences with high identity. We analyzed rearrangements mediated by repeated sequences located in different chromosomes. Such rearrangements generate chimeric chromosomes. Potential rearrangements were predicted by localizing interchromosomal identical repeated sequences along the nuclear genome of the Saccharomyces cerevisiae S288C strain. Rearrangements were identified by a PCR-based experimental strategy. PCR primers are located in the unique regions bordering each repeated region of interest. When the PCR is performed using forward primers from one chromosome and reverse primers from another chromosome, the break point of the chimeric chromosome structure is revealed. In all cases analyzed, the corresponding chimeric structures were found. Furthermore, the nucleotide sequence of chimeric structures was obtained, and the origin of the unique regions bordering the repeated sequence was located in the expected chromosomes, using the perfect-match genomic landscape strategy (PMGL). Several chimeric structures were searched in colonies derived from single cells. All of the structures were found in DNA isolated from each of the colonies. Our findings indicate that interchromosomal rearrangements that generate chimeric chromosomes are recurrent and occur, at a relatively high frequency, in cell populations of S. cerevisiae.
Collapse
Affiliation(s)
- Kim Palacios-Flores
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Alejandra Castillo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Carina Uribe
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Jair García Sotelo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Margareta Boege
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Guillermo Dávila
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Margarita Flores
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Rafael Palacios
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Lucia Morales
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| |
Collapse
|
92
|
Chen S, Liu R, Wang Q, Qi Z, Hu Y, Zhou P, Wang Z. MiR-34s negatively regulate homologous recombination through targeting RAD51. Arch Biochem Biophys 2019; 666:73-82. [PMID: 30951682 DOI: 10.1016/j.abb.2019.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/15/2019] [Accepted: 03/27/2019] [Indexed: 01/07/2023]
Abstract
Double-strand breaks (DSBs), the most serious lesions of DNA, often induce chromosomal aberrations and are intimately associated with oncogenesis. A normal DNA damage response (DDR) network contains two major repair pathways: homologous recombination (HR) and non-homologous end-joining (NHEJ). Studies of DSB repair-associated molecules have focused mainly on DNA repair proteins. However, non-coding RNAs also play important roles in the process of DSB repair. Over the past two decades, microRNAs (miRNAs) have been extensively investigated. Our previous work showed that miR-34c-5p overexpression results in suppression of RAD51 and upregulation of γH2AX. In accordance with this, we confirmed that miR-34s family overexpression increased endogenous DSB levels to different extents, an effect that was further confirmed to be associated with the decreased efficiency of HR repair. In addition, miR-34s overexpression also induced G1 arrest, inhibited proliferation and promoted apoptosis. As a central molecule in the process of HR pathway, RAD51 expression was strongly repressed in cells transfected with the miR-34a/b/c-5p mimic. Finally, we demonstrated that miR-34a/b/c-5p directly targets the RAD51 mRNA 3'-UTR or indirectly inhibits RAD51 expression via the p53 signaling pathway. Taken together, our results indicate that miR-34s overexpression depresses the efficiency of HR repair and induces DSBs by downregulating RAD51 expression. Our findings highlight a novel mechanism of HR pathway regulation via the miR-34s/p53/RAD51 axis.
Collapse
Affiliation(s)
- Shuangjing Chen
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Ruixue Liu
- Department of Radiation Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Zhenhua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Yingchun Hu
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Pingkun Zhou
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| | - Zhidong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| |
Collapse
|
93
|
Xie X, Chen C, Liang Q, Wu X, Wang X, Wu W, Ding Q. Characterization of two large duplications of
F9
associated with mild and severe haemophilia B, respectively. Haemophilia 2019; 25:475-483. [PMID: 30866119 DOI: 10.1111/hae.13704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/06/2018] [Accepted: 01/23/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Xiaoling Xie
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Changming Chen
- Department of Laboratory Medicine, Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Qian Liang
- Department of Laboratory Medicine, Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Xi Wu
- Department of Laboratory Medicine, Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai China
- Collaborative Innovation Center of Hematology Shanghai Jiaotong University School of Medicine Shanghai China
| | - Wenman Wu
- Collaborative Innovation Center of Hematology Shanghai Jiaotong University School of Medicine Shanghai China
- Faculty of Medical Laboratory Science, Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai China
- Collaborative Innovation Center of Hematology Shanghai Jiaotong University School of Medicine Shanghai China
| |
Collapse
|
94
|
Lupski JR. 2018 Victor A. McKusick Leadership Award: Molecular Mechanisms for Genomic and Chromosomal Rearrangements. Am J Hum Genet 2019; 104:391-406. [PMID: 30849326 PMCID: PMC6407437 DOI: 10.1016/j.ajhg.2018.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, and Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
95
|
Characterization of the extra copy of TPOX locus with tri-allelic pattern. BMC Genet 2019; 20:18. [PMID: 30764755 PMCID: PMC6376737 DOI: 10.1186/s12863-019-0723-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/11/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND An STR locus with tri-allelic pattern is occasionally observed in routine forensic casework. The extra copy of TPOX locus with tri-allelic pattern in populations has been assumed to be inserted into an X chromosome, which took place forth before the Bantu expansion in Africa. Nonetheless, the exact location of the duplication and the form of rearrangement in the human genome has not been clarified yet. RESULTS In this study, we investigated the extra copy of type 2 tri-allelic pattern at TPOX in various populations. While allele 10 is the major third allele in Africa, allele 11 appears more frequent in America and overwhelming in Chinese and Korean populations, which might attribute to the population substructures. Results from the investigation of family cases showed that the transmission of the extra allele had a similar genetic pattern of autosomal genes. Furthermore, a whole-genome sequencing followed by bioinformatics analysis revealed that the intact form of chromosomal duplication and rearrangement occurred ~ 407 kb away from the authentic TPOX locus on chromosome 2 in two cases. The breakpoints of the insertion were further validated in most other tri-allelic subjects, which can imply the identical origin from the ancestral extra copy. Nevertheless, de novo chromosomal duplication and rearrangement at thyroid peroxidase gene occur in populations. CONCLUSIONS Instead of the extra allele 10 in African populations, the main third allele at TPOX with tri-allelic pattern is allele 11 in Chinese and Korean populations. The insertion of the extra copy into chromosome 2 occurs in most subjects with tri-allelic pattern at TPOX and demonstrates the transmission of the third allele from parents to offspring. The breakpoints of the ancestral extra copy are defined, which shows evidence of its inheritance from African populations. In addition, the simple validation method would help improve tri-allelic pattern calling, distinguish de novo chromosomal rearrangements, and also count the frequencies among different geographic regions. Therefore, the statistical interpretation of tri-allelic pattern at TPOX could be enhanced during forensic practice.
Collapse
|
96
|
Vollger MR, Dishuck PC, Sorensen M, Welch AE, Dang V, Dougherty ML, Graves-Lindsay TA, Wilson RK, Chaisson MJP, Eichler EE. Long-read sequence and assembly of segmental duplications. Nat Methods 2019; 16:88-94. [PMID: 30559433 PMCID: PMC6382464 DOI: 10.1038/s41592-018-0236-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/30/2018] [Indexed: 01/22/2023]
Abstract
We have developed a computational method based on polyploid phasing of long sequence reads to resolve collapsed regions of segmental duplications within genome assemblies. Segmental Duplication Assembler (SDA; https://github.com/mvollger/SDA ) constructs graphs in which paralogous sequence variants define the nodes and long-read sequences provide attraction and repulsion edges, enabling the partition and assembly of long reads corresponding to distinct paralogs. We apply it to single-molecule, real-time sequence data from three human genomes and recover 33-79 megabase pairs (Mb) of duplications in which approximately half of the loci are diverged (<99.8%) compared to the reference genome. We show that the corresponding sequence is highly accurate (>99.9%) and that the diverged sequence corresponds to copy-number-variable paralogs that are absent from the human reference genome. Our method can be applied to other complex genomes to resolve the last gene-rich gaps, improve duplicate gene annotation, and better understand copy-number-variant genetic diversity at the base-pair level.
Collapse
Affiliation(s)
- Mitchell R Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Philip C Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Melanie Sorensen
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - AnneMarie E Welch
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Vy Dang
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Max L Dougherty
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Tina A Graves-Lindsay
- The McDonnell Genome Institute at Washington University, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard K Wilson
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
97
|
Christmas MJ, Wallberg A, Bunikis I, Olsson A, Wallerman O, Webster MT. Chromosomal inversions associated with environmental adaptation in honeybees. Mol Ecol 2018; 28:1358-1374. [DOI: 10.1111/mec.14944] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Matthew J. Christmas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory Uppsala University Uppsala Sweden
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory Uppsala University Uppsala Sweden
| | - Ignas Bunikis
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala University Uppsala Sweden
| | - Anna Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory Uppsala University Uppsala Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory Uppsala University Uppsala Sweden
| | - Matthew T. Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory Uppsala University Uppsala Sweden
| |
Collapse
|
98
|
Warmerdam DO, Wolthuis RMF. Keeping ribosomal DNA intact: a repeating challenge. Chromosome Res 2018; 27:57-72. [PMID: 30556094 PMCID: PMC6394564 DOI: 10.1007/s10577-018-9594-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/20/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
More than half of the human genome consists of repetitive sequences, with the ribosomal DNA (rDNA) representing two of the largest repeats. Repetitive rDNA sequences may form a threat to genomic integrity and cellular homeostasis due to the challenging aspects of their transcription, replication, and repair. Predisposition to cancer, premature aging, and neurological impairment in ataxia-telangiectasia and Bloom syndrome, for instance, coincide with increased cellular rDNA repeat instability. However, the mechanisms by which rDNA instability contributes to these hereditary syndromes and tumorigenesis remain unknown. Here, we review how cells govern rDNA stability and how rDNA break repair influences expansion and contraction of repeat length, a process likely associated with human disease. Recent advancements in CRISPR-based genome engineering may help to explain how cells keep their rDNA intact in the near future.
Collapse
Affiliation(s)
- Daniël O Warmerdam
- CRISPR Platform, University of Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| | - Rob M F Wolthuis
- Section of Oncogenetics, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
99
|
Complex structural variants in Mendelian disorders: identification and breakpoint resolution using short- and long-read genome sequencing. Genome Med 2018; 10:95. [PMID: 30526634 PMCID: PMC6286558 DOI: 10.1186/s13073-018-0606-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/23/2018] [Indexed: 12/19/2022] Open
Abstract
Background Studies have shown that complex structural variants (cxSVs) contribute to human genomic variation and can cause Mendelian disease. We aimed to identify cxSVs relevant to Mendelian disease using short-read whole-genome sequencing (WGS), resolve the precise variant configuration and investigate possible mechanisms of cxSV formation. Methods We performed short-read WGS and analysis of breakpoint junctions to identify cxSVs in a cohort of 1324 undiagnosed rare disease patients. Long-read WGS and gene expression analysis were used to resolve one case. Results We identified three pathogenic cxSVs: a de novo duplication-inversion-inversion-deletion affecting ARID1B, a de novo deletion-inversion-duplication affecting HNRNPU and a homozygous deletion-inversion-deletion affecting CEP78. Additionally, a de novo duplication-inversion-duplication overlapping CDKL5 was resolved by long-read WGS demonstrating the presence of both a disrupted and an intact copy of CDKL5 on the same allele, and gene expression analysis showed both parental alleles of CDKL5 were expressed. Breakpoint analysis in all the cxSVs revealed both microhomology and longer repetitive elements. Conclusions Our results corroborate that cxSVs cause Mendelian disease, and we recommend their consideration during clinical investigations. We show that resolution of breakpoints can be critical to interpret pathogenicity and present evidence of replication-based mechanisms in cxSV formation. Electronic supplementary material The online version of this article (10.1186/s13073-018-0606-6) contains supplementary material, which is available to authorized users.
Collapse
|
100
|
Lauer S, Avecilla G, Spealman P, Sethia G, Brandt N, Levy SF, Gresham D. Single-cell copy number variant detection reveals the dynamics and diversity of adaptation. PLoS Biol 2018; 16:e3000069. [PMID: 30562346 PMCID: PMC6298651 DOI: 10.1371/journal.pbio.3000069] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022] Open
Abstract
Copy number variants (CNVs) are a pervasive source of genetic variation and evolutionary potential, but the dynamics and diversity of CNVs within evolving populations remain unclear. Long-term evolution experiments in chemostats provide an ideal system for studying the molecular processes underlying CNV formation and the temporal dynamics with which they are generated, selected, and maintained. Here, we developed a fluorescent CNV reporter to detect de novo gene amplifications and deletions in individual cells. We used the CNV reporter in Saccharomyces cerevisiae to study CNV formation at the GAP1 locus, which encodes the general amino acid permease, in different nutrient-limited chemostat conditions. We find that under strong selection, GAP1 CNVs are repeatedly generated and selected during the early stages of adaptive evolution, resulting in predictable dynamics. Molecular characterization of CNV-containing lineages shows that the CNV reporter detects different classes of CNVs, including aneuploidies, nonreciprocal translocations, tandem duplications, and complex CNVs. Despite GAP1's proximity to repeat sequences that facilitate intrachromosomal recombination, breakpoint analysis revealed that short inverted repeat sequences mediate formation of at least 50% of GAP1 CNVs. Inverted repeat sequences are also found at breakpoints at the DUR3 locus, where CNVs are selected in urea-limited chemostats. Analysis of 28 CNV breakpoints indicates that inverted repeats are typically 8 nucleotides in length and separated by 40 bases. The features of these CNVs are consistent with origin-dependent inverted-repeat amplification (ODIRA), suggesting that replication-based mechanisms of CNV formation may be a common source of gene amplification. We combined the CNV reporter with barcode lineage tracking and found that 102-104 independent CNV-containing lineages initially compete within populations, resulting in extreme clonal interference. However, only a small number (18-21) of CNV lineages ever constitute more than 1% of the CNV subpopulation, and as selection progresses, the diversity of CNV lineages declines. Our study introduces a novel means of studying CNVs in heterogeneous cell populations and provides insight into their dynamics, diversity, and formation mechanisms in the context of adaptive evolution.
Collapse
Affiliation(s)
- Stephanie Lauer
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Grace Avecilla
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Pieter Spealman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Gunjan Sethia
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Nathan Brandt
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Sasha F. Levy
- Joint Initiative for Metrology in Biology, National Institute of Standards and Technology, Stanford University, Stanford, California, United States of America
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| |
Collapse
|