51
|
Urantówka AD, Kroczak A, Strzała T, Zaniewicz G, Kurkowski M, Mackiewicz P. Mitogenomes of Accipitriformes and Cathartiformes Were Subjected to Ancestral and Recent Duplications Followed by Gradual Degeneration. Genome Biol Evol 2021; 13:evab193. [PMID: 34432018 PMCID: PMC8435663 DOI: 10.1093/gbe/evab193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2021] [Indexed: 11/25/2022] Open
Abstract
The rearrangement of 37 genes with one control region, firstly identified in Gallus gallus mitogenome, is believed to be ancestral for all Aves. However, mitogenomic sequences obtained in recent years revealed that many avian mitogenomes contain duplicated regions that were omitted in previous genomic versions. Their evolution and mechanism of duplication are still poorly understood. The order of Accipitriformes is especially interesting in this context because its representatives contain a duplicated control region in various stages of degeneration. Therefore, we applied an appropriate PCR strategy to look for duplications within the mitogenomes of the early diverged species Sagittarius serpentarius and Cathartiformes, which is a sister order to Accipitriformes. The analyses revealed the same duplicated gene order in all examined taxa and the common ancestor of these groups. The duplicated regions were subjected to gradual degeneration and homogenization during concerted evolution. The latter process occurred recently in the species of Cathartiformes as well as in the early diverged lineages of Accipitriformes, that is, Sagittarius serpentarius and Pandion haliaetus. However, in other lineages, that is, Pernis ptilorhynchus, as well as representatives of Aegypiinae, Aquilinae, and five related subfamilies of Accipitriformes (Accipitrinae, Circinae, Buteoninae, Haliaeetinae, and Milvinae), the duplications were evolving independently for at least 14-47 Myr. Different portions of control regions in Cathartiformes showed conflicting phylogenetic signals indicating that some sections of these regions were homogenized at a frequency higher than the rate of speciation, whereas others have still evolved separately.
Collapse
Affiliation(s)
- Adam Dawid Urantówka
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
| | - Aleksandra Kroczak
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, Wrocław University, Poland
| | - Tomasz Strzała
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
| | - Grzegorz Zaniewicz
- Department of Vertebrate Ecology and Zoology, Avian Ecophysiology Unit, University of Gdańsk, Poland
| | - Marcin Kurkowski
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, Wrocław University, Poland
| |
Collapse
|
52
|
Qin L, Hu Y, Wang J, Wang X, Zhao R, Shan H, Li K, Xu P, Wu H, Yan X, Liu L, Yi X, Wanke S, Bowers JE, Leebens-Mack JH, dePamphilis CW, Soltis PS, Soltis DE, Kong H, Jiao Y. Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome. NATURE PLANTS 2021; 7:1239-1253. [PMID: 34475528 PMCID: PMC8445822 DOI: 10.1038/s41477-021-00990-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/22/2021] [Indexed: 05/04/2023]
Abstract
Aristolochia, a genus in the magnoliid order Piperales, has been famous for centuries for its highly specialized flowers and wide medicinal applications. Here, we present a new, high-quality genome sequence of Aristolochia fimbriata, a species that, similar to Amborella trichopoda, lacks further whole-genome duplications since the origin of extant angiosperms. As such, the A. fimbriata genome is an excellent reference for inferences of angiosperm genome evolution, enabling detection of two novel whole-genome duplications in Piperales and dating of previously reported whole-genome duplications in other magnoliids. Genomic comparisons between A. fimbriata and other angiosperms facilitated the identification of ancient genomic rearrangements suggesting the placement of magnoliids as sister to monocots, whereas phylogenetic inferences based on sequence data we compiled yielded ambiguous relationships. By identifying associated homologues and investigating their evolutionary histories and expression patterns, we revealed highly conserved floral developmental genes and their distinct downstream regulatory network that may contribute to the complex flower morphology in A. fimbriata. Finally, we elucidated the genetic basis underlying the biosynthesis of terpenoids and aristolochic acids in A. fimbriata.
Collapse
Affiliation(s)
- Liuyu Qin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiheng Hu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinpeng Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Xiaoliang Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ran Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Kunpeng Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hanying Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Xueqing Yan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lumei Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Yi
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Stefan Wanke
- Institute of Botany, Dresden University of Technology, Dresden, Germany
| | - John E Bowers
- Department of Plant Biology, University of Georgia, Athens, GA, USA
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA
| | | | - Claude W dePamphilis
- Department of Biology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
53
|
Bininda-Emonds ORP. 18S rRNA variability maps reveal three highly divergent, conserved motifs within Rotifera. BMC Ecol Evol 2021; 21:118. [PMID: 34112085 PMCID: PMC8194223 DOI: 10.1186/s12862-021-01845-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 18S rRNA is a major component of the small subunit of the eukaryotic ribosome and an important phylogenetic marker for many groups, often to the point of being the only marker available for some. A core structure across eukaryotes exists for this molecule that can help to inform about its evolution in different groups. Using an alignment of 18S rDNA for Rotifera as traditionally recognized (=Bdelloidea, Monogononta, and Seisonacea, but not Acanthocephala), I fitted sequences for three exemplar species (Adineta vaga, Brachionus plicatilis, and Seison nebaliae, respectively) to the core structure and used these maps to reveal patterns of evolution for the remainder of this diverse group of microscopic animals. RESULTS The obtained variability maps of the 18S rRNA molecule revealed a pattern of high diversity among the three major rotifer clades coupled with strong conservation within each of bdelloids and monogononts. A majority of individual sites (ca. 60%) were constant even across rotifers as a whole with variable sites showing only intermediate rates of evolution. Although the three structural maps each showed good agreement with the inferred core structure for eukaryotic 18S rRNA and so were highly similar to one another at the secondary and tertiary levels, the overall pattern is of three highly distinct, but conserved motifs within the group at the primary sequence level. A novel finding was that of a variably expressed deletion at the 3' end of the V3 hypervariable region among some bdelloid species that occasionally extended into and included the pseudoknot structure following this region as well as the central "square" of the 18S rRNA molecule. Compared to other groups, levels of variation and rates of evolution for 18S rRNA in Rotifera roughly matched those for Gastropoda and Acanthocephala, despite increasing evidence for the latter being a clade within Rotifera. CONCLUSIONS The lack of comparative data for comparable groups makes interpretation of the results (i.e., very low variation within each of the three major rotifer clades, but high variation between them) and their potential novelty difficult. However, these findings in combination with the high morphological diversity within rotifers potentially help to explain why no clear consensus has been reached to date with regard to the phylogenetic relationships among the major groups.
Collapse
Affiliation(s)
- Olaf R P Bininda-Emonds
- AG Systematics and Evolutionary Biology, IBU-Faculty V, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Strasse 9-11, 26111, Oldenburg, Germany.
| |
Collapse
|
54
|
Zhao T, Zwaenepoel A, Xue JY, Kao SM, Li Z, Schranz ME, Van de Peer Y. Whole-genome microsynteny-based phylogeny of angiosperms. Nat Commun 2021; 12:3498. [PMID: 34108452 PMCID: PMC8190143 DOI: 10.1038/s41467-021-23665-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/10/2021] [Indexed: 02/05/2023] Open
Abstract
Plant genomes vary greatly in size, organization, and architecture. Such structural differences may be highly relevant for inference of genome evolution dynamics and phylogeny. Indeed, microsynteny-the conservation of local gene content and order-is recognized as a valuable source of phylogenetic information, but its use for the inference of large phylogenies has been limited. Here, by combining synteny network analysis, matrix representation, and maximum likelihood phylogenetic inference, we provide a way to reconstruct phylogenies based on microsynteny information. Both simulations and use of empirical data sets show our method to be accurate, consistent, and widely applicable. As an example, we focus on the analysis of a large-scale whole-genome data set for angiosperms, including more than 120 available high-quality genomes, representing more than 50 different plant families and 30 orders. Our 'microsynteny-based' tree is largely congruent with phylogenies proposed based on more traditional sequence alignment-based methods and current phylogenetic classifications but differs for some long-contested and controversial relationships. For instance, our synteny-based tree finds Vitales as early diverging eudicots, Saxifragales within superasterids, and magnoliids as sister to monocots. We discuss how synteny-based phylogenetic inference can complement traditional methods and could provide additional insights into some long-standing controversial phylogenetic relationships.
Collapse
Affiliation(s)
- Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Arthur Zwaenepoel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jia-Yu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Shu-Min Kao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
55
|
Saini N, Gupta RS. A robust phylogenetic framework for members of the order Legionellales and its main genera (Legionella, Aquicella, Coxiella and Rickettsiella) based on phylogenomic analyses and identification of molecular markers demarcating different clades. Antonie van Leeuwenhoek 2021; 114:957-982. [PMID: 33881638 DOI: 10.1007/s10482-021-01569-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/01/2021] [Indexed: 12/29/2022]
Abstract
The order Legionellales contains several clinically important microorganisms. Although members of this order are well-studied for their pathogenesis, there is a paucity of reliable characteristics distinguishing members of this order and its constituent genera. Genome sequences are now available for 73 Legionellales species encompassing ≈90% of known members from different genera. With the aim of understanding evolutionary relationships and identifying reliable molecular characteristics that are specific for this order and its constituent genera, detailed phylogenetic and comparative analyses were conducted on the protein sequences from these genomes. A phylogenomic tree was constructed based on 393 single copy proteins that are commonly shared by the members of this order to delineate the evolutionary relationships among its members. In parallel, comparative analyses were performed on protein sequences from Legionellales genomes to identify novel molecular markers consisting of conserved signature indels (CSIs) that are specific for different clades and genera. In the phylogenomic tree and in an amino acid identity matrix based on core proteins, members of the genera Aquicella, Coxiella, Legionella and Rickettsiella formed distinct clades confirming their monophyly. In these studies, Diplorickettsia massiliensis exhibited a close relationship to members of the genus Rickettsiella. The results of our comparative genomic analyses have identified 59 highly specific molecular markers consisting of CSIs in diverse proteins that are uniquely shared by different members of this order. Four of these CSIs are specific for all Legionellales species, except the two deeper-branching "Candidatus Berkiella" species, providing means for identifying members of this order in molecular terms. Twenty four, 7 and 6 CSIs are uniquely shared by members of the genera Legionella, Coxiella and Aquicella, respectively, identifying these groups in molecular terms. The descriptions of these three genera are emended to include information for their novel molecular characteristics. We also describe 12 CSIs that are uniquely shared by D. massiliensis and different members of the genus Rickettsiella. Based on these results, we are proposing an integration of the genus Diplorickettsia with Rickettsiella. Three other CSIs suggest that members of the genera Coxiella and Rickettsiella shared a common ancestor exclusive of other Legionellales. The described molecular markers, due to their exclusivity for the indicated taxa/genera, provide important means for the identification of these clinically important microorganisms and for discovering novel properties unique to them.
Collapse
Affiliation(s)
- Navneet Saini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| |
Collapse
|
56
|
Neumann JS, Desalle R, Narechania A, Schierwater B, Tessler M. Morphological Characters Can Strongly Influence Early Animal Relationships Inferred from Phylogenomic Data Sets. Syst Biol 2021; 70:360-375. [PMID: 32462193 PMCID: PMC7875439 DOI: 10.1093/sysbio/syaa038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/19/2022] Open
Abstract
There are considerable phylogenetic incongruencies between morphological and phylogenomic data for the deep evolution of animals. This has contributed to a heated debate over the earliest-branching lineage of the animal kingdom: the sister to all other Metazoa (SOM). Here, we use published phylogenomic data sets ($\sim $45,000-400,000 characters in size with $\sim $15-100 taxa) that focus on early metazoan phylogeny to evaluate the impact of incorporating morphological data sets ($\sim $15-275 characters). We additionally use small exemplar data sets to quantify how increased taxon sampling can help stabilize phylogenetic inferences. We apply a plethora of common methods, that is, likelihood models and their "equivalent" under parsimony: character weighting schemes. Our results are at odds with the typical view of phylogenomics, that is, that genomic-scale data sets will swamp out inferences from morphological data. Instead, weighting morphological data 2-10$\times $ in both likelihood and parsimony can in some cases "flip" which phylum is inferred to be the SOM. This typically results in the molecular hypothesis of Ctenophora as the SOM flipping to Porifera (or occasionally Placozoa). However, greater taxon sampling improves phylogenetic stability, with some of the larger molecular data sets ($>$200,000 characters and up to $\sim $100 taxa) showing node stability even with $\geqq100\times $ upweighting of morphological data. Accordingly, our analyses have three strong messages. 1) The assumption that genomic data will automatically "swamp out" morphological data is not always true for the SOM question. Morphological data have a strong influence in our analyses of combined data sets, even when outnumbered thousands of times by molecular data. Morphology therefore should not be counted out a priori. 2) We here quantify for the first time how the stability of the SOM node improves for several genomic data sets when the taxon sampling is increased. 3) The patterns of "flipping points" (i.e., the weighting of morphological data it takes to change the inferred SOM) carry information about the phylogenetic stability of matrices. The weighting space is an innovative way to assess comparability of data sets that could be developed into a new sensitivity analysis tool. [Metazoa; Morphology; Phylogenomics; Weighting.].
Collapse
Affiliation(s)
- Johannes S Neumann
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY 10024, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Rob Desalle
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Apurva Narechania
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Bernd Schierwater
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
- ITZ, Division of Ecology and Evolution, Tierärztliche Hochschule Hannover, Bünteweg 9, 30559 Hannover, Germany
| | - Michael Tessler
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| |
Collapse
|
57
|
Urantówka AD, Kroczak A, Mackiewicz P. New view on the organization and evolution of Palaeognathae mitogenomes poses the question on the ancestral gene rearrangement in Aves. BMC Genomics 2020; 21:874. [PMID: 33287726 PMCID: PMC7720580 DOI: 10.1186/s12864-020-07284-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bird mitogenomes differ from other vertebrates in gene rearrangement. The most common avian gene order, identified first in Gallus gallus, is considered ancestral for all Aves. However, other rearrangements including a duplicated control region and neighboring genes have been reported in many representatives of avian orders. The repeated regions can be easily overlooked due to inappropriate DNA amplification or genome sequencing. This raises a question about the actual prevalence of mitogenomic duplications and the validity of the current view on the avian mitogenome evolution. In this context, Palaeognathae is especially interesting because is sister to all other living birds, i.e. Neognathae. So far, a unique duplicated region has been found in one palaeognath mitogenome, that of Eudromia elegans. RESULTS Therefore, we applied an appropriate PCR strategy to look for omitted duplications in other palaeognaths. The analyses revealed the duplicated control regions with adjacent genes in Crypturellus, Rhea and Struthio as well as ND6 pseudogene in three moas. The copies are very similar and were subjected to concerted evolution. Mapping the presence and absence of duplication onto the Palaeognathae phylogeny indicates that the duplication was an ancestral state for this avian group. This feature was inherited by early diverged lineages and lost two times in others. Comparison of incongruent phylogenetic trees based on mitochondrial and nuclear sequences showed that two variants of mitogenomes could exist in the evolution of palaeognaths. Data collected for other avian mitogenomes revealed that the last common ancestor of all birds and early diverging lineages of Neoaves could also possess the mitogenomic duplication. CONCLUSIONS The duplicated control regions with adjacent genes are more common in avian mitochondrial genomes than it was previously thought. These two regions could increase effectiveness of replication and transcription as well as the number of replicating mitogenomes per organelle. In consequence, energy production by mitochondria may be also more efficient. However, further physiological and molecular analyses are necessary to assess the potential selective advantages of the mitogenome duplications.
Collapse
Affiliation(s)
- Adam Dawid Urantówka
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, 7 Kozuchowska Street, 51-631 Wroclaw, Poland
| | - Aleksandra Kroczak
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, 7 Kozuchowska Street, 51-631 Wroclaw, Poland
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, 14a Fryderyka Joliot-Curie Street, 50-383 Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, 14a Fryderyka Joliot-Curie Street, 50-383 Wrocław, Poland
| |
Collapse
|
58
|
Phylogenomic analyses recover a clade of large-bodied decapodiform cephalopods. Mol Phylogenet Evol 2020; 156:107038. [PMID: 33285289 DOI: 10.1016/j.ympev.2020.107038] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/30/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Phylogenetic relationships among the squids and cuttlefishes (Cephalopoda:Decapodiformes) have resisted clarification for decades, despite multiple analyses of morphological, molecular and combined data sets. More recently, analyses of complete mitochondrial genomes and hundreds of nuclear loci have yielded similarly ambiguous results. In this study, we re-evaluate hypotheses of decapodiform relationships by increasing taxonomic breadth and utilizing higher-quality genome and transcriptome data for several taxa. We also employ analytical approaches to (1) identify contamination in transcriptome data, (2) better assess model adequacy, and (3) account for potential biases. Using this larger data set, we consistently recover a clade comprising Myopsida (closed-eye squid), Sepiida (cuttlefishes), and Oegopsida (open-eye squid) that is sister to a Sepiolida (bobtail and bottletail squid) clade. Idiosepiida (pygmy squid) is consistently recovered as the sister group to all sampled decapodiform lineages. Further, a weighted Shimodaira-Hasegawa test applied to one of our larger data matrices rejects all alternatives to these ordinal-level relationships. At present, available nuclear genome-scale data support nested clades of relatively large-bodied decapodiform cephalopods to the exclusion of pygmy squids, but improved taxon sampling and additional genomic data will be needed to test these novel hypotheses rigorously.
Collapse
|
59
|
Powell C, Caleca V, Rhode C, Teixeira da Costa L, van Asch B. New Mitochondrial Gene Rearrangement in Psyttalia concolor, P. humilis and P. lounsburyi (Hymenoptera: Braconidae), Three Parasitoid Species of Economic Interest. INSECTS 2020; 11:E854. [PMID: 33276418 PMCID: PMC7761351 DOI: 10.3390/insects11120854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/02/2022]
Abstract
The family Braconidae consists mostly of specialized parasitoids, some of which hold potential in biocontrol of agricultural pests. Psyttalia concolor, Psyttalia humilis and Psyttalia lounsburyi are parasitoids associated with Bactrocera oleae, a major pest of cultivated olives. The native range of Psyttalia concolor is the Mediterranean, and P. humilis and P. lounsburyi are native to sub-Saharan Africa. This study reports the mitochondrial genomes of the three species, thus laying the foundation for mitogenomic analyses in the genus Psyttalia. Comparative mitogenomics within Braconidae showed a novel gene arrangement in Psyttalia in involving translocation and inversion of transfer RNA genes. The placement of Psyttalia in the subfamily Opiinae was well-supported, and the divergence between Psyttalia and its closest relative (Diachasmimorpha longicaudata) was at ~55 MYA [95% highest posterior density (HPD): 34-83 MYA]. Psyttalia lounsburyi occupied the most basal position among the three Psyttalia, having diverged from the other two species ~11 MYA (95% HPD: 6-17 MYA). Psyttalia concolor and P. humilis were recovered as sister species diverged at ~2 MYA (95% HPD: 1.1-3.6 MYA). This phylogeny combining new sequences and a set of 31 other cyclostomes and non-cyclostomes highlights the importance of a comprehensive taxonomic coverage of Braconidae mitogenomes to overcome the lack of robustness in the placement of several subfamilies.
Collapse
Affiliation(s)
- Chanté Powell
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; (C.P.); (C.R.)
| | - Virgilio Caleca
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Viale delle Scienze, Edificio 5, 90128 Palermo, Italy;
| | - Clint Rhode
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; (C.P.); (C.R.)
| | - Luis Teixeira da Costa
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Postboks 4956 Nydalen, 0424 Oslo, Norway
- Norsk Entomologisk Forening, Naturhistorisk Museum, Universitetet i Oslo, Postboks 1172 Blindern, 0318 Oslo, Norway
| | - Barbara van Asch
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; (C.P.); (C.R.)
| |
Collapse
|
60
|
Recent Apareiodon species evolutionary divergence (Characiformes: Parodontidae) evidenced by chromosomal and molecular inference. ZOOL ANZ 2020. [DOI: 10.1016/j.jcz.2020.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
61
|
Gupta RS, Patel S, Saini N, Chen S. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int J Syst Evol Microbiol 2020; 70:5753-5798. [PMID: 33112222 DOI: 10.1099/ijsem.0.004475] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To clarify the evolutionary relationships and classification of Bacillus species, comprehensive phylogenomic and comparative analyses were performed on >300 Bacillus/Bacillaceae genomes. Multiple genomic-scale phylogenetic trees were initially reconstructed to identify different monophyletic clades of Bacillus species. In parallel, detailed analyses were performed on protein sequences of genomes to identify conserved signature indels (CSIs) that are specific for each of the identified clades. We show that in different reconstructed trees, most of the Bacillus species, in addition to the Subtilis and Cereus clades, consistently formed 17 novel distinct clades. Additionally, some Bacillus species reliably grouped with the genera Alkalicoccus, Caldalkalibacillus, Caldibacillus, Salibacterium and Salisediminibacterium. The distinctness of identified Bacillus species clades is independently strongly supported by 128 identified CSIs which are unique characteristics of these clades, providing reliable means for their demarcation. Based on the strong phylogenetic and molecular evidence, we are proposing that these 17 Bacillus species clades should be recognized as novel genera, with the names Alteribacter gen. nov., Ectobacillus gen. nov., Evansella gen. nov., Ferdinandcohnia gen. nov., Gottfriedia gen. nov., Heyndrickxia gen. nov., Lederbergia gen. nov., Litchfieldia gen. nov., Margalitia gen. nov., Niallia gen. nov., Priestia gen. nov., Robertmurraya gen. nov., Rossellomorea gen. nov., Schinkia gen. nov., Siminovitchia gen. nov., Sutcliffiella gen. nov. and Weizmannia gen. nov. We also propose to transfer 'Bacillus kyonggiensis' to Robertmurraya kyonggiensis sp. nov. (type strain: NB22=JCM 17569T=DSM 26768). Additionally, we report 31 CSIs that are unique characteristics of either the members of the Subtilis clade (containing the type species B. subtilis) or the Cereus clade (containing B. anthracis and B. cereus). As most Bacillus species which are not part of these two clades can now be assigned to other genera, we are proposing an emended description of the genus Bacillus to restrict it to only the members of the Subtilis and Cereus clades.
Collapse
Key Words
- classification of Bacillus species
- conserved signature indels
- emendation of genus Bacillus
- genus Bacillus and the family Bacillaceae
- novel Bacillaceae genera Alteribacter, Ectobacillus, Evansella, Ferdinandcohnia, Gottfriedia, Heyndrickxia, Lederbergia, Litchfieldia, Margalitia, Niallia, Priestia, Robertmurraya, Rossellomorea, Schinkia, Siminovitchia, Sutcliffiella and Weizmannia
- phylogenomic and comparative genomic analyses
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| | - Sudip Patel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| | - Navneet Saini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| | - Shu Chen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| |
Collapse
|
62
|
Jiang Y, Yuan Z, Hu H, Ye X, Zheng Z, Wei Y, Zheng YL, Wang YG, Liu C. Differentiating homoploid hybridization from ancestral subdivision in evaluating the origin of the D lineage in wheat. THE NEW PHYTOLOGIST 2020; 228:409-414. [PMID: 32255512 DOI: 10.1111/nph.16578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- CSIRO Agriculture and Food, St Lucia, Qld, 4067, Australia
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- CSIRO Agriculture and Food, St Lucia, Qld, 4067, Australia
| | - Haiyan Hu
- CSIRO Agriculture and Food, St Lucia, Qld, 4067, Australia
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Xueling Ye
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- CSIRO Agriculture and Food, St Lucia, Qld, 4067, Australia
| | - Zhi Zheng
- CSIRO Agriculture and Food, St Lucia, Qld, 4067, Australia
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - You-Liang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - You-Gan Wang
- Science and Engineering Facility, Queensland University of Technology, Brisbane, Qld, 4000, Australia
| | - Chunji Liu
- CSIRO Agriculture and Food, St Lucia, Qld, 4067, Australia
| |
Collapse
|
63
|
Drillon G, Champeimont R, Oteri F, Fischer G, Carbone A. Phylogenetic Reconstruction Based on Synteny Block and Gene Adjacencies. Mol Biol Evol 2020; 37:2747-2762. [PMID: 32384156 PMCID: PMC7475045 DOI: 10.1093/molbev/msaa114] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gene order can be used as an informative character to reconstruct phylogenetic relationships between species independently from the local information present in gene/protein sequences. PhyChro is a reconstruction method based on chromosomal rearrangements, applicable to a wide range of eukaryotic genomes with different gene contents and levels of synteny conservation. For each synteny breakpoint issued from pairwise genome comparisons, the algorithm defines two disjoint sets of genomes, named partial splits, respectively, supporting the two block adjacencies defining the breakpoint. Considering all partial splits issued from all pairwise comparisons, a distance between two genomes is computed from the number of partial splits separating them. Tree reconstruction is achieved through a bottom-up approach by iteratively grouping sister genomes minimizing genome distances. PhyChro estimates branch lengths based on the number of synteny breakpoints and provides confidence scores for the branches. PhyChro performance is evaluated on two data sets of 13 vertebrates and 21 yeast genomes by using up to 130,000 and 179,000 breakpoints, respectively, a scale of genomic markers that has been out of reach until now. PhyChro reconstructs very accurate tree topologies even at known problematic branching positions. Its robustness has been benchmarked for different synteny block reconstruction methods. On simulated data PhyChro reconstructs phylogenies perfectly in almost all cases, and shows the highest accuracy compared with other existing tools. PhyChro is very fast, reconstructing the vertebrate and yeast phylogenies in <15 min.
Collapse
Affiliation(s)
- Guénola Drillon
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative—UMR 7238, Paris, France, Paris, France
| | - Raphaël Champeimont
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative—UMR 7238, Paris, France, Paris, France
| | - Francesco Oteri
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative—UMR 7238, Paris, France, Paris, France
| | - Gilles Fischer
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative—UMR 7238, Paris, France, Paris, France
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative—UMR 7238, Paris, France, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
64
|
Hong Y, Lee H, Kim KS, Min MS. Phylogenetic relationships between different raccoon dog (Nyctereutes procyonoides) populations based on four nuclear and Y genes. Genes Genomics 2020; 42:1075-1085. [PMID: 32725576 DOI: 10.1007/s13258-020-00972-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/14/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The raccoon dog (Nyctereutes procyonoides), endemic to East Asia, is classified as six subspecies according to their geographical distribution including a population introduced to Europe. Studies on phylogenetic relationship or population genetics in both native and introduced areas have been carried out recently. Lately, opinions that Japanese raccoon dogs should be classified as a different species were asserted based on several studies using karyotypes, morphometric characters, mtDNA, and microsatellites analysis. However, no data pertaining to the nuclear DNA (nDNA) or Y chromosome are available. OBJECTIVE To estimate the relationship among the species using different genes is necessary in understanding of the history of this species. METHOD Therefore, we investigated nDNA and Y chromosomes in our study to define relationships: (1) between continental raccoon dog populations, (2) between original and introduced groups, and (3) between continental and Japanese groups. RESULTS The analysis of four nuclear (CHRNA1, VTN, TRSP, WT1) and ZFY genes indicated that there had been no genetic differentiation among the continental populations. However, significant differences were observed between continental and Japanese raccoon dogs in VTN and ZFY genes implying genetic differentiation has been going between them. CONCLUSION To better understand the phylogenetic relationship among raccoon dog populations, further study will be necessary.
Collapse
Affiliation(s)
- YoonJee Hong
- Conservation Genome Resource Bank for Korean Wildlife (CGRB), Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Hang Lee
- Conservation Genome Resource Bank for Korean Wildlife (CGRB), Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Seok Kim
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, 50011, USA
| | - Mi-Sook Min
- Conservation Genome Resource Bank for Korean Wildlife (CGRB), Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
65
|
Abstract
In this review, we discuss the current status and future challenges for fully elucidating the fungal tree of life. In the last 15 years, advances in genomic technologies have revolutionized fungal systematics, ushering the field into the phylogenomic era. This has made the unthinkable possible, namely access to the entire genetic record of all known extant taxa. We first review the current status of the fungal tree and highlight areas where additional effort will be required. We then review the analytical challenges imposed by the volume of data and discuss methods to recover the most accurate species tree given the sea of gene trees. Highly resolved and deeply sampled trees are being leveraged in novel ways to study fungal radiations, species delimitation, and metabolic evolution. Finally, we discuss the critical issue of incorporating the unnamed and uncultured dark matter taxa that represent the vast majority of fungal diversity.
Collapse
Affiliation(s)
- Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA;
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science and Innovation, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA;
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA;
| |
Collapse
|
66
|
Parey E, Louis A, Cabau C, Guiguen Y, Roest Crollius H, Berthelot C. Synteny-Guided Resolution of Gene Trees Clarifies the Functional Impact of Whole-Genome Duplications. Mol Biol Evol 2020; 37:3324-3337. [DOI: 10.1093/molbev/msaa149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Whole-genome duplications (WGDs) have major impacts on the evolution of species, as they produce new gene copies contributing substantially to adaptation, isolation, phenotypic robustness, and evolvability. They result in large, complex gene families with recurrent gene losses in descendant species that sequence-based phylogenetic methods fail to reconstruct accurately. As a result, orthologs and paralogs are difficult to identify reliably in WGD-descended species, which hinders the exploration of functional consequences of WGDs. Here, we present Synteny-guided CORrection of Paralogies and Orthologies (SCORPiOs), a novel method to reconstruct gene phylogenies in the context of a known WGD event. WGDs generate large duplicated syntenic regions, which SCORPiOs systematically leverages as a complement to sequence evolution to infer the evolutionary history of genes. We applied SCORPiOs to the 320-My-old WGD at the origin of teleost fish. We find that almost one in four teleost gene phylogenies in the Ensembl database (3,394) are inconsistent with their syntenic contexts. For 70% of these gene families (2,387), we were able to propose an improved phylogenetic tree consistent with both the molecular substitution distances and the local syntenic information. We show that these synteny-guided phylogenies are more congruent with the species tree, with sequence evolution and with expected expression conservation patterns than those produced by state-of-the-art methods. Finally, we show that synteny-guided gene trees emphasize contributions of WGD paralogs to evolutionary innovations in the teleost clade.
Collapse
Affiliation(s)
- Elise Parey
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Alexandra Louis
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Cédric Cabau
- SIGENAE, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | | | - Hugues Roest Crollius
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Camille Berthelot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
67
|
Mandáková T, Hloušková P, Windham MD, Mitchell-Olds T, Ashby K, Price B, Carman J, Lysak MA. Chromosomal Evolution and Apomixis in the Cruciferous Tribe Boechereae. FRONTIERS IN PLANT SCIENCE 2020; 11:514. [PMID: 32547569 PMCID: PMC7270200 DOI: 10.3389/fpls.2020.00514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/06/2020] [Indexed: 05/25/2023]
Abstract
The mustard family (Brassicaceae) comprises several dozen monophyletic clades usually ranked as tribes. The tribe Boechereae plays a prominent role in plant research due to the incidence of apomixis and its close relationship to Arabidopsis. This tribe, largely confined to western North America, harbors nine genera and c. 130 species, with >90% of species belonging to the genus Boechera. Hundreds of apomictic diploid and triploid Boechera hybrids have spurred interest in this genus, but the remaining Boechereae genomes remain virtually unstudied. Here we report on comparative genome structure of six genera (Borodinia, Cusickiella, Phoenicaulis, Polyctenium, Nevada, and Sandbergia) and three Boechera species as revealed by comparative chromosome painting (CCP). All analyzed taxa shared the same seven-chromosome genome structure. Comparisons with the sister Halimolobeae tribe (n = 8) showed that the ancestral Boechereae genome (n = 7) was derived from an older n = 8 genome by descending dysploidy followed by the divergence of extant Boechereae taxa. As tribal divergence post-dated the origin of four tribe-specific chromosomes, it is proposed that these chromosomal rearrangements were a key evolutionary innovation underlaying the origin and diversification of the Boechereae in North America. Although most Boechereae genera exhibit genomic conservatism, intra-tribal cladogenesis has occasionally been accompanied by chromosomal rearrangements (particularly inversions). Recently, apomixis was reported in the Boechereae genera Borodinia and Phoenicaulis. Here, we report sexual reproduction in diploid Nevada, diploid Sandbergia, and tetraploid Cusickiella and aposporous apomixis in tetraploids of Polyctenium and Sandbergia. In sum, apomixis is now known to occur in five of the nine Boechereae genera.
Collapse
Affiliation(s)
| | | | | | | | - Kaylynn Ashby
- Plants, Soils, and Climate Department, Utah State University, Logan, UT, United States
| | - Bo Price
- Plants, Soils, and Climate Department, Utah State University, Logan, UT, United States
| | - John Carman
- Plants, Soils, and Climate Department, Utah State University, Logan, UT, United States
| | | |
Collapse
|
68
|
qMGR: A new approach for quantifying mitochondrial genome rearrangement. Mitochondrion 2020; 52:20-23. [DOI: 10.1016/j.mito.2020.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/26/2019] [Accepted: 02/07/2020] [Indexed: 11/20/2022]
|
69
|
Wang J, Singh SK, Geng S, Zhang S, Yuan L. Genome-wide analysis of glycerol-3-phosphate O-acyltransferase gene family and functional characterization of two cutin group GPATs in Brassica napus. PLANTA 2020; 251:93. [PMID: 32246349 DOI: 10.1007/s00425-020-03384-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Genome-wide identification, spatio-temporal expression analysis and functional characterization of selected Brassica napus GPATs highlight their roles in cuticular wax biosynthesis and defense against fungal pathogens. Glycerol-3-phosphate 1-O-acyltransferase (GPAT) is a key enzyme in the biosynthesis of glycerolipids, a major component of cellular membranes and extracellular protective layers, such as cuticles in plants. Brassica napus is an economically important crop and cultivated worldwide mostly for its edible oil. The B. napus GPATs (BnGPATs) are insufficiently characterized. Here, we performed genome-wide analysis to identify putative GPATs in B. napus and its diploid progenitors B. rapa and B oleracea. The 32 B. napus BnGPATs are phylogenetically divided into three major groups, cutin, suberin, and diverse ancient groups. Analysis of transcriptomes of different tissues and seeds at different developmental stages revealed the spatial and temporal expression profiles of BnGPATs. The yield and oil quality of B. napus are adversely affected by the necrotrophic fungus, Sclerotinia sclerotiorum. We showed that several BnGPATs, including cutin-related BnGPAT19 and 21, were upregulated in the S. sclerotiorum resistant line. RNAi-mediated suppression of BnGPAT19 and 21 in B. napus resulted in thinner cuticle, leading to rapid water and chlorophyll loss in toluidine blue staining and leaf bleaching assays. In addition, the RNAi plants also developed severe necrotic lesions following fungal inoculation compared to the wild-type plants, indicating that BnGPAT19 and 21 are likely involved in cuticular wax biosynthesis that is critical for initial pathogen defense. Taken together, we provided a comprehensive account of GPATs B. napus and characterized BnGPAT19 and 21 for their potential roles in cuticular wax biosynthesis and defense against fungal pathogens.
Collapse
Affiliation(s)
- Jingxue Wang
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China.
| | - Sanjay Kumar Singh
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Siyu Geng
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Shanshan Zhang
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Ling Yuan
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China.
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
70
|
Chromosomal Signatures Corroborate the Phylogenetic Relationships within Akodontini (Rodentia, Sigmodontinae). Int J Mol Sci 2020; 21:ijms21072415. [PMID: 32244440 PMCID: PMC7177754 DOI: 10.3390/ijms21072415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 12/30/2022] Open
Abstract
Comparative chromosome-painting analysis among highly rearranged karyotypes of Sigmodontinae rodents (Rodentia, Cricetidae) detects conserved syntenic blocks, which are proposed as chromosomal signatures and can be used as phylogenetic markers. In the Akodontini tribe, the molecular topology (Cytb and/or IRBP) shows five low-supported clades (divisions: “Akodon”, “Bibimys”, “Blarinomys”, “Oxymycterus”, and “Scapteromys”) within two high-supported major clades (clade A: “Akodon”, “Bibimys”, and “Oxymycterus”; clade B: “Blarinomys” and “Scapteromys”). Here, we examine the chromosomal signatures of the Akodontini tribe by using Hylaeamysmegacephalus (HME) probes to study the karyotypes of Oxymycterus amazonicus (2n = 54, FN = 64) and Blarinomys breviceps (2n = 28, FN = 50), and compare these data with those from other taxa investigated using the same set of probes. We strategically employ the chromosomal signatures to elucidate phylogenetic relationships among the Akodontini. When we follow the evolution of chromosomal signature states, we find that the cytogenetic data corroborate the current molecular relationships in clade A nodes. We discuss the distinct events that caused karyotypic variability in the Oxymycterus and Blarinomys genera. In addition, we propose that Blarinomys may constitute a species complex, and that the taxonomy should be revised to better delimit the geographical boundaries and their taxonomic status.
Collapse
|
71
|
Zhou Y, Wang S, Wang N, Liang Z, Zhong H, Liu Y, Liang B. Phylogenetic inference of Plebejus argus (Lepidoptera: Lycaenidae) using its complete mitochondrial genome with an extra copy of tRNASer. MITOCHONDRIAL DNA PART B 2020. [DOI: 10.1080/23802359.2020.1742615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yan Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China/College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Shaoquan Wang
- Co-Innovation Center for Sustainable Forestry in Southern China/College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Ning Wang
- Department of Ornithology, American Museum of Natural History, New York, NY, USA
| | - Zhuoying Liang
- Co-Innovation Center for Sustainable Forestry in Southern China/College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Huahan Zhong
- Co-Innovation Center for Sustainable Forestry in Southern China/College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yanlin Liu
- Chinese Felid Conservation Alliance (CFCA), Beijing, China
| | - Bin Liang
- Hainan Academy of Forestry, Haikou, China
| |
Collapse
|
72
|
Nolan ED, Santibáñez-López CE, Sharma PP. Developmental gene expression as a phylogenetic data class: support for the monophyly of Arachnopulmonata. Dev Genes Evol 2020; 230:137-153. [PMID: 31927629 DOI: 10.1007/s00427-019-00644-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/10/2019] [Indexed: 01/01/2023]
Abstract
Despite application of genome-scale datasets, the phylogenetic placement of scorpions within arachnids remains contentious between two different phylogenetic data classes. Paleontologists continue to recover scorpions in a basally branching position, partly owing to their morphological similarity to extinct marine orders like Eurypterida (sea scorpions). Phylogenomic datasets consistently recover scorpions in a derived position, as the sister group of Tetrapulmonata (a clade of arachnids that includes spiders). To adjudicate between these hypotheses using a rare genomic change (RGC), we leveraged the recent discovery of ancient paralogy in spiders and scorpions to assess phylogenetic placement. We identified homologs of four transcription factors required for appendage patterning (dachshund, homothorax, extradenticle, and optomotor blind) in arthropods that are known to be duplicated in spiders. Using genomic resources for a spider, a scorpion, and a harvestman, we conducted gene tree analyses and assayed expression patterns of scorpion gene duplicates. Here we show that scorpions, like spiders, retain two copies of all four transcription factors, whereas arachnid orders like mites and harvestmen bear a single copy. A survey of embryonic expression patterns of the scorpion paralogs closely matches those of their spider counterparts, with one paralog consistently retaining the putatively ancestral pattern found in the harvestman, as well as the mite, and/or other outgroups. These data comprise a rare genomic change in chelicerate phylogeny supporting the inference of a distal placement of scorpions. Beyond demonstrating the diagnostic power of developmental genetic data as a phylogenetic data class, a derived placement of scorpions within the arachnids, together with an array of stem-group Paleozoic scorpions that occupied marine habitats, effectively rules out a scenario of a single colonization of terrestrial habitat within Chelicerata, even in tree topologies contrived to recover the monophyly of Arachnida.
Collapse
Affiliation(s)
- Erik D Nolan
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Developmental Biology, Washington University of St. Louis, St. Louis, MO, 63110, USA
| | - Carlos E Santibáñez-López
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biology, Eastern Connecticut State University, 83 Windham Street, Willimantic, CT, 06266, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
73
|
Suvorov A, Hochuli J, Schrider DR. Accurate Inference of Tree Topologies from Multiple Sequence Alignments Using Deep Learning. Syst Biol 2020; 69:221-233. [PMID: 31504938 PMCID: PMC8204903 DOI: 10.1093/sysbio/syz060] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/28/2019] [Indexed: 11/13/2022] Open
Abstract
Reconstructing the phylogenetic relationships between species is one of the most formidable tasks in evolutionary biology. Multiple methods exist to reconstruct phylogenetic trees, each with their own strengths and weaknesses. Both simulation and empirical studies have identified several "zones" of parameter space where accuracy of some methods can plummet, even for four-taxon trees. Further, some methods can have undesirable statistical properties such as statistical inconsistency and/or the tendency to be positively misleading (i.e. assert strong support for the incorrect tree topology). Recently, deep learning techniques have made inroads on a number of both new and longstanding problems in biological research. In this study, we designed a deep convolutional neural network (CNN) to infer quartet topologies from multiple sequence alignments. This CNN can readily be trained to make inferences using both gapped and ungapped data. We show that our approach is highly accurate on simulated data, often outperforming traditional methods, and is remarkably robust to bias-inducing regions of parameter space such as the Felsenstein zone and the Farris zone. We also demonstrate that the confidence scores produced by our CNN can more accurately assess support for the chosen topology than bootstrap and posterior probability scores from traditional methods. Although numerous practical challenges remain, these findings suggest that the deep learning approaches such as ours have the potential to produce more accurate phylogenetic inferences.
Collapse
Affiliation(s)
- Anton Suvorov
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, UNC-Chapel Hill, Chapel Hill, NC 27599-7264, USA
| | - Joshua Hochuli
- Biological and Biomedical Sciences Program, University of North Carolina at Chapel Hill, 130 Mason Farm Road, UNC-Chapel Hill Chapel Hill, NC 27599-7264, USA
| | - Daniel R Schrider
- Biological and Biomedical Sciences Program, University of North Carolina at Chapel Hill, 130 Mason Farm Road, UNC-Chapel Hill Chapel Hill, NC 27599-7264, USA
| |
Collapse
|
74
|
Patel S, Gupta RS. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 2020; 70:406-438. [PMID: 31617837 DOI: 10.1099/ijsem.0.003775] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Bacillus, harbouring 293 species/subspecies, constitutes a phylogenetically incoherent group. In the absence of reliable means for grouping known Bacillus species into distinct clades, restricting the placement of new species into this genus has proven difficult. To clarify the evolutionary relationships among Bacillus species, 352 available genome sequences from the family Bacillaceae were used to perform comprehensive phylogenomic and comparative genomic analyses. Four phylogenetic trees were reconstructed based on multiple datasets of proteins including 1172 core Bacillaceae proteins, 87 proteins conserved within the phylum Firmicutes, GyrA-GyrB-RpoB-RpoC proteins, and UvrD-PolA proteins. All trees exhibited nearly identical branching of Bacillus species and consistently displayed six novel monophyletic clades encompassing 5-23 Bacillus species (denoted as the Simplex, Firmus, Jeotgali, Niacini, Fastidiosus and Alcalophilus clades), interspersed with other Bacillaceae species. Species from these clades also generally grouped together in 16S rRNA gene trees. In parallel, our comparative genomic analyses of Bacillus species led to the identification of 36 molecular markers comprising conserved signature indels in protein sequences that are specifically shared by the species from these six observed clades, thus reliably demarcating these clades based on multiple molecular synapomorphies. Based on the strong evidence from multiple lines of investigations supporting the existence of these six distinct 'Bacillus' clades, we propose the transfer of species from these clades into six novel Bacillaceae genera viz. Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. These results represent an important step towards clarifying the phylogeny/taxonomy of the genus Bacillus.
Collapse
Affiliation(s)
- Sudip Patel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| |
Collapse
|
75
|
Heckeberg NS. The systematics of the Cervidae: a total evidence approach. PeerJ 2020; 8:e8114. [PMID: 32110477 PMCID: PMC7034380 DOI: 10.7717/peerj.8114] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/28/2019] [Indexed: 11/22/2022] Open
Abstract
Systematic relationships of cervids have been controversial for decades. Despite new input from molecular systematics, consensus could only be partially reached. The initial, gross (sub) classification based on morphology and comparative anatomy was mostly supported by molecular data. The rich fossil record of cervids has never been extensively tested in phylogenetic frameworks concerning potential systematic relationships of fossil cervids to extant cervids. The aim of this work was to investigate the systematic relationships of extant and fossil cervids using molecular and morphological characters and make implications about their evolutionary history based on the phylogenetic reconstructions. To achieve these objectives, molecular data were compiled consisting of five nuclear markers and the complete mitochondrial genome of 50 extant and one fossil cervids. Several analyses using different data partitions, taxon sampling, partitioning schemes, and optimality criteria were undertaken. In addition, the most extensive morphological character matrix for such a broad cervid taxon sampling was compiled including 168 cranial and dental characters of 41 extant and 29 fossil cervids. The morphological and molecular data were analysed in a combined approach and other comprehensive phylogenetic reconstructions. The results showed that most Miocene cervids were more closely related to each other than to any other cervids. They were often positioned between the outgroup and all other cervids or as the sister taxon to Muntiacini. Two Miocene cervids were frequently placed within Muntiacini. Plio- and Pleistocene cervids could often be affiliated to Cervini, Odocoileini or Capreolini. The phylogenetic analyses provide new insights into the evolutionary history of cervids. Several fossil cervids could be successfully related to living representatives, confirming previously assumed affiliations based on comparative morphology and introducing new hypotheses. New systematic relationships were observed, some uncertainties persisted and resolving systematics within certain taxa remained challenging.
Collapse
Affiliation(s)
- Nicola S. Heckeberg
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Berlin, Germany
| |
Collapse
|
76
|
Abstract
Background: Locating the root node of the "tree of life" (ToL) is one of the hardest problems in phylogenetics, given the time depth. The root-node, or the universal common ancestor (UCA), groups descendants into organismal clades/domains. Two notable variants of the two-domains ToL (2D-ToL) have gained support recently. One 2D-ToL posits that eukaryotes (organisms with nuclei) and akaryotes (organisms without nuclei) are sister clades that diverged from the UCA, and that Asgard archaea are sister to other archaea. The other 2D-ToL proposes that eukaryotes emerged from within archaea and places Asgard archaea as sister to eukaryotes. Williams et al. ( Nature Ecol. Evol. 4: 138-147; 2020) re-evaluated the data and methods that support the competing two-domains proposals and concluded that eukaryotes are the closest relatives of Asgard archaea. Critique: The poor resolution of the archaea in their analysis, despite employing amino acid alignments from thousands of proteins and the best-fitting substitution models, contradicts their conclusions. We argue that they overlooked important aspects of estimating evolutionary relatedness and assessing phylogenetic signal in empirical data. Which 2D-ToL is better supported depends on which kind of molecular features are better for resolving common ancestors at the roots of clades - protein-domains or their component amino acids. We focus on phylogenetic character reconstructions necessary to describe the UCA or its closest descendants in the absence of reliable fossils. Clarifications: It is well known that different character types present different perspectives on evolutionary history that relate to different phylogenetic depths. We show that protein structural-domains support more reliable phylogenetic reconstructions of deep-diverging clades in the ToL. Accordingly, Eukaryotes and Akaryotes are better supported clades in a 2D-ToL.
Collapse
Affiliation(s)
| | - David Morrison
- Department of Organismal Biology, Systematic Biology, Uppsala University, Uppsala, 752 36, Sweden
| |
Collapse
|
77
|
Jeong JS, Kim MJ, Kim I. The mitochondrial genome of the dung beetle, Copris tripartitus, with mitogenomic comparisons within Scarabaeidae (Coleoptera). Int J Biol Macromol 2020; 144:874-891. [DOI: 10.1016/j.ijbiomac.2019.09.165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 11/25/2022]
|
78
|
Gupta RS, Patel S. Robust Demarcation of the Family Caryophanaceae ( Planococcaceae) and Its Different Genera Including Three Novel Genera Based on Phylogenomics and Highly Specific Molecular Signatures. Front Microbiol 2020; 10:2821. [PMID: 32010063 PMCID: PMC6971209 DOI: 10.3389/fmicb.2019.02821] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022] Open
Abstract
The family Caryophanaceae/Planococcaceae is a taxonomically heterogeneous assemblage of >100 species classified within 13 genera, many of which are polyphyletic. Exhibiting considerable phylogenetic overlap with other families, primarily Bacillaceae, the evolutionary history of this family, containing the potent mosquitocidal species Lysinibacillus sphaericus, remains incoherent. To develop a reliable phylogenetic and taxonomic framework for the family Caryophanaceae/Planococcaceae and its genera, we report comprehensive phylogenetic and comparative genomic analyses on 124 genome sequences from all available Caryophanaceae/Planococcaceae and representative Bacillaceae species. Phylogenetic trees were constructed based on multiple datasets of proteins including 819 core proteins for this group and 87 conserved Firmicutes proteins. Using the core proteins, pairwise average amino acid identity was also determined. In parallel, comparative analyses on protein sequences from these species have identified 92 unique molecular markers (synapomorphies) consisting of conserved signature indels that are specifically shared by either the entire family Caryophanaceae/Planococcaceae or different monophyletic clades present within this family, enabling their reliable demarcation in molecular terms. Based on multiple lines of investigations, 18 monophyletic clades can be reliably distinguished within the family Caryophanaceae/Planococcaceae based on their phylogenetic affinities and identified molecular signatures. Some of these clades are comprised of species from several polyphyletic genera within this family as well as other families. Based on our results, we are proposing the creation of three novel genera within the family Caryophanaceae/Planococcaceae, namely Metalysinibacillus gen. nov., Metasolibacillus gen. nov., and Metaplanococcus gen. nov., as well as the transfer of 25 misclassified species from the families Caryophanaceae/Planococcaceae and Bacillaceae into these three genera and in Planococcus, Solibacillus, Sporosarcina, and Ureibacillus genera. These amendments establish a coherent taxonomy and evolutionary history for the family Caryophanaceae/Planococcaceae, and the described molecular markers provide novel means for diagnostic, genetic, and biochemical studies. Lastly, we are also proposing a consolidation of the family Planococcaceae within the emended family Caryophanaceae.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Sudip Patel
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
79
|
Zheng C, Ye Z, Zhu X, Zhang H, Dong X, Chen P, Bu W. Integrative taxonomy uncovers hidden species diversity in the rheophilic genus
Potamometra
(Hemiptera: Gerridae). ZOOL SCR 2019. [DOI: 10.1111/zsc.12401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chenguang Zheng
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| | - Zhen Ye
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| | - Xiuxiu Zhu
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| | | | - Xue Dong
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| | - Pingping Chen
- Netherlands Biodiversity Centre – Naturalis Leiden The Netherlands
| | - Wenjun Bu
- Institute of Entomology College of Life Sciences Nankai University Tianjin China
| |
Collapse
|
80
|
Springer MS, Molloy EK, Sloan DB, Simmons MP, Gatesy J. ILS-Aware Analysis of Low-Homoplasy Retroelement Insertions: Inference of Species Trees and Introgression Using Quartets. J Hered 2019; 111:147-168. [DOI: 10.1093/jhered/esz076] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022] Open
Abstract
Abstract
DNA sequence alignments have provided the majority of data for inferring phylogenetic relationships with both concatenation and coalescent methods. However, DNA sequences are susceptible to extensive homoplasy, especially for deep divergences in the Tree of Life. Retroelement insertions have emerged as a powerful alternative to sequences for deciphering evolutionary relationships because these data are nearly homoplasy-free. In addition, retroelement insertions satisfy the “no intralocus-recombination” assumption of summary coalescent methods because they are singular events and better approximate neutrality relative to DNA loci commonly sampled in phylogenomic studies. Retroelements have traditionally been analyzed with parsimony, distance, and network methods. Here, we analyze retroelement data sets for vertebrate clades (Placentalia, Laurasiatheria, Balaenopteroidea, Palaeognathae) with 2 ILS-aware methods that operate by extracting, weighting, and then assembling unrooted quartets into a species tree. The first approach constructs a species tree from retroelement bipartitions with ASTRAL, and the second method is based on split-decomposition with parsimony. We also develop a Quartet-Asymmetry test to detect hybridization using retroelements. Both ILS-aware methods recovered the same species-tree topology for each data set. The ASTRAL species trees for Laurasiatheria have consecutive short branch lengths in the anomaly zone whereas Palaeognathae is outside of this zone. For the Balaenopteroidea data set, which includes rorquals (Balaenopteridae) and gray whale (Eschrichtiidae), both ILS-aware methods resolved balaeonopterids as paraphyletic. Application of the Quartet-Asymmetry test to this data set detected 19 different quartets of species for which historical introgression may be inferred. Evidence for introgression was not detected in the other data sets.
Collapse
Affiliation(s)
- Mark S Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA
| | - Erin K Molloy
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Mark P Simmons
- Department of Biology, Colorado State University, Fort Collins, CO
| | - John Gatesy
- Division of Vertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY
| |
Collapse
|
81
|
Oliveira da Silva W, Pieczarka JC, Rodrigues da Costa MJ, Ferguson-Smith MA, O'Brien PCM, Mendes-Oliveira AC, Rossi RV, Nagamachi CY. Chromosomal phylogeny and comparative chromosome painting among Neacomys species (Rodentia, Sigmodontinae) from eastern Amazonia. BMC Evol Biol 2019; 19:184. [PMID: 31601183 PMCID: PMC6785907 DOI: 10.1186/s12862-019-1515-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Neacomys genus is predominantly found in the Amazon region, and belongs to the most diverse tribe of the Sigmodontinae subfamily (Rodentia, Cricetidae, Oryzomyini). The systematics of this genus and questions about its diversity and range have been investigated by morphological, molecular (Cytb and COI sequences) and karyotype analysis (classic cytogenetics and chromosome painting), which have revealed candidate species and new distribution areas. Here we analyzed four species of Neacomys by chromosome painting with Hylaeamys megacephalus (HME) whole-chromosome probes, and compared the results with two previously studied Neacomys species and with other taxa from Oryzomyini and Akodontini tribes that have been hybridized with HME probes. Maximum Parsimony (MP) analyses were performed with the PAUP and T.N.T. software packages, using a non-additive (unordered) multi-state character matrix, based on chromosomal morphology, number and syntenic blocks. We also compared the chromosomal phylogeny obtained in this study with molecular topologies (Cytb and COI) that included eastern Amazonian species of Neacomys, to define the phylogenetic relationships of these taxa. RESULTS The comparative chromosome painting analysis of the seven karyotypes of the six species of Neacomys shows that their diversity is due to 17 fusion/fission events and one translocation, pericentric inversions in four syntenic blocks, and constitutive heterochromatin (CH) amplification/deletion of six syntenic autosomal blocks plus the X chromosome. The chromosomal phylogeny is consistent with the molecular relationships of species of Neacomys. We describe new karyotypes and expand the distribution area for species from eastern Amazonia and detect complex rearrangements by chromosome painting among the karyotypes. CONCLUSIONS Our phylogeny reflects the molecular relationships of the Akodontini and Oryzomyini taxa and supports the monophyly of Neacomys. This work presents new insights about the chromosomal evolution of this group, and we conclude that the karyotypic divergence is in accord with phylogenetic relationships.
Collapse
Affiliation(s)
- Willam Oliveira da Silva
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Julio Cesar Pieczarka
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Marlyson Jeremias Rodrigues da Costa
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil
| | - Malcolm Andrew Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Patricia Caroline Mary O'Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Rogério Vieira Rossi
- Instituto de Biociências, Universidade Federal do Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil
| | - Cleusa Yoshiko Nagamachi
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Citogenética, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará, Brazil.
| |
Collapse
|
82
|
Mackiewicz P, Urantówka AD, Kroczak A, Mackiewicz D. Resolving Phylogenetic Relationships within Passeriformes Based on Mitochondrial Genes and Inferring the Evolution of Their Mitogenomes in Terms of Duplications. Genome Biol Evol 2019; 11:2824-2849. [PMID: 31580435 PMCID: PMC6795242 DOI: 10.1093/gbe/evz209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial genes are placed on one molecule, which implies that they should carry consistent phylogenetic information. Following this advantage, we present a well-supported phylogeny based on mitochondrial genomes from almost 300 representatives of Passeriformes, the most numerous and differentiated Aves order. The analyses resolved the phylogenetic position of paraphyletic Basal and Transitional Oscines. Passerida occurred divided into two groups, one containing Paroidea and Sylvioidea, whereas the other, Passeroidea and Muscicapoidea. Analyses of mitogenomes showed four types of rearrangements including a duplicated control region (CR) with adjacent genes. Mapping the presence and absence of duplications onto the phylogenetic tree revealed that the duplication was the ancestral state for passerines and was maintained in early diverged lineages. Next, the duplication could be lost and occurred independently at least four times according to the most parsimonious scenario. In some lineages, two CR copies have been inherited from an ancient duplication and highly diverged, whereas in others, the second copy became similar to the first one due to concerted evolution. The second CR copies accumulated over twice as many substitutions as the first ones. However, the second CRs were not completely eliminated and were retained for a long time, which suggests that both regions can fulfill an important role in mitogenomes. Phylogenetic analyses based on CR sequences subjected to the complex evolution can produce tree topologies inconsistent with real evolutionary relationships between species. Passerines with two CRs showed a higher metabolic rate in relation to their body mass.
Collapse
Affiliation(s)
- Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Poland
| | - Adam Dawid Urantówka
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
| | - Aleksandra Kroczak
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Poland
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
| | - Dorota Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Poland
| |
Collapse
|
83
|
Khadka B, Chatterjee T, Gupta BP, Gupta RS. Genomic Analyses Identify Novel Molecular Signatures Specific for the Caenorhabditis and other Nematode Taxa Providing Novel Means for Genetic and Biochemical Studies. Genes (Basel) 2019; 10:E739. [PMID: 31554175 PMCID: PMC6826867 DOI: 10.3390/genes10100739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 11/20/2022] Open
Abstract
The phylum Nematoda encompasses numerous free-living as well as parasitic members, including the widely used animal model Caenorhabditis elegans, with significant impact on human health, agriculture, and environment. In view of the importance of nematodes, it is of much interest to identify novel molecular characteristics that are distinctive features of this phylum, or specific taxonomic groups/clades within it, thereby providing innovative means for diagnostics as well as genetic and biochemical studies. Using genome sequences for 52 available nematodes, a robust phylogenetic tree was constructed based on concatenated sequences of 17 conserved proteins. The branching of species in this tree provides important insights into the evolutionary relationships among the studied nematode species. In parallel, detailed comparative analyses on protein sequences from nematodes (Caenorhabditis) species reported here have identified 52 novel molecular signatures (or synapomorphies) consisting of conserved signature indels (CSIs) in different proteins, which are uniquely shared by the homologs from either all genome-sequenced Caenorhabditis species or a number of higher taxonomic clades of nematodes encompassing this genus. Of these molecular signatures, 39 CSIs in proteins involved in diverse functions are uniquely present in all Caenorhabditis species providing reliable means for distinguishing this group of nematodes in molecular terms. The remainder of the CSIs are specific for a number of higher clades of nematodes and offer important insights into the evolutionary relationships among these species. The structural locations of some of the nematodes-specific CSIs were also mapped in the structural models of the corresponding proteins. All of the studied CSIs are localized within the surface-exposed loops of the proteins suggesting that they may potentially be involved in mediating novel protein-protein or protein-ligand interactions, which are specific for these groups of nematodes. The identified CSIs, due to their exclusivity for the indicated groups, provide reliable means for the identification of species within these nematodes groups in molecular terms. Further, due to the predicted roles of these CSIs in cellular functions, they provide important tools for genetic and biochemical studies in Caenorhabditis and other nematodes.
Collapse
Affiliation(s)
- Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L9H 6K5, Canada.
| | - Tonuka Chatterjee
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L9H 6K5, Canada.
| | - Bhagwati P Gupta
- Department of Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L9H 6K5, Canada.
| |
Collapse
|
84
|
Mandáková T, Zozomová-Lihová J, Kudoh H, Zhao Y, Lysak MA, Marhold K. The story of promiscuous crucifers: origin and genome evolution of an invasive species, Cardamine occulta (Brassicaceae), and its relatives. ANNALS OF BOTANY 2019; 124:209-220. [PMID: 30868165 PMCID: PMC6758578 DOI: 10.1093/aob/mcz019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/24/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Cardamine occulta (Brassicaceae) is an octoploid weedy species (2n = 8x = 64) originated in Eastern Asia. It has been introduced to other continents including Europe and considered to be an invasive species. Despite its wide distribution, the polyploid origin of C. occulta remained unexplored. The feasibility of comparative chromosome painting (CCP) in crucifers allowed us to elucidate the origin and genome evolution in Cardamine species. We aimed to investigate the genome structure of C. occulta in comparison with its tetraploid (2n = 4x = 32, C. kokaiensis and C. scutata) and octoploid (2n = 8x = 64, C. dentipetala) relatives. METHODS Genomic in situ hybridization (GISH) and large-scale CCP were applied to uncover the parental genomes and chromosome composition of the investigated Cardamine species. KEY RESULTS All investigated species descended from a common ancestral Cardamine genome (n = 8), structurally resembling the Ancestral Crucifer Karyotype (n = 8), but differentiated by a translocation between chromosomes AK6 and AK8. Allotetraploid C. scutata originated by hybridization between two diploid species, C. parviflora and C. amara (2n = 2x = 16). By contrast, C. kokaiensis has an autotetraploid origin from a parental genome related to C. parviflora. Interestingly, octoploid C. occulta probably originated through hybridization between the tetraploids C. scutata and C. kokaiensis. The octoploid genome of C. dentipetala probably originated from C. scutata via autopolyploidization. Except for five species-specific centromere repositionings and one pericentric inversion post-dating the polyploidization events, the parental subgenomes remained stable in the tetra- and octoploids. CONCLUSIONS Comparative genome structure, origin and evolutionary history was reconstructed in C. occulta and related species. For the first time, whole-genome cytogenomic maps were established for octoploid plants. Post-polyploid evolution in Asian Cardamine polyploids has not been associated with descending dysploidy and intergenomic rearrangements. The combination of different parental (sub)genomes adapted to distinct habitats provides an evolutionary advantage to newly formed polyploids by occupying new ecological niches.
Collapse
Affiliation(s)
- Terezie Mandáková
- Plant Cytogenomics research group, CEITEC – Central European Institute of Technology, and Faculty of Science, Masaryk University, Kamenice, Czech Republic
| | - Judita Zozomová-Lihová
- Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano, Japan
| | - Yunpeng Zhao
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, Institute of Ecology and Conservation Centre for Gene Resources of Endangered Wildlife, Zhejiang University, Hangzhou, China
| | - Martin A Lysak
- Plant Cytogenomics research group, CEITEC – Central European Institute of Technology, and Faculty of Science, Masaryk University, Kamenice, Czech Republic
| | - Karol Marhold
- Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
85
|
Costa Brandão Cruz D, Lima Santana L, Siqueira Guedes A, Teodoro de Souza J, Arthur Santos Marbach P. Different Ways of Doing the Same: Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes. Genome Biol Evol 2019; 11:1235-1249. [PMID: 30785193 PMCID: PMC6486802 DOI: 10.1093/gbe/evz035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2019] [Indexed: 01/27/2023] Open
Abstract
The last two steps of the purine biosynthetic pathway may be catalyzed by different enzymes in prokaryotes. The genes that encode these enzymes include homologs of purH, purP, purO and those encoding the AICARFT and IMPCH domains of PurH, here named purV and purJ, respectively. In Bacteria, these reactions are mainly catalyzed by the domains AICARFT and IMPCH of PurH. In Archaea, these reactions may be carried out by PurH and also by PurP and PurO, both considered signatures of this domain and analogous to the AICARFT and IMPCH domains of PurH, respectively. These genes were searched for in 1,403 completely sequenced prokaryotic genomes publicly available. Our analyses revealed taxonomic patterns for the distribution of these genes and anticorrelations in their occurrence. The analyses of bacterial genomes revealed the existence of genes coding for PurV, PurJ, and PurO, which may no longer be considered signatures of the domain Archaea. Although highly divergent, the PurOs of Archaea and Bacteria show a high level of conservation in the amino acids of the active sites of the protein, allowing us to infer that these enzymes are analogs. Based on the results, we propose that the gene purO was present in the common ancestor of all living beings, whereas the gene encoding PurP emerged after the divergence of Archaea and Bacteria and their isoforms originated in duplication events in the common ancestor of phyla Crenarchaeota and Euryarchaeota. The results reported here expand our understanding of the diversity and evolution of the last two steps of the purine biosynthetic pathway in prokaryotes.
Collapse
Affiliation(s)
| | - Lenon Lima Santana
- CCAAB, Biological Sciences, Recôncavo da Bahia Federal University, Cruz das Almas, Bahia, Brazil
| | | | | | | |
Collapse
|
86
|
Laumer CE, Fernández R, Lemer S, Combosch D, Kocot KM, Riesgo A, Andrade SCS, Sterrer W, Sørensen MV, Giribet G. Revisiting metazoan phylogeny with genomic sampling of all phyla. Proc Biol Sci 2019; 286:20190831. [PMID: 31288696 PMCID: PMC6650721 DOI: 10.1098/rspb.2019.0831] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/17/2019] [Indexed: 11/21/2022] Open
Abstract
Proper biological interpretation of a phylogeny can sometimes hinge on the placement of key taxa-or fail when such key taxa are not sampled. In this light, we here present the first attempt to investigate (though not conclusively resolve) animal relationships using genome-scale data from all phyla. Results from the site-heterogeneous CAT + GTR model recapitulate many established major clades, and strongly confirm some recent discoveries, such as a monophyletic Lophophorata, and a sister group relationship between Gnathifera and Chaetognatha, raising continued questions on the nature of the spiralian ancestor. We also explore matrix construction with an eye towards testing specific relationships; this approach uniquely recovers support for Panarthropoda, and shows that Lophotrochozoa (a subclade of Spiralia) can be constructed in strongly conflicting ways using different taxon- and/or orthologue sets. Dayhoff-6 recoding sacrifices information, but can also reveal surprising outcomes, e.g. full support for a clade of Lophophorata and Entoprocta + Cycliophora, a clade of Placozoa + Cnidaria, and raising support for Ctenophora as sister group to the remaining Metazoa, in a manner dependent on the gene and/or taxon sampling of the matrix in question. Future work should test the hypothesis that the few remaining uncertainties in animal phylogeny might reflect violations of the various stationarity assumptions used in contemporary inference methods.
Collapse
Affiliation(s)
- Christopher E. Laumer
- Museum of Comparative Zoology (MCZ) and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- EMBL-European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Rosa Fernández
- Museum of Comparative Zoology (MCZ) and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Bioinformatics & Genomics Unit, Center for Genomic Regulation, Carrer del Dr. Aiguader 88, 08003 Barcelona (Spain)
| | - Sarah Lemer
- Museum of Comparative Zoology (MCZ) and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Marine Laboratory, University of Guam, UOG Station, Mangilao, Guam 96923, USA
| | - David Combosch
- Museum of Comparative Zoology (MCZ) and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Marine Laboratory, University of Guam, UOG Station, Mangilao, Guam 96923, USA
| | - Kevin M. Kocot
- Department of Biological Sciences and Alabama Museum of Natural History, The University of Alabama, Campus Box 870344, Tuscaoosa, AL 35487, USA
| | - Ana Riesgo
- Department of Life Sciences, Natural History Museum of London, Cromwell Road, London SW7 5BD, UK
| | - Sónia C. S. Andrade
- Departamento de Genética e Biologia Evolutiva, IB, Universidade de São Paulo, 05508090 São Paulo, SP, Brazil
| | - Wolfgang Sterrer
- Bermuda Natural History Museum, PO Box FL 145, Flatts, FLBX, Bermuda
| | - Martin V. Sørensen
- Natural History Museum of Denmark, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Gonzalo Giribet
- Museum of Comparative Zoology (MCZ) and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
87
|
Sharma R, Gupta RS. Novel Molecular Synapomorphies Demarcate Different Main Groups/Subgroups of Plasmodium and Piroplasmida Species Clarifying Their Evolutionary Relationships. Genes (Basel) 2019; 10:genes10070490. [PMID: 31261747 PMCID: PMC6678196 DOI: 10.3390/genes10070490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
The class Hematozoa encompasses several clinically important genera, including Plasmodium, whose members cause the major life-threating disease malaria. Hence, a good understanding of the interrelationships of organisms from this class and reliable means for distinguishing them are of much importance. This study reports comprehensive phylogenetic and comparative analyses on protein sequences on the genomes of 28 hematozoa species to understand their interrelationships. In addition to phylogenetic trees based on two large datasets of protein sequences, detailed comparative analyses were carried out on the genomes of hematozoa species to identify novel molecular synapomorphies consisting of conserved signature indels (CSIs) in protein sequences. These studies have identified 79 CSIs that are exclusively present in specific groups of Hematozoa/Plasmodium species, also supported by phylogenetic analysis, providing reliable means for the identification of these species groups and understanding their interrelationships. Of these CSIs, six CSIs are specifically shared by all hematozoa species, two CSIs serve to distinguish members of the order Piroplasmida, five CSIs are uniquely found in all Piroplasmida species except B. microti and two CSIs are specific for the genus Theileria. Additionally, we also describe 23 CSIs that are exclusively present in all genome-sequenced Plasmodium species and two, nine, ten and eight CSIs which are specific for members of the Plasmodium subgenera Haemamoeba, Laverania, Vinckeia and Plasmodium (excluding P. ovale and P. malariae), respectively. Additionally, our work has identified several CSIs that support species relationships which are not evident from phylogenetic analysis. Of these CSIs, one CSI supports the ancestral nature of the avian-Plasmodium species in comparison to the mammalian-infecting groups of Plasmodium species, four CSIs strongly support a specific relationship of species between the subgenera Plasmodium and Vinckeia and three CSIs each that reliably group P. malariae with members of the subgenus Plasmodium and P. ovale within the subgenus Vinckeia, respectively. These results provide a reliable framework for understanding the evolutionary relationships among the Plasmodium/Piroplasmida species. Further, in view of the exclusivity of the described molecular markers for the indicated groups of hematozoa species, particularly large numbers of unique characteristics that are specific for all Plasmodium species, they provide important molecular tools for biochemical/genetic studies and for developing novel diagnostics and therapeutics for these organisms.
Collapse
Affiliation(s)
- Rahul Sharma
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| |
Collapse
|
88
|
Cole LW, Guo W, Mower JP, Palmer JD. High and Variable Rates of Repeat-Mediated Mitochondrial Genome Rearrangement in a Genus of Plants. Mol Biol Evol 2019; 35:2773-2785. [PMID: 30202905 DOI: 10.1093/molbev/msy176] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
For 30 years, it has been clear that angiosperm mitochondrial genomes evolve rapidly in sequence arrangement (i.e., synteny), yet absolute rates of rearrangement have not been measured in any plant group, nor is it known how much these rates vary. To investigate these issues, we sequenced and reconstructed the rearrangement history of seven mitochondrial genomes in Monsonia (Geraniaceae). We show that rearrangements (occurring mostly as inversions) not only take place at generally high rates in these genomes but also uncover significant variation in rearrangement rates. For example, the hyperactive mitochondrial genome of Monsonia ciliata has accumulated at least 30 rearrangements over the last million years, whereas the branch leading to M. ciliata and its sister species has sustained rearrangement at a rate that is at least ten times lower. Furthermore, our analysis of published data shows that rates of mitochondrial genome rearrangement in seed plants vary by at least 600-fold. We find that sites of rearrangement are highly preferentially located in very close proximity to repeated sequences in Monsonia. This provides strong support for the hypothesis that rearrangement in angiosperm mitochondrial genomes occurs largely through repeat-mediated recombination. Because there is little variation in the amount of repeat sequence among Monsonia genomes, the variable rates of rearrangement in Monsonia probably reflect variable rates of mitochondrial recombination itself. Finally, we show that mitochondrial synonymous substitutions occur in a clock-like manner in Monsonia; rates of mitochondrial substitutions and rearrangements are therefore highly uncoupled in this group.
Collapse
Affiliation(s)
- Logan W Cole
- Department of Biology, Indiana University, Bloomington, IN
| | | | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE.,Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE
| | | |
Collapse
|
89
|
Orton LM, Burke SV, Duvall MR. Plastome phylogenomics and characterization of rare genomic changes as taxonomic markers in plastome groups 1 and 2 Poeae (Pooideae; Poaceae). PeerJ 2019; 7:e6959. [PMID: 31198631 PMCID: PMC6553444 DOI: 10.7717/peerj.6959] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/14/2019] [Indexed: 12/03/2022] Open
Abstract
A phylogenomic analysis of 42 complete plastid genomes (plastomes), including 16 that were newly sequenced, was conducted. Plastomes were sampled from 19 subtribes of Pooideae, to investigate relationships within and between Chloroplast Group 1 (Aveneae) and Group 2 (Poeae) species. Two data partitions: complete plastomes, and a combined plastome and rare genomic change (RGC) data matrix, were analyzed. Overall, 156 non-ambiguous RGC were identified, of which homology was inferred for 38 RGC. Among the 38 RGC identified, six were synapomorphic among the Group 1 subtribes: Aveninae, Agrostidinae, and Anthoxanthinae, (Phalaridinae + Torreyochloinae), and 27 were synapomorphic among the Group 2 subtribes: Loliinae, (Ammochloinae + Parapholiinae + Dactylidinae), Parapholiinae, Dactylidinae, Poinae, and Coleanthinae. Four RGC were determined to be homoplasious in Groups 1 and 2. Two other RGC originated through intrastrand deletion events. The remaining RGC events likely originated through recombination given their size and lack of sequence evidence for other types of mutations. This study also determined that relationships between taxa, even those only weakly supported in previous studies, could be inferred with strong support when utilizing complete plastomes.
Collapse
Affiliation(s)
- Lauren M Orton
- Plant Molecular and Bioinformatics Center, Biological Sciences, Northern Illinois University, DeKalb, IL, United States of America
| | - Sean V Burke
- Center for Translational Data Science, University of Chicago, Chicago, IL, United States of America
| | - Melvin R Duvall
- Plant Molecular and Bioinformatics Center, Biological Sciences, Northern Illinois University, DeKalb, IL, United States of America
| |
Collapse
|
90
|
Hellmuth M, Seemann CR. Alternative characterizations of Fitch's xenology relation. J Math Biol 2019; 79:969-986. [PMID: 31111195 DOI: 10.1007/s00285-019-01384-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/08/2019] [Indexed: 11/25/2022]
Abstract
Horizontal gene transfer (HGT) is an important factor for the evolution of prokaryotes as well as eukaryotes. According to Walter M. Fitch, two genes are xenologs if they are separated by at least one HGT. This concept is formalized through Fitch relations, which are defined as binary relations that comprise all pairs (x, y) of genes x and y for which y has been horizontally transferred at least once since it diverged from the last common ancestor of x and y. This definition, in particular, preserves the directional character of the transfer. Fitch relations are characterized by a small set of forbidden induced subgraphs on three vertices and can be recognized in linear time. The mathematical characterization of Fitch relations is crucial to understand whether putative xenology relations are at least to some extent "biologically feasible". In this contribution, we provide two novel characterizations of Fitch relations. In particular, these results allow us directly to reconstruct gene trees (together with the location of the horizontal transfer events) that explain the underlying Fitch relation. As a biological side result, we can conclude that the phylogenetic signal to infer these gene trees is entirely contained in those pairs of genes x and y for which no directional transfer has been taken place in the common history of y and the last common ancestor of x and y. In other words, non-HGT events provide the essential information about the gene trees. In addition, we utilize the new characterizations to present an alternative, short and elegant proof of the characterization theorem established by Geiß et al. (J Math Bio 77(5), 2018).
Collapse
Affiliation(s)
- Marc Hellmuth
- Institute of Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Straße 47, 17487, Greifswald, Germany. .,Center for Bioinformatics, Saarland University, Building E 2.1, P.O. Box 151150, 66041, Saarbrücken, Germany.
| | - Carsten R Seemann
- Bioinformatics Group, Department of Computer Science; and Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103, Leipzig, Germany
| |
Collapse
|
91
|
Song F, Li H, Liu GH, Wang W, James P, Colwell DD, Tran A, Gong S, Cai W, Shao R. Mitochondrial Genome Fragmentation Unites the Parasitic Lice of Eutherian Mammals. Syst Biol 2019; 68:430-440. [PMID: 30239978 PMCID: PMC6472445 DOI: 10.1093/sysbio/syy062] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/13/2022] Open
Abstract
Organelle genome fragmentation has been found in a wide range of eukaryotic lineages; however, its use in phylogenetic reconstruction has not been demonstrated. We explored the use of mitochondrial (mt) genome fragmentation in resolving the controversial suborder-level phylogeny of parasitic lice (order Phthiraptera). There are approximately 5000 species of parasitic lice in four suborders (Amblycera, Ischnocera, Rhynchophthirina, and Anoplura), which infest mammals and birds. The phylogenetic relationships among these suborders are unresolved despite decades of studies. We sequenced the mt genomes of eight species of parasitic lice and compared them with 17 other species of parasitic lice sequenced previously. We found that the typical single-chromosome mt genome is retained in the lice of birds but fragmented into many minichromosomes in the lice of eutherian mammals. The shared derived feature of mt genome fragmentation unites the eutherian mammal lice of Ischnocera (family Trichodectidae) with Anoplura and Rhynchophthirina to the exclusion of the bird lice of Ischnocera (family Philopteridae). The novel clade, namely Mitodivisia, is also supported by phylogenetic analysis of mt genome and cox1 gene sequences. Our results demonstrate, for the first time, that organelle genome fragmentation is informative for resolving controversial high-level phylogenies.
Collapse
Affiliation(s)
- Fan Song
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hu Li
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China
| | - Wei Wang
- School of Science and Engineering, GeneCology Research Centre, Animal Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Peter James
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Dutton Park, Queensland, Australia
| | - Douglas D Colwell
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Anette Tran
- School of Science and Engineering, GeneCology Research Centre, Animal Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Siyu Gong
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Renfu Shao
- School of Science and Engineering, GeneCology Research Centre, Animal Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| |
Collapse
|
92
|
Khadka B, Gupta RS. Novel Molecular Signatures in the PIP4K/PIP5K Family of Proteins Specific for Different Isozymes and Subfamilies Provide Important Insights into the Evolutionary Divergence of this Protein Family. Genes (Basel) 2019; 10:genes10040312. [PMID: 31010098 PMCID: PMC6523245 DOI: 10.3390/genes10040312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023] Open
Abstract
Members of the PIP4K/PIP5K family of proteins, which generate the highly important secondary messenger phosphatidylinositol-4,5-bisphosphate, play central roles in regulating diverse signaling pathways. In eukaryotic organisms, multiple isozymes and subfamilies of PIP4K/PIP5K proteins are found and it is of much interest to understand their evolution and species distribution and what unique molecular and biochemical characteristics distinguish specific isozymes and subfamilies of proteins. We report here the species distribution of different PIP4K/PIP5K family of proteins in eukaryotic organisms and phylogenetic analysis based on their protein sequences. Our results indicate that the distinct homologs of both PIP4K and PIP5K are found in different organisms belonging to the Holozoa clade of eukaryotes, which comprises of various metazoan phyla as well as their close unicellular relatives Choanoflagellates and Filasterea. In contrast, the deeper-branching eukaryotic lineages, as well as plants and fungi, contain only a single homolog of the PIP4K/PIP5K proteins. In parallel, our comparative analyses of PIP4K/PIP5K protein sequences have identified six highly-specific molecular markers consisting of conserved signature indels (CSIs) that are uniquely shared by either the PIP4K or PIP5K proteins, or both, or specific subfamilies of these proteins. Of these molecular markers, 2 CSIs are distinctive characteristics of all PIP4K homologs, 1 CSI distinguishes the PIP4K and PIP5K homologs from the Holozoa clade of species from the ancestral form of PIP4K/PIP5K found in deeper-branching eukaryotic lineages. The remaining three CSIs are specific for the PIP5Kα, PIP5Kβ, and PIP4Kγ subfamilies of proteins from vertebrate species. These molecular markers provide important means for distinguishing different PIP4K/PIP5K isozymes as well as some of their subfamilies. In addition, the distribution patterns of these markers in different isozymes provide important insights into the evolutionary divergence of PIP4K/PIP5K proteins. Our results support the view that the Holozoa clade of eukaryotic organisms shared a common ancestor exclusive of the other eukaryotic lineages and that the initial gene duplication event leading to the divergence of distinct types of PIP4K and PIP5K homologs occurred in a common ancestor of this clade. Based on the results gleaned from different studies presented here, a model for the evolutionary divergence of the PIP4K/PIP5K family of proteins is presented.
Collapse
Affiliation(s)
- Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, ON L8N 3Z5, Canada.
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
93
|
Laumer CE. Inferring Ancient Relationships with Genomic Data: A Commentary on Current Practices. Integr Comp Biol 2019; 58:623-639. [PMID: 29982611 DOI: 10.1093/icb/icy075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Contemporary phylogeneticists enjoy an embarrassment of riches, not only in the volumes of data now available, but also in the diversity of bioinformatic tools for handling these data. Here, I discuss a subset of these tools I consider well-suited to the task of inferring ancient relationships with coding sequence data in particular, encompassing data generation, orthology assignment, alignment and gene tree inference, supermatrix construction, and analysis under the best-fitting models applicable to large-scale datasets. Throughout, I compare and critique methods, considering both their theoretical principles and the details of their implementation, and offering practical tips on usage where appropriate. I also entertain different motivations for analyzing what are almost always originally DNA sequence data as codons, amino acids, and higher-order recodings. Although presented in a linear order, I see value in using the diversity of tools available to us to assess the sensitivity of clades of biological interest to different gene and taxon sets and analytical modes, which can be an indication of the presence of systematic error, of which a few forms remain poorly controlled by even the best available inference methods.
Collapse
Affiliation(s)
- Christopher E Laumer
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, EBML-EBI South Building, Hinxton CB10 1SD, UK
| |
Collapse
|
94
|
Xie GL, Köhler F, Huang XC, Wu RW, Zhou CH, Ouyang S, Wu XP. A novel gene arrangement among the Stylommatophora by the complete mitochondrial genome of the terrestrial slug Meghimatium bilineatum (Gastropoda, Arionoidea). Mol Phylogenet Evol 2019; 135:177-184. [PMID: 30858078 DOI: 10.1016/j.ympev.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/12/2018] [Accepted: 03/05/2019] [Indexed: 12/20/2022]
Abstract
Stylommatophora is a main clade of Gastropoda that encompasses approximately 112 gastropod families and may exceed a total of 30,000 species. Twenty-four complete stylommatophoran mitogenomes have been sequenced to date, yet our understanding of mitochondrial evolution in stylommatophorans is still in its infancy. To further expand the set of available mitogenomes, we sequenced the mitogenome of Meghimatium bilineatum (Arionoidea: Philomycidae), a widespread land slug in East Asia. This is the first report on a mitogenome of the superfamily Arionoidea, and indeed on a terrestrial slug. The mitogenome of Meghimatium bilineatum comprises 13,972 bp and exhibits a novel, highly distinctive gene arrangement among the Stylommatophora. Phylogenetic reconstructions based on the sequences of all protein-coding genes consistently recovered Meghimatium bilineatum as sister-group of the Succineidae. A phylogenetic reconstruction based on gene order, however, suggested a highly divergent tree topology, which is less credible when taking into account prior knowledge of stylommatophoran relationships. Our CREx (Common interval Rearrangement Explorer) analysis suggested that three successive events of tandem duplication random loss (TDRL) best explain the evolutionary process of gene order rearrangement in Meghimatium bilineatum from an ancestral stylommatophoran mitogenome. The present example offers new insights into the mechanisms of mitogenome rearrangements in gastropods at large and into the usefulness of mitogenomic gene order as a phylogenetic marker.
Collapse
Affiliation(s)
- Guang-Long Xie
- School of Life Sciences, Nanchang University, Nanchang 330031, China; Australian Museum, 1 William Street, Sydney, NSW 2010, Australia
| | - Frank Köhler
- Australian Museum, 1 William Street, Sydney, NSW 2010, Australia
| | - Xiao-Chen Huang
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Rui-Wen Wu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Chun-Hua Zhou
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Shan Ouyang
- School of Life Sciences, Nanchang University, Nanchang 330031, China.
| | - Xiao-Ping Wu
- School of Life Sciences, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
95
|
Bravo GA, Antonelli A, Bacon CD, Bartoszek K, Blom MPK, Huynh S, Jones G, Knowles LL, Lamichhaney S, Marcussen T, Morlon H, Nakhleh LK, Oxelman B, Pfeil B, Schliep A, Wahlberg N, Werneck FP, Wiedenhoeft J, Willows-Munro S, Edwards SV. Embracing heterogeneity: coalescing the Tree of Life and the future of phylogenomics. PeerJ 2019; 7:e6399. [PMID: 30783571 PMCID: PMC6378093 DOI: 10.7717/peerj.6399] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 01/07/2019] [Indexed: 12/23/2022] Open
Abstract
Building the Tree of Life (ToL) is a major challenge of modern biology, requiring advances in cyberinfrastructure, data collection, theory, and more. Here, we argue that phylogenomics stands to benefit by embracing the many heterogeneous genomic signals emerging from the first decade of large-scale phylogenetic analysis spawned by high-throughput sequencing (HTS). Such signals include those most commonly encountered in phylogenomic datasets, such as incomplete lineage sorting, but also those reticulate processes emerging with greater frequency, such as recombination and introgression. Here we focus specifically on how phylogenetic methods can accommodate the heterogeneity incurred by such population genetic processes; we do not discuss phylogenetic methods that ignore such processes, such as concatenation or supermatrix approaches or supertrees. We suggest that methods of data acquisition and the types of markers used in phylogenomics will remain restricted until a posteriori methods of marker choice are made possible with routine whole-genome sequencing of taxa of interest. We discuss limitations and potential extensions of a model supporting innovation in phylogenomics today, the multispecies coalescent model (MSC). Macroevolutionary models that use phylogenies, such as character mapping, often ignore the heterogeneity on which building phylogenies increasingly rely and suggest that assimilating such heterogeneity is an important goal moving forward. Finally, we argue that an integrative cyberinfrastructure linking all steps of the process of building the ToL, from specimen acquisition in the field to publication and tracking of phylogenomic data, as well as a culture that values contributors at each step, are essential for progress.
Collapse
Affiliation(s)
- Gustavo A. Bravo
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Alexandre Antonelli
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Gothenburg Botanical Garden, Göteborg, Sweden
| | - Christine D. Bacon
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Krzysztof Bartoszek
- Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Mozes P. K. Blom
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Stella Huynh
- Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Graham Jones
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - L. Lacey Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sangeet Lamichhaney
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Thomas Marcussen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Hélène Morlon
- Institut de Biologie, Ecole Normale Supérieure de Paris, Paris, France
| | - Luay K. Nakhleh
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Bengt Oxelman
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Bernard Pfeil
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Alexander Schliep
- Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
| | | | - Fernanda P. Werneck
- Coordenação de Biodiversidade, Programa de Coleções Científicas Biológicas, Instituto Nacional de Pesquisa da Amazônia, Manaus, AM, Brazil
| | - John Wiedenhoeft
- Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
- Department of Computer Science, Rutgers University, Piscataway, NJ, USA
| | - Sandi Willows-Munro
- School of Life Sciences, University of Kwazulu-Natal, Pietermaritzburg, South Africa
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Gothenburg Centre for Advanced Studies in Science and Technology, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
96
|
Abstract
Genomes appear similar to natural language texts, and protein domains can be treated as analogs of words. To investigate the linguistic properties of genomes further, we calculated the complexity of the “protein languages” in all major branches of life and identified a nearly universal value of information gain associated with the transition from a random domain arrangement to the current protein domain architecture. An exploration of the evolutionary relationship of the protein languages identified the domain combinations that discriminate between the major branches of cellular life. We conclude that there exists a “quasi-universal grammar” of protein domains and that the nearly constant information gain we identified corresponds to the minimal complexity required to maintain a functional cell. From an abstract, informational perspective, protein domains appear analogous to words in natural languages in which the rules of word association are dictated by linguistic rules, or grammar. Such rules exist for protein domains as well, because only a small fraction of all possible domain combinations is viable in evolution. We employ a popular linguistic technique, n-gram analysis, to probe the “proteome grammar”—that is, the rules of association of domains that generate various domain architectures of proteins. Comparison of the complexity measures of “protein languages” in major branches of life shows that the relative entropy difference (information gain) between the observed domain architectures and random domain combinations is highly conserved in evolution and is close to being a universal constant, at ∼1.2 bits. Substantial deviations from this constant are observed in only two major groups of organisms: a subset of Archaea that appears to be cells simplified to the limit, and animals that display extreme complexity. We also identify the n-grams that represent signatures of the major branches of cellular life. The results of this analysis bolster the analogy between genomes and natural language and show that a “quasi-universal grammar” underlies the evolution of domain architectures in all divisions of cellular life. The nearly universal value of information gain by the domain architectures could reflect the minimum complexity of signal processing that is required to maintain a functioning cell.
Collapse
|
97
|
Zhao Z, Wang X, Yu Y, Yuan S, Jiang D, Zhang Y, Zhang T, Zhong W, Yuan Q, Huang L. Complete chloroplast genome sequences of Dioscorea: Characterization, genomic resources, and phylogenetic analyses. PeerJ 2018; 6:e6032. [PMID: 30533315 PMCID: PMC6284424 DOI: 10.7717/peerj.6032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/30/2018] [Indexed: 11/29/2022] Open
Abstract
Dioscorea L., the largest genus of the family Dioscoreaceae with over 600 species, is not only an important food but also a medicinal plant. The identification and classification of Dioscorea L. is a rather difficult task. In this study, we sequenced five Dioscorea chloroplast genomes, and analyzed with four other chloroplast genomes of Dioscorea species from GenBank. The Dioscorea chloroplast genomes displayed the typical quadripartite structure of angiosperms, which consisted of a pair of inverted repeats separated by a large single-copy region, and a small single-copy region. The location and distribution of repeat sequences and microsatellites were determined, and the rapidly evolving chloroplast genome regions (trnK-trnQ, trnS-trnG, trnC-petN, trnE-trnT, petG-trnW-trnP, ndhF, trnL-rpl32, and ycf1) were detected. Phylogenetic relationships of Dioscorea inferred from chloroplast genomes obtained high support even in shortest internodes. Thus, chloroplast genome sequences provide potential molecular markers and genomic resources for phylogeny and species identification.
Collapse
Affiliation(s)
- Zhenyu Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Tianjin University of Traditional Chinese Medicine,Tianjin, China
| | - Yi Yu
- Infinitus (China) Company Ltd, Guangzhou, China
| | - Subo Yuan
- Department of Immunology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Dan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yujun Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Teng Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenhao Zhong
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingjun Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
98
|
Robust demarcation of fourteen different species groups within the genus Streptococcus based on genome-based phylogenies and molecular signatures. INFECTION GENETICS AND EVOLUTION 2018; 66:130-151. [DOI: 10.1016/j.meegid.2018.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 11/21/2022]
|
99
|
A phylogenomic and molecular markers based taxonomic framework for members of the order Entomoplasmatales: proposal for an emended order Mycoplasmatales containing the family Spiroplasmataceae and emended family Mycoplasmataceae comprised of six genera. Antonie van Leeuwenhoek 2018; 112:561-588. [PMID: 30392177 DOI: 10.1007/s10482-018-1188-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/14/2018] [Indexed: 01/01/2023]
Abstract
The "Spiroplasma cluster" is a taxonomically heterogeneous assemblage within the phylum Tenericutes encompassing different Entomoplasmatales species as well as the genus Mycoplasma, type genus of the order Mycoplasmatales. Within this cluster, the family Entomoplasmataceae contains two non-cohesive genera Entomoplasma and Mesoplasma with their members exhibiting extensive polyphyletic branching; additionally, the genus Mycoplasma is also embedded within this family. Genome sequences are now available for all 19 Entomoplasmataceae species with validly published names, as well as 6 of the 7 species from the genus Mycoplasma. With the aim of developing a reliable phylogenetic and taxonomic framework for the family Entomoplasmataceae, exhaustive phylogenetic and comparative genomic studies were carried out on these genome sequences. Phylogenetic trees were constructed based on concatenated sequences of 121 core proteins for this cluster, 67 conserved proteins shared with the phylum Firmicutes, 40 ribosomal proteins, three major subunits of RNA polymerase (RpoA, B and C) by different means and also for the 16S rRNA gene sequences. The interspecies relationships as well as different species groups observed in these trees were identical and robustly resolved. In all of these trees, members of the genera Mesoplasma and Entomoplasma formed three and two distinct clades, respectively, which were interspersed among the members of the other genus. The observed species groupings in the phylogenetic trees are independently strongly supported by our identification of 103 novel molecular markers or synapomorphies in the forms of conserved signature indels and conserved signature proteins, which are uniquely shared by the members of different observed species clades. To account for the different observed species clades, we are proposing a division of the genus Mesoplasma into an emended genus Mesoplasma and two new genera Tullyiplasma gen. nov. and Edwardiiplasma gen. nov. Likewise, to recognize the distinct species groupings of Entomoplasma, we are proposing its division into an emended genus Entomoplasma and a new genus Williamsoniiplasma gen. nov. Lastly, to rectify the long-existing taxonomic anomaly caused by the presence of genus Mycoplasma (order Mycoplasmatales) within the Entomoplasmatales, we are proposing an emendation of the family Mycoplasmataceae to include both Entomoplasmataceae plus Mycoplasma species and an emendation of the order Mycoplasmatales, which now comprises of the emended family Mycoplasmataceae and the family Spiroplasmataceae. The taxonomic reclassifications proposed here accurately reflect the species relationships within this group of Tenericutes and they should lead to a better understanding of their biological and pathogenic characteristics.
Collapse
|
100
|
Harish A. What is an archaeon and are the Archaea really unique? PeerJ 2018; 6:e5770. [PMID: 30357005 PMCID: PMC6196074 DOI: 10.7717/peerj.5770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/05/2018] [Indexed: 12/05/2022] Open
Abstract
The recognition of the group Archaea as a major branch of the tree of life (ToL) prompted a new view of the evolution of biodiversity. The genomic representation of archaeal biodiversity has since significantly increased. In addition, advances in phylogenetic modeling of multi-locus datasets have resolved many recalcitrant branches of the ToL. Despite the technical advances and an expanded taxonomic representation, two important aspects of the origins and evolution of the Archaea remain controversial, even as we celebrate the 40th anniversary of the monumental discovery. These issues concern (i) the uniqueness (monophyly) of the Archaea, and (ii) the evolutionary relationships of the Archaea to the Bacteria and the Eukarya; both of these are relevant to the deep structure of the ToL. To explore the causes for this persistent ambiguity, I examine multiple datasets and different phylogenetic approaches that support contradicting conclusions. I find that the uncertainty is primarily due to a scarcity of information in standard datasets-universal core-genes datasets-to reliably resolve the conflicts. These conflicts can be resolved efficiently by comparing patterns of variation in the distribution of functional genomic signatures, which are less diffused unlike patterns of primary sequence variation. Relatively lower heterogeneity in distribution patterns minimizes uncertainties and supports statistically robust phylogenetic inferences, especially of the earliest divergences of life. This case study further highlights the limitations of primary sequence data in resolving difficult phylogenetic problems, and raises questions about evolutionary inferences drawn from the analyses of sequence alignments of a small set of core genes. In particular, the findings of this study corroborate the growing consensus that reversible substitution mutations may not be optimal phylogenetic markers for resolving early divergences in the ToL, nor for determining the polarity of evolutionary transitions across the ToL.
Collapse
Affiliation(s)
- Ajith Harish
- Department of Cell and Molecular Biology, Program in Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|