51
|
Montesino-Goicolea S, Nin O, Gonzalez BM, Sawczuk NJ, Nodarse CL, Valdes-Hernandez PA, Jackson E, Huo Z, Somerville JET, Porges EC, Smith C, Fillingim RB, Cruz-Almeida Y. Protocol for a pilot and feasibility randomized-controlled trial of four weeks of oral γ-aminobutyric acid (GABA) intake and its effect on pain and sleep in middle-to-older aged adults. Contemp Clin Trials Commun 2023; 32:101066. [PMID: 36712186 PMCID: PMC9876833 DOI: 10.1016/j.conctc.2023.101066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/05/2022] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
Approximately 1.71 billion people globally live with musculoskeletal pain conditions, including low back pain, knee pain, and neck pain Cieza et al. (2020). In the US, an estimated 20.4% of U.S. adult had chronic pain and 8.0% of U.S. adults had high-impact chronic pain, with higher prevalence associated with advancing age Dahlhamer et al. (2018). On the other hand, between 50 and 70 million US adults have a sleep disorder (American Sleep Association). Although the link between sleep and pain is widely established, the neurobiological mechanisms underlying this relationship have yet to be fully elucidated, specifically within an aged population. As currently available sleep and chronic pain therapies are only partially effective, novel treatment approaches are urgently needed. Given the potential mechanistic role of γ-aminobutyric acid (GABA) in both conditions, and the availability of GABA supplements over the counter, the present proposal will determine the feasibility and acceptability of oral GABA administration in middle-to-older aged adults with chronic pain and sleep disorders as well as characterize the potential neurobiological mechanisms involved in both conditions. Results from the present investigation using a parallel, double-blinded, placebo-controlled study will provide novel preliminary information needed for future translational pain and sleep research.
Collapse
Affiliation(s)
- Soamy Montesino-Goicolea
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
- Department of Community Dentistry & Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
| | - Olga Nin
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Barbara M. Gonzalez
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
- Department of Community Dentistry & Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Nathalie J. Sawczuk
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
- Department of Community Dentistry & Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Chavier Laffitte Nodarse
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
- Department of Community Dentistry & Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Pedro Antonio Valdes-Hernandez
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
- Department of Community Dentistry & Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Elijah Jackson
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
- Department of Community Dentistry & Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jessie Elise T. Somerville
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
- Department of Community Dentistry & Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Eric C. Porges
- Center for Cognitive Aging & Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Cameron Smith
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Roger B. Fillingim
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
- Department of Community Dentistry & Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
| | - Yenisel Cruz-Almeida
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
- Center for Cognitive Aging & Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, USA
- Department of Community Dentistry & Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
| |
Collapse
|
52
|
Komisarek D, Taskiran E, Vasylyeva V. Maleic Acid as a Co-Former for Pharmaceutically Active GABA Derivatives: Mechanochemistry or Solvent Crystallization? MATERIALS (BASEL, SWITZERLAND) 2023; 16:2242. [PMID: 36984121 PMCID: PMC10054091 DOI: 10.3390/ma16062242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
In this study, we compare the mechanochemical and classical solvent crystallization methods for forming maleates of GABA and its pharmaceutically active derivatives: Pregabalin, Gabapentin, Phenibut, and Baclofen. Common characterization techniques, like powder and single crystal X-ray diffraction, IR-spectroscopy, differential scanning calorimetry, thermogravimetric analysis and 1H-NMR spectroscopy, are used for the evaluation of structural and physicochemical properties. Our work shows that maleate formation is possible with all investigated target compounds. Large increases in solubility can be achieved, especially for Pregabalin, where up to twentyfold higher solubility in its maleate compared to the pure form can be reached. We furthermore compare the mechanochemical and solvent crystallization regarding quickness, reliability of phase production, and overall product quality. A synthetic route is shown to have an impact on certain properties such as melting point or solubility of the same obtained products, e.g., for Gabapentin and Pregabalin, or lead to the formation of hydrates vs. anhydrous forms. For the GABA and Baclofen maleates, the method of crystallization is not important, and similarly, good results can be obtained by either route. In contrast, Phenibut maleate cannot be obtained pure and single-phase by either method. Our work aims to elucidate promising candidates for the multicomponent crystal formation of blockbuster GABA pharmaceuticals and highlight the usefulness of mechanochemical production routes.
Collapse
|
53
|
Mykland MS, Uglem M, Bjørk MH, Matre D, Sand T, Omland PM. Effects of insufficient sleep on sensorimotor processing in migraine: A randomised, blinded crossover study of event related beta oscillations. Cephalalgia 2023; 43:3331024221148398. [PMID: 36786371 DOI: 10.1177/03331024221148398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
BACKGROUND Migraine has a largely unexplained connection with sleep and is possibly related to a dysfunction of thalamocortical systems and cortical inhibition. In this study we investigate the effect of insufficient sleep on cortical sensorimotor processing in migraine. METHODS We recorded electroencephalography during a sensorimotor task from 46 interictal migraineurs and 28 controls after two nights of eight-hour habitual sleep and after two nights of four-hour restricted sleep. We compared changes in beta oscillations of the sensorimotor cortex after the two sleep conditions between migraineurs, controls and subgroups differentiating migraine subjects usually having attacks starting during sleep and not during sleep. We included preictal and postictal recordings in a secondary analysis of temporal changes in relation to attacks. RESULTS Interictally, we discovered lower beta synchronisation after sleep restriction in sleep related migraine compared to non-sleep related migraine (p=0.006) and controls (p=0.01). No differences were seen between controls and the total migraine group in the interictal phase. After migraine attacks, we observed lower beta synchronisation (p<0.001) and higher beta desynchronisation (p=0.002) after sleep restriction closer to the end of the attack compared to later after the attack. CONCLUSION The subgroup with sleep related migraine had lower sensorimotor beta synchronisation after sleep restriction, possibly related to dysfunctional GABAergic inhibitory systems. Sufficient sleep during or immediately after migraine attacks may be of importance for maintaining normal cortical excitability.
Collapse
Affiliation(s)
- Martin Syvertsen Mykland
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
- Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway
| | - Martin Uglem
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
- Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway
| | - Marte-Helene Bjørk
- Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Dagfinn Matre
- Division of Research, National Institute of Occupational Health, Oslo, Norway
| | - Trond Sand
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
- Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway
| | - Petter Moe Omland
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
- Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway
| |
Collapse
|
54
|
Potential of Capric Acid in Neurological Disorders: An Overview. Neurochem Res 2023; 48:697-712. [PMID: 36342577 DOI: 10.1007/s11064-022-03809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
To solve the restrictions of a classical ketogenic diet, a modified medium-chain triglyceride diet was introduced which required only around 60% of dietary energy. Capric acid (CA), a small molecule, is one of the main components because its metabolic profile offers itself as an alternate source of energy to the brain in the form of ketone bodies. This is possible with the combined capability of CA to cross the blood-brain barrier and achieve a concentration of 50% concentration in the brain more than any other fatty acid in plasma. Natural sources of CA include vegetable oils such as palm oil and coconut oil, mammalian milk and some seeds. Several studies have shown that CA has varied action on targets that include AMPA receptors, PPAR-γ, inflammatory/oxidative stress pathways and gut dysbiosis. Based on these lines of evidence, CA has proved to be effective in the amelioration of neurological diseases such as epilepsy, affective disorders and Alzheimer's disease. But these studies still warrant more pre-clinical and clinical studies that would further prove its efficacy. Hence, to understand the potential of CA in brain disease and associated comorbid conditions, an advance and rigorous molecular mechanistic study, apart from the reported in-vitro/in-vivo studies, is urgently required for the development of this compound through clinical setups.
Collapse
|
55
|
Hartmann S, Parrino L, Ensrud K, Stone KL, Redline S, Clark SR, Baumert M. Association between psychotropic medication and sleep microstructure: evidence from large population studies. J Clin Sleep Med 2023; 19:581-589. [PMID: 36546402 PMCID: PMC9978436 DOI: 10.5664/jcsm.10394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022]
Abstract
STUDY OBJECTIVES To assess the association between psychotropic medications and sleep microstructure in large community-based cohorts of older people. METHODS We analyzed overnight polysomnograms of 381 women from the Study of Osteoporotic Fractures (SOF) and 2,657 men from the Osteoporotic Fractures in Men Sleep Study (MrOS), who either used no psychotropic medication (n = 2,819), only benzodiazepines (n = 112), or only selective serotonin reuptake inhibitors (SSRI) (n = 107). Sleep microstructure (cyclic alternating pattern, CAP) was compared between the no medication group and psychotropic medication groups using the Mann-Whitney U test. Significant differences were investigated using multivariable linear regression adjusted for confounders. RESULTS CAP rate, arousal index, apnea-hypopnea index, and the frequency of slow, low-amplitude electroencephalography activation phases were significantly lower in MrOS participants using benzodiazepines than participants not taking psychotropic medication. SSRI users in MrOS experienced no altered sleep microstructure compared to those with no psychotropic use. SOF participants using benzodiazepines did not show similar associations with sleep microstructure. However, SSRI users from SOF had a significantly higher frequency of rapid, high-amplitude electroencephalography activation phases (A2 + 3) and periodic limb-movement index than participants not taking psychotropic medication. Multivariable linear regression adjusted for demographic, lifestyle, mood disorders, and health variables indicated additional significant associations between benzodiazepine usage and CAP rate and A2 + 3 index, respectively, in older men, and between CAP rate and SSRI usage in older women. CONCLUSIONS We identified significant associations between sleep microstructure and psychotropic drugs in MrOS and SOF, highlighting the importance of comprehensive sleep analysis, including CAP. Our results may improve understanding of the differences in sleep-wake mechanisms based on psychotropic usage. CLINICAL TRIAL REGISTRATION Registry: ClinicalTrials.gov; Title: Outcomes of Sleep Disorders in Older Men; Identifier: NCT00070681; URL: https://clinicaltrials.gov/ct2/show/record/NCT00070681. CITATION Hartmann S, Parrino L, Ensrud K, et al. Association between psychotropic medication and sleep microstructure: evidence from large population studies. J Clin Sleep Med. 2023;19(3):581-589.
Collapse
Affiliation(s)
- Simon Hartmann
- The University of Adelaide, School of Electrical and Electronic Engineering, Adelaide, South Australia, Australia
- The University of Adelaide, Discipline of Psychiatry, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Liborio Parrino
- Sleep Disorders Center, Department of Neurology, University of Parma, Parma, Emilia-Romagna, Italy
| | - Kristine Ensrud
- Center for Chronic Disease Outcomes Research, Veterans Affairs Medical Center, Minneapolis, Minnesota
- Department of Medicine and Division of Epidemiology, University of Minnesota, Minneapolis, Minnesota
| | - Katie L. Stone
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Susan Redline
- Departments of Medicine and Neurology, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Scott R. Clark
- The University of Adelaide, Discipline of Psychiatry, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Mathias Baumert
- The University of Adelaide, School of Electrical and Electronic Engineering, Adelaide, South Australia, Australia
| |
Collapse
|
56
|
Song Y, Lian J, Wang K, Wen J, Luo Y. Changes in the cortical network during sleep stage transitions. J Neurosci Res 2023; 101:20-33. [PMID: 36148534 DOI: 10.1002/jnr.25125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/07/2022]
Abstract
Sleep state transitions are closely related to insomnia, drowsiness, and sleep maintenance. However, how the cortical network varies during such a transition process remains unclear. Changes in the cortical interaction during the short-term process of sleep stage transitions were investigated. In all, 40 healthy young participants underwent overnight polysomnography. The phase transfer entropy of six frequency bands was obtained from 16 electroencephalography channels to assess the strength and direction of information flow between the cortical regions. Differences in the cortical network between the first and the last 10 s in a 40-s transition period across wakefulness, N1, N2, N3, and rapid eye movement were, respectively, studied. Various frequency bands exhibited different patterns during the sleep stage transitions. It was found that the mutual transitions between the sleep stages were not necessarily the opposite. More significant changes were observed in the sleep deepening process than in the process of sleep awakening. During sleep stage transitions, changes in the inflow and outflow strength of various cortical regions led to regional differences, but for the entire sleep progress, such an imbalance did not intensify, and a dynamic balance was instead observed. The detailed findings of variations in cortical interactions during sleep stage transition promote understanding of sleep mechanism, sleep process, and sleep function. Additionally, it is expected to provide helpful clues for sleep improvement, like reducing the time required to fall asleep and maintaining sleep depth.
Collapse
Affiliation(s)
- Yingjie Song
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jiakai Lian
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Kejie Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jinfeng Wen
- Psychology Department, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Yuxi Luo
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
57
|
Maia MA, Jurcevic JD, Malheiros A, Cazarin CA, Dalmagro AP, do Espírito Santo C, Mota da Silva L, Maria de Souza M. Neuropharmacology Potential of the Hydroalcoholic Extract from the Leaves of Piper cernuum: Anxiolytic, Hypnotic, and Antidepressant-Like Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1183809. [PMID: 37078066 PMCID: PMC10110373 DOI: 10.1155/2023/1183809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/09/2022] [Accepted: 11/25/2022] [Indexed: 04/21/2023]
Abstract
Aim The use of medicinal plants in the treatment of mental illnesses is a reality that accompanies the history of civilizations, and the Piper genus exhibits many species with pharmacologically proven central effects. Then, this study evaluated the neuropharmacological effects of the hydroalcoholic extract from Piper cernuum (HEPC) leaves to validate its uses in folk medicine. Materials and Methods Primarily Swiss mice (female, 25-30 g) were pretreated with HEPC (50-150 mg/kg, p.o.), vehicle, or the positive control, and submitted to open-field test (OFT), inhibitory avoidance test (IAT), tail suspension test (TST), and forced swim test (FST). Also, mice were exposed to pentylenetetrazol- and strychnine-induced seizure assay, pentobarbital-induced hypnosis test, and elevated plus-maze (EPM). The GABA levels and MAO-A activity were measured in the animal's brain after 15 days of HEPC administration (150 mg/kg, p.o.). Results Mice pretreated with HEPC (100 and 150 mg/kg) and exposed to pentobarbital presented decreased sleep latency and increased sleep duration (HEPC 150 mg/kg). In EPM, the HEPC (150 mg/kg) increased the frequency of entry and the time of exploration of mice in the open arms. The antidepressant-like properties of HEPC were demonstrated by the decrease in the mice's immobility time when tested in FST and TST. The extract did not show anticonvulsant activity, in addition to not improving the memory parameters of animals (IAT) or interfering with their locomotor activity (OFT). Besides, HEPC administration decreased the MAO-A activity and increased the GABA levels in the animal's brain. Conclusion HEPC induces sedative-hypnotic, anxiolytic-, and antidepressant-like effects. These neuropharmacological effects of HEPC could be, at least in part, related to the modulation of the GABAergic system and/or MAO-A activity.
Collapse
Affiliation(s)
- Marcel Andrigo Maia
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, SC, Brazil
| | | | - Angela Malheiros
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, SC, Brazil
| | - Camila André Cazarin
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, SC, Brazil
| | - Ana Paula Dalmagro
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, SC, Brazil
| | - Camila do Espírito Santo
- Nucleus of Chemical-PharmaceuticalResearch-NIQFAR, University of Vale do Itajaí, Itajaí, SC, Brazil
| | - Luisa Mota da Silva
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, SC, Brazil
| | - Márcia Maria de Souza
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, SC, Brazil
| |
Collapse
|
58
|
Burgess Robinson L. Exchanges between the gastrointestinal system and the brain. INTRODUCTION TO QUANTITATIVE EEG AND NEUROFEEDBACK 2023:413-425. [DOI: 10.1016/b978-0-323-89827-0.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
59
|
Xiang T, Liao J, Cai Y, Fan M, Li C, Zhang X, Li H, Chen Y, Pan J. Impairment of GABA inhibition in insomnia disorders: Evidence from the peripheral blood system. Front Psychiatry 2023; 14:1134434. [PMID: 36846238 PMCID: PMC9947704 DOI: 10.3389/fpsyt.2023.1134434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
AIM To explore the change characteristics and related factors of various indexes of GABAergic system in peripheral blood of patients with insomnia disorder. METHODS In this study, a total of 30 patients who met the DSM-5 diagnostic criteria for insomnia disorder and 30 normal controls were included. All subjects had a structured clinical interview with the Brief International Neuropsychiatric Disorder Interview, and PSQI was used to evaluate the sleep status of the subjects. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum γ-aminobutyric acid (GABA), and RT-PCR was used to detect GABAA receptor α1 and α2 subunit mRNA. All data were statistically analyzed using SPSS 23.0. RESULTS Compared with the normal control group, the mRNA levels of GABAA receptor α1 and α2 subunits in the insomnia disorder group were significantly lower, but there was no significant difference in the serum GABA levels between the two groups. And in the insomnia disorder group, there was no significant correlation between the GABA levels and the mRNA expression levels of α1 and α2 subunits of GABAA receptors. Although no significant correlation was found between PSQI and serum levels of these two subunit mRNAs, its component factors sleep quality and sleep time were negatively correlated with GABAA receptor α1 subunit mRNA levels, and daytime function was inversely correlated with GABAA receptor α2 subunit mRNA levels. CONCLUSION The inhibitory function of serum GABA in patients with insomnia may be impaired, and the decreased expression levels of GABAA receptor α1 and α2 subunit mRNA may become a reliable indicator of insomnia disorder.
Collapse
Affiliation(s)
- Ting Xiang
- Sleep Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Jiwu Liao
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Yixian Cai
- Sleep Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Mei Fan
- Sleep Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Congrui Li
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Xiaotao Zhang
- Sleep Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Hongyao Li
- Sleep Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Yushan Chen
- Sleep Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Jiyang Pan
- Sleep Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.,Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
60
|
Li X, Shi Z, Byanyima J, Morgan PT, van der Veen JW, Zhang R, Deneke E, Wang GJ, Volkow ND, Wiers CE. Brain glutamate and sleep efficiency associations following a ketogenic diet intervention in individuals with Alcohol Use Disorder. DRUG AND ALCOHOL DEPENDENCE REPORTS 2022; 5:100092. [PMID: 36311277 PMCID: PMC9601174 DOI: 10.1016/j.dadr.2022.100092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background We previously showed that ketogenic diet (KD) was effective in curbing alcohol withdrawal and craving in individuals with alcohol use disorder (AUD). We hypothesized that the clinical benefits were due to improvements in sleep. To test this, we performed a secondary analysis on the KD trial data to (1) examine the effects of KD on total sleep time (TST) and sleep quality and (2) investigate the association between KD-induced alterations in cingulate glutamate concentration and changes in TST and sleep quality. Methods AUD individuals undergoing alcohol detoxification were randomized to receive KD (n=19) or standard American diet (SA; n=14) for three weeks. TST was measured weekly by self-report, GENEActive sleep accelerometer, and X4 Sleep Profiler ambulatory device. Sleep quality was assessed using subjectively ratings of sleep depth and restedness and Sleep Profiler (Sleep Efficiency [%]). Weekly 1H magnetic resonance spectroscopy scans measured cingulate glutamate levels. Results TST was lower in KD than SA and increased with effect of time. Sleep depth, restedness, and Sleep Efficiency improved with time, but exhibited no effect of diet. In KD and SA combined, week 1 cingulate glutamate levels correlated positively with Sleep Efficiency, but not with TST. Conclusions Although cingulate glutamate levels correlated positively with Sleep Efficiency in week 1, KD-induced glutamate elevation did not produce significant sleep improvements. Rather, KD was associated with lower TST than SA. Given the well-established associations between sleep and alcohol relapse, longer follow up assessment of KD's impact on sleep in AUD is warranted.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zhenhao Shi
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Juliana Byanyima
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Peter T. Morgan
- Department of Psychiatry, Yale University, New Haven, CT, 06519, USA
- Department of Psychiatry, Bridgeport Hospital, Bridgeport, CT, 06610, USA
| | | | - Rui Zhang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Erin Deneke
- Caron Treatment Centers, 243N Galen Hall Rd, Wernersville, PA, 19565, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Nora D. Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Corinde E. Wiers
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
- Corresponding author at: 3535 Market St Ste 500, Philadelphia, PA 19104.
| |
Collapse
|
61
|
Abstract
Sleep health is an important factor across several physical and mental health disorders, and a growing scientific consensus has identified sleep as a critical component of opioid use disorder (OUD), both in the active disease state and during OUD recovery. The goal of this narrative review is to collate the literature on sleep, opioid use, and OUD as a means of identifying therapeutic targets to improve OUD treatment outcomes. Sleep disturbance is common and often severe in persons with OUD, especially during opioid withdrawal, but also in persons on opioid maintenance therapies. There is ample evidence that sleep disturbances including reduced total sleep time, disrupted sleep continuity, and poor sleep quality often accompany negative OUD treatment outcomes. Sleep disturbances are bidirectionally associated with several other factors related to negative treatment outcomes, including chronic stress, stress reactivity, low positive affect, high negative affect, chronic pain, and drug craving. This constellation of outcome variables represents a more comprehensive appraisal of the quality of life and quality of recovery than is typically assessed in OUD clinical trials. To date, there are very few clinical trials or experimental studies aimed at improving sleep health in OUD patients, either as a means of improving stress, affect, and craving outcomes, or as a potential mechanistic target to reduce opioid withdrawal and drug use behaviors. As such, the direct impact of sleep improvement in OUD patients is largely unknown, yet mechanistic and clinical research suggests that therapeutic interventions that target sleep are a promising avenue to improve OUD treatment. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
|
62
|
Srichomphu P, Wattanathorn J, Thukham-mee W, Muchimapura S. Anxiety, Insomnia, and Memory Impairment in Metabolic Syndrome Rats Are Alleviated by the Novel Functional Ingredients from Anacardium occidentale. Antioxidants (Basel) 2022; 11:2203. [PMID: 36358575 PMCID: PMC9686671 DOI: 10.3390/antiox11112203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
Despite an increase in the coexistence of metabolic syndrome (MetS) and psychological disorders, together with their great impact on socio-economic burdens, no protective strategies that focus on these situations are available. Due to the role of oxidative stress in the pathophysiology of metabolic syndrome (MetS) and psychological disorders, we hypothesized that substances possessing antioxidant activity such as the novel functional ingredients from Anacardium occidentale (AO) could mitigate common psychological disorders in MetS rats. Male Wistar rats, weighing 200-250 g, were induced with MetS through a 12-week high-fat and high-cholesterol diet (HFHC). Then, they were given AO orally via a gastric gavage needle at doses of 1, 10 and 100 mg/kg BW for 14 days. Spatial memory, anxiety, depression, and sleep behaviors, together with changes in oxidative stress status and neurotransmitters, were assessed. All doses of AO significantly improved memory, anxiety, and sleep, together with the suppression of oxidative stress, AChE, and GABA-T in the cerebral cortex and hippocampus. These results suggest the protective effect of AO against anxiety, insomnia, and memory impairment that coexist with the MetS condition via an improvement in oxidative stress and the functions of the cholinergic and GABAergic systems. However, this benefit requires clinical confirmation.
Collapse
Affiliation(s)
- Pratthana Srichomphu
- Department of Physiology and Graduate School (Neuroscience Program), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jintanaporn Wattanathorn
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukham-mee
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supaporn Muchimapura
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
63
|
Jiang H. Hypothalamic GABAergic neurocircuitry in the regulation of energy homeostasis and sleep/wake control. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:531-540. [PMID: 37724165 PMCID: PMC10388747 DOI: 10.1515/mr-2022-0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/10/2022] [Indexed: 09/20/2023]
Abstract
Gamma-aminobutyric acid (GABAergic) neuron, as one of important cell types in synaptic transmission, has been widely involved in central nervous system (CNS) regulation of organismal physiologies including cognition, emotion, arousal and reward. However, upon their distribution in various brain regions, effects of GABAergic neurons in the brain are very diverse. In current report, we will present an overview of the role of GABAergic mediated inhibitory neurocircuitry in the hypothalamus, underlying mechanism of feeding and sleep homeostasis as well as the characteristics of latest transcriptome profile in order to call attention to the GABAergic system as potentially a promising pharmaceutical intervention or a deep brain stimulation target in eating and sleep disorders.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| |
Collapse
|
64
|
Wu MC, Liou BK, Chen YS, Lee SC, Xie JJ, Jaw YM, Liu SL. Understanding Young Taiwanese Consumers’ Acceptance, Sensory Profile, and Drivers of Liking for GABA Oolong Tea Beverages with Cold Infusions. Foods 2022; 11:foods11192989. [PMID: 36230065 PMCID: PMC9562905 DOI: 10.3390/foods11192989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The sensory qualities of Taiwanese teas are evaluated by the experts from the Tea Research and Extension Station (TRES) at tea competitions held annually. The prices of Taiwanese teas are also influenced by the results of these tea competitions. However, a tea winning an award and having a high sensory quality and price does not mean that it is liked by Taiwanese consumers. The check all that apply method (CATA) is a scientific method of sensory evaluation. It is able to evaluate the sensory characteristics with consumers and is cheap and time-saving. Twelve samples of γ-aminobutyric acid (GABA) Oolong tea made by the Taiwan Tea No. 12 cultivar were selected from the first Taiwanese GABA tea competition in 2020. The aim of this research was to study young Taiwanese consumers’ acceptability for GABA Oolong tea infusions, and their opinions towards the sensory qualities of teas through questionnaires composed of CATA questions and hedonic scales. Based on the results, the CATA method identified 21 important descriptive terms for GABA tea that were selected by over 20% of consumers. It was found that the consumers like GABA Oolong teas with 13 specific sensory characteristics, but dislike the ones with another 6 specific sensory characteristics. We conjecture that the different process of tea production will affect consumers’ preference for GABA Oolong tea. Overall, GABA Oolong tea has the same delightful sensory characteristics as traditional Taiwanese specialty Oolong teas, and is liked by the young Taiwanese consumers.
Collapse
Affiliation(s)
- Mu-Chen Wu
- Department of Health Business Administration, HungKuang University, Shalu District, Taichung 43302, Taiwan
| | - Bo-Kang Liou
- Department of Food Science & Technology, Central Taiwan University of Science and Technology, Beitun District, Taichung 40601, Taiwan
| | - Yuh-Shuen Chen
- Department of Food Science and Technology, HungKuang University, Shalu District, Taichung 43302, Taiwan
| | - Shih-Chieh Lee
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Dacun, Changhua 515006, Taiwan
- Bachelor Program for Baking and Beverage, Da-Yeh University, Dacun, Changhua 515006, Taiwan
| | - Jia-Jin Xie
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Xiaogang District, Kaohsiung 812301, Taiwan
| | - Yih-Mon Jaw
- Department of Chinese Culinary Arts, National Kaohsiung University of Hospitality and Tourism, Xiaogang District, Kaohsiung 812301, Taiwan
- Correspondence: (Y.-M.J.); (S.-L.L.); Tel.: +886-7-8032535 (Y.-M.J.); +886-4-26318652 (ext. 7288) (S.-L.L.); Fax: +886-7-8032535 (Y.-M.J.); +886-4-26337651 (S.-L.L.)
| | - Shih-Lun Liu
- Department of Food Science & Technology, Central Taiwan University of Science and Technology, Beitun District, Taichung 40601, Taiwan
- Department of Nutrition, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun District, Taichung 40604, Taiwan
- Correspondence: (Y.-M.J.); (S.-L.L.); Tel.: +886-7-8032535 (Y.-M.J.); +886-4-26318652 (ext. 7288) (S.-L.L.); Fax: +886-7-8032535 (Y.-M.J.); +886-4-26337651 (S.-L.L.)
| |
Collapse
|
65
|
Zhang R, Tomasi D, Shokri-Kojori E, Manza P, Feldman DE, Kroll DS, Biesecker CL, McPherson KL, Schwandt M, Wang GJ, Wiers CE, Volkow ND. Effect of detoxification on N3 sleep correlates with brain functional but not structural changes in alcohol use disorder. Drug Alcohol Depend 2022; 238:109545. [PMID: 35779511 PMCID: PMC9444901 DOI: 10.1016/j.drugalcdep.2022.109545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sleep disturbances are very common in alcohol use disorder (AUD) and contribute to relapse. Detoxification appears to have limited effects on sleep problems. However, inter-individual differences and related brain mechanisms have not been closely examined. METHODS We examined N3 sleep and the associated brain functional and structural changes in 30 AUD patients (9 Females, mean age: 42 years) undergoing a 3-week inpatient detoxification. Patients' N3 sleep, resting state functional connectivity (RSFC), grey matter volume (GMV) and negative mood were measured on week 1 and week 3. RESULTS AUD patients did not show significant N3 sleep recovery after 3-weeks of detoxification. However, we observed large variability among AUD patients. Inter-individual variations in N3 increases were associated with increases in midline default mode network (DMN) RSFC but not with GMV using a whole-brain approach. Exploratory analyses revealed significant sex by detoxification effects on N3 sleep such that AUD females showed greater N3 increases than AUD males. Further, N3 increases fully mediated the effect of mood improvement on DMN RSFC increases. CONCLUSIONS We show a significant relationship between N3 and DMN functional changes in AUD over time/abstinence. The current findings may have clinical implications for monitoring brain recovery in AUD using daily sleep measures, which might help guide individualized treatments. Future investigations on sex differences with a larger sample and with longitudinal data for a longer period of abstinence are needed.
Collapse
Affiliation(s)
- Rui Zhang
- National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, MD 20892-1013, USA.
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, MD 20892-1013, USA
| | - Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, MD 20892-1013, USA
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, MD 20892-1013, USA
| | - Dana E Feldman
- National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, MD 20892-1013, USA
| | - Danielle S Kroll
- National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, MD 20892-1013, USA
| | - Catherine L Biesecker
- National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, MD 20892-1013, USA
| | - Katherine L McPherson
- National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, MD 20892-1013, USA
| | - Melanie Schwandt
- National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, MD 20892-1013, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, MD 20892-1013, USA
| | - Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, MD 20892-1013, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, MD 20892-1013, USA; National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892-1013, USA.
| |
Collapse
|
66
|
Ge L, Luo J, Zhang L, Kang X, Zhang D. Association of Pyridoxal 5′-Phosphate with Sleep-Related Problems in a General Population. Nutrients 2022; 14:nu14173516. [PMID: 36079774 PMCID: PMC9460331 DOI: 10.3390/nu14173516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The evidence on the relationship of pyridoxal 5′-phosphate (PLP) with sleep-related problems is limited and controversial. Notably, there is a lack of studies on the general population and studies of the dose–response relationship. Therefore, we conducted a cross-sectional study to examine the associations between serum PLP concentration and sleep-related problems (sleep quality and sleep duration) in adults, using the data of the National Health and Nutrition Examination Survey 2005–2010. High-performance liquid chromatography (HPLC) was used to test PLP in blood samples. Sleep quality and sleep duration were based on self-reported data, with sleep quality categorized as sleep disorder, trouble falling asleep, waking up during the night, and daytime sleepiness. The primary analyses utilized logistic regression models and restricted cubic spline. Compared with the first quartile (Q1), the odds ratios (ORs) and 95% confidence intervals (CIs) of daytime sleepiness for the Q2 and Q3 of serum PLP concentrations were 0.76 (0.59–0.99) and 0.78 (0.62–0.98), respectively. The relationship was only significant for males. Furthermore, a non-linear dose–response relationship was observed between serum PLP concentration and the risk of daytime sleepiness. Compared with the normal sleep duration group, serum PLP concentrations were negatively associated with the risks of very short, short, and long sleep duration, with relative risk ratios (RRRs) of 0.58 (0.43–0.81) (Q4), 0.71 (0.61–0.83) (Q4) and 0.62 (0.34–0.94) (Q3), respectively. The average serum PLP concentrations were higher in people with normal sleep duration, suggesting a non-linear dose–response relationship. Our study indicated that serum PLP concentrations were negatively associated with daytime sleepiness, and this association may only exist in males. Moreover, it was also inversely related to abnormal sleep duration (very short, short, long) compared to normal sleep duration.
Collapse
|
67
|
Watanabe K, Jansen PR, Savage JE, Nandakumar P, Wang X, Hinds DA, Gelernter J, Levey DF, Polimanti R, Stein MB, Van Someren EJW, Smit AB, Posthuma D. Genome-wide meta-analysis of insomnia prioritizes genes associated with metabolic and psychiatric pathways. Nat Genet 2022; 54:1125-1132. [PMID: 35835914 DOI: 10.1038/s41588-022-01124-w] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 06/06/2022] [Indexed: 12/20/2022]
Abstract
Insomnia is a heritable, highly prevalent sleep disorder for which no sufficient treatment currently exists. Previous genome-wide association studies with up to 1.3 million subjects identified over 200 associated loci. This extreme polygenicity suggested that many more loci remain to be discovered. The current study almost doubled the sample size to 593,724 cases and 1,771,286 controls, thereby increasing statistical power, and identified 554 risk loci (including 364 novel loci). To capitalize on this large number of loci, we propose a novel strategy to prioritize genes using external biological resources and functional interactions between genes across risk loci. Of all 3,898 genes naively implicated from the risk loci, we prioritize 289 and find brain-tissue expression specificity and enrichment in specific gene sets of synaptic signaling functions and neuronal differentiation. We show that this novel gene prioritization strategy yields specific hypotheses on underlying mechanisms of insomnia that would have been missed by traditional approaches.
Collapse
Affiliation(s)
- Kyoko Watanabe
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Philip R Jansen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
- Department of Human Genetics, Section Clinical Genetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jeanne E Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | | | - Xin Wang
- 23andMe, Inc., Sunnyvale, CA, USA
| | | | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Daniel F Levey
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Eus J W Van Someren
- Departments of Integrative Neurophysiology and Psychiatry InGeest, Amsterdam Neuroscience, VU University and Medical Center, Amsterdam, the Netherlands
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands.
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands.
| |
Collapse
|
68
|
Palagini L, Bianchini C. Pharmacotherapeutic management of insomnia and effects on sleep processes, neural plasticity, and brain systems modulating stress: A narrative review. Front Neurosci 2022; 16:893015. [PMID: 35968380 PMCID: PMC9374363 DOI: 10.3389/fnins.2022.893015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionInsomnia is a stress-related sleep disorder, may favor a state of allostatic overload impairing brain neuroplasticity, stress immune and endocrine pathways, and may contribute to mental and physical disorders. In this framework, assessing and targeting insomnia is of importance.AimSince maladaptive neuroplasticity and allostatic overload are hypothesized to be related to GABAergic alterations, compounds targeting GABA may play a key role. Accordingly, the aim of this review was to discuss the effect of GABAA receptor agonists, short-medium acting hypnotic benzodiazepines and the so called Z-drugs, at a molecular level.MethodLiterature searches were done according to PRISMA guidelines. Several combinations of terms were used such as “hypnotic benzodiazepines” or “brotizolam,” or “lormetazepam” or “temazepam” or “triazolam” or “zolpidem” or “zopiclone” or “zaleplon” or “eszopiclone” and “insomnia” and “effects on sleep” and “effect on brain plasticity” and “effect on stress system”. Given the complexity and heterogeneity of existing literature, we ended up with a narrative review.ResultsAmong short-medium acting compounds, triazolam has been the most studied and may regulate the stress system at central and peripheral levels. Among Z-drugs eszopiclone may regulate the stress system. Some compounds may produce more “physiological” sleep such as brotizolam, triazolam, and eszopiclone and probably may not impair sleep processes and related neural plasticity. In particular, triazolam, eszopiclone, and zaleplon studied in vivo in animal models did not alter neuroplasticity.ConclusionCurrent models of insomnia may lead us to revise the way in which we use hypnotic compounds in clinical practice. Specifically, compounds should target sleep processes, the stress system, and sustain neural plasticity. In this framework, among the short/medium acting hypnotic benzodiazepines, triazolam has been the most studied compound while among the Z-drugs eszopiclone has demonstrated interesting effects. Both offer potential new insight for treating insomnia.
Collapse
Affiliation(s)
- Laura Palagini
- Psychiatry Division, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- *Correspondence: Laura Palagini,
| | | |
Collapse
|
69
|
Ramírez-Plascencia OD, Saderi N, Cárdenas-Romero S, García-García F, Peña-Escudero C, Flores-Sandoval O, Azuara-Álvarez L, Báez-Ruiz A, Salgado-Delgado R. Leptin and adiponectin regulate the activity of nuclei involved in sleep-wake cycle in male rats. Front Neurosci 2022; 16:907508. [PMID: 35937866 PMCID: PMC9355486 DOI: 10.3389/fnins.2022.907508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiological and experimental evidence recognize a relationship between sleep-wake cycles and adiposity levels, but the mechanisms that link both are not entirely understood. Adipose tissue secretes adiponectin and leptin hormones, mainly involved as indicators of adiposity levels and recently associated to sleep. To understand how two of the main adipose tissue hormones could influence sleep-wake regulation, we evaluated in male rats, the effect of direct administration of adiponectin or leptin in the ventrolateral preoptic nuclei (VLPO), a major area for sleep promotion. The presence of adiponectin (AdipoR1 and AdipoR2) and leptin receptors in VLPO were confirmed by immunohistochemistry. Adiponectin administration increased wakefulness during the rest phase, reduced delta power, and activated wake-promoting neurons, such as the locus coeruleus (LC), tuberomammillary nucleus (TMN) and hypocretin/orexin neurons (OX) within the lateral hypothalamus (LH) and perifornical area (PeF). Conversely, leptin promoted REM and NREM sleep, including increase of delta power during NREM sleep, and induced c-Fos expression in VLPO and melanin concentrating hormone expressing neurons (MCH). In addition, a reduction in wake-promoting neurons activity was found in the TMN, lateral hypothalamus (LH) and perifornical area (PeF), including in the OX neurons. Moreover, leptin administration reduced tyrosine hydroxylase (TH) immunoreactivity in the LC. Our data suggest that adiponectin and leptin act as hormonal mediators between the status of body energy and the regulation of the sleep-wake cycle.
Collapse
Affiliation(s)
- Oscar Daniel Ramírez-Plascencia
- Departamento de Fisiología Celular, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nadia Saderi
- Departamento de Fisiología Celular, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Skarleth Cárdenas-Romero
- Departamento de Fisiología Celular, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Fabio García-García
- Departamento de Biomedicina, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, Mexico
| | - Carolina Peña-Escudero
- Departamento de Biomedicina, Instituto de Ciencias de la Salud, Universidad Veracruzana, Veracruz, Mexico
| | - Omar Flores-Sandoval
- Departamento de Fisiología Celular, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Lucia Azuara-Álvarez
- Departamento de Fisiología Celular, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Adrián Báez-Ruiz
- Departamento de Fisiología Celular, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Roberto Salgado-Delgado
- Departamento de Fisiología Celular, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- *Correspondence: Roberto Salgado-Delgado,
| |
Collapse
|
70
|
Harrington YA, Parisi JM, Duan D, Rojo-Wissar DM, Holingue C, Spira AP. Sex Hormones, Sleep, and Memory: Interrelationships Across the Adult Female Lifespan. Front Aging Neurosci 2022; 14:800278. [PMID: 35912083 PMCID: PMC9331168 DOI: 10.3389/fnagi.2022.800278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/09/2022] [Indexed: 01/26/2023] Open
Abstract
As the population of older adults grows, so will the prevalence of aging-related conditions, including memory impairments and sleep disturbances, both of which are more common among women. Compared to older men, older women are up to twice as likely to experience sleep disturbances and are at a higher risk of cognitive decline and Alzheimer's disease and related dementias (ADRD). These sex differences may be attributed in part to fluctuations in levels of female sex hormones (i.e., estrogen and progesterone) that occur across the adult female lifespan. Though women tend to experience the most significant sleep and memory problems during the peri-menopausal period, changes in memory and sleep have also been observed across the menstrual cycle and during pregnancy. Here, we review current knowledge on the interrelationships among female sex hormones, sleep, and memory across the female lifespan, propose possible mediating and moderating mechanisms linking these variables and describe implications for ADRD risk in later life.
Collapse
Affiliation(s)
- Yasmin A. Harrington
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jeanine M. Parisi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Daisy Duan
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Darlynn M. Rojo-Wissar
- The Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Center for Behavioral and Preventive Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Calliope Holingue
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Adam P. Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Johns Hopkins Center on Aging and Health, Baltimore, MD, United States
| |
Collapse
|
71
|
Liu Y, Meng F, Tang P, Huang D, Li Q, Lin M. Widely Targeted Metabolomics Analysis of the Changes to Key Non-volatile Taste Components in Stropharia rugosoannulata Under Different Drying Methods. Front Nutr 2022; 9:884400. [PMID: 35662941 PMCID: PMC9161365 DOI: 10.3389/fnut.2022.884400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Stropharia rugosoannulata is an extremely perishable edible fungi product, and drying can delay its deterioration, however, drying will affect its flavor, especially the non-volatile taste substances dominated by amino acids, nucleotides, organic acids and carbohydrates. Currently, which drying method is the most suitable for the drying of S. rugosoannulata remains unknown, we need to fully consider the economic efficiency of the method and the impact on flavor. But we have limited comprehensive knowledge of the changed non-volatile taste metabolites as caused by drying processes. Here, an LC-MS/MS-based widely targeted metabolome analysis was conducted to investigate the transformation mechanism of S. rugosoannulata non-volatile taste components after undergoing hot air drying (HAD), vacuum freeze drying (VFD), and microwave vacuum drying (MVD). A total of 826 metabolites were identified, 89 of which—48 amino acids, 25 nucleotides, 8 organic acids, and 8 carbohydrates—were related to non-volatile taste. The drying method used and the parts of S. rugosoannulata (stipe and pileus) influenced the differences found in these metabolites. The possible mechanisms responsible for such chemical alterations by different drying methods were also investigated by a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Amino acid metabolism (alanine, aspartate, and glutamate metabolism; glycine, serine, and threonine metabolism; arginine and proline metabolism; valine, leucine, and isoleucine biosynthesis) was the main metabolic pathway involved. Pathway enrichment analysis also identified differences in non-volatile taste components among three drying methods that may be closely related to the applied drying temperature. Altogether, the results indicated that as an economical and convenient drying method, HAD is conducive to improving the flavor of S. rugosoannulata and thus it harbors promising potential for practical applications.
Collapse
Affiliation(s)
- Yi Liu
- Institute of Agricultural Products Processing, Guizhou Academy of Agricultural Sciences, Guiyang, China
- Guizhou Vocational College of Foodstuff Engineering, Guiyang, China
- Guizhou Characteristic Food Technology Co., Ltd, Guiyang, China
| | - Fangbo Meng
- Institute of Agricultural Products Processing, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Pengyu Tang
- Institute of Agricultural Products Processing, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Daomei Huang
- Institute of Agricultural Products Processing, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Qixing Li
- Institute of Agricultural Products Processing, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Mao Lin
- Institute of Agricultural Products Processing, Guizhou Academy of Agricultural Sciences, Guiyang, China
- Guizhou Characteristic Food Technology Co., Ltd, Guiyang, China
- *Correspondence: Mao Lin,
| |
Collapse
|
72
|
Chaturvedi R, Stork T, Yuan C, Freeman MR, Emery P. Astrocytic GABA transporter controls sleep by modulating GABAergic signaling in Drosophila circadian neurons. Curr Biol 2022; 32:1895-1908.e5. [PMID: 35303417 PMCID: PMC9090989 DOI: 10.1016/j.cub.2022.02.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/11/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022]
Abstract
A precise balance between sleep and wakefulness is essential to sustain a good quality of life and optimal brain function. GABA is known to play a key and conserved role in sleep control, and GABAergic tone should, therefore, be tightly controlled in sleep circuits. Here, we examined the role of the astrocytic GABA transporter (GAT) in sleep regulation using Drosophila melanogaster. We found that a hypomorphic gat mutation (gat33-1) increased sleep amount, decreased sleep latency, and increased sleep consolidation at night. Interestingly, sleep defects were suppressed when gat33-1 was combined with a mutation disrupting wide-awake (wake), a gene that regulates the cell-surface levels of the GABAA receptor resistance to dieldrin (RDL) in the wake-promoting large ventral lateral neurons (l-LNvs). Moreover, RNAi knockdown of rdl and its modulators dnlg4 and wake in these circadian neurons also suppressed gat33-1 sleep phenotypes. Brain immunohistochemistry showed that GAT-expressing astrocytes were located near RDL-positive l-LNv cell bodies and dendritic processes. We concluded that astrocytic GAT decreases GABAergic tone and RDL activation in arousal-promoting LNvs, thus determining proper sleep amount and quality in Drosophila.
Collapse
Affiliation(s)
- Ratna Chaturvedi
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tobias Stork
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Chunyan Yuan
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Marc R Freeman
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
73
|
Bouchebti S, Bodner L, Bergman M, Magory Cohen T, Levin E. The effects of dietary proline, β-alanine, and γ-aminobutyric acid (GABA) on the nest construction behavior in the Oriental hornet (Vespa orientalis). Sci Rep 2022; 12:7449. [PMID: 35523992 PMCID: PMC9076666 DOI: 10.1038/s41598-022-11579-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
Adult wasps primary food resource is larval saliva. This liquid secretion consists mainly of amino acids and carbohydrates processed from the prey brought to the colony by the foragers. However, adults also regularly consume floral nectar. The nectar's most abundant proteinogenic amino acid is proline, and the two most abundant non-proteinogenic amino acids are β-alanine and GABA. These three amino acids are also common in larval saliva. Here, we study the effect of these dietary amino acids on the physiology and nest construction behavior of the Oriental hornet. Our results reveal their deleterious effects, especially at high concentrations: β-alanine and GABA consumption reduced the hornets' lifespan and completely inhibited their construction behavior; while proline induced a similar but more moderate effect. At low concentrations, these amino acids had no effect on hornet survival but did slow down the nest construction process. Using carbon isotopically labeled amino acids, we show that, unlike proline, β-alanine is stored in most body tissues (brain, muscles, and fat body), suggesting that it is rapidly metabolized after consumption. Our findings demonstrate how a single amino acid can impact the fitness of a nectarivore insect.
Collapse
Affiliation(s)
- Sofia Bouchebti
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
| | - Levona Bodner
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Maya Bergman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Tali Magory Cohen
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.,Steinhardt Museum of Natural History, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Eran Levin
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| |
Collapse
|
74
|
Dasdelen MF, Er S, Kaplan B, Celik S, Beker MC, Orhan C, Tuzcu M, Sahin N, Mamedova H, Sylla S, Komorowski J, Ojalvo SP, Sahin K, Kilic E. A Novel Theanine Complex, Mg-L-Theanine Improves Sleep Quality via Regulating Brain Electrochemical Activity. Front Nutr 2022; 9:874254. [PMID: 35449538 PMCID: PMC9017334 DOI: 10.3389/fnut.2022.874254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
L-Theanine is commonly used to improve sleep quality through inhibitory neurotransmitters. On the other hand, Mg2+, a natural NMDA antagonist and GABA agonist, has a critical role in sleep regulation. Using the caffeine-induced brain electrical activity model, here we investigated the potency of L-theanine and two novel Mg-L-theanine compounds with different magnesium concentrations on electrocorticography (ECoG) patterns, GABAergic and serotonergic receptor expressions, dopamine, serotonin, and melatonin levels. Furthermore, we evaluated the sleep latency and duration in the pentobarbital induced sleep model. We herein showed that L-theanine, particularly its various complexes with magnesium increases the expression of GABAergic, serotonergic, and glutamatergic receptors, which were associated with decreased ECoG frequency, increased amplitude, and enhanced delta wave powers. Besides increased dopamine, serotonin, and melatonin; decreased MDA and increased antioxidant enzyme levels were also observed particularly with Mg-complexes. Protein expression analyses also showed that Mg-L-theanine complexes decrease inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) levels significantly. In accordance with these results, Mg complexes improved the sleep latency and duration even after caffeine administration. As a result, our data indicate that Mg-L-theanine compounds potentiate the effect of L-theanine on sleep by boosting slow-brain waves, regulating brain electrical activity, and increasing neurotransmitter and GABA receptor levels.
Collapse
Affiliation(s)
| | - Sezgin Er
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Berkan Kaplan
- Department of Neurology, Istanbul Medipol University, Istanbul, Turkey
| | - Suleyman Celik
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Mustafa Caglar Beker
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Havakhanum Mamedova
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Sarah Sylla
- Scientific and Regulatory Affairs, Nutrition21, LLC, Purchase, NY, United States
| | - James Komorowski
- Scientific and Regulatory Affairs, Nutrition21, LLC, Purchase, NY, United States
| | - Sara Perez Ojalvo
- Scientific and Regulatory Affairs, Nutrition21, LLC, Purchase, NY, United States
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Ertugrul Kilic
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey,*Correspondence: Ertugrul Kilic, ;
| |
Collapse
|
75
|
Zhang XY, Spruyt K. Literature Cases Summarized Based on Their Polysomnographic Findings in Rett Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063422. [PMID: 35329122 PMCID: PMC8955319 DOI: 10.3390/ijerph19063422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 12/10/2022]
Abstract
Rett syndrome (RTT) is a severe and rare neurodevelopmental disorder affecting mostly girls. In RTT, an impaired sleep pattern is a supportive criterion for the diagnosis, yet little is known regarding the sleep structure and sleep respiratory events. Aiming to delineate sleep by aggregating RTT case (series) data from published polysomnographic studies, seventy-four RTT cases were collected from eleven studies up until 6 February 2022 (PROSPERO: CRD 42020198099). We compared the polysomnographic data within RTT stratifications and to a typically developing population. MECP2 cases demonstrated shortened total sleep time (TST) with increased stage N3 and decreased REM sleep. In cases with CDKL5 mutations, TST was longer and they spent more time in stage N1 but less in stage N3 than those cases affected by MECP2 mutations and a typically developing population. Sleep-disordered breathing was confirmed by the abnormal apnea/hypopnea index of 11.92 ± 23.67/h TST in these aggregated cases. No association of sleep structure with chronological age was found. In RTT, the sleep macrostructure of MECP2 versus CDKL5 cases showed differences, particularly regarding sleep stage N3. A severe REM sleep propensity reduction was found. Aberrant sleep cycling, possibly characterized by a poor REM ‘on switch’ and preponderance in slow and high-voltage sleep, is proposed.
Collapse
|
76
|
Wei Y, Xu J, Miao S, Wei K, Peng L, Wang Y, Wei X. Recent advances in the utilization of tea active ingredients to regulate sleep through neuroendocrine pathway, immune system and intestinal microbiota. Crit Rev Food Sci Nutr 2022; 63:7598-7626. [PMID: 35266837 DOI: 10.1080/10408398.2022.2048291] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sleep disorders have received widespread attention nowadays, which have been promoted by the accelerated pace of life, unhealthy diets and lack of exercise in modern society. The chemical medications to improve sleep has shown serious side effects and risks with high costs. Therefore, it is urgent to develop efficient nutraceuticals from natural sources to ensure sleep quality as a sustainable strategy. As the second most consumed beverage worldwide, the health-promoting effects of tea have long been widely recognized. However, the modulatory effect of teas on sleep disorders has received much less attention. Tea contains various natural sleep-modulating active ingredients such as L-theanine (LTA), caffeine, tea polyphenols (TPP), tea pigments, tea polysaccharides (TPS) and γ-aminobutyric acid (GABA). This review focuses on the potential influence and main regulating mechanisms of different tea active ingredients on sleep, including being absorbed by the small intestine and then cross the blood-brain barrier to act on neurons in the brain as neurotransmitters, manipulating the immune system and further affect sleep-wake cycle by regulating the levels of cytokines, and controlling the gut microbes to maintain the homeostasis of circadian rhythm. Current research progress and limitations are summarized and several future development directions are also proposed. This review hopes to provide new insights into the future elucidation of the sleep-regulating mechanisms of different teas and their natural active ingredients and the development of tea-based functional foods for alleviating sleep disorders. HighlightsNatural sleep-modulating active ingredients in tea have been summarized.Influences of drinking tea or tea active ingredients on sleep are reviewed.Three main regulating mechanisms of tea active ingredients on sleep are explained.The associations among nervous system, immune system and intestinal microbiota are investigated.The potential of developing delivery carriers for tea active ingredients is proposed.
Collapse
Affiliation(s)
- Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Siwei Miao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Kang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
77
|
Das S S, R K, George S, PS BC, Maliakel B, Ittiyavirah S, IM K. Thymoquinone-rich black cumin oil improves sleep quality, alleviates anxiety/stress on healthy subjects with sleep disturbances– A pilot polysomnography study. J Herb Med 2022. [DOI: 10.1016/j.hermed.2021.100507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
78
|
Ikeda Y, Nasu M. A Randomized Double-Blind Placebo-Controlled Evaluation of the Safety and Efficacy of Wild Sage Metabolites in Preventing Snoring, Improving Sleep, and Activating Alpha Wave Brain Frequencies in Healthy Adults. Cureus 2022; 14:e22714. [PMID: 35386141 PMCID: PMC8967657 DOI: 10.7759/cureus.22714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 12/01/2022] Open
Abstract
Upper airway problems and stress can cause sleep disorders. The present study was designed to evaluate the efficacy and safety of wild sage metabolites (WSM) for snoring treatment and alpha wave activation in healthy men and women. A total of 42 subjects compliant with inclusion criteria were randomly assigned to one of the two groups, viz. Group 1-WSM and Group 2-Placebo, using a simple randomization process. Consumption of WSM by healthy men and women resulted in the decrease of Pittsburgh Sleep Quality Index (PSQI) global score by 29%, improved assessment by their sleep mates, and increased alpha brain wave by 55%. In conclusion, medication with WSM resulted in significant reduced snoring, stress, and improved sleep quality after 30 days, with a good tolerance among subjects. No side effects or adverse events were reported during the study. Hence, WSM at 450 mg/day could be recommended as an effective agent for snoring treatment, improving the quality of sleep, and stress reduction.
Collapse
|
79
|
Zhou J, Wu X, Li Z, Zou Z, Dou S, Li G, Yan F, Chen B, Li Y. Alterations in Gut Microbiota Are Correlated With Serum Metabolites in Patients With Insomnia Disorder. Front Cell Infect Microbiol 2022; 12:722662. [PMID: 35252021 PMCID: PMC8892143 DOI: 10.3389/fcimb.2022.722662] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate insomnia-related alterations in gut microbiota and their association with serum metabolites. A total of 24 patients with insomnia disorder and 22 healthy controls were recruited. The fecal and serum samples were collected. The 16s rRNA sequencing and bioinformatics analysis were conducted to explore insomnia-related changes in the diversity, structure, and composition of the gut microbiota. UPLC-MS was performed to identify insomnia-related serum metabolites. Spearman correlation analysis was used to investigate the correlations between insomnia-related gut bacteria and the serum metabolites. Despite the nonsignificant changes in the diversity and structure of gut microbiota, insomnia disorder patients had significantly decreased family Bacteroidaceae, family Ruminococcaceae, and genus Bacteroides, along with significantly increased family Prevotellaceae and genus Prevotella, compared with healthy controls. Genus Gemmiger and genus Fusicatenibacter were dominant in patients with insomnia disorder, whereas genus Coprococcus, genus Oscillibacter, genus Clostridium XI, and family Peptostreptococcaceae were dominant in healthy controls. The UPLC-MS analysis identified 97 significantly decreased metabolites and 74 significantly increased metabolites in the serum samples of patients with insomnia disorder, compared with those of healthy controls. KEGG enrichment analysis revealed 1 significantly upregulated metabolic pathway and 16 downregulated metabolic pathways in patients with insomnia disorder. Furthermore, Spearman correlation analysis unveiled significant correlations among the altered bacteria genus and serum metabolites. Patients with insomnia disorder have differential gut microbiota and serum metabolic profiles compared with healthy controls. The alterations in gut microbiota were correlated with specific serum metabolites, suggesting that some serum metabolites might mediate gut microbiota-brain communication in the pathogenesis of insomnia disorder.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Health Management, Henan Key Laboratory of Chronic Disease Health Management, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Xiaoling Wu
- Department of Nuclear Medicine, Henan Key Laboratory of Chronic Disease Health Management, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Zhonglin Li
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Zhi Zou
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Shewei Dou
- Department of Medical Imaging, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Gang Li
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Fengshan Yan
- Department of Medical Imaging, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Bairu Chen
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yongli Li
- Department of Health Management, Henan Key Laboratory of Chronic Disease Health Management, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
- *Correspondence: Yongli Li,
| |
Collapse
|
80
|
Song X, Wang L, Liu Y, Zhang X, Weng P, Liu L, Zhang R, Wu Z. The gut microbiota–brain axis: Role of the gut microbial metabolites of dietary food in obesity. Food Res Int 2022; 153:110971. [DOI: 10.1016/j.foodres.2022.110971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 12/13/2022]
|
81
|
Peng J, Fan M, An C, Ni F, Huang W, Luo J. A narrative review of molecular mechanism and therapeutic effect of Cannabidiol (CBD). Basic Clin Pharmacol Toxicol 2022; 130:439-456. [PMID: 35083862 DOI: 10.1111/bcpt.13710] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/28/2022]
Abstract
Cannabidiol (CBD) is an abundant non-psychoactive phytocannabinoid in Cannabis extracts which has high affinity on a series of receptors, including type 1 cannabinoid receptor (CB1), type 2 cannabinoid receptor (CB2), GPR55, transient receptor potential vanilloid (TRPV), and peroxisome proliferator-activated receptor gamma (PPARγ). By modulating the activities of these receptors, CBD exhibits multiple therapeutic effects, including neuroprotective, antiepileptic, anxiolytic, antipsychotic, anti-inflammatory, analgesic and anti-cancer properties. CBD could also be applied to treat or prevent COVID-19 and its complications. Here, we provide a narrative review of CBD's applications in human diseases: from mechanism of action to clinical trials.
Collapse
Affiliation(s)
- Jiangling Peng
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Mingjie Fan
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Chelsea An
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | | |
Collapse
|
82
|
Jiao J, Tan L, Zhang Y, Li T, Tang X. Repetitive transcranial magnetic stimulation for insomnia in patients with autism spectrum disorder: Study protocol for a randomized, double-blind, and sham-controlled clinical trial. Front Psychiatry 2022; 13:977341. [PMID: 36245883 PMCID: PMC9554245 DOI: 10.3389/fpsyt.2022.977341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Insomnia is the most common comorbidity in children with autism spectrum disorder (ASD) and seriously affects their rehabilitation and prognosis. Thus, an intervention targeting insomnia in ASD seems warranted. Repetitive transcranial magnetic stimulation (rTMS), a potentially effective treatment for improving sleep quality and optimizing sleep structure, has already been demonstrated to alleviate insomnia symptoms and sleep disturbance in different neurological and neuropsychiatric conditions. This trial aims to investigate the effects of rTMS on insomnia in patients with ASD. METHOD This study is designed to be a double-blind, randomized, and sham-controlled trial with a target sample size of 30 participants (aged 3-13 years) diagnosed with ASD comorbid with insomnia. The intervention phase will comprise 20 sessions of rTMS or sham rTMS applied over the right dorsolateral prefrontal cortex (DLPFC) within four consecutive weeks. The effect of rTMS on insomnia and other symptoms of ASD will be investigated through home-PSG (two consecutive overnights), sleep diary, CSHQ, CARS, ABC, SRS, RBS-R, and metabolomics analysis at baseline and posttreatment. A follow-up assessment 1 month after the intervention will examine the long-term effects. DISCUSSION The results of this study may address an important knowledge gap and may provide evidence for the use of rTMS to treat insomnia in ASD. Furthermore, it will elucidate the potential mechanism and link between sleep disorders and clinical symptoms. CLINICAL TRIAL REGISTRATION The study is ongoing and has been registered at the Chinese Clinical Trial Registry (ChiCTR2100049266) on 28/07/2021.
Collapse
Affiliation(s)
- Jian Jiao
- Sleep Medicine Center, Mental Health Center, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Tan
- Sleep Medicine Center, Mental Health Center, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Zhang
- Sleep Medicine Center, Mental Health Center, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Taomei Li
- Sleep Medicine Center, Mental Health Center, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangdong Tang
- Sleep Medicine Center, Mental Health Center, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
83
|
Galli J, Loi E, Visconti LM, Mattei P, Eusebi A, Calza S, Fazzi E. Sleep Disturbances in Children Affected by Autism Spectrum Disorder. Front Psychiatry 2022; 13:736696. [PMID: 35250655 PMCID: PMC8891952 DOI: 10.3389/fpsyt.2022.736696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/24/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Sleep disturbances are common in children affected by Autism Spectrum Disorder (ASD). The aim of our study was to describe sleep characteristics and disturbances in children with ASD, to evaluate possible related factors, and to assess parental stress. METHODS Hundred children with a diagnosis of ASD (mean age: 66.7 months, SD: 27.4, range: 24.7-152.1 months, n = 79 males) were included in the study. We collected data on sociodemographic, clinical, genetic and instrumental variables as well as comorbid conditions. Parents filled out the Questionnaire on sleep behavior in the first years of life, the BEARS questionnaire, and the Parenting Stress Index Short Form. From the analysis on sleep characteristics, we excluded 25 children treated with melatonin. RESULTS Fifty-seven (57%) out of 100 children met the criteria for insomnia. Sleep disorders were associated with developmental or cognitive delay, emotional and behavioral problems (such as anxiety problems and aggressive behaviors) and absence of strategies for inducing sleep after nocturnal awakenings. From parents' reports, sleep disorders had diurnal repercussions on their offspring; however, we found no statistical correlation between disturbances and family stress. Also, no significant correlation was found between sleep disturbances and epilepsy. Finally, a statistical correlation was found between the regular intake of melatonin and the resolution of insomnia. CONCLUSIONS Multifactorial variables may be associated to insomnia that could have an impact on the children' behavior. Clinicians need to be aware of the value of screening for sleep disturbance in children with ASD to integrate sleep interventions in the treatment plan.
Collapse
Affiliation(s)
- Jessica Galli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Erika Loi
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Paola Mattei
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Anna Eusebi
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Stefano Calza
- BDbiomed, BODaI Lab, University of Brescia, Brescia, Italy
| | - Elisa Fazzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | | |
Collapse
|
84
|
Dauvilliers Y, Bogan RK, Šonka K, Partinen M, Foldvary-Schaefer N, Thorpy MJ. Calcium, Magnesium, Potassium, and Sodium Oxybates Oral Solution: A Lower-Sodium Alternative for Cataplexy or Excessive Daytime Sleepiness Associated with Narcolepsy. Nat Sci Sleep 2022; 14:531-546. [PMID: 35378745 PMCID: PMC8976528 DOI: 10.2147/nss.s279345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Lower-sodium oxybate (LXB) is an oxybate medication approved to treat cataplexy or excessive daytime sleepiness (EDS) in patients with narcolepsy 7 years of age and older in the United States. LXB was developed as an alternative to sodium oxybate (SXB), because the incidence of cardiovascular comorbidities is higher in patients with narcolepsy and there is an elevated cardiovascular risk associated with high sodium consumption. LXB has a unique formulation of calcium, magnesium, potassium, and sodium ions, containing 92% less sodium than SXB. Whereas the active oxybate moiety is the same for LXB and SXB, their pharmacokinetic profiles are not bioequivalent; therefore, a phase 3 trial in participants with narcolepsy was conducted for LXB. This review summarizes the background on oxybate as a therapeutic agent and its potential mechanism of action on the gamma-aminobutyric acid type B (GABAB) receptor at noradrenergic and dopaminergic neurons, as well as at thalamocortical neurons. The rationale leading to the development of LXB as a lower-sodium alternative to SXB and the key efficacy and safety data supporting its approval for both adult and pediatric patients with narcolepsy are also discussed. LXB was approved in August 2021 in the United States for the treatment of idiopathic hypersomnia in adults. Potential future developments in the field of oxybate medications may include novel formulations and expanded indications for other diseases.
Collapse
Affiliation(s)
- Yves Dauvilliers
- Sleep and Wake Disorders Centre, Department of Neurology, Gui de Chauliac Hospital, Montpellier, France.,University of Montpellier, INSERM Institute Neuroscience Montpellier (INM), Montpellier, France
| | - Richard K Bogan
- University of South Carolina School of Medicine, Columbia, SC, USA
| | - Karel Šonka
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Markku Partinen
- Helsinki Sleep Clinic, Terveystalo Healthcare, and Department of Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | | | - Michael J Thorpy
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
85
|
Ahmadu PU, Victor E, Ameh FS. Studies on some neuropharmacological properties of Nevirapine in mice. IBRO Neurosci Rep 2021; 12:12-19. [PMID: 34935003 DOI: 10.1016/j.ibneur.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022] Open
Abstract
Nevirapine (NVP) is non-nucleoside reverse transcriptase inhibitor and an anti-retroviral drug (ARV) with the highest BBB penetrating ability. Its specific pharmacologic effects on central nervous system (CNS) are not well known. The objective of the study was to investigate some CNS effects of Nevirapine. Oral acute toxicity test (Lorke, 1983) was used to estimate the LD50. Exploratory or sedative effects were tested using open field test(OFT), Hole-board test (HBT), diazepam-induced sleeping time test, and ketamine-induced sleeping time test. Five groups of mice were used (5 mice /group). The negative control group received vehicle (distilled water) (10 mL /kg) while groups II, III, and IV received NVP- 15.625 mg/kg, 31.25 mg/kg, 62.5 mg/kg body weight respectively while group V received 0.25 mg/kg of diazepam intraperitoneal. Groups I to IV were treated orally. The oral LD50 was determined to be 2154. 07 mg/kg. NVP, in a dose dependent fashion, increased the number of line-crossing in the OFT. Also, NVP in a dose-dependent fashion, significantly reduced the duration of diazepam-induced sleeping time as well as delayed onset. NVP significantly potentiated ketamine-induced sleeping time duration. Nevirapine possess excitatory effects possibly through antagonism of GABA receptors. Nevirapine causes wakefulness (shortening of sleep) possibly via antagonism of GABAergic neurotransmission.
Collapse
Affiliation(s)
- Peter Uchogu Ahmadu
- Department of Pharmacology and Toxicology, National Institute for Pharmaceutical Research and Development, Federal Ministry of Health, P.M.B 21, Garki, Abuja, Nigeria
| | - Ejigah Victor
- Department of Pharmaceutics, College of Pharmacy, Howard University, Washington, DC, USA
| | - Fidelis Solomon Ameh
- Department of Pharmacology and Toxicology, National Institute for Pharmaceutical Research and Development, Federal Ministry of Health, P.M.B 21, Garki, Abuja, Nigeria
| |
Collapse
|
86
|
Metabolomic and pharmacologic analyses of brain substances associated with sleep pressure in mice. Neurosci Res 2021; 177:16-24. [PMID: 34856199 DOI: 10.1016/j.neures.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022]
Abstract
Sleep pressure, the driving force of the homeostatic sleep regulation, is accumulated during wakefulness and dissipated during sleep. Sleep deprivation (SD) has been used as a method to acutely increase animal's sleep pressure for investigating the molecular changes under high sleep pressure. However, SD induces changes not only reflecting increased sleep pressure but also inevitable stresses and prolonged wake state itself. The Sik3Sleepy mutant mice (Sleepy) exhibit constitutively high sleep pressure despite sleeping longer, and have been useful as a model of increased sleep pressure. Here we conducted a cross-comparison of brain metabolomic profiles between SD versus ad lib slept mice, as well as Sleepy mutant versus littermate wild-type mice. Targeted metabolome analyses of whole brains quantified 203 metabolites in total, of which 43 metabolites showed significant changes in SD, whereas three did in Sleepy mutant mice. The large difference in the number of differential metabolites highlighted limitations of SD as methodology. The cross-comparison revealed that a decrease in betaine and an increase in imidazole dipeptides are associated with high sleep pressure in both models. These metabolites may be novel markers of sleep pressure at the whole-brain level. Furthermore, we found that intracerebroventricular injection of imidazole dipeptides increased subsequent NREM sleep time, suggesting the possibility that imidazole dipeptides may participate in the regulation of sleep in mice.
Collapse
|
87
|
Della Vecchia A, Arone A, Piccinni A, Mucci F, Marazziti D. GABA System in Depression: Impact on Pathophysiology and Psychopharmacology. Curr Med Chem 2021; 29:5710-5730. [PMID: 34781862 DOI: 10.2174/0929867328666211115124149] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The pathophysiology of major depressive disorder (MDD), one of the major causes of worldwide disability, is still largely unclear, despite the increasing data reporting evidence of multiple alterations of different systems. Recently, there was a renewed interest in the signalling of gamma aminobutyric acid (GABA) - the main inhibitory neurotransmitter. OBJECTIVE The aim of this study was to review and comment on the available literature about the involvement of GABA in MDD, as well as on novel GABAergic compounds possibly useful as antidepressants. METHODS We carried out a narrative review through Pubmed, Google Scholar and Scopus, by using specific keywords. RESULTS The results, derived from various research tools, strongly support the presence of a deficiency of the GABA system in MDD, which appears to be restored by common antidepressant treatments. More recent publications would indicate the complex interactions between GABA and all the other processes involved in MDD, such as monoamine neurotransmission, hypothalamus-pituitary adrenal axis functioning, neurotrophism, and immune response. Taken together, all these findings seem to further support the complexity of the pathophysiology of MDD, possibly reflecting the heterogeneity of the clinical pictures. CONCLUSION Although further data are necessary to support the specificity of GABA deficiency in MDD, the available findings would suggest that novel GABAergic compounds might constitute innovative therapeutic strategies in MDD.
Collapse
Affiliation(s)
- Alessandra Della Vecchia
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Armando Piccinni
- Saint Camillus International University of Health and Medical Sciences, Rome. Italy
| | - Federico Mucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena. Italy
| | - Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| |
Collapse
|
88
|
Pittaras E, Colas D, Chuluun B, Allocca G, Heller C. Enhancing sleep after training improves memory in Down syndrome model mice. Sleep 2021; 45:6383427. [PMID: 34618890 DOI: 10.1093/sleep/zsab247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by the presence of all or part of a third copy of chromosome 21. DS is associated with cognitive disabilities, for which there are no drug therapies. In spite of significant behavioral and pharmacological efforts to treat cognitive disabilities, new and continued efforts are still necessary. Over sixty percent of children with DS are reported to have sleep apnea that disrupt normal sleep. Normal and adequate sleep is necessary to maintain optimal cognitive functions. Therefore, we asked whether improved quality and/or quantity of sleep could improve cognitive capacities of people with DS. To investigate this possibility, we used the Ts65Dn mouse model of DS and applied two methods for enhancing their sleep following training on mouse memory tasks. A behavioral method was to impose sleep deprivation prior to training resulting in sleep rebound following the training. A pharmacologic method, hypocretin receptor 2 antagonist, was used immediately after the training to enhance subsequent sleep knowing that hypocretin is involved in the maintenance of wake. Our behavioral method resulted in a sleep reorganization that decreased wake and increased REM sleep following the training associated with an improvement of recognition memory and spatial memory in the DS model mice. Our pharmacologic approach decreased wake and increased NREM sleep and was associated with improvement only in the spatial memory task. These results show that enhancing sleep after the training in a memory task improves memory consolidation in a mouse model of DS.
Collapse
Affiliation(s)
- E Pittaras
- Stanford University, Department: Biology, Stanford, CA, USA
| | | | - B Chuluun
- Stanford University, Department: Biology, Stanford, CA, USA
| | - G Allocca
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia and School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia and Somnivore Pty. Ltd., Bacchus Marsh, VIC, Australia
| | - C Heller
- Stanford University, Department: Biology, Stanford, CA, USA
| |
Collapse
|
89
|
Lin YS, Wang CC, Chen CY. GWAS Meta-Analysis Reveals Shared Genes and Biological Pathways between Major Depressive Disorder and Insomnia. Genes (Basel) 2021; 12:1506. [PMID: 34680902 PMCID: PMC8536096 DOI: 10.3390/genes12101506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent and disabling mental disorders worldwide. Among the symptoms of MDD, sleep disturbance such as insomnia is prominent, and the first reason patients may seek professional help. However, the underlying pathophysiology of this comorbidity is still elusive. Recently, genome-wide association studies (GWAS) have begun to unveil the genetic background of several psychiatric disorders, including MDD and insomnia. Identifying the shared genomic risk loci between comorbid psychiatric disorders could be a valuable strategy to understanding their comorbidity. This study seeks to identify the shared genes and biological pathways between MDD and insomnia based on their shared genetic variants. First, we performed a meta-analysis based on the GWAS summary statistics of MDD and insomnia obtained from Psychiatric Genomics Consortium and UK Biobank, respectively. Next, we associated shared genetic variants to genes using two gene mapping strategies: (a) positional mapping based on genomic proximity and (b) expression quantitative trait loci (eQTL) mapping based on gene expression linkage across multiple tissues. As a result, a total of 719 shared genes were identified. Over half (51%) of them are protein-coding genes. Functional enrichment analysis shows that the most enriched biological pathways are related to epigenetic modification, sensory perception, and immunologic signatures. We also identified druggable targets using a network approach. Together, these results may provide insights into understanding the genetic predisposition and underlying biological pathways of comorbid MDD and insomnia symptoms.
Collapse
Affiliation(s)
- Yi-Sian Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (Y.-S.L.); (C.-C.W.)
| | - Chia-Chun Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (Y.-S.L.); (C.-C.W.)
| | - Cho-Yi Chen
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (Y.-S.L.); (C.-C.W.)
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
90
|
Roshanravan N, Ghaffari S. The therapeutic potential of Crocus sativus Linn.: A comprehensive narrative review of clinical trials. Phytother Res 2021; 36:98-111. [PMID: 34532906 DOI: 10.1002/ptr.7286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022]
Abstract
Crocus sativus Linn. (Saffron) is valued worldwide for its potential use in the management of various degenerative disorders, including cardiovascular diseases (CVDs), diabetes, cancer, metabolic syndrome (MetS), neurodegenerative diseases, immune disorders, and sexual dysfunction. Previous reports, based on clinical trials, suggest that crocetin, crocin, picrocrocin, and safranal are the main bioactive components of saffron with antioxidant, anti-inflammatory, and anti-apoptotic effects. In this comprehensive narrative review, we studied the recent clinical trials, investigating the medicinal applications of saffron and/or its components. The present results can provide important insights into the potential of saffron in preventing and treating different disorders, with a special focus on the underlying cellular and molecular mechanisms. However, further high-quality studies are needed to firmly establish the clinical efficacy of saffron in treating some degenerative diseases.
Collapse
Affiliation(s)
- Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
91
|
Wu H, Liu R, Wang J, Li T, Sun Y, Feng X, Bi Y, Zhang C, Sun Y. Liquid chromatography-mass spectrometry in-depth analysis and in silico verification of the potential active ingredients of Baihe Dihuang decoction in vivo and in vitro. J Sep Sci 2021; 44:3933-3958. [PMID: 34473407 DOI: 10.1002/jssc.202100434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022]
Abstract
Baihe Dihuang decoction is a commonly used herbal formula to treat depression and insomnia in traditional Chinese medicine. This study established a liquid chromatography-mass spectrometry method to investigate the potential active ingredients and the components absorbed in the blood and brain tissue of mice. Using a new data processing method, 94 chemical components were identified, 33 and 9 of which were absorbed in the blood and brain. More interestingly, we analyzed the substance changes during co-decoction and the characteristics of the compounds absorbed in the blood and brain. The results show that 71 newly generated chemical components were discovered from co-decoction: 38 with fragment information and five absorbed in the blood. Ultimately, the results of molecular docking show that these components have excellent performance in proteins of γ-aminobutyric acid, serotonin and melatonin receptors. The docking results of emodin with Monoamine Oxidase A and Melatonin Receptor 1A, and luteolin with Solute Carrier Family 6 Member 4, Glyoxalase I, Monoamine Oxidase B and Melatonin Receptor 1A, may explain the mechanism of action of Baihe Dihuang decoction in treating insomnia and depression. Overall, our research results may provide novel perspectives for further understanding of the effective substances in Baihe Dihuang decoction.
Collapse
Affiliation(s)
- Hao Wu
- Department of Analysisand Testing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Runhua Liu
- Department of Analysisand Testing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Jiaqi Wang
- Department of Analysisand Testing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Tianyi Li
- Department of Analysisand Testing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yu Sun
- Department of Analysisand Testing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Xin Feng
- Department of Analysisand Testing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yuelin Bi
- Department of Analysisand Testing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Chenning Zhang
- Department of Analysisand Testing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yikun Sun
- Department of Analysisand Testing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| |
Collapse
|
92
|
Ye H, Huang S, Song Y, Liu H, Zhao X, Zhao D, Mi F, Wang X, Zhang X, Du J, Zhu N, Zhang L, Zhao Y. Gene co-expression analysis identifies modules related to insufficient sleep in humans. Sleep Med 2021; 86:68-74. [PMID: 34464880 DOI: 10.1016/j.sleep.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/12/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Insufficient sleep and circadian rhythm disruption may cause cancer, obesity, cardiovascular disease, and cognitive impairment. The underlying mechanisms need to be elucidated. METHOD Weighted gene co-expression network analysis (WGCNA) was used to identify co-expressed modules. Connectivity Map tool was used to identify candidate drugs based on top connected genes. R ptestg package was utilized to detected module rhythmicity alteration. A hypergeometric test was used to test the enrichment of insomnia SNP signals in modules. Google Scholar was used to validate the modules and hub genes by literature. RESULTS We identified a total of 45 co-expressed modules. These modules were stable and preserved. Eight modules were correlated with sleep restriction duration. Module rhythmicity was disrupted in sleep restriction subjects. Hub genes that involve in insufficient sleep also play important roles in sleep disorders. Insomnia GWAS signals were enriched in six modules. Finally, eight drugs associated with sleep disorders were identified. CONCLUSION Systems biology method was used to identify sleep-related modules, hub genes, and candidate drugs. Module rhythmicity was altered in sleep insufficient subjects. Thiamphenicol, lisuride, timolol, and piretanide are novel candidates for sleep disorders.
Collapse
Affiliation(s)
- Hua Ye
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Shiliang Huang
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Yufei Song
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Huiwei Liu
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Xiaosu Zhao
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Dan Zhao
- Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Fangxia Mi
- Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Xinxue Wang
- Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Xuesong Zhang
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Jinman Du
- Physical Examination Center, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Na Zhu
- Physical Examination Center, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Liangshun Zhang
- Physical Examination Center, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Yibin Zhao
- Department of Anus & Intestine Surgery, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China.
| |
Collapse
|
93
|
Ghannoum MA, Ford M, Bonomo RA, Gamal A, McCormick TS. A Microbiome-Driven Approach to Combating Depression During the COVID-19 Pandemic. Front Nutr 2021; 8:672390. [PMID: 34504858 PMCID: PMC8421528 DOI: 10.3389/fnut.2021.672390] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
The significant stressors brought about and exacerbated by COVID-19 are associated with startling surges in mental health illnesses, specifically those related to depressive disorders. Given the huge impact of depression on society, and an incomplete understanding of impactful therapeutics, we have examined the current literature surrounding the microbiome and gut-brain axis to advance a potential complementary approach to address depression and depressive disorders that have increased during the COVID-19 pandemic. While we understand that the impact of the human gut microbiome on emotional health is a newly emerging field and more research needs to be conducted, the current evidence is extremely promising and suggests at least part of the answer to understanding depression in more depth may lie within the microbiome. As a result of these findings, we propose that a microbiome-based holistic approach, which involves carefully annotating the microbiome and potential modification through diet, probiotics, and lifestyle changes, may address depression. This paper's primary purpose is to shed light on the link between the gut microbiome and depression, including the gut-brain axis and propose a holistic approach to microbiome modification, with the ultimate goal of assisting individuals to manage their battle with depression through diet, probiotics, and lifestyle changes, in addition to offering a semblance of hope during these challenging times.
Collapse
Affiliation(s)
- Mahmoud A. Ghannoum
- Integrated Microbiome Core, Department of Dermatology, Case Western Reserve University, Cleveland, OH, United States
- University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- BIOHM Health LLC, Cleveland, OH, United States
| | | | - Robert A. Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Ahmed Gamal
- Integrated Microbiome Core, Department of Dermatology, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas S. McCormick
- Integrated Microbiome Core, Department of Dermatology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
94
|
Chaves T, Fazekas CL, Horváth K, Correia P, Szabó A, Török B, Bánrévi K, Zelena D. Stress Adaptation and the Brainstem with Focus on Corticotropin-Releasing Hormone. Int J Mol Sci 2021; 22:ijms22169090. [PMID: 34445795 PMCID: PMC8396605 DOI: 10.3390/ijms22169090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Stress adaptation is of utmost importance for the maintenance of homeostasis and, therefore, of life itself. The prevalence of stress-related disorders is increasing, emphasizing the importance of exploratory research on stress adaptation. Two major regulatory pathways exist: the hypothalamic–pituitary–adrenocortical axis and the sympathetic adrenomedullary axis. They act in unison, ensured by the enormous bidirectional connection between their centers, the paraventricular nucleus of the hypothalamus (PVN), and the brainstem monoaminergic cell groups, respectively. PVN and especially their corticotropin-releasing hormone (CRH) producing neurons are considered to be the centrum of stress regulation. However, the brainstem seems to be equally important. Therefore, we aimed to summarize the present knowledge on the role of classical neurotransmitters of the brainstem (GABA, glutamate as well as serotonin, noradrenaline, adrenaline, and dopamine) in stress adaptation. Neuropeptides, including CRH, might be co-localized in the brainstem nuclei. Here we focused on CRH as its role in stress regulation is well-known and widely accepted and other CRH neurons scattered along the brain may also complement the function of the PVN. Although CRH-positive cells are present on some parts of the brainstem, sometimes even in comparable amounts as in the PVN, not much is known about their contribution to stress adaptation. Based on the role of the Barrington’s nucleus in micturition and the inferior olivary complex in the regulation of fine motoric—as the main CRH-containing brainstem areas—we might assume that these areas regulate stress-induced urination and locomotion, respectively. Further studies are necessary for the field.
Collapse
Affiliation(s)
- Tiago Chaves
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Csilla Lea Fazekas
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Krisztina Horváth
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Pedro Correia
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Adrienn Szabó
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Bibiána Török
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Krisztina Bánrévi
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
| | - Dóra Zelena
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
95
|
Hippocampal and Reticulo-Thalamic Parvalbumin Interneurons and Synaptic Re-Organization during Sleep Disorders in the Rat Models of Parkinson's Disease Neuropathology. Int J Mol Sci 2021; 22:ijms22168922. [PMID: 34445628 PMCID: PMC8396216 DOI: 10.3390/ijms22168922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the alterations of hippocampal and reticulo-thalamic (RT) GABAergic parvalbumin (PV) interneurons and their synaptic re-organizations underlying the prodromal local sleep disorders in the distinct rat models of Parkinson’s disease (PD). We demonstrated for the first time that REM sleep is a predisposing state for the high-voltage sleep spindles (HVS) induction in all experimental models of PD, particularly during hippocampal REM sleep in the hemiparkinsonian models. There were the opposite underlying alterations of the hippocampal and RT GABAergic PV+ interneurons along with the distinct MAP2 and PSD-95 expressions. Whereas the PD cholinopathy enhanced the number of PV+ interneurons and suppressed the MAP2/PSD-95 expression, the hemiparkinsonism with PD cholinopathy reduced the number of PV+ interneurons and enhanced the MAP2/PSD-95 expression in the hippocampus. Whereas the PD cholinopathy did not alter PV+ interneurons but partially enhanced MAP2 and suppressed PSD-95 expression remotely in the RT, the hemiparkinsonism with PD cholinopathy reduced the PV+ interneurons, enhanced MAP2, and did not change PSD-95 expression remotely in the RT. Our study demonstrates for the first time an important regulatory role of the hippocampal and RT GABAergic PV+ interneurons and the synaptic protein dynamic alterations in the distinct rat models of PD neuropathology.
Collapse
|
96
|
Kandeda AK, Taiwe GS, Ayissi REM, Moutchida C. An aqueous extract of Canarium schweinfurthii attenuates seizures and potentiates sleep in mice: Evidence for involvement of GABA Pathway. Biomed Pharmacother 2021; 142:111973. [PMID: 34343898 DOI: 10.1016/j.biopha.2021.111973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 01/03/2023] Open
Abstract
About 30% of epileptic patients continue to have seizures. The present study investigates the anticonvulsant and sedative effects of an aqueous extract of C. schweinfurthii in mice. Anticonvulsant effects of C. schweinfurthii aqueous extract (0.01-300 mg/kg, p.o.) were tested against 4-aminopyridine (4-AP, 15 mg/kg, i.p.) -, pilocarpine (PILO, 380 mg/kg, i.p.) - and pentylenetetrazole (PTZ, 75 mg/kg, i.p.) -induced seizures, while sedative effects were tested on diazepam (35 mg/kg, i.p.)-induced sleep. Afterward, the most effective dose of the extract (11.9 mg/kg) was antagonized with N-methyl-β-carboline-3-carboxamide or flumazenil. In another set of experiments, mice were sacrificed for the estimation of GABA content and GABA-T activity in the cerebral cortex. The dose of the extract that protected 50% of mice (ED50) against 4-AP, PILO, and PTZ was respectively 4.43 mg/kg (versus 12.01 for phenobarbital), 9.59 mg/kg (vs 8.67 for diazepam), and 2.12 mg/kg (vs 0.20 for clonazepam). Further, the ED50 of the extract that increased the duration of sleep was 0.24 mg/kg (vs 0.84 for phenobarbital). N-methyl-β-carboline-3-carboxamide or flumazenil antagonized (p < 0.001) the anticonvulsant effect of C. schweinfurthii in PTZ-induced seizures and diazepam-induced sleep when compared to the negative control group. The extract at all doses increased (p < 0.001) the GABA content and decreased (p < 0.001) GABA-T activity. These findings suggest that C. schweinfurthii possesses anticonvulsant and sedative effects. These effects seem to be mediated via the modulation of the GABA neurotransmission. These data explain the use of this plant to treat epilepsy in Cameroon traditional medicine.
Collapse
Affiliation(s)
- Antoine Kavaye Kandeda
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Germain Sotoing Taiwe
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Rigobert Espoir Mbomo Ayissi
- Department of Biological Sciences, Higher Teachers' Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon
| | - Clémentine Moutchida
- Department of Psychology, University of Yaoundé I, P.O. Box 755, Yaoundé, Cameroon
| |
Collapse
|
97
|
Ignatow G. The microbiome‐gut‐brain and social behavior. JOURNAL FOR THE THEORY OF SOCIAL BEHAVIOUR 2021. [DOI: 10.1111/jtsb.12315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Gabe Ignatow
- Department of Sociology University of North Texas Denton Texas USA
| |
Collapse
|
98
|
Blanco-Centurion C, Luo S, Vidal-Ortiz A, Swank C, Shiromani PJ. Activity of a subset of vesicular GABA-transporter neurons in the ventral zona incerta anticipates sleep onset. Sleep 2021; 44:6017820. [PMID: 33270105 DOI: 10.1093/sleep/zsaa268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/01/2020] [Indexed: 01/03/2023] Open
Abstract
STUDY OBJECTIVES Sleep and wake are opposing behavioral states controlled by the activity of specific neurons that need to be located and mapped. To better understand how a waking brain falls asleep it is necessary to identify activity of individual phenotype-specific neurons, especially neurons that anticipate sleep onset. In freely behaving mice, we used microendoscopy to monitor calcium (Ca2+) fluorescence in individual hypothalamic neurons expressing the vesicular GABA transporter (vGAT), a validated marker of GABA neurons. METHODS vGAT-Cre mice (male = 3; female = 2) transfected with rAAV-FLEX-GCaMP6M in the lateral hypothalamus were imaged 30 days later during multiple episodes of waking (W), non-rapid-eye movement sleep (NREMS) or REMS (REMS). RESULTS 372 vGAT neurons were recorded in the zona incerta. 23.9% of the vGAT neurons showed maximal fluorescence during wake (classified as wake-max), 4% were NREM-max, 56.2% REM-max, 5.9% wake/REM max, while 9.9% were state-indifferent. In the NREM-max group, Ca2+ fluorescence began to increase before onset of NREM sleep, remained high throughout NREM sleep, and declined in REM sleep. CONCLUSIONS We found that 60.2% of the vGAT GABA neurons in the zona incerta had activity that was biased towards sleep (NREM and REMS). A subset of vGAT neurons (NREM-max) became active in advance of sleep onset and may induce sleep by inhibiting the activity of the arousal neurons. Abnormal activation of the NREM-max neurons may drive sleep attacks and hypersomnia.
Collapse
Affiliation(s)
- Carlos Blanco-Centurion
- Laboratory of Sleep Medicine and Chronobiology, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| | - SiWei Luo
- Laboratory of Sleep Medicine and Chronobiology, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| | | | - Colby Swank
- Laboratory of Sleep Medicine and Chronobiology, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| | - Priyattam J Shiromani
- Laboratory of Sleep Medicine and Chronobiology, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC.,Ralph H. Johnson VA Medical Center, Charleston, SC
| |
Collapse
|
99
|
Lopresti AL, Smith SJ, Metse AP, Drummond PD. Effects of saffron on sleep quality in healthy adults with self-reported poor sleep: a randomized, double-blind, placebo-controlled trial. J Clin Sleep Med 2021; 16:937-947. [PMID: 32056539 DOI: 10.5664/jcsm.8376] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
STUDY OBJECTIVES Herbal medicines are frequently used by adults with sleep difficulties. However, evidence of their efficacy is limited. Therefore, the goal of this study was to examine the sleep-enhancing effects of a standardized saffron extract (affron). METHODS This was a 28-day, parallel-group, double-blind, randomized controlled trial. Sixty-three healthy adults aged 18-70 with self-reported sleep problems were recruited and randomized to receive either saffron extract (affron; 14 mg twice daily) or a placebo. Outcome measures included the Insomnia Severity Index (ISI; primary outcome measure) collected at baseline and days 7, 14, 21, and 28 and the Restorative Sleep Questionnaire (RSQ) and the Pittsburgh Sleep Diary (PSD) collected on days -1, 0, 3, 7, 14, 27, and 28. RESULTS Based on data collected from 55 participants, saffron was associated with greater improvements in ISI total score (P = .017), RSQ total score (P = .029), and PSD sleep quality ratings (P = .014) than the placebo. Saffron intake was well tolerated with no reported adverse effects. CONCLUSIONS Saffron intake was associated with improvements in sleep quality in adults with self-reported sleep complaints. Further studies using larger samples sizes, treatment periods, objective outcome measures, and volunteers with varying demographic and psychographic characteristics are required to replicate and extend these findings. CLINICAL TRIAL REGISTRATION Registry: Australian New Zealand Clinical Trials Registry; Name: Effects of Saffron on Sleep Quality in Healthy Adults with Self-Reported Unsatisfactory Sleep; URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=377781; Identifier: ACTRN12619000863134.
Collapse
Affiliation(s)
- Adrian L Lopresti
- College of Science, Health, Engineering, and Education, Murdoch University, Perth, Western Australia, Australia.,Clinical Research Australia, Perth, Western Australia, Australia
| | - Stephen J Smith
- College of Science, Health, Engineering, and Education, Murdoch University, Perth, Western Australia, Australia.,Clinical Research Australia, Perth, Western Australia, Australia
| | - Alexandra P Metse
- College of Science, Health, Engineering, and Education, Murdoch University, Perth, Western Australia, Australia
| | - Peter D Drummond
- College of Science, Health, Engineering, and Education, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
100
|
Peng X, Li J, Han B, Zhu Y, Cheng D, Li Q, Du J. Association of occupational stress, period circadian regulator 3 (PER3) gene polymorphism and their interaction with poor sleep quality. J Sleep Res 2021; 31:e13390. [PMID: 34060156 DOI: 10.1111/jsr.13390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 11/29/2022]
Abstract
Occupational stress is associated with sleep quality among workers and the human variable number tandem repeat (VNTR) polymorphism of the period circadian regulator 3 (PER3) gene relates to sleep-wake regulation. The main aims of the present study were to examine the effects of PER3 VNTR genotypes, occupational stress, and their interactions on sleep quality. A cross-sectional study was conducted and 729 workers were recruited in Sichuan. Sleep quality were assessed using the Pittsburgh Sleep Quality Index. Occupational stress was measured using the Generic Job Stress Questionnaire. PER3 genotypes were determined with polymerase chain reaction. High and medium occupational stress were linked to a higher risk of poor sleep quality than low levels. Unconditional logistic regression indicated that PER3 genotype was significantly associated with sleep quality, and an increased risk of poor sleep of >1.5-times was observed in those with the allele 5 compared to allele 4. The 5/5 genotype was associated with both sleep latency and sleep duration. Crossover analysis showed an occupational stress × PER3 interaction. Compared to subjects with both low and medium occupational stress and 4/4 + 4/5 genotype, those with both high occupational stress and 5/5 genotype had a higher risk of poor sleep quality. Stratified logistic analyses found that compared with low and medium occupational stress, high occupational stress increased the risk of poor sleep by more than five-times in 5/5 genotype carriers. Occupational stress and PER3 genotype had both separate and combined effects on poor sleep quality of workers. The results suggest that occupational stress may increase the risk of poor sleep quality through interaction with the PER3 gene polymorphism.
Collapse
Affiliation(s)
- Xiaoli Peng
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Ju Li
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Bin Han
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Yanfeng Zhu
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Daomei Cheng
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Qiyu Li
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Jingchang Du
- School of Public Health, Chengdu Medical College, Chengdu, China
| |
Collapse
|