51
|
Temporally unstructured electrical stimulation to the amygdala suppresses behavioral chronic seizures of the pilocarpine animal model. Epilepsy Behav 2014; 36:159-64. [PMID: 24935084 DOI: 10.1016/j.yebeh.2014.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/30/2014] [Accepted: 05/06/2014] [Indexed: 11/21/2022]
Abstract
Electrical stimulation applied to the basolateral amygdala in the pentylenetetrazole animal model of seizures may result in either a proconvulsant or an anticonvulsant effect depending on the interpulse intervals used: periodic or nonperiodic, respectively. We tested the effect of this electrical stimulation temporal coding on the spontaneous and recurrent behavioral seizures produced in the chronic phase of the pilocarpine animal model of temporal lobe epilepsy, an experimental protocol that better mimics the human condition. After 45 days of the pilocarpine-induced status epilepticus, male Wistar rats were submitted to a surgical procedure for the implantation of a bipolar electrical stimulation electrode in the right basolateral amygdala and were allowed to recover for seven days. The animals were then placed in a glass box, and their behaviors were recorded daily on DVD for 6h for 4 consecutive days (control period). Spontaneous recurrent behavioral seizures when showed in animals were further recorded for an extra 4-day period (treatment period), under periodic or nonperiodic electrical stimulation. The number, duration, and severity of seizures (according to the modified Racine's scale) during treatment were compared with those during the control period. The nonperiodically stimulated group displayed a significantly reduced total number and duration of seizures. There was no difference between control and treatment periods for the periodically stimulated group. Results corroborate previous findings from our group showing that nonperiodic electrical stimulation has a robust anticonvulsant property. In addition, results from the pilocarpine animal model further strengthen nonperiodic electrical stimulation as a valid therapeutic approach in current medical practice. Our working hypothesis is that temporally unstructured electrical stimulation may wield its effect by desynchronizing neural networks involved in the ictogenic process.
Collapse
|
52
|
Pereira MGAG, Souza LL, Becari C, Duarte DA, Camacho FRB, Oliveira JAC, Gomes MD, Oliveira EB, Salgado MCO, Garcia-Cairasco N, Costa-Neto CM. Angiotensin II-independent angiotensin-(1-7) formation in rat hippocampus: involvement of thimet oligopeptidase. Hypertension 2013; 62:879-85. [PMID: 24041943 DOI: 10.1161/hypertensionaha.113.01613] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The involvement and relevance of the renin-angiotensin system have been established clearly in cardiovascular diseases, and renin-angiotensin system involvement has also been investigated extensively in the central nervous system. Angiotensin II acts classically by binding to the AT1 and AT2 receptors. However, other pathways within the renin-angiotensin system have been described more recently, such as one in which angiotensin-(1-7) (Ang-(1-7)) binds to the receptor Mas. In the central nervous system specifically, it has been reported that this heptapeptide is involved in learning and memory processes that occur in central limbic regions, such as the hippocampus. Therefore, this prompted us to investigate the possible role of the Ang-(1-7)-receptor Mas pathway in epileptic seizures, which are also known to recruit limbic areas. In the present study, we show that Ang-(1-7) is the main metabolite of angiotensin I in rat hippocampi, and, strikingly, that thimet oligopeptidase is the main enzyme involved in the generation of Ang-(1-7). Furthermore, elevations in the levels of thimet oligopeptidase, Ang-(1-7), and of receptor Mas transcripts are observed in chronically stimulated epileptic rats, which suggest that the thimet oligopeptidase-Ang-(1-7)-receptor Mas axis may have a functional relevance in the pathophysiology of these animals. In summary, our data, which describe a new preferential biochemical pathway for the generation of Ang-(1-7) in the central nervous system and an increase in the levels of various elements of the related thimet oligopeptidase-Ang-(1-7)-receptor Mas pathway, unveil potential new roles of the renin-angiotensin system in central nervous system pathophysiology.
Collapse
Affiliation(s)
- Marilia G A G Pereira
- Faculty of Medicine at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil. or or
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Barrera-Bailón B, Oliveira JAC, López DE, Muñoz LJ, Garcia-Cairasco N, Sancho C. Pharmacological and neuroethological studies of three antiepileptic drugs in the Genetic Audiogenic Seizure Hamster (GASH:Sal). Epilepsy Behav 2013; 28:413-25. [PMID: 23872084 DOI: 10.1016/j.yebeh.2013.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 12/25/2022]
Abstract
Epilepsy modeling is essential for understanding the basic mechanisms of the epileptic process. The Genetic Audiogenic Seizure Hamster (GASH:Sal) exhibits generalized tonic-clonic seizures of genetic origin in response to sound stimulation and is currently being validated as a reliable model of epilepsy. Here, we performed a pharmacological and neuroethological study using well-known and widely used antiepileptic drugs (AEDs), including phenobarbital (PB), valproic acid (VPA), and levetiracetam (LEV). The intraperitoneal administration of PB (5-20mg/kg) and VPA (100-300mg/kg) produced a dose-dependent decrease in GASH:Sal audiogenic seizure severity scores. The administration of LEV (30-100mg/kg) did not produce a clear effect. Phenobarbital showed a short plasmatic life and had a high antiepileptic effect starting at 10mg/kg that was accompanied by ataxia. Valproic acid acted only at high concentrations and was the AED with the most ataxic effects. Levetiracetam at all doses also produced sedation and ataxia side effects. We conclude that the GASH:Sal is a reliable genetic model of epilepsy suitable to evaluate AEDs.
Collapse
Affiliation(s)
- B Barrera-Bailón
- Institute of Neurosciences of Castilla and León/IBSAL, University of Salamanca, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
54
|
Carballosa-Gonzalez MM, Muñoz LJ, López-Alburquerque T, Pardal-Fernández JM, Nava E, de Cabo C, Sancho C, López DE. EEG characterization of audiogenic seizures in the hamster strain GASH:Sal. Epilepsy Res 2013; 106:318-25. [PMID: 23916142 DOI: 10.1016/j.eplepsyres.2013.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 12/16/2022]
Abstract
The study was performed to characterize GASH:SAL audiogenic seizures as true epileptic activity based on electroencephalographic markers acquired with a wireless implanted radiotelemetry system. We analyzed cortical EEG patterns synchronized with video recordings of convulsive behavior of the GASH:Sal hamster following an acoustic stimulus. All GASH:Sal presented archetypal motor symptoms comparable to current animal models of generalized tonic-clonic epilepsy. Seizures consisted of an initial bout of wild running, followed by opisthotonus, tonic-clonic convulsions, tonic limb extension, and terminated in postictal depression. EEG patterns correlated with behavior and displayed phase appropriate spike-wave complexes, low-amplitude desynchronized activity, and high frequency large-amplitude peaks. Our results confirm that electroencephalographic profiles of the audiogenic seizures of the hamster GASH:Sal are parallel to EEG patterns of other animal models of generalized tonic-clonic seizures. Therefore, this animal may serve as an appropriate model for epilepsy research.
Collapse
Affiliation(s)
- Melissa M Carballosa-Gonzalez
- Instituto de Neurociencias de Castilla y León/IBSAL, C/ Pintor Fernando Gallego, n° 1, 37007 Salamanca, Spain; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Room 2-34, Miami, FL 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Braga MM, Rosemberg DB, de Oliveira DL, Loss CM, Córdova SD, Rico EP, Silva ES, Dias RD, Souza DO, Calcagnotto ME. Topographical analysis of reactive zinc in the central nervous system of adult zebrafish (Danio rerio). Zebrafish 2013; 10:376-88. [PMID: 23829199 DOI: 10.1089/zeb.2013.0882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reactive zinc (Zn) is crucial for neuronal signaling and is largely distributed within presynaptic vesicles of some axon terminals of distinct vertebrates. However, the distribution of reactive Zn throughout the central nervous system (CNS) is not fully explored. We performed a topographical study of CNS structures containing reactive Zn in the adult zebrafish (Danio rerio). Slices of CNS from zebrafish were stained by Neo-Timm and/or cresyl violet. The Zn specificity of Neo-Timm was evaluated with Zn chelants, N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), sodium diethyldithiocarbamate (DEDTC), Zn sulfide washing solution, and hydrochloric acid (HCl). Unfixed slices were also immersed in the fluorescent Zn probe (zinpyr-1). Yellow-to-brown-to-black granules were revealed by Neo-Timm in the zebrafish CNS. Telencephalon exhibited slightly stained regions, while rhombencephalic structures showed high levels of staining. Although stained granules were found on the cell bodies, rhombencephalic structures showed a neuropil staining profile. The TPEN produced a mild reduction in Neo-Timm staining, while HCl and mainly DEDTC abolished the staining, indicating a large Zn content. This result was also confirmed by the application of a Zn probe. The present topographical study revealed reactive Zn throughout the CNS in adult zebrafish that should be considered in future investigation of Zn in the brain on a larger scale.
Collapse
Affiliation(s)
- Marcos M Braga
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul , Porto Alegre, Brazil .
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Damasceno DD, Savergnini SQ, Gomes ER, Guatimosim S, Ferreira AJ, Doretto MC, Almeida AP. Cardiac dysfunction in rats prone to audiogenic epileptic seizures. Seizure 2013; 22:259-66. [DOI: 10.1016/j.seizure.2013.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 11/30/2022] Open
|
57
|
Tejada J, Costa KM, Bertti P, Garcia-Cairasco N. The epilepsies: complex challenges needing complex solutions. Epilepsy Behav 2013; 26:212-28. [PMID: 23146364 DOI: 10.1016/j.yebeh.2012.09.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/16/2012] [Indexed: 12/19/2022]
Abstract
It is widely accepted that epilepsies are complex syndromes due to their multi-factorial origins and manifestations. Different mathematical and computational descriptions use appropriate methods to address nonlinear relationships, chaotic behaviors and emergent properties. These theoretical approaches can be divided into two major categories: descriptive, such as flowcharts, graphs and other statistical analyses, and explicative, which include both realistic and abstract models. Although these modeling tools have brought great advances, a common framework to guide their design, implementation and evaluation, with the goal of future integration, is still needed. In the current review, we discuss two examples of complexity analysis that can be performed with epilepsy data: behavioral sequences of temporal lobe seizures and alterations in an experimental cellular model. We also highlight the importance of the creation of model repositories for the epileptology field and encourage the development of mathematical descriptions of complex systems, together with more accurate simulation techniques.
Collapse
Affiliation(s)
- Julián Tejada
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | | |
Collapse
|
58
|
Damasceno DD, Ferreira AJ, Doretto MC, Almeida AP. Anticonvulsant and antiarrhythmic effects of nifedipine in rats prone to audiogenic seizures. Braz J Med Biol Res 2012; 45:1060-5. [PMID: 22801414 PMCID: PMC3854160 DOI: 10.1590/s0100-879x2012007500119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 05/24/2012] [Indexed: 12/03/2022] Open
Abstract
Calcium ion participates in the regulation of neural transmission and the presynaptic release of neurotransmitters. It is also involved in epileptic events, cardiac arrhythmias and abnormal conduction of stimuli. The purpose of the present study was to evaluate the effects of nifedipine, a calcium channel blocker, on epileptic seizures and on reperfusion arrhythmias in rats prone to audiogenic epileptic seizures (Wistar audiogenic rats, WAR) and in normal Wistar rats (N = 6/group). The seizure severity index was applied after an intraperitoneal injection of 20 or 40 mg/kg nifedipine (N20 and N40 groups, respectively). The Langendorff technique was used to analyze cardiac function, as well as the incidence and severity of the reperfusion arrhythmias after ligature and release of the left coronary artery in rats treated or not with nifedipine. We found that nifedipine treatment decreased seizure severity (0.94 ± 0.02 for WAR; 0.70 ± 0.10 for WAR + N20; 0.47 ± 0.08 for WAR + N40) and increased the latent period (13 ± 2 s for WAR; 35 ± 10 s for WAR + N20; 48 ± 7 s for WAR + N40) for the development of seizures in WAR. Furthermore, the incidence and severity of the reperfusion arrhythmias were lower in WAR and normal Wistar rats injected with nifedipine. In WAR, these effects were mediated, at least in part, by a decrease in heart rate. Thus, our results indicate that nifedipine may be considered to be a potential adjuvant drug for epilepsy treatment, especially in those cases associated with cardiac rhythm abnormalities.
Collapse
Affiliation(s)
- D D Damasceno
- Departamento de Desenvolvimento Educacional, Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, Barbacena, MG, Brasil.
| | | | | | | |
Collapse
|
59
|
Medeiros DDC, Cota VR, Vilela MRSDP, Mourão FAG, Massensini AR, Moraes MFD. Anatomically dependent anticonvulsant properties of temporally-coded electrical stimulation. Epilepsy Behav 2012; 23:294-7. [PMID: 22370119 DOI: 10.1016/j.yebeh.2012.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 11/18/2022]
Abstract
In the PTZ animal model of epilepsy, electrical stimulation applied to the amygdaloid complex may result in either pro-convulsive or anticonvulsant effect, depending on the temporal pattern used (i.e. periodic-PS and non-periodic-NPS electrical stimulation). Our hypothesis is that the anatomical target is a determinant factor for the differential effect of temporally-coded patterns on seizure outcome. The threshold dose of PTZ to elicit forelimb clonus and generalized tonic-clonic seizure behavior was measured. The effect of amygdaloid complex PS on forelimb clonus threshold showed a pro-convulsive effect while NPS was anticonvulsant. NPS also significantly increased generalized tonic-clonic threshold; while PS, although at lower threshold levels, did not present statistical significance. Thalamus stimulation did not affect forelimb clonus threshold and showed similar anticonvulsant profiles for both PS and NPS on generalized tonic-clonic threshold. In summary, the anatomical target is a determinant factor on whether temporally-coded ES differentially modulates seizure outcome.
Collapse
Affiliation(s)
- Daniel de Castro Medeiros
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
60
|
Felippotti TT, de Freitas RL, Coimbra NC. Endogenous opioid peptide-mediated neurotransmission in central and pericentral nuclei of the inferior colliculus recruits μ1-opioid receptor to modulate post-ictal antinociception. Neuropeptides 2012; 46:39-47. [PMID: 22104092 DOI: 10.1016/j.npep.2011.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND The aim of the present work was to investigate the involvement of the μ1-endogenous opioid peptide receptor-mediated system in post-ictal antinociception. METHODS Antinociceptive responses were determined by the tail-flick test after pre-treatment with the selective μ1-opioid receptor antagonist naloxonazine, peripherally or centrally administered at different doses. RESULTS Peripheral subchronic (24 h) pre-treatment with naloxonazine antagonised the antinociception elicited by tonic-clonic seizures. Acute (10 min) pre-treatment, however, did not have the same effect. In addition, microinjections of naloxonazine into the central, dorsal cortical and external cortical nuclei of the inferior colliculus antagonised tonic-clonic seizure-induced antinociception. Neither acute (10-min) peripheral pre-treatment with naloxonazine nor subchronic intramesencephalic blockade of μ1-opioid receptors resulted in consistent statistically significant differences in the severity of tonic-clonic seizures shown by Racine's index (1972), although the intracollicular specific antagonism of μ1-opioid receptor decreased the duration of seizures. CONCLUSION μ1-Opioid receptors and the inferior colliculus have been implicated in several endogenous opioid peptide-mediated responses such as antinociception and convulsion. The present findings suggest the involvement of μ1-opiate receptors of central and pericentral nuclei of the inferior colliculus in the modulation of tonic-clonic seizures and in the organisation of post-ictal antinociception.
Collapse
Affiliation(s)
- Tatiana Tocchini Felippotti
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Av. dos Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | | | | |
Collapse
|
61
|
Restini C, Reis R, Costa-Neto C, Garcia-Cairasco N, Cortes-de-Oliveira J, Bendhack L. Role of endothelium on the abnormal Angiotensin-mediated vascular functions in epileptic rats. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jbpc.2012.32019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
62
|
Rossetti F, Rodrigues MCA, de Oliveira JAC, Garcia-Cairasco N. Behavioral and EEG effects of GABAergic manipulation of the nigrotectal pathway in the Wistar audiogenic rat strain. Epilepsy Behav 2011; 22:191-9. [PMID: 21820967 DOI: 10.1016/j.yebeh.2011.06.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 10/17/2022]
Abstract
The superior colliculus (SC), substantia nigra pars reticulata (SNPr), and striatum have been characterized as important structures involved in the modulation of seizure activity. In the current study, bicuculline (GABA(A) antagonist) and muscimol (GABA(A) agonist) were microinjected into the deep layers of either the anterior SC (aSC) or posterior SC (pSC) of genetically developed Wistar audiogenic rats. Behavior and EEG activity were studied simultaneously. Only muscimol microinjected into the pSC had behavioral and EEG anticonvulsant effects in Wistar audiogenic rats, eliciting EEG oscillation changes in both SNPr and pSC, primarily during tonic seizures. The SC of Wistar audiogenic rats thus comprises two functionally different subregions, pSC and aSC, defined by distinct behavioral and EEG features. The pSC has proconvulsant audiogenic seizure activity in Wistar audiogenic rats. Our data suggest that this phenomenon may be a consequence of the genetic selection of the Wistar audiogenic rat strain.
Collapse
Affiliation(s)
- Franco Rossetti
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
63
|
Drumond L, Kushmerick C, Guidine P, Doretto M, Moraes M, Massensini A. Reduced hippocampal GABAergic function in Wistar audiogenic rats. Braz J Med Biol Res 2011; 44:1054-9. [DOI: 10.1590/s0100-879x2011007500118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 08/25/2011] [Indexed: 03/13/2023] Open
|
64
|
Etholm L, Lindén H, Eken T, Heggelund P. Electroencephalographic characterization of seizure activity in the synapsin I/II double knockout mouse. Brain Res 2011; 1383:270-88. [DOI: 10.1016/j.brainres.2011.01.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
65
|
Furtado MA, Castro OW, Del Vecchio F, de Oliveira JAC, Garcia-Cairasco N. Study of spontaneous recurrent seizures and morphological alterations after status epilepticus induced by intrahippocampal injection of pilocarpine. Epilepsy Behav 2011; 20:257-66. [PMID: 21237720 DOI: 10.1016/j.yebeh.2010.11.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 11/22/2010] [Accepted: 11/25/2010] [Indexed: 11/17/2022]
Abstract
Epileptic seizures are clinical manifestations of neuronal discharges characterized by hyperexcitability and/or hypersynchrony in the cortex and other subcortical regions. The pilocarpine (PILO) model of epilepsy mimics temporal lobe epilepsy (TLE) in humans. In the present study, we used a more selective approach: microinjection of PILO into the hilus of the dentate gyrus (H-PILO). Our main goal was to evaluate the behavioral and morphological alterations present in this model of TLE. Seventy-six percent of all animals receiving H-PILO injections had continuous seizures called status epilepticus (SE). A typical pattern of evolution of limbic seizures during the SE with a latency of 29.3 ± 16.3 minutes was observed using an analysis of behavioral sequences. During the subsequent 30 days, 71% of all animals exhibited spontaneous recurrent seizures (SRSs) during a daily 8-hour videotaping session. These SRSs had a very conspicuous and characteristic pattern detected by behavioral sequences or neuroethiological analysis. Only the animals that had SE showed positive Neo-Timm staining in the inner molecular layer of the dentate gyrus (sprouting) and reduced cell density in Ammon's horn pyramidal cell subfield CA1. However, no correlation between the intensity of sprouting and the mean number and total number of SRSs was found. Additionally, using Fluoro-Jade staining, we observed neurodegeneration in the hilus and pyramidal cell subfields CA3 and CA1 24 hours after SE. These data indicate that H-PILO is a reliable, selective, efficient, low-mortality model that mimics the acute and chronic behavioral and morphological aspects of TLE.
Collapse
Affiliation(s)
- M A Furtado
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
66
|
Gitaí DLG, Fachin AL, Mello SS, Elias CF, Bittencourt JC, Leite JP, Passos GADS, Garcia-Cairasco N, Paçó-Larson ML. The non-coding RNA BC1 is down-regulated in the hippocampus of Wistar Audiogenic Rat (WAR) strain after audiogenic kindling. Brain Res 2010; 1367:114-21. [PMID: 20974111 DOI: 10.1016/j.brainres.2010.10.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/21/2010] [Accepted: 10/17/2010] [Indexed: 01/08/2023]
Abstract
The aim of this study was to identify molecular pathways involved in audiogenic seizures in the epilepsy-prone Wistar Audiogenic Rat (WAR). For this, we used a suppression-subtractive hybridization (SSH) library from the hippocampus of WARs coupled to microarray comparative gene expression analysis, followed by Northern blot validation of individual genes. We discovered that the levels of the non-protein coding (npc) RNA BC1 were significantly reduced in the hippocampus of WARs submitted to repeated audiogenic seizures (audiogenic kindling) when compared to Wistar resistant rats and to both naive WARs and Wistars. By quantitative in situ hybridization, we verified lower levels of BC1 RNA in the GD-hilus and significant signal ratio reduction in the stratum radiatum and stratum pyramidale of hippocampal CA3 subfield of audiogenic kindled animals. Functional results recently obtained in a BC1⁻/⁻ mouse model and our current data are supportive of a potential disruption in signaling pathways, upstream of BC1, associated with the seizure susceptibility of WARs.
Collapse
Affiliation(s)
- Daniel Leite Goes Gitaí
- Department of Cellular and Molecular Biology, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Inhibition of the renin-angiotensin system prevents seizures in a rat model of epilepsy. Clin Sci (Lond) 2010; 119:477-82. [PMID: 20533906 DOI: 10.1042/cs20100053] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The RAS (renin-angiotensin system) is classically involved in BP (blood pressure) regulation and water-electrolyte balance, and in the central nervous system it has been mostly associated with homoeostatic processes, such as thirst, hormone secretion and thermoregulation. Epilepsies are chronic neurological disorders characterized by recurrent epileptic seizures that affect 1-3% of the world's population, and the most commonly used anticonvulsants are described to be effective in approx. 70% of the population with this neurological alteration. Using a rat model of epilepsy, we found that components of the RAS, namely ACE (angiotensin-converting enzyme) and the AT1 receptor (angiotensin II type 1 receptor) are up-regulated in the brain (2.6- and 8.2-fold respectively) following repetitive seizures. Subsequently, epileptic animals were treated with clinically used doses of enalapril, an ACE inhibitor, and losartan, an AT1 receptor blocker, leading to a significant decrease in seizure severities. These results suggest that centrally acting drugs that target the RAS deserve further investigation as possible anticonvulsant agents and may represent an additional strategy in the management of epileptic patients.
Collapse
|
68
|
Tomé ADR, Feitosa CM, Freitas RMD. Neuronal damage and memory deficits after seizures are reversed by ascorbic acid? ARQUIVOS DE NEURO-PSIQUIATRIA 2010; 68:579-85. [DOI: 10.1590/s0004-282x2010000400019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 02/08/2010] [Indexed: 11/22/2022]
Abstract
The objective of the present study was to evaluate the neuroprotective effects of ascorbic acid (AA) in rats, against the neuronal damage and memory deficit caused by seizures. Wistar rats were treated with 0.9% saline (i.p., control group), ascorbic acid (500 mg/kg, i.p., AA group), pilocarpine (400 mg/kg, i.p., pilocarpine group), and the association of ascorbic acid (500 mg/kg, i.p.) plus pilocarpine (400 mg/kg, i.p.), 30 min before of administration of ascorbic acid (AA plus pilocarpine group). After the treatments all groups were observed for 24 h. Pilocarpine group presented seizures which progressed to status epilepticus in 75% of the animals. Pretreatment with AA led to a reduction of 50% of this rate. Results showed that pretreatment with AA did not alter reference memory when compared to a control group. In the working memory task, we observed a significant day's effect with important differences between control, pilocarpine and AA plus pilocarpine groups. Pilocarpine and AA plus pilocarpine groups had 81 and 16% of animals with brain injury, respectively. In the hippocampus of pilocarpine animals, it was detected an injury of 60%. As for the animals tested with AA plus pilocarpine, the hippocampal region of the group had a reduction of 43% in hippocampal lesion. Our findings suggest that seizures caused cognitive dysfunction and neuronal damage that might be related, at least in part, to the neurological problems presented by epileptic patients. AA can reverse cognitive dysfunction observed in rats with seizures as well as decrease neuronal injury in rat hippocampus.
Collapse
|
69
|
Tomé ADR, Ferreira PMP, Freitas RMD. Inhibitory action of antioxidants (ascorbic acid or α-tocopherol) on seizures and brain damage induced by pilocarpine in rats. ARQUIVOS DE NEURO-PSIQUIATRIA 2010; 68:355-61. [DOI: 10.1590/s0004-282x2010000300005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 09/29/2009] [Indexed: 11/21/2022]
Abstract
Temporal lobe epilepsy is the most common form of epilepsy in humans. Oxidative stress is a mechanism of cell death induced by seizures. Antioxidant compounds have neuroprotective effects due to their ability to inhibit free radical production. The objectives of this work were to comparatively study the inhibitory action of antioxidants (ascorbic acid or α-tocopherol) on behavioral changes and brain damage induced by high doses of pilocarpine, aiming to further clarify the mechanism of action of these antioxidant compounds. In order to determinate neuroprotective effects, we studied the effects of ascorbic acid (250 or 500 mg/kg, i.p.) and α-tocopherol (200 or 400 mg/kg, i.p.) on the behavior and brain lesions observed after seizures induced by pilocarpine (400 mg/kg, i.p., P400 model) in rats. Ascorbic acid or α-tocopherol injections prior to pilocarpine suppressed behavioral seizure episodes. These findings suggested that free radicals can be produced during brain damage induced by seizures. In the P400 model, ascorbic acid and α-tocopherol significantly decreased cerebral damage percentage. Antioxidant compounds can exert neuroprotective effects associated with inhibition of free radical production. These results highlighted the promising therapeutic potential of ascorbic acid and α-tocopherol in treatments for neurodegenerative diseases.
Collapse
|
70
|
Gitaí DLG, Martinelli HN, Valente V, Pereira MGAG, Oliveira JAC, Elias CF, Bittencourt JC, Leite JP, Costa-Neto CM, Garcia-Cairasco N, Paçó-Larson ML. Increased expression of GluR2-flip in the hippocampus of the Wistar audiogenic rat strain after acute and kindled seizures. Hippocampus 2010; 20:125-33. [PMID: 19330849 DOI: 10.1002/hipo.20590] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Wistar Audiogenic Rat (WAR) is an epileptic-prone strain developed by genetic selection from a Wistar progenitor based on the pattern of behavioral response to sound stimulation. Chronic acoustic stimulation protocols of WARs (audiogenic kindling) generate limbic epileptogenesis, confirmed by ictal semiology, amygdale, and hippocampal EEG, accompanied by hippocampal and amygdala cell loss, as well as neurogenesis in the dentate gyrus (DG). In an effort to identify genes involved in molecular mechanisms underlying epileptic process, we used suppression-subtractive hybridization to construct normalized cDNA library enriched for transcripts expressed in the hippocampus of WARs. The most represented gene among the 133 clones sequenced was the ionotropic glutamate receptor subunit II (GluR2), a member of the alpha-amino-3-hydroxy-5-methyl-4-isoxazoleopropionic acid (AMPA) receptor. Although semiquantitative RT-PCR analysis shows that the hippocampal levels of the GluR2 subunits do not differ between naïve WARs and their Wistar counterparts, we observed that the expression of the transcript encoding the splice-variant GluR2-flip is increased in the hippocampus of WARs submitted to both acute and kindled audiogenic seizures. Moreover, using in situ hybridization, we verified upregulation of GluR2-flip mainly in the CA1 region, among the hippocampal subfields of audiogenic kindled WARs. Our findings on differential upregulation of GluR2-flip isoform in the hippocampus of WARs displaying audiogenic seizures is original and agree with and extend previous immunohistochemical for GluR2 data obtained in the Chinese P77PMC audiogenic rat strain, reinforcing the association of limbic AMPA alterations with epileptic seizures.
Collapse
Affiliation(s)
- Daniel Leite Góes Gitaí
- Department of Cellular and Molecular Biology, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Bertti P, Dal-Cól MLC, Wichert-Ana L, Kato M, Terra VC, de Oliveira JAC, Velasco TR, Sakamoto AC, Garcia-Cairasco N. The neurobiological substrates of behavioral manifestations during temporal lobe seizures: a neuroethological and ictal SPECT correlation study. Epilepsy Behav 2010; 17:344-53. [PMID: 20153261 DOI: 10.1016/j.yebeh.2009.12.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 12/31/2009] [Accepted: 12/31/2009] [Indexed: 10/19/2022]
Abstract
Ictal behavior coupled with SPECT findings during 28 seizures in patients with temporal lobe epilepsy (TLE) with unilateral hippocampal sclerosis (13 left; 15 right) was displayed as flowcharts from right-sided (RTLE) plus left-sided (LTLE) seizures. Ictal SPECT was classified blind to neuroethology. Behaviors were categorized as ipsilateral to the epileptogenic zone (IL), contralateral to the epileptogenic zone (CL), or bilateral. SPECT intensity and region were categorized as IL or CL to the epileptogenic zone. All patients developed automatisms and had hyperperfusion in their temporal lobes. Patients' verbal responses to questions had statistical interactions in RTLE but not in LTLE sum. Most CL dystonic posturing was correlated to IL basal ganglia hyperperfusion. Basal ganglia activation occurred in seizures without dystonic posturing and CL manual automatisms, and lack of IL dystonic posturing and the presence of CL cerebellar hemispheric hyperperfusion were also observed. Coupling of neuroethology and SPECT findings reliably evaluates ictal behavior and functionality of associated brain areas.
Collapse
Affiliation(s)
- Poliana Bertti
- Laboratory of Neurophysiology and Experimental Neuroethology, Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, USP, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Doretto MC, Cortes-de-Oliveira JA, Rossetti F, Garcia-Cairasco N. Role of the superior colliculus in the expression of acute and kindled audiogenic seizures in Wistar audiogenic rats. Epilepsia 2009; 50:2563-74. [PMID: 19490050 DOI: 10.1111/j.1528-1167.2009.02164.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE The role of the superior colliculus (SC) in seizure expression is controversial and appears to be dependent upon the epilepsy model. This study shows the effect of disconnection between SC deep layers and adjacent tissues in the expression of acute and kindling seizures. METHODS Subcollicular transections, ablation of SC superficial and deep layers, and ablation of only the cerebral cortex were evaluated in the Wistar audiogenic rat (WAR) strain during acute and kindled audiogenic seizures. The audiogenic seizure kindling protocol started 4 days after surgeries, with two acoustic stimuli per day for 10 days. Acute audiogenic seizures were evaluated by a categorized seizure severity midbrain index (cSI) and kindled seizures by a severity limbic index (LI). RESULTS All subcollicular transections reaching the deep layers of the SC abolished audiogenic seizures or significantly decreased cSI. In the unlesioned kindled group, a reciprocal relationship between limbic and brainstem pattern of seizures was seen. The increased number of stimuli provoked an audiogenic kindling phenomenon. Ablation of the entire SC (ablation group) or of the cerebral cortex only (ctx-operated group) hampered the acquisition of limbic behaviors. There was no difference in cSI and LI between the ctx-operated and ablation groups, but there was a difference between ctx-operated and the unlesioned kindled group. There was also no difference in cSI between SC deep layer transection and ablation groups. Results of histologic analyses were similar for acute and kindled audiogenic seizure groups. CONCLUSIONS SC deep layers are involved in the expression of acute and kindled audiogenic seizure, and the cerebral cortex is essential for audiogenic kindling development.
Collapse
Affiliation(s)
- Maria C Doretto
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
73
|
Puzzling challenges in contemporary neuroscience: insights from complexity and emergence in epileptogenic circuits. Epilepsy Behav 2009; 14 Suppl 1:54-63. [PMID: 18835370 DOI: 10.1016/j.yebeh.2008.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 11/24/2022]
Abstract
The brain is a complex system that, in the normal condition, has emergent properties like those associated with activity-dependent plasticity in learning and memory, and in pathological situations, manifests abnormal long-term phenomena like the epilepsies. Data from our laboratory and from the literature were classified qualitatively as sources of complexity and emergent properties from behavior to electrophysiological, cellular, molecular, and computational levels. We used such models as brainstem-dependent acute audiogenic seizures and forebrain-dependent kindled audiogenic seizures. Additionally we used chemical or electrical experimental models of temporal lobe epilepsy that induce status epilepticus with behavioral, anatomical, and molecular sequelae such as spontaneous recurrent seizures and long-term plastic changes. Current computational neuroscience tools will help the interpretation, storage, and sharing of the exponential growth of information derived from those studies. These strategies are considered solutions to deal with the complexity of brain pathologies such as the epilepsies.
Collapse
|
74
|
Garcia-Cairasco N. Learning about brain physiology and complexity from the study of the epilepsies. Braz J Med Biol Res 2009; 42:76-86. [DOI: 10.1590/s0100-879x2009000100012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 12/16/2008] [Indexed: 01/26/2023] Open
|
75
|
Guedes RCA, de Oliveira JAC, Amâncio-Dos-Santos A, García-Cairasco N. Sexual differentiation of cortical spreading depression propagation after acute and kindled audiogenic seizures in the Wistar audiogenic rat (WAR). Epilepsy Res 2008; 83:207-14. [PMID: 19101119 DOI: 10.1016/j.eplepsyres.2008.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 10/21/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
SUMMARY Brain excitability diseases like epilepsy constitute one factor that influences brain electrophysiological features. Cortical spreading depression (CSD) is a phenomenon that can be altered by changes in brain excitability. CSD propagation was presently characterized in adult male and female rats from a normal Wistar strain and from a genetically audiogenic seizure-prone strain, the Wistar audiogenic rat (WAR), both previously submitted (RAS(+)), or not (RAS(-)), to repetitive acoustic stimulation, to provoke audiogenic kindling in the WAR-strain. A gender-specific change in CSD-propagation was found. Compared to seizure-resistant animals, in the RAS(-) condition, male and female WARs, respectively, presented CSD-propagation impairment and facilitation, characterized, respectively, by lower and higher propagation velocities (P<0.05). In contraposition, in the RAS(+) condition, male and female WARs displayed, respectively, higher and lower CSD-propagation rates, as compared to the corresponding controls. In some Wistar and WAR females, we determined estrous cycle status on the day of the CSD-recording as being either estrous or diestrous; no cycle-phase-related differences in CSD-propagation velocities were detected. In contrast to other epilepsy models, such as Status Epilepticus induced by pilocarpine, despite the CSD-velocity reduction, in no case was CSD propagation blocked in WARs. The results suggest a gender-related, estrous cycle-phase-independent modification in the CSD-susceptibility of WAR rats, both in the RAS(+) and RAS(-) situation.
Collapse
|
76
|
Serotonergic neurotransmission in the dorsal raphe nucleus recruits in situ 5-HT2A/2C receptors to modulate the post-ictal antinociception. Exp Neurol 2008; 213:410-8. [DOI: 10.1016/j.expneurol.2008.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 07/02/2008] [Accepted: 07/03/2008] [Indexed: 12/28/2022]
|
77
|
Vinogradova LV, van Rijn CM. Anticonvulsive and antiepileptogenic effects of levetiracetam in the audiogenic kindling model. Epilepsia 2008; 49:1160-8. [DOI: 10.1111/j.1528-1167.2008.01594.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
78
|
Pereira FKS, Neves MJ, Lima MP, Braga AA, Pesquero JL, Doretto MC, Borges EL. Peripheral glucose metabolism is altered by epileptic seizures. Metab Brain Dis 2008; 23:105-14. [PMID: 18214657 DOI: 10.1007/s11011-007-9075-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 10/04/2007] [Indexed: 10/22/2022]
Abstract
The aim of the present study was to investigate the status of jejunal absorption and peripheral metabolism of glucose in Wistar Audiogenic Rats (WAR), a genetic model of epilepsy, after seizures induced by intensive sound exposure. The jejunal loop of rats was isolated and infused (0.5 mL min(-1)) with Tyrode solution containing twice the normal concentrations of glucose, sodium, and potassium. Samples were taken at 5 or 10-min intervals over a 40-min period. At the end of the experiment, samples of liver and gastrocnemius muscle were taken to measure the levels of glycogen, glucose-6-phosphate, fructose-6-phosphate and glucose transporter-4 (GLUT4). Hepatic glucose-6-phosphate increased in WAR submitted to audiogenic seizure (21.90 +/- 3.08) as compared to non-susceptible Wistar rats (8.12 +/- 0.87) and to WAR not submitted to audiogenic stimulation (5.17 +/- 0.97). In addition, an increase in hepatic fructose-6-phosphate, an intermediate metabolite of the glycolytic pathway, was observed in WAR submitted to audiogenic seizure (5.98 +/- 0.99) compared to non-susceptible Wistar rats (2.38 +/- 0.53). According to the present results, jejunal absorption of glucose was not changed by seizures. However, generalized tonic-clonic seizures produced by sound stimulation resulted in a decrease in muscle glycogen content. In addition, our results demonstrated that the concentration of GLUT4 in the gastrocnemius muscle of WAR was 1.6-fold higher than that observed in resistant rats and that the audiogenic stimulus led to decreased concentration of this receptor in the muscle of WAR animals.
Collapse
Affiliation(s)
- Fernanda K S Pereira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
79
|
Romcy-Pereira RN, de Araujo DB, Leite JP, Garcia-Cairasco N. A semi-automated algorithm for studying neuronal oscillatory patterns: A wavelet-based time frequency and coherence analysis. J Neurosci Methods 2008; 167:384-92. [DOI: 10.1016/j.jneumeth.2007.08.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 08/24/2007] [Accepted: 08/28/2007] [Indexed: 11/29/2022]
|
80
|
Modulation of B1 and B2 kinin receptors expression levels in the hippocampus of rats after audiogenic kindling and with limbic recruitment, a model of temporal lobe epilepsy. Int Immunopharmacol 2007; 8:200-5. [PMID: 18182227 DOI: 10.1016/j.intimp.2007.07.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 07/24/2007] [Accepted: 07/25/2007] [Indexed: 01/05/2023]
Abstract
Epileptic seizures are hypersynchronous, paroxystic and abnormal neuronal discharges. Epilepsies are characterized by diverse mechanisms involving alteration of excitatory and inhibitory neurotransmission that result in hyperexcitability of the central nervous system (CNS). Enhanced neuronal excitability can also be achieved by inflammatory processes, including the participation of cytokines, prostaglandins or kinins, molecules known to be involved in either triggering or in the establishment of inflammation. Multiple inductions of audiogenic seizures in the Wistar audiogenic rat (WAR) strain are a model of temporal lobe epilepsy (TLE), due to the recruitment of limbic areas such as hippocampus and amygdala. In this study we investigated the modulation of the B1 and B2 kinin receptors expression levels in neonatal WARs as well as in adult WARs subjected to the TLE model. The expression levels of pro-inflammatory (IL-1 beta) and anti-inflammatory (IL-10) cytokines were also evaluated, as well as cyclooxygenase (COX-2). Our results showed that the B1 and B2 kinin receptors mRNAs were up-regulated about 7- and 4-fold, respectively, in the hippocampus of kindled WARs. On the other hand, the expressions of the IL-1 beta, IL-10 and COX-2 were not related to the observed increase of expression of kinin receptors. Based on those results we believe that the B1 and B2 kinin receptors have a pivotal role in this model of TLE, although their participation is not related to an inflammatory process. We believe that kinin receptors in the CNS may act in seizure mechanisms by participating in a specific kininergic neurochemical pathway.
Collapse
|
81
|
Loseva EV, Alekseeva TG. Influences of an acoustic signal with ultrasound components on the acquisition of a defensive conditioned reflex in Wistar rats. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2007; 37:459-65. [PMID: 17505795 DOI: 10.1007/s11055-007-0035-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 12/12/2005] [Indexed: 05/15/2023]
Abstract
The effects of short (90 sec) exposures to a complex acoustic signal with ultrasound components on the acquisition of a defensive conditioned two-way avoidance reflex using an electric shock as the unconditioned stimulus in a shuttle box were studied in female Wistar rats. This stimulus induced audiogenic convulsions of different severities in 59% of the animals. A scale for assessing the ability of rats to acquire the conditioned two-way avoidance reflex was developed. Presentation of the complex acoustic signal was found to be a powerful stressor for Wistar rats, preventing the acquisition of the reflex in the early stages (four and six days) after presentation. This effect was independent of the presence and severity of audiogenic convulsions in the rats during presentation of the acoustic signal. On repeat training nine days after the acoustic signal (with the first session after four days), acquisition of the reflex was hindered (as compared with controls not presented with the acoustic signal). However, on repeat training at later time points (1.5 months after the complex acoustic signal, with the first session after six days), the rats rapidly achieved the learning criterion (10 correct avoidance responses in a row). On the other hand, if the acoustic signal was presented at different times (immediately or at three or 45 days) after the first training session, the animals' ability to acquire the reflex on repeat training was not impaired at either the early or late periods after exposure to the stressor. These results suggest that the complex acoustic signal impairs short-term memory (the process of acquisition of the conditioned two-way avoidance reflex at the early post-presentation time point) but has no effect on long-term memory or consolidation of the memory trace.
Collapse
Affiliation(s)
- E V Loseva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
| | | |
Collapse
|
82
|
Vinogradova LV, Shatskova AB, Tuomisto L. Histaminergic modulation of acoustically induced running behavior in rats. Brain Res 2007; 1148:198-204. [DOI: 10.1016/j.brainres.2007.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 02/08/2007] [Accepted: 02/09/2007] [Indexed: 11/15/2022]
|
83
|
Rossetti F, Rodrigues MCA, de Oliveira JAC, Garcia-Cairasco N. EEG wavelet analyses of the striatum–substantia nigra pars reticulata–superior colliculus circuitry: Audiogenic seizures and anticonvulsant drug administration in Wistar audiogenic rats (War strain). Epilepsy Res 2006; 72:192-208. [PMID: 17150334 DOI: 10.1016/j.eplepsyres.2006.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 08/04/2006] [Accepted: 08/14/2006] [Indexed: 01/15/2023]
Abstract
The importance of the substantia nigra pars reticulata (SNPr), striatum (STR) and superior colicullus (SC) in the blockade of experimental seizures is well known. But, in audiogenic seizures (brainstem tonic-clonic seizures), the anticonvulsant activity of these nuclei is still controversial. In the present study we aimed to analyze the STR-SNPr-CS circuitry in the audiogenic seizures of Wistar audiogenic rat (WAR). Behavioral and electroencephalographic (EEG) data were collected from WARs under no treatment or injection with systemic (phenobarbital) or intracerebral (intranigral) drugs (muscimol and phenobarbital). The main EEG frequency oscillation of STR, SNPr and SC seen before, during and after audiogenic seizures or during seizure protection, was determinated with wavelet spectral analyses. This method allows the association between behavior and EEG (video-EEG). Audiogenic seizures last only for half a minute in average, suggesting that the interruptions of seizures are probably not due to exhaustion. Systemic phenobarbital caused an acute and dose-dependent behavioral and EEGraphic anticonvulsant effect both in WARs. The dose of phenobarbital 15mg/kg protected animals almost completely, without side effects such as ataxia and sedation. In our data, this endogenous "natural" seizure blockade (or termination) seems to be similar to the "forced" seizure abolition, like the one caused by a systemic non-ataxic phenobarbital dose, because in both cases an intense decrease in the EEG main frequency oscillation can be seen in SNPr and SC. Intranigral phenobarbital or muscimol did not protect animals, and actually induced an increase in the main EEG frequency oscillation in SC. The main finding of the present study is that, in contrast to what is well believed about the incapacity to control audiogenic seizures by the striato-nigro-tectal circuitry, we collected here evidences that these nuclei are involved in the ability to block these seizures. However, the striato-nigro-tectal circuitry in WARs, a genetically developed strain, seems to have different functional mechanisms when compared with normal rats.
Collapse
Affiliation(s)
- Franco Rossetti
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
84
|
de Oliveira RC, de Oliveira R, Ferreira CMDR, Coimbra NC. Involvement of 5-HT(2) serotonergic receptors of the nucleus raphe magnus and nucleus reticularis gigantocellularis/paragigantocellularis complex neural networks in the antinociceptive phenomenon that follows the post-ictal immobility syndrome. Exp Neurol 2006; 201:144-53. [PMID: 16842781 DOI: 10.1016/j.expneurol.2006.03.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 03/17/2006] [Accepted: 03/31/2006] [Indexed: 12/30/2022]
Abstract
The post-ictal immobility syndrome is followed by a significant increase in the nociceptive thresholds in animals and men. In this interesting post-ictal behavioral response, endogenous opioid peptides-mediated mechanisms, as well as cholinergic-mediated antinociceptive processes, have been suggested. However, considering that many serotonergic descending pathways have been implicated in antinociceptive reactions, the aim of the present work is to investigate the involvement of 5-HT(2)-serotonergic receptor subfamily in the post-ictal antinociception. The analgesia was measured by the tail-flick test in seven or eight Wistar rats per group. Convulsions were followed by statistically significant increase in the tail-flick latencies (TFL), at least for 120 min of the post-ictal period. Male Wistar rats were submitted to stereotaxic surgery for introduction of a guide-cannula in the rhombencephalon, aiming either the nucleus raphe magnus (NRM) or the gigantocellularis complex. In independent groups of animals, these nuclei were neurochemically lesioned with a unilateral microinjection of ibotenic acid (1.0 microg/0.2 microL). The neuronal damage of either the NRM or nucleus reticularis gigantocellularis/paragigantocellularis complex decreased the post-ictal analgesia. Also, in other independent groups, central administration of ritanserin (5.0 microg/0.2 microL) or physiological saline into each of the reticular formation nuclei studied caused a statistically significant decrease in the TFL of seizing animals, as compared to controls, in all post-ictal periods studied. These results indicate that serotonin input-connected neurons of the pontine and medullarly reticular nuclei may be involved in the post-ictal analgesia.
Collapse
Affiliation(s)
- Rithiele Cristina de Oliveira
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (USP), Av. dos Bandeirantes 3900, Ribeirão Preto (SP) 14049-900, Brazil
| | | | | | | |
Collapse
|
85
|
Vinogradova LV, Vinogradov VY, Kuznetsova GD. Unilateral cortical spreading depression is an early marker of audiogenic kindling in awake rats. Epilepsy Res 2006; 71:64-75. [PMID: 16806830 DOI: 10.1016/j.eplepsyres.2006.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 05/22/2006] [Accepted: 05/22/2006] [Indexed: 10/24/2022]
Abstract
Spreading depression (SD), a self-propagating wave of reversible cellular depolarization, is thought to play an important role in brain pathophysiology. SD and seizures are closely related events but little is known about involvement of SD in chronic epileptogenesis. Here we show that cortical SD is the first and highly reproducible manifestation of audiogenic kindling induced by repeated sound stimulation of WAG/Rij rats with genetic audiogenic and absence epilepsy. Repetition of sound-induced running seizures in freely moving rats led to an appearance and gradual intensification of post-running facial and forelimb clonic convulsions coupled with afterdischarge in the fronto-parietal cortex. Before the development of these traditional manifestations of audiogenic kindling, an unilateral cortical SD wave began to be triggered by audiogenic seizures. Once cortical SD appeared, it became a permanent component of subsequent seizures. SD was always recorded in the hemisphere ipsilateral to the running direction. Only at the late stages of audiogenic kindling SD developed bilaterally. To estimate the contribution of SD in postictal effects of audiogenic seizures, we compared cortical activity after seizures induced SD or not. It was found that only seizures with cortical SD were followed by postictal suppression of spontaneous spike-wave discharges displayed by WAG/Rij rats. The results show that (1) cortical SD is readily triggered by brief sensory-induced seizures in awake animals; (2) SD may be responsible for postictal changes in cortical activity; (3) unilateral initiation of SD suggests asymmetrical recruitment of the cortex into seizure network during audiogenic kindling.
Collapse
Affiliation(s)
- Lyudmila V Vinogradova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5a, Moscow 117485, Russia.
| | | | | |
Collapse
|
86
|
Dal-Cól MLC, Terra-Bustamante VC, Velasco TR, Oliveira JAC, Sakamoto AC, Garcia-Cairasco N. Neuroethology application for the study of human temporal lobe epilepsy: from basic to applied sciences. Epilepsy Behav 2006; 8:149-60. [PMID: 16246630 DOI: 10.1016/j.yebeh.2005.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 07/28/2005] [Accepted: 08/15/2005] [Indexed: 11/21/2022]
Abstract
The aim of this investigation was to apply neuroethology to the study of human temporal lobe epilepsy (TLE). For this purpose, 42 seizures in 7 patients recorded during video/EEG monitoring (1997-1998) were analyzed by means of a behavioral glossary containing all behaviors. Video recordings were reobserved, and all patients' behaviors were annotated second-by-second. Data were analyzed using Ethomatic software and displayed as flowcharts including frequency, mean duration, and sequential statistic interaction of behavioral items (chi2 > or = 10.827, P<0.001). Flowcharts of (1) a group of seizures from a single patient, (2) the sum of four seizures per patient of two patients with right and five patients with left TLE, and (3) the comparison of left versus right TLE are shown. Well-established data in the literature were confirmed, such as aura (especially epigastric), contralateral lateralization value of dystonia and version, consciousness and language alterations in ictal and postictal periods, mostly with respect to dominant hemisphere involvement, among others. Less well established data such as awakening seizures in TLE patients, lateralization value of facial wiping (ipsilateral to the focus), statistically significant associations between behavioral pairs (dyads), and new behavioral sequences in TLE were also observed. We suggest that neuroethology also has great potential in the study of human epilepsy semiology. This work had an important role in method standardization for human epilepsy, setting the basis for the development of future clinical studies including correlation with other diagnostic methods (EEG, magnetic resonance, and SPECT). The next step will be the comparative study of seizures of patients with left and right TLE, with a greater number of patients, and the development of a digital video library.
Collapse
Affiliation(s)
- M L C Dal-Cól
- Department of Physiology, Laboratory of Neurophysiology and Experimental Neuroethology, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
87
|
Merrill MA, Clough RW, Jobe PC, Browning RA. Brainstem Seizure Severity Regulates Forebrain Seizure Expression in the Audiogenic Kindling Model. Epilepsia 2005; 46:1380-8. [PMID: 16146432 DOI: 10.1111/j.1528-1167.2005.39404.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Although sound-induced (audiogenic) seizures in the genetically epilepsy-prone rat (GEPR) initially occur independent of the forebrain, repeated audiogenic seizures recruit forebrain seizure circuits in a process referred to as audiogenic kindling. In GEPR-3s, audiogenic kindling results in facial and forelimb (F&F) clonic seizures that are typical of forebrain seizures. However, in GEPR-9s, audiogenic kindling produces posttonic all-limb clonus not usually observed during forebrain seizures. We hypothesized that the more severe brainstem seizures of the GEPR-9 prevent the expression of F&F clonic seizures during audiogenic kindling. Therefore attenuation of audiogenic seizures during audiogenic kindling in GEPR-9s should allow F&F clonic seizures to be expressed. Likewise, intensifying audiogenic seizure severity in GEPR-3s should inhibit audiogenically kindled F&F clonic seizures. We have tested this hypothesis in the present study. METHODS Lesions of the superior colliculus or treatment with low-dose phenytoin were used to suppress audiogenic seizure severity in GEPR-9s. Depletion of brain serotonin was used to increase the seizure severity in GEPR-3s. All GEPRs were then subjected to audiogenic kindling. Behavioral and electrographic seizures were assessed. RESULTS Suppression of audiogenic seizure severity during audiogenic kindling in GEPR-9s increased the incidence forebrain seizure behavior. Kindled GEPR-9s that continued to display full tonic seizures did not exhibit forebrain convulsions, but did show posttonic clonus and forebrain seizure activity in the EEG. GEPR-3s chronically depleted of brain serotonin, along with displaying tonic brainstem seizures, tended to display less severe forebrain seizures during audiogenic kindling. CONCLUSIONS These findings support the concept that severe brainstem seizures prevent the behavioral expression of forebrain seizures in audiogenically kindled GEPR-9s. It appears that the severe brainstem seizure of the GEPR-9 does not allow the forebrain seizure to manifest its typical behavioral concomitants despite electrographic evidence that spike-wave discharge is occurring in the forebrain.
Collapse
Affiliation(s)
- Michelle A Merrill
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, USA
| | | | | | | |
Collapse
|
88
|
Mesquita F, Aguiar JF, Oliveira JA, Garcia-Cairasco N, Varanda WA. Electrophysiological properties of cultured hippocampal neurons from Wistar Audiogenic Rats. Brain Res Bull 2005; 65:177-83. [PMID: 15763185 DOI: 10.1016/j.brainresbull.2005.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Accepted: 01/11/2005] [Indexed: 11/17/2022]
Abstract
The main goal of this work was to analyze the electrophysiological properties of cultured hippocampal neurons from a particular epileptic rat strain, called Wistar Audiogenic Rats (WAR). The whole-cell patch-clamp technique was used to record both active and passive membrane responses in an attempt to detect alterations in their characteristics in relation to controls from Wistar rats. Neurons from WARs show a significant reduction in the magnitude of the inhibitory GABAergic currents ( approximately 45%), in spite of maintaining a normal level of the excitatory glutamatergic currents. In addition, the magnitude of potassium currents, measured at +80 mV, is reduced by about 30% in comparison to controls. Surprisingly, we also found important changes in the passive cellular properties in WAR neurons such as membrane potential (-50.0 mV in WARs and -63.1 mV in controls) and input resistance (647 MOmega in WARs and 408 MOmega in controls). The changes described here, could be the basis of the neurophysiological and behavioral alterations present in these hyperexcitable animals, contributing to a better understanding of epileptogenesis in this particular animal model.
Collapse
Affiliation(s)
- Fernando Mesquita
- Departamento de Ciências Básicas da Saúde, Faculdade de Ciências Médicas, UFMT, Av. Fernando Correa da Costa, s/n 78060-900 Cuiabá, MT, Brazil.
| | | | | | | | | |
Collapse
|
89
|
Vinogradova LV, Kuznetsova GD, Shatskova AB, van Rijn CM. Vigabatrin in Low Doses Selectively Suppresses the Clonic Component of Audiogenically Kindled Seizures in Rats. Epilepsia 2005; 46:800-10. [PMID: 15946321 DOI: 10.1111/j.1528-1167.2005.52604.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE The effect of systemic administration of the gamma-aminobutyric acid (GABA)-transaminase inhibitor vigabatrin (VGB) on different components of convulsions was tested in the model of audiogenically kindled seizures, which consist of brainstem (running, tonus) and forebrain (clonus) elements. METHODS Audiogenically susceptible rats of Krushinsky-Molodkina (KM), Wistar, and WAG/Rij strains received repeated sound stimulation (60 dB, 10-80 kHz) until kindled audiogenic seizures were reliably elicited. Kindled audiogenic seizures consisted of running, tonic, and generalized clonic phases in KM rats (severe audiogenic seizures) and of running and Racine stage 5 facial/forelimb clonus in Wistar and WAG/Rij rats (moderate seizures). Vehicle, 100, or 200 mg/kg of VGB was intraperitoneally injected 2, 4 and 24 h before the induction of kindled audiogenic seizures. RESULTS At both doses, VGB did not change the seizure latency and the duration of running and tonic convulsions, but suppressed clonic ones in all rat strains. In KM rats, the mean duration of posttonic clonus was significantly reduced at 24 h after 100 mg/kg and from 4 h after 200 mg/kg. In Wistar and WAG/Rij rats, the mean duration of facial/forelimb clonus was reduced from 4 and 2 h after 100- and 200-mg/kg administration, respectively; 24 h after the high-dose injection, clonus was completely blocked in all rats of both strains. No difference in efficacy of VGB between Wistar and WAG/Rij rats was observed. CONCLUSIONS VGB more effectively suppresses clonic convulsions than running and tonic ones in audiogenically kindled rats. It is supposed that this selective anticonvulsive effect of VGB results from different sensitivities of forebrain and brainstem epileptic networks to the presumed GABA enhancement.
Collapse
MESH Headings
- Acoustic Stimulation
- Animals
- Anticonvulsants/administration & dosage
- Anticonvulsants/pharmacology
- Anticonvulsants/therapeutic use
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Epilepsy, Reflex/diagnosis
- Epilepsy, Reflex/prevention & control
- Female
- Injections, Intraperitoneal
- Kindling, Neurologic/drug effects
- Kindling, Neurologic/physiology
- Male
- Motor Activity/drug effects
- Motor Activity/physiology
- Rats
- Rats, Inbred Strains
- Rats, Wistar
- Seizures/prevention & control
- Severity of Illness Index
- Species Specificity
- Vigabatrin/administration & dosage
- Vigabatrin/pharmacology
- Vigabatrin/therapeutic use
Collapse
Affiliation(s)
- Ludmilla V Vinogradova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | |
Collapse
|
90
|
Fonseca AGAR, Santos RAS, Moraes MFD, Leite MF, Doretto MC. Vasopressinergic hypothalamic neurons are recruited during the audiogenic seizure of WARs. Brain Res 2005; 1038:32-40. [PMID: 15748870 DOI: 10.1016/j.brainres.2004.12.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 12/16/2004] [Accepted: 12/17/2004] [Indexed: 11/30/2022]
Abstract
The Wistar Audiogenic Rat (WAR) is a genetic model of reflex epilepsy with seizures induced by high-intensity sound stimulation (120 dB SPL). In spite of the known neural substrates involved in WAR seizure phenotype, neuroendocrine hypothalamic neurons were never investigated. In this work, AVP immunohistochemistry in the hypothalamus and radioimmunoassay (RIA) in plasma and in hypothalamic and hypophysial tissues were performed on both controls and WARs in order to evaluate the dynamics of AVP release due to seizure induction. Susceptible animals (WARs) displayed at least tonic-clonic convulsions followed by clonic spasms, while resistant Wistar rats (R) had no convulsive behavior. Animals were sacrificed at 3 instances: basal condition (without stimulus) and at 3 and 10 min after sound stimulation. For the immunohistochemistry AVP study, brains were harvested and processed by the avidin-biotin-peroxidase detection method. Optic densitometry was used for quantifying AVP labeling in supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei. SON presented higher densitometry levels (%D--relative to background) for both WARs and R when compared to PVN. Nevertheless, both nuclei presented a marked decrease, referenced to basal levels, in %D for WARs at 3 min (approximately 35%) against a discrete change for R (approximately 90%). RIA results were significantly higher in the hypophysis of WARs when compared to R rats, at 3 min. Also, at 3 min, plasma AVP in WARs (89.32 +/- 24.81 pg/mL) were higher than in R (12.01 +/- 2.39 pg/mL). We conclude, based on the AVP releasing profiles, that vasopressinergic hypothalamic neurons are recruited during the audiogenic seizure of WARs.
Collapse
Affiliation(s)
- A G A R Fonseca
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Avenue, Antonio Carlos, 6627, CEP 31270-901-Campus Pampulha Belo Horizonte MG, Brazil
| | | | | | | | | |
Collapse
|
91
|
Magalhães LHM, Garcia-Cairasco N, Massensini AR, Doretto MC, Moraes MFD. Evidence for augmented brainstem activated forebrain seizures in Wistar Audiogenic Rats subjected to transauricular electroshock. Neurosci Lett 2004; 369:19-23. [PMID: 15380300 DOI: 10.1016/j.neulet.2004.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 06/18/2004] [Accepted: 07/09/2004] [Indexed: 11/18/2022]
Abstract
Previous work from our laboratory has shown that naïve Wistar Audiogenic Rats (WARs), a genetic model of reflex epilepsy in which seizures are induced by high-intensity sound stimulation (120 dB SPL), are seizure-prone to a variety of pro-convulsive stimuli (e.g., transauricular electroshock, pentylenetetrazole and pilocarpine). On the other hand, repetitive acoustic stimulation of WARs causes a slow recruitment of limbic structures, known as audiogenic kindling, changing seizure expression to include behavior characteristic of temporal-lobe epilepsy. Thus, our hypothesis is that WARs have facilitated acoustic-limbic projections when compared to Wistar controls. Wistar controls (n = 9) and WARs (n = 9) underwent EEG electrode implants in the cortex-Cx, amygdaloid complex-AMY and inferior colliculus-IC and received one low current transauricular electrical stimulus (ES) daily, for three consecutive days, with intensities of 10, 20 and 30 mA, respectively. The video-electroencephalographic activity was recorded 1 min before and 4 min after ES. Our results confirm previously described data indicating a greater susceptibility of WARs to seizure. However, low current ES (e.g., 20 mA) triggered epileptiform activity in the AMY only after epileptiform EEG was visible in the Cx and IC electrode leads. The AMY after-discharge continued even though no evident epileptiform activity was present in the Cx. In conclusion, our results add electrophysiological data to previously published behavioral evidence of WAR enhanced susceptibility to ES seizures and, also, support the hypothesis that the acoustic-limbic circuitry is facilitated even in unkindled WARs.
Collapse
Affiliation(s)
- Lucas Henrique Maia Magalhães
- Núcleo de Neurociências (NNC), Departamento de Fisiologia e Biofísica, ICB, UFMG, Av. Antonio Carlos, 6627 CEP 31270-901, Campus Pampulha, Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
92
|
de Freitas RL, de Oliveira RC, de Carvalho AD, Felippotti TT, Bassi GS, Elias-Filho DH, Coimbra NC. Role of muscarinic and nicotinic cholinergic receptors in an experimental model of epilepsy-induced analgesia. Pharmacol Biochem Behav 2004; 79:367-76. [PMID: 15501314 DOI: 10.1016/j.pbb.2004.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2004] [Revised: 08/15/2004] [Accepted: 08/16/2004] [Indexed: 01/11/2023]
Abstract
The blockade of GABA-mediated Cl(-) influx with pentylenetetrazol (PTZ) was used in the present work to induce seizures in animals. The neurotransmission in the postictal period has been the focus of many studies, and there is evidence suggesting antinociceptive mechanisms following tonic-clonic seizures in both animals and men. The aim of this work was to study the involvement of acetylcholine in the antinociception induced by convulsions elicited by peripheral administration of PTZ (64 mg/kg). Analgesia was measured by the tail-flick test in eight albino Wistar rats per group. Convulsions were followed by significant increases in tail-flick latencies (TFLs) at least for 120 min of the postictal period. Peripheral administration of atropine (0.25, 1 and 4 mg/kg) caused a significant dose-dependent decrease in the TFL in seizing animals, as compared to controls. These data were corroborated by peripheral administration of mecamylamine, a nicotinic cholinergic receptor blocker, at the same doses (0.25, 1 and 4 mg/kg) used for the muscarinic cholinergic receptor antagonist. The recruitment of the muscarinic receptor was made 10 min postconvulsions and in subsequent periods of postictal analgesia, whereas the involvement of the nicotinic cholinergic receptor was implicated only after 30 min postseizures. The cholinergic antagonists caused a minimal reduction in body temperature, but did not impair baseline TFL, spontaneous exploration or motor coordination in the rotarod test at the maximal dose of 4 mg/kg. These results indicate that acetylcholine may be involved as a neurotransmitter in postictal analgesia.
Collapse
Affiliation(s)
- Renato Leonardo de Freitas
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), 14049-900, Avenida dos Bandeirantes, 3900, Ribeirão Preto (SP), Brazil
| | | | | | | | | | | | | |
Collapse
|
93
|
Garcia-Cairasco N, Rossetti F, Oliveira JAC, Furtado MDA. Neuroethological study of status epilepticus induced by systemic pilocarpine in Wistar audiogenic rats (WAR strain). Epilepsy Behav 2004; 5:455-63. [PMID: 15256181 DOI: 10.1016/j.yebeh.2004.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Revised: 04/13/2004] [Accepted: 04/16/2004] [Indexed: 10/26/2022]
Abstract
The administration of pilocarpine (PILO) is widely recognized as resulting in an experimental model of temporal lobe epilepsy; it is characterized by induction of status epilepticus (SE) and spontaneous recurrent seizures after a latent period. We provide in this work a neuroethological description of the SE induced by PILO. Behavioral evaluations were made in Wistar Audiogenic Rats (WARs) and Wistar resistant (R) animals. The experimental group (R) and WARs were pretreated with methyl scopolamine (1mg/kg ip) and injected with PILO (R animals, 340-380 mg/kg ip; WARs, 240-280 mg/kg ip). Among R animals, 36% developed SE, and among WARs, 53%. The control group (R animals and WARs) was injected only with methyl scopolamine plus saline. The ETHOMATIC method was used for evaluation of seizures. Sequences included in the analysis were chosen using (1) fixed observation windows and (2) behavioral triggers. The R group showed that the threshold for seizure is variable, so seizure onset and behavioral evolution were better described using behavioral triggers than fixed observation windows. The observation windows selected in similar duration intervals do not characterize the seizures. Sequential analysis in the WAR group showed high mortality after SE and greater susceptibility to PILO, compared with R animals. We conclude that with neuroethological tools it is possible to better map the sequence and evolution of SE induced by PILO compared to only using behavioral and arbitrary seizure severity scales. This sequence is faster and stronger in severity when WARs are compared with R animals. Although the WARs underwent an evolution of SE in some way equivalent to that of R animals, some rats presented tonic-clonic convulsions after PILO injection, very similar to acute audiogenic seizures, a brainstem-dependent model. The current data also point to the PILO-plus-WAR combination as a suitable protocol to study the genetic-epilepsy connection in experimental temporal lobe epilepsy.
Collapse
Affiliation(s)
- Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | | | | |
Collapse
|
94
|
Rodrigues MCA, Beleboni RDO, Coutinho-Netto J, dos Santos WF, Garcia-Cairasco N. Behavioral effects of bicuculline microinjection in the dorsal versus ventral hippocampal formation of rats, and control of seizures by nigral muscimol. Epilepsy Res 2004; 58:155-65. [PMID: 15120746 DOI: 10.1016/j.eplepsyres.2004.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 02/04/2004] [Accepted: 02/05/2004] [Indexed: 11/20/2022]
Abstract
This work aims to describe behavioral/electroencephalographic (EEG) seizures induced by bicuculline microinjection intracerebroventricularly (ICV) and in the dorsal hippocampal formation (DHF) or ventral hippocampal formation/amygdala area (VHF-AMY). We also test if GABAergic manipulation in the substantia nigra pars reticulata (SNPR) is capable of controlling those seizures. ICV injection of bicuculline induced a progressive sequence of convulsive responses, jumps and escapes from the open-field. This effect was partially reached by bicuculline injection in the DHF or VHF-AMY injection. Also: muscimol injection, but not GABA uptake blockers (nipecotic acid or a spider venom neurotoxin FrPbA2), into the SNPR abolished seizures induced by bicuculline injection in the DHF. It was concluded that different neuronal circuitry in the hippocampal formation are modulated, at least partially by nigral GABAergic mechanisms.
Collapse
Affiliation(s)
- Marcelo Cairrão Araujo Rodrigues
- Laboratório de Neurobiologia e Peçonhas, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | |
Collapse
|
95
|
Scharfman HE, Sollas AL, Berger RE, Goodman JH. Electrophysiological evidence of monosynaptic excitatory transmission between granule cells after seizure-induced mossy fiber sprouting. J Neurophysiol 2004; 90:2536-47. [PMID: 14534276 DOI: 10.1152/jn.00251.2003] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mossy fiber sprouting is a form of synaptic reorganization in the dentate gyrus that occurs in human temporal lobe epilepsy and animal models of epilepsy. The axons of dentate gyrus granule cells, called mossy fibers, develop collaterals that grow into an abnormal location, the inner third of the dentate gyrus molecular layer. Electron microscopy has shown that sprouted fibers from synapses on both spines and dendritic shafts in the inner molecular layer, which are likely to represent the dendrites of granule cells and inhibitory neurons. One of the controversies about this phenomenon is whether mossy fiber sprouting contributes to seizures by forming novel recurrent excitatory circuits among granule cells. To date, there is a great deal of indirect evidence that suggests this is the case, but there are also counterarguments. The purpose of this study was to determine whether functional monosynaptic connections exist between granule cells after mossy fiber sprouting. Using simultaneous recordings from granule cells, we obtained direct evidence that granule cells in epileptic rats have monosynaptic excitatory connections with other granule cells. Such connections were not obtained when age-matched, saline control rats were examined. The results suggest that indeed mossy fiber sprouting provides a substrate for monosynaptic recurrent excitation among granule cells in the dentate gyrus. Interestingly, the characteristics of the excitatory connections that were found indicate that the pathway is only weakly excitatory. These characteristics may contribute to the empirical observation that the sprouted dentate gyrus does not normally generate epileptiform discharges.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, New York State Department of Health, West Haverstraw 10993-1195, USA.
| | | | | | | |
Collapse
|
96
|
Faingold CL. Emergent properties of CNS neuronal networks as targets for pharmacology: application to anticonvulsant drug action. Prog Neurobiol 2004; 72:55-85. [PMID: 15019176 DOI: 10.1016/j.pneurobio.2003.11.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Accepted: 11/19/2003] [Indexed: 01/13/2023]
Abstract
CNS drugs may act by modifying the emergent properties of complex CNS neuronal networks. Emergent properties are network characteristics that are not predictably based on properties of individual member neurons. Neuronal membership within networks is controlled by several mechanisms, including burst firing, gap junctions, endogenous and exogenous neuroactive substances, extracellular ions, temperature, interneuron activity, astrocytic integration and external stimuli. The effects of many CNS drugs in vivo may critically involve actions on specific brain loci, but this selectivity may be absent when the same neurons are isolated from the network in vitro where emergent properties are lost. Audiogenic seizures (AGS) qualify as an emergent CNS property, since in AGS the acoustic stimulus evokes a non-linear output (motor convulsion), but the identical stimulus evokes minimal behavioral changes normally. The hierarchical neuronal network, subserving AGS in rodents is initiated in inferior colliculus (IC) and progresses to deep layers of superior colliculus (DLSC), pontine reticular formation (PRF) and periaqueductal gray (PAG) in genetic and ethanol withdrawal-induced AGS. In blocking AGS, certain anticonvulsants reduce IC neuronal firing, while other agents act primarily on neurons in other AGS network sites. However, the NMDA receptor channel blocker, MK-801, does not depress neuronal firing in any network site despite potently blocking AGS. Recent findings indicate that MK-801 actually enhances firing in substantia nigra reticulata (SNR) neurons in vivo but not in vitro. Thus, the MK-801-induced firing increases in SNR neurons observed in vivo may involve an indirect effect via disinhibition, involving an action on the emergent properties of this seizure network.
Collapse
Affiliation(s)
- Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA.
| |
Collapse
|
97
|
Galvis-Alonso OY, Cortes De Oliveira JA, Garcia-Cairasco N. Limbic epileptogenicity, cell loss and axonal reorganization induced by audiogenic and amygdala kindling in wistar audiogenic rats (WAR strain). Neuroscience 2004; 125:787-802. [PMID: 15099692 DOI: 10.1016/j.neuroscience.2004.01.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2004] [Indexed: 10/26/2022]
Abstract
Audiogenic seizures are a model of generalized tonic-clonic brainstem-generated seizures. Repeated induction of audiogenic seizures, in audiogenic kindling (AuK) protocols, generates limbic epileptogenic activity. The present work evaluated associations between permanence of AuK-induced limbic epileptogenicity and changes in cell number/gluzinergic terminal reorganization in limbic structures in Wistar audiogenic rats (WARs). Additionally, we evaluated histological changes after only amygdala kindling (AmK) and only AuK, and longevity of permanence of AuK-induced limbic epileptogenicity, up to 160 days. WARs and Wistar non-susceptible rats were submitted to AuK (80 stimuli) followed by both 50 days without acoustic stimulation and AmK (16 stimuli), only AmK and only AuK. Cell counting and gluzinergic terminal reorganization were assessed, respectively, by using Nissl and neo-Timm histochemistries, 24 h after the last AmK stimulus. Evaluation of behavioral response to a single acoustic stimulus after AuK and up to 160 days without acoustic stimulation was done in another group. AuK-induced limbic epileptogenicity developed in parallel with a decrease in brainstem-type seizure severity during AuK. AmK was facilitated after AuK. Permanence of AuK-induced limbic epileptogenicity was associated with cell loss only in the rostral lateral nucleus of amygdala. Roughly 20 generalized limbic seizures induced by AuK were neither associated with hippocampal cell loss nor mossy fiber sprouting (MFS). AmK developed with cell loss in hippocampal and amygdala nuclei but not MFS. Main changes of gluzinergic terminals after kindling protocols were observed in amygdala, perirhinal and piriform cortices. AuK and AuK-AmK induced a similar number and type of seizures, higher than in AmK. AmK and AuK-AmK were associated with broader cell loss than AuK. Data indicate that permanent AuK-induced limbic epileptogenicity is mainly associated to gluzinergic terminal reorganization in amygdala but not in the hippocampus and with no hippocampal cell loss. Few AmK-induced seizures are associated to broader and higher cell loss than a higher number of AuK-induced seizures.
Collapse
MESH Headings
- Acoustic Stimulation/adverse effects
- Amygdala/pathology
- Amygdala/physiopathology
- Animals
- Cell Count
- Disease Models, Animal
- Disease Progression
- Epilepsy, Reflex/genetics
- Epilepsy, Reflex/physiopathology
- Epilepsy, Tonic-Clonic/genetics
- Epilepsy, Tonic-Clonic/physiopathology
- Female
- Genetic Predisposition to Disease
- Glutamic Acid/metabolism
- Hippocampus/pathology
- Hippocampus/physiopathology
- Kindling, Neurologic/genetics
- Kindling, Neurologic/pathology
- Limbic System/pathology
- Limbic System/physiopathology
- Mossy Fibers, Hippocampal/metabolism
- Mossy Fibers, Hippocampal/ultrastructure
- Nerve Degeneration/genetics
- Nerve Degeneration/pathology
- Nerve Degeneration/physiopathology
- Neuronal Plasticity/genetics
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/pathology
- Rats
- Rats, Mutant Strains
- Rats, Wistar
Collapse
Affiliation(s)
- O Y Galvis-Alonso
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | | | | |
Collapse
|
98
|
Osaki MY, Castellan-Baldan L, Calvo F, Carvalho AD, Felippotti TT, de Oliveira R, Ubiali WA, Paschoalin-Maurin T, Elias-Filho DH, Motta V, da Silva LA, Coimbra NC. Neuroanatomical and neuropharmacological study of opioid pathways in the mesencephalic tectum: effect of μ1- and κ-opioid receptor blockade on escape behavior induced by electrical stimulation of the inferior colliculus. Brain Res 2003; 992:179-92. [PMID: 14625057 DOI: 10.1016/j.brainres.2003.08.040] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Deep layers of the superior colliculus (DLSC), the dorsal and ventral periaqueductal gray matter (PAG), and inferior colliculus (IC) are midbrain structures involved in the generation of defensive behavior. beta-Endorphin and Leu-enkephalin are some neurotransmitters that may modulate such behavior in mammals. Light microscopy immunocytochemistry with streptavidin method was used for the localization of the putative cells of defensive behavior with antibodies for endogenous opioids in rat brainstem. Midbrain structures showed positive neurons to beta-endorphin and Leu-enkephalin in similar distributions in the experimental animals, but we also noted the presence of varicose fibers positive to endogenous opioids in the PAG. Neuroanatomical techniques showed varicose fibers from the central nucleus of the inferior colliculus to ventral aspects of the PAG, at more caudal levels. Naloxonazine and nor-binaltorphimine, competitive antagonists that block mu(1)- and kappa-opioid receptors, were then used in the present work to investigate the involvement of opioid peptide neural system in the control of the fear-induced reactions evoked by electrical stimulation of the neural substrates of the inferior colliculus. The fear-like responses were measured by electrical stimulation of the central nucleus of the inferior colliculus, eliciting the escape behavior, which is characterized by vigorous running and jumping. Central administration of opioid antagonists (2.5 microg/0.2 microl and 5.0 microg/0.2 microl) was performed in non-anesthetized animals (Rattus norvegicus), and the behavioral manifestations of fear were registered after 10 min, 2 h, and 24 h of the pretreatment. Naloxonazine caused an increase of the defensive threshold, as compared to control, suggesting an antiaversive effect of the antagonism on mu(1)-opioid receptor. This finding was corroborated with central administration of nor-binaltorphimine, which also induced a decrease of the fear-like responses evoked by electrical stimulation of the inferior colliculus, since the threshold of the escape behavior was increased 2 and 24 h after the blockade of kappa-opioid receptor. These results indicate that endogenous opioids may be involved in the modulation of fear in the central nucleus of the inferior colliculus. Although the acute treatment (after 10 min) of both naloxonazine and nor-binaltorphimine causes nonspecific effect on opioid receptors, we must consider the involvement of mu(1)- and kappa-opioid receptors in the antiaversive influence of the opioidergic interneurons in the dorsal mesencephalon, at caudal level, after chronic (2-24 h) treatment of these opioid antagonists. The neuroanatomical study of the connections between the central nucleus of the inferior colliculus and the periaqueductal gray matter showed neuronal fibers with varicosities and with terminal bottons, both in the pericentral nucleus of the inferior colliculus and in ventral and dorsal parts of caudal aspects of the periaqueductal gray matter.
Collapse
MESH Headings
- Animals
- Biotin/analogs & derivatives
- Biotin/pharmacology
- Dextrans/pharmacology
- Dose-Response Relationship, Drug
- Electric Stimulation
- Escape Reaction/drug effects
- Escape Reaction/physiology
- Fear/drug effects
- Fear/physiology
- Inferior Colliculi/drug effects
- Inferior Colliculi/physiology
- Male
- Naloxone/analogs & derivatives
- Naloxone/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Neural Pathways/drug effects
- Neural Pathways/physiology
- Opioid Peptides/metabolism
- Periaqueductal Gray/drug effects
- Periaqueductal Gray/physiology
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/ultrastructure
- Rats
- Rats, Wistar
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- M Y Osaki
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), 14049-900, Avenida dos Bandeirantes, 3900, SP, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Reis GML, Doretto MC, Duarte IDG, Tatsuo MAKF. Do endogenous opioids and nitric oxide participate in the anticonvulsant action of dipyrone? Braz J Med Biol Res 2003; 36:1263-8. [PMID: 12937795 DOI: 10.1590/s0100-879x2003000900018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
It was previously reported that systemic administration of dipyrone inhibited the tonic component of generalized tonic-clonic seizures in both the electroshock and the audiogenic seizure models. The aim of the present study was to investigate the mechanisms involved in the anticonvulsant action of dipyrone by assessing the role of nitric oxide and opioids in the electroshock (female 60- to 90-day-old Wistar rats, N = 5-11) and audiogenic seizure (female 60- to 90-day-old Wistar audiogenic rats, N = 5-11) models of epilepsy. Naloxone (5 mg/kg, sc) significantly reversed the anticonvulsant effect of dipyrone in rats submitted to the induction of audiogenic seizures (ANOVA/Bonferroni's test), suggesting the involvement of opioid peptides in this action. In the electroshock model no reversal of the anticonvulsant effect of dipyrone by naloxone (5 mg/kg, sc) was demonstrable. The acute (120 mg/kg, ip) and chronic (25 mg/kg, ip, twice a day/4 days) administration of L-NOARG did not reverse the anticonvulsant action of dipyrone in the audiogenic seizure model, suggesting that the nitric oxide pathway does not participate in such effect. Indomethacin (10, 20 and 30 mg/kg, ip) used for comparison had no anticonvulsant effect in the audiogenic seizure model. In conclusion, opioid peptides but not nitric oxide seem to be involved in the anticonvulsant action of dipyrone in audiogenic seizures.
Collapse
Affiliation(s)
- G M L Reis
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | |
Collapse
|
100
|
Romcy-Pereira RN, Garcia-Cairasco N. Hippocampal cell proliferation and epileptogenesis after audiogenic kindling are not accompanied by mossy fiber sprouting or Fluoro-Jade staining. Neuroscience 2003; 119:533-46. [PMID: 12770566 DOI: 10.1016/s0306-4522(03)00191-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Repetitive sound-induced seizures, known as audiogenic kindling (AK), gradually induce the transference of epileptic activity from brainstem to forebrain structures along with behavioral changes. The aim of our work was to correlate the behavioral changes observed during the AK with possible alterations in neuronal proliferation, cell death, hippocampal mossy fiber sprouting and in the EEG pattern of Wistar audiogenic rats, a genetically susceptible strain from our laboratory. Susceptible and non-susceptible animals were submitted to repeated sound stimulations for 14-16 days and hippocampal mitotic activity was studied through the incorporation of bromodeoxyuridine (BrdU). Cell death and mossy fiber sprouting were assessed, respectively, by using Fluoro-Jade and Timm staining, 2 and 32 days after the last kindling stimulation. In addition, we used immunofluorescent double labeling for a glial and a mitotic marker to evaluate newly born cell identity. Some animals had hippocampus and amygdala electrodes for EEG recordings. Our results show that kindled animals with 6-11 generalized limbic seizures (class IV-V) had increased cell proliferation in the dentate gyrus when compared with animals with zero or one to three seizures. BrdU-positive cells labeled on day 2 and on day 32 were both GFAP negative. In the later group, rounded and well-defined BrdU-positive/GFAP-negative nuclei were seen in different portions of the granule cell layer. We did not observe any Fluoro-Jade or differential Timm staining in kindled animals at both killing times. However, EEG recordings showed intense epileptic activity in the hippocampus and amygdala of all animals with limbic seizures.Therefore, our data indicate that AK-induced limbic epileptogenicity is able to increase the hippocampal mitotic rate, even though it does not seem to promote neuronal death or mossy fiber sprouting in the supragranular layer of the dentate gyrus.
Collapse
Affiliation(s)
- R N Romcy-Pereira
- University of São Paulo, Ribeirão Preto School of Medicine, Avenue Bandeirantes 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|