51
|
Bujnicki JM, Droogmans L, Grosjean H, Purushothaman SK, Lapeyre B. Bioinformatics-Guided Identification and Experimental Characterization of Novel RNA Methyltransferas. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/978-3-540-74268-5_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
52
|
McCleverty CJ, Hornsby M, Spraggon G, Kreusch A. Crystal structure of human Pus10, a novel pseudouridine synthase. J Mol Biol 2007; 373:1243-54. [PMID: 17900615 DOI: 10.1016/j.jmb.2007.08.053] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 08/02/2007] [Accepted: 08/23/2007] [Indexed: 11/16/2022]
Abstract
Pseudouridine (Psi) synthases catalyze the formation of one or more specific Psis in structured RNAs. Five families of Psi synthases have been characterized based on sequence homology. Pus10 has no significant sequence homology to these defined families and therefore represents a new family of Psi synthases. Initial characterization studies show that an archael Pus10 catalyzes the universally conserved Psi55 in tRNA. We present here the crystal structure of human Pus10 at 2.0 A resolution, which is the first structural description from this novel Psi synthase family. Pus10 is a crescent-shaped molecule with two domains, the universally conserved Psi synthase catalytic domain and a THUMP-containing domain, which is unique to the Pus10 family. Superposition of the catalytic domains of Pus10 and other Psi synthases identifies the full set of conserved Psi synthase active site residues indicating that Pus10 likely employs a similar catalytic mechanism to other Psi synthases. The Pus10 active site is located in a deep pocket of a basic cleft adjacent to flexible thumb and forefinger loops, which could provide further stabilization for binding the RNA substrate. Modeling studies demonstrate that the cleft between the catalytic and accessory domain is large enough and electrostatically compatible to accommodate an RNA stem and support the role of the N-terminal domain as an accessory RNA-binding domain.
Collapse
Affiliation(s)
- Clare J McCleverty
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
53
|
Walbott H, Auxilien S, Grosjean H, Golinelli-Pimpaneau B. The Carboxyl-terminal Extension of Yeast tRNA m5C Methyltransferase Enhances the Catalytic Efficiency of the Amino-terminal Domain. J Biol Chem 2007; 282:23663-71. [PMID: 17567576 DOI: 10.1074/jbc.m703818200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The human tRNA m(5)C methyltransferase is a potential target for anticancer drugs because it is a novel downstream target of the proto-oncogene myc, mediating Myc-induced cell proliferation. Sequence comparisons of RNA m(5)C methyltransferases indicate that the eukaryotic enzymes possess, in addition to a conserved catalytic domain, a large characteristic carboxyl-terminal extension. To gain insight into the function of this additional domain, the modular architecture of the yeast tRNA m(5)C methyltransferase orthologue, Trm4p, was studied. The yeast enzyme catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to carbon 5 of cytosine at different positions depending on the tRNAs. By limited proteolysis, Trm4p was shown to be composed of two domains that have been separately produced and purified. Here we demonstrate that the aminoterminal domain, encompassing the active site, binds tRNA with similar affinity as the whole enzyme but shows low catalytic efficiency. The carboxyl-terminal domain displays only weak affinity for tRNA. It is not required for m(5)C formation and does not appear to contribute to substrate specificity. However, it enhances considerably the catalytic efficiency of the amino-terminal domain.
Collapse
Affiliation(s)
- Hélène Walbott
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS Bâtiment 34, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
54
|
Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases. BMC Bioinformatics 2007; 8:73. [PMID: 17338813 PMCID: PMC1829167 DOI: 10.1186/1471-2105-8-73] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 03/05/2007] [Indexed: 11/29/2022] Open
Abstract
Background SPOUT methyltransferases (MTases) are a large class of S-adenosyl-L-methionine-dependent enzymes that exhibit an unusual alpha/beta fold with a very deep topological knot. In 2001, when no crystal structures were available for any of these proteins, Anantharaman, Koonin, and Aravind identified homology between SpoU and TrmD MTases and defined the SPOUT superfamily. Since then, multiple crystal structures of knotted MTases have been solved and numerous new homologous sequences appeared in the databases. However, no comprehensive comparative analysis of these proteins has been carried out to classify them based on structural and evolutionary criteria and to guide functional predictions. Results We carried out extensive searches of databases of protein structures and sequences to collect all members of previously identified SPOUT MTases, and to identify previously unknown homologs. Based on sequence clustering, characterization of domain architecture, structure predictions and sequence/structure comparisons, we re-defined families within the SPOUT superfamily and predicted putative active sites and biochemical functions for the so far uncharacterized members. We have also delineated the common core of SPOUT MTases and inferred a multiple sequence alignment for the conserved knot region, from which we calculated the phylogenetic tree of the superfamily. We have also studied phylogenetic distribution of different families, and used this information to infer the evolutionary history of the SPOUT superfamily. Conclusion We present the first phylogenetic tree of the SPOUT superfamily since it was defined, together with a new scheme for its classification, and discussion about conservation of sequence and structure in different families, and their functional implications. We identified four protein families as new members of the SPOUT superfamily. Three of these families are functionally uncharacterized (COG1772, COG1901, and COG4080), and one (COG1756 represented by Nep1p) has been already implicated in RNA metabolism, but its biochemical function has been unknown. Based on the inference of orthologous and paralogous relationships between all SPOUT families we propose that the Last Universal Common Ancestor (LUCA) of all extant organisms contained at least three SPOUT members, ancestors of contemporary RNA MTases that carry out m1G, m3U, and 2'O-ribose methylation, respectively. In this work we also speculate on the origin of the knot and propose possible 'unknotted' ancestors. The results of our analysis provide a comprehensive 'roadmap' for experimental characterization of SPOUT MTases and interpretation of functional studies in the light of sequence-structure relationships.
Collapse
|
55
|
Odani A, Kozlowski H, Swiatek-Kozlowska J, Brasuń J, Operschall BP, Sigel H. Extent of metal ion-sulfur binding in complexes of thiouracil nucleosides and nucleotides in aqueous solution. J Inorg Biochem 2007; 101:727-35. [PMID: 17320183 DOI: 10.1016/j.jinorgbio.2006.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 12/17/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
Previously published stability constants of several metal ion (M2+) complexes formed with thiouridines and their 5'-monophosphates, together with recently obtained log K(M(U))(M) versus pK(U)(H) plots for M2+ complexes of uridinate derivatives (U-) allowed now a quantitative evaluation of the effect that the exchange of a (C)O by a (C)S group has on the stability of the corresponding complexes. For example, the stability of the Ni2+, Cu2+ and Cd2+ complexes of 2-thiouridinate is increased by about 1.6, 2.3, and 1.3 log units, respectively, by the indicated exchange of groups. Similar results were obtained for other thiouridinates, including 4-thiouridinate. The structure of these complexes and the types of chelates formed (involving (N3)- and (C)S) are discussed. A recently advanced method for the quantification of the chelate effect allows now also an evaluation of several complexes of thiouridinate 5'-monophosphates. In most instances the thiouracilate coordination dominates the systems, allowing only the formation of small amounts of phosphate-bound isomers. Among the complexes studied only the one formed by Cu2+ with 2-thiouridinate 5'-monophosphate leads to significant amounts of the macrochelated isomer, which means that in this case Cu2+ is able to force the nucleotide from the anti to the syn conformation, allowing thus metal ion binding to both potential sites and this results in the formation of about 58% of the macrochelated isomer. The remaining 42% are species in which Cu2+ is overwhelmingly coordinated to the thiouracilate residue; Cu2+ binding to the phosphate group occurs in this case only in trace amounts.
Collapse
Affiliation(s)
- Akira Odani
- Department of Chemistry, Graduate School of Sciences, Nagoya University, Nagoya 464-8602, Japan.
| | | | | | | | | | | |
Collapse
|
56
|
Abstract
As the molecular adapters between codons and amino acids, transfer-RNAs are pivotal molecules of the genetic code. The coding properties of a tRNA molecule do not reside only in its primary sequence. Posttranscriptional nucleoside modifications, particularly in the anticodon loop, can modify cognate codon recognition, affect aminoacylation properties, or stabilize the codon-anticodon wobble base pairing to prevent ribosomal frameshifting. Despite a wealth of biophysical and structural knowledge of the tRNA modifications themselves, their pathways of biosynthesis had been until recently only partially characterized. This discrepancy was mainly due to the lack of obvious phenotypes for tRNA modification-deficient strains and to the difficulty of the biochemical assays used to detect tRNA modifications. However, the availability of hundreds of whole-genome sequences has allowed the identification of many of these missing tRNA-modification genes. This chapter reviews the methods that were used to identify these genes with a special emphasis on the comparative genomic approaches. Methods that link gene and function but do not rely on sequence homology will be detailed, with examples taken from the tRNA modification field.
Collapse
|
57
|
Roovers M, Hale C, Tricot C, Terns MP, Terns RM, Grosjean H, Droogmans L. Formation of the conserved pseudouridine at position 55 in archaeal tRNA. Nucleic Acids Res 2006; 34:4293-301. [PMID: 16920741 PMCID: PMC1616971 DOI: 10.1093/nar/gkl530] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 07/10/2006] [Accepted: 07/10/2006] [Indexed: 12/17/2022] Open
Abstract
Pseudouridine (Psi) located at position 55 in tRNA is a nearly universally conserved RNA modification found in all three domains of life. This modification is catalyzed by TruB in bacteria and by Pus4 in eukaryotes, but so far the Psi55 synthase has not been identified in archaea. In this work, we report the ability of two distinct pseudouridine synthases from the hyperthermophilic archaeon Pyrococcus furiosus to specifically modify U55 in tRNA in vitro. These enzymes are (pfu)Cbf5, a protein known to play a role in RNA-guided modification of rRNA, and (pfu)PsuX, a previously uncharacterized enzyme that is not a member of the TruB/Pus4/Cbf5 family of pseudouridine synthases. (pfu)PsuX is hereafter renamed (pfu)Pus10. Both enzymes specifically modify tRNA U55 in vitro but exhibit differences in substrate recognition. In addition, we find that in a heterologous in vivo system, (pfu)Pus10 efficiently complements an Escherichia coli strain deficient in the bacterial Psi55 synthase TruB. These results indicate that it is probable that (pfu)Cbf5 or (pfu)Pus10 (or both) is responsible for the introduction of pseudouridine at U55 in tRNAs in archaea. While we cannot unequivocally assign the function from our results, both possibilities represent unexpected functions of these proteins as discussed herein.
Collapse
Affiliation(s)
- Martine Roovers
- Institut de Recherches Microbiologiques J.-M. Wiame, Avenue E. Gryson 1B-1070 Bruxelles, Belgium
- Department of Biochemistry and Molecular Biology, University of GeorgiaLife Sciences Building, Athens, GA 30602, USA
- Department of Genetics, University of GeorgiaLife Sciences Building, Athens, GA 30602, USA
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche ScientifiqueAvenue de la Terrasse 1, F-91198 Gif-sur-Yvette, France
- Laboratoire de Microbiologie, Université Libre de BruxellesInstitut de Recherches Microbiologiques J.-M. Wiame, Avenue E. Gryson 1, B-1070 Bruxelles, Belgium
| | - Caryn Hale
- Department of Biochemistry and Molecular Biology, University of GeorgiaLife Sciences Building, Athens, GA 30602, USA
- Department of Genetics, University of GeorgiaLife Sciences Building, Athens, GA 30602, USA
| | - Catherine Tricot
- Institut de Recherches Microbiologiques J.-M. Wiame, Avenue E. Gryson 1B-1070 Bruxelles, Belgium
- Department of Biochemistry and Molecular Biology, University of GeorgiaLife Sciences Building, Athens, GA 30602, USA
- Department of Genetics, University of GeorgiaLife Sciences Building, Athens, GA 30602, USA
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche ScientifiqueAvenue de la Terrasse 1, F-91198 Gif-sur-Yvette, France
- Laboratoire de Microbiologie, Université Libre de BruxellesInstitut de Recherches Microbiologiques J.-M. Wiame, Avenue E. Gryson 1, B-1070 Bruxelles, Belgium
| | - Michael P. Terns
- Department of Biochemistry and Molecular Biology, University of GeorgiaLife Sciences Building, Athens, GA 30602, USA
- Department of Genetics, University of GeorgiaLife Sciences Building, Athens, GA 30602, USA
| | - Rebecca M. Terns
- Department of Biochemistry and Molecular Biology, University of GeorgiaLife Sciences Building, Athens, GA 30602, USA
- Department of Genetics, University of GeorgiaLife Sciences Building, Athens, GA 30602, USA
| | - Henri Grosjean
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche ScientifiqueAvenue de la Terrasse 1, F-91198 Gif-sur-Yvette, France
| | - Louis Droogmans
- Laboratoire de Microbiologie, Université Libre de BruxellesInstitut de Recherches Microbiologiques J.-M. Wiame, Avenue E. Gryson 1, B-1070 Bruxelles, Belgium
| |
Collapse
|
58
|
Gabant G, Auxilien S, Tuszynska I, Locard M, Gajda MJ, Chaussinand G, Fernandez B, Dedieu A, Grosjean H, Golinelli-Pimpaneau B, Bujnicki JM, Armengaud J. THUMP from archaeal tRNA:m22G10 methyltransferase, a genuine autonomously folding domain. Nucleic Acids Res 2006; 34:2483-94. [PMID: 16687654 PMCID: PMC1459410 DOI: 10.1093/nar/gkl145] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 02/13/2006] [Accepted: 03/16/2006] [Indexed: 11/14/2022] Open
Abstract
The tRNA:m2(2)G10 methyltransferase of Pyrococus abyssi (PAB1283, a member of COG1041) catalyzes the N2,N2-dimethylation of guanosine at position 10 in tRNA. Boundaries of its THUMP (THioUridine synthases, RNA Methyltransferases and Pseudo-uridine synthases)--containing N-terminal domain [1-152] and C-terminal catalytic domain [157-329] were assessed by trypsin limited proteolysis. An inter-domain flexible region of at least six residues was revealed. The N-terminal domain was then produced as a standalone protein (THUMPalpha) and further characterized. This autonomously folded unit exhibits very low affinity for tRNA. Using protein fold-recognition (FR) methods, we identified the similarity between THUMPalpha and a putative RNA-recognition module observed in the crystal structure of another THUMP-containing protein (ThiI thiolase of Bacillus anthracis). A comparative model of THUMPalpha structure was generated, which fulfills experimentally defined restraints, i.e. chemical modification of surface exposed residues assessed by mass spectrometry, and identification of an intramolecular disulfide bridge. A model of the whole PAB1283 enzyme docked onto its tRNA(Asp) substrate suggests that the THUMP module specifically takes support on the co-axially stacked helices of T-arm and acceptor stem of tRNA and, together with the catalytic domain, screw-clamp structured tRNA. We propose that this mode of interactions may be common to other THUMP-containing enzymes that specifically modify nucleotides in the 3D-core of tRNA.
Collapse
Affiliation(s)
- Guillaume Gabant
- CEA VALRHO, DSV-DIEP—SBTN, Service de Biochimie post-génomique & Toxicologie NucléaireF-30207 Bagnols-sur-Cèze, France
| | - Sylvie Auxilien
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRSBld 34, avenue de la Terrasse 1, F-91198 Gif-sur-Yvette, France
| | - Irina Tuszynska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell BiologyTrojdena 4, 02-109, Warsaw, Poland
| | - Marie Locard
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRSBld 34, avenue de la Terrasse 1, F-91198 Gif-sur-Yvette, France
| | - Michal J. Gajda
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell BiologyTrojdena 4, 02-109, Warsaw, Poland
| | - Guylaine Chaussinand
- CEA VALRHO, DSV-DIEP—SBTN, Service de Biochimie post-génomique & Toxicologie NucléaireF-30207 Bagnols-sur-Cèze, France
| | - Bernard Fernandez
- CEA VALRHO, DSV-DIEP—SBTN, Service de Biochimie post-génomique & Toxicologie NucléaireF-30207 Bagnols-sur-Cèze, France
| | - Alain Dedieu
- CEA VALRHO, DSV-DIEP—SBTN, Service de Biochimie post-génomique & Toxicologie NucléaireF-30207 Bagnols-sur-Cèze, France
| | - Henri Grosjean
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRSBld 34, avenue de la Terrasse 1, F-91198 Gif-sur-Yvette, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRSBld 34, avenue de la Terrasse 1, F-91198 Gif-sur-Yvette, France
| | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell BiologyTrojdena 4, 02-109, Warsaw, Poland
| | - Jean Armengaud
- CEA VALRHO, DSV-DIEP—SBTN, Service de Biochimie post-génomique & Toxicologie NucléaireF-30207 Bagnols-sur-Cèze, France
| |
Collapse
|
59
|
Waterman DG, Ortiz-Lombardía M, Fogg MJ, Koonin EV, Antson AA. Crystal structure of Bacillus anthracis ThiI, a tRNA-modifying enzyme containing the predicted RNA-binding THUMP domain. J Mol Biol 2005; 356:97-110. [PMID: 16343540 DOI: 10.1016/j.jmb.2005.11.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 11/03/2005] [Accepted: 11/04/2005] [Indexed: 11/15/2022]
Abstract
ThiI is an enzyme responsible for the formation of the modified base S(4)U (4-thiouridine) found at position 8 in some prokaryotic tRNAs. This base acts as a sensitive trigger for the response mechanism to UV exposure, providing protection against its damaging effects. We present the crystal structure of Bacillus anthracis ThiI in complex with AMP, revealing an extended tripartite architecture in which an N-terminal ferredoxin-like domain (NFLD) connects the C-terminal catalytic PP-loop pyrophosphatase domain with a THUMP domain, an ancient predicted RNA-binding domain that is widespread in all kingdoms of life. We describe the structure of the THUMP domain, which appears to be unrelated to RNA-binding domains of known structure. Mapping the conserved residues of NFLD and the THUMP domain onto the ThiI structure suggests that these domains jointly form the tRNA-binding surface. The inaccessibility of U8 in the canonical L-shaped form of tRNA, and the existence of a glycine-rich linker joining the catalytic and RNA-binding moieties of ThiI suggest that structural changes may occur in both molecules upon binding.
Collapse
Affiliation(s)
- David G Waterman
- York Structural Biology Laboratory, University of York, Chemistry Department, York YO10 5YW, UK.
| | | | | | | | | |
Collapse
|
60
|
Choi P, Xanthaki D, Rose SJ, Haywood M, Reiser H, Morley BJ. Linkage analysis of the genetic determinants of T-cell IL-4 secretion, and identification of Flj20274 as a putative candidate gene. Genes Immun 2005; 6:290-7. [PMID: 15815685 DOI: 10.1038/sj.gene.6364192] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The activation-induced differentiation of naive CD4+ T cells generates functionally divergent type 1 helper T cells (Th1) or type 2 helper T cells (Th2) effector cell populations, characterized by secretion of Interferon (IFN)-gamma or Interleukin (IL)-4, respectively. Inappropriate generation of Th subsets may contribute to immune dysfunction. The decision to generate Th1/Th2 lineages is critically regulated by cytokines, such that IL-12 induces Th1 differentiation, while IL-4 induces Th2 differentiation. Genetic factors influence the pathway of Th differentiation, as displayed by the preferential generation of divergent Th populations by different inbred strains of mice. We employ two complementary genetic techniques to identify genes that regulate the default IL-4 secretion profiles of T cells from BALB/c and B6 mice. We performed a genome-wide linkage analysis of the progeny of a backcross between BALB/c and B6 mice to identify three loci, T-cell secretion of interleukin-4 (Tsi)1-3, on chromosomes 7, 19 and 15, respectively, which regulate in vitro T-cell IL-4 production. We have also employed mRNA representational difference analysis to isolate a gene, Flj20274, which is differentially expressed in T cells that secrete high levels of IL-4. Significantly, Flj20274 was mapped to the point of peak linkage within Tsi1 and is a strong candidate for Tsi1.
Collapse
Affiliation(s)
- P Choi
- Rheumatology Section, Division of Medicine, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London, UK
| | | | | | | | | | | |
Collapse
|
61
|
Purushothaman SK, Bujnicki JM, Grosjean H, Lapeyre B. Trm11p and Trm112p are both required for the formation of 2-methylguanosine at position 10 in yeast tRNA. Mol Cell Biol 2005; 25:4359-70. [PMID: 15899842 PMCID: PMC1140639 DOI: 10.1128/mcb.25.11.4359-4370.2005] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 12/14/2004] [Accepted: 03/01/2005] [Indexed: 11/20/2022] Open
Abstract
N(2)-Monomethylguanosine-10 (m(2)G10) and N(2),N(2)-dimethylguanosine-26 (m(2)(2)G26) are the only two guanosine modifications that have been detected in tRNA from nearly all archaea and eukaryotes but not in bacteria. In Saccharomyces cerevisiae, formation of m(2)(2)G26 is catalyzed by Trm1p, and we report here the identification of the enzymatic activity that catalyzes the formation of m(2)G10 in yeast tRNA. It is composed of at least two subunits that are associated in vivo: Trm11p (Yol124c), which is the catalytic subunit, and Trm112p (Ynr046w), a putative zinc-binding protein. While deletion of TRM11 has no detectable phenotype under laboratory conditions, deletion of TRM112 leads to a severe growth defect, suggesting that it has additional functions in the cell. Indeed, Trm112p is associated with at least four proteins: two tRNA methyltransferases (Trm9p and Trm11p), one putative protein methyltransferase (Mtc6p/Ydr140w), and one protein with a Rossmann fold dehydrogenase domain (Lys9p/Ynr050c). In addition, TRM11 interacts genetically with TRM1, thus suggesting that the absence of m(2)G10 and m(2)(2)G26 affects tRNA metabolism or functioning.
Collapse
|
62
|
Baker DL, Youssef OA, Chastkofsky MIR, Dy DA, Terns RM, Terns MP. RNA-guided RNA modification: functional organization of the archaeal H/ACA RNP. Genes Dev 2005; 19:1238-48. [PMID: 15870259 PMCID: PMC1132009 DOI: 10.1101/gad.1309605] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In eukaryotes and archaea, uridines in various RNAs are converted to pseudouridines by RNA-guided RNA modification complexes termed H/ACA RNPs. Guide RNAs within the complexes base-pair with target RNAs to direct modification of specific ribonucleotides. Cbf5, a protein component of the complex, likely catalyzes the modification. However, little is known about the organization of H/ACA RNPs and the roles of the multiple proteins thought to comprise the complexes. We have reconstituted functional archaeal H/ACA RNPs from recombinant components, defined the components necessary and sufficient for function, and determined the direct RNA-protein and protein-protein interactions that occur between the components. The results provide substantial insight into the functional organization of this RNP. The functional complex requires a guide RNA and each of four proteins: Cbf5, Gar1, L7Ae, and Nop10. Two proteins interact directly with the guide RNA: L7Ae and Cbf5. L7Ae does not interact with other H/ACA RNP proteins in the absence of the RNA. We have defined two novel functions for Cbf5. Cbf5 is the protein that specifically recognizes and binds H/ACA guide RNAs. In addition, Cbf5 recruits the two other essential proteins, Gar1 and Nop10, to the pseudouridylation guide complex.
Collapse
Affiliation(s)
- Daniel L Baker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
63
|
Modification and editing of RNA: historical overview and important facts to remember. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2005. [DOI: 10.1007/b106848] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
64
|
Armengaud J, Urbonavicius J, Fernandez B, Chaussinand G, Bujnicki JM, Grosjean H. N2-Methylation of Guanosine at Position 10 in tRNA Is Catalyzed by a THUMP Domain-containing, S-Adenosylmethionine-dependent Methyltransferase, Conserved in Archaea and Eukaryota. J Biol Chem 2004; 279:37142-52. [PMID: 15210688 DOI: 10.1074/jbc.m403845200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In sequenced genomes, genes belonging to the cluster of orthologous group COG1041 are exclusively, and almost ubiquitously, found in Eukaryota and Archaea but never in Bacteria. The corresponding gene products exhibit a characteristic Rossmann fold, S-adenosylmethionine-dependent methyltransferase domain in the C terminus and a predicted RNA-binding THUMP (thiouridine synthases, RNA methyltransferases, and pseudouridine synthases) domain in the N terminus. Recombinant PAB1283 protein from the archaeon Pyrococcus abyssi GE5, a member of COG1041, was purified and shown to behave as a monomeric 39-kDa entity. This protein (EC 2.1.1.32), now renamed (Pab)Trm-G10, which is extremely thermostable, forms a 1:1 complex with tRNA and catalyzes the adenosylmethionine-dependent methylation of the exocyclic amino group (N(2)) of guanosine located at position 10. Depending on the experimental conditions used, as well as the tRNA substrate tested, the enzymatic reaction leads to the formation of either N(2)-monomethyl (m(2)G) or N(2)-dimethylguanosine (m(2)(2)G). Interestingly, (Pab)Trm-G10 exhibits different domain organization and different catalytic site architecture from another, earlier characterized, tRNA-dimethyltransferase from Pyrococcus furiosus ((Pfu)Trm-G26, also known as (Pfu)Trm1, a member of COG1867) that catalyzes an identical two-step dimethylation of guanosine but at position 26 in tRNAs and is also conserved among all sequenced Eukaryota and Archaea. The co-occurrence of these two guanosine dimethyltransferases in both Archaea and Eukaryota but not in Bacteria is a hallmark of distinct tRNAs maturation strategies between these domains of life.
Collapse
Affiliation(s)
- Jean Armengaud
- Commissariat à l'Energie Atomique VALRHO, DSV-DIEP-SBTN, Service de Biochimie Post-génomique & Toxicologie Nucléaire, F-30207 Bagnols-sur-Cèze, France.
| | | | | | | | | | | |
Collapse
|
65
|
Anantharaman V, Aravind L. Novel conserved domains in proteins with predicted roles in eukaryotic cell-cycle regulation, decapping and RNA stability. BMC Genomics 2004; 5:45. [PMID: 15257761 PMCID: PMC503384 DOI: 10.1186/1471-2164-5-45] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 07/16/2004] [Indexed: 12/02/2022] Open
Abstract
Background The emergence of eukaryotes was characterized by the expansion and diversification of several ancient RNA-binding domains and the apparent de novo innovation of new RNA-binding domains. The identification of these RNA-binding domains may throw light on the emergence of eukaryote-specific systems of RNA metabolism. Results Using sensitive sequence profile searches, homology-based fold recognition and sequence-structure superpositions, we identified novel, divergent versions of the Sm domain in the Scd6p family of proteins. This family of Sm-related domains shares certain features of conventional Sm domains, which are required for binding RNA, in addition to possessing some unique conserved features. We also show that these proteins contain a second previously uncharacterized C-terminal domain, termed the FDF domain (after a conserved sequence motif in this domain). The FDF domain is also found in the fungal Dcp3p-like and the animal FLJ22128-like proteins, where it fused to a C-terminal domain of the YjeF-N domain family. In addition to the FDF domains, the FLJ22128-like proteins contain yet another divergent version of the Sm domain at their extreme N-terminus. We show that the YjeF-N domains represent a novel version of the Rossmann fold that has acquired a set of catalytic residues and structural features that distinguish them from the conventional dehydrogenases. Conclusions Several lines of contextual information suggest that the Scd6p family and the Dcp3p-like proteins are conserved components of the eukaryotic RNA metabolism system. We propose that the novel domains reported here, namely the divergent versions of the Sm domain and the FDF domain may mediate specific RNA-protein and protein-protein interactions in cytoplasmic ribonucleoprotein complexes. More specifically, the protein complexes containing Sm-like domains of the Scd6p family are predicted to regulate the stability of mRNA encoding proteins involved in cell cycle progression and vesicular assembly. The Dcp3p and FLJ22128 proteins may localize to the cytoplasmic processing bodies and possibly catalyze a specific processing step in the decapping pathway. The explosive diversification of Sm domains appears to have played a role in the emergence of several uniquely eukaryotic ribonucleoprotein complexes, including those involved in decapping and mRNA stability.
Collapse
Affiliation(s)
- Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
66
|
Johansson MJO, Byström AS. The Saccharomyces cerevisiae TAN1 gene is required for N4-acetylcytidine formation in tRNA. RNA (NEW YORK, N.Y.) 2004; 10:712-9. [PMID: 15037780 PMCID: PMC1370561 DOI: 10.1261/rna.5198204] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The biogenesis of transfer RNA is a process that requires many different factors. In this study, we describe a genetic screen aimed to identify gene products participating in this process. By screening for mutations lethal in combination with a sup61-T47:2C allele, coding for a mutant form of, the nonessential TAN1 gene was identified. We show that the TAN1 gene product is required for formation of the modified nucleoside N(4)-acetylcytidine (ac(4)C) in tRNA. In Saccharomyces cerevisiae, ac(4)C is present at position 12 in tRNAs specific for leucine and serine as well as in 18S ribosomal RNA. Analysis of RNA isolated from a tan1-null mutant revealed that ac(4)C was absent in tRNA, but not rRNA. Although no tRNA acetyltransferase activity by a GST-Tan1 fusion protein was detected, a gel-shift assay revealed that Tan1p binds tRNA, suggesting a direct role in synthesis of ac(4)C(12). The absence of the TAN1 gene in the sup61-T47:2C mutant caused a decreased level of mature, indicating that ac(4)C(12) and/or Tan1p is important for tRNA stability.
Collapse
|
67
|
Aravind L, Iyer LM, Anantharaman V. The two faces of Alba: the evolutionary connection between proteins participating in chromatin structure and RNA metabolism. Genome Biol 2003; 4:R64. [PMID: 14519199 PMCID: PMC328453 DOI: 10.1186/gb-2003-4-10-r64] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2003] [Revised: 07/24/2003] [Accepted: 07/31/2003] [Indexed: 11/10/2022] Open
Abstract
The Alba superfamily of chromosomal proteins appear to have originated as RNA-binding proteins and to have been recruited to chromosomes possibly only within the crenarchaeal lineage. Background There is considerable heterogeneity in the phyletic patterns of major chromosomal DNA-binding proteins in archaea. Alba is a well-characterized chromosomal protein from the crenarchaeal genus Sulfolobus. While Alba has been detected in most archaea and some eukaryotic taxa, its exact functions in these taxa are not clear. Here we use comparative genomics and sequence profile analysis to predict potential alternative functions of the Alba proteins. Results Using sequence-profile searches, we were able to unify the Alba proteins with RNase P/MRP subunit Rpp20/Pop7, human RNase P subunit Rpp25, and the ciliate Mdp2 protein, which is implicated in macronuclear development. The Alba superfamily contains two eukaryote-specific families and one archaeal family. We present different lines of evidence to show that both eukaryotic families perform functions related to RNA metabolism. Several members of one of the eukaryotic families, typified by Mdp2, are combined in the same polypeptide with RNA-binding RGG repeats. We also investigated the relationships of the unified Alba superfamily within the ancient RNA-binding IF3-C fold, and show that it is most closely related to other RNA-binding members of this fold, such as the YhbY and IF3-C superfamilies. Based on phyletic patterns and the principle of phylogenetic bracketing, we predict that at least some of the archaeal members may also possess a role in RNA metabolism. Conclusions The Alba superfamily proteins appear to have originated as RNA-binding proteins which formed various ribonucleoprotein complexes, probably including RNase P. It was recruited as a chromosomal protein possibly only within the crenarchaeal lineage. The evolutionary connections reported here suggest how a diversity of functions based on a common biochemical basis emerged in proteins of the Alba superfamily.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | |
Collapse
|
68
|
Huang L, Hung L, Odell M, Yokota H, Kim R, Kim SH. Structure-based experimental confirmation of biochemical function to a methyltransferase, MJ0882, from hyperthermophile Methanococcus jannaschii. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2003; 2:121-7. [PMID: 12836702 DOI: 10.1023/a:1021279113558] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have determined the three-dimensional (3-D) structure of protein MJ0882, which derives from a hypothetical open reading frame in the genome of the hyperthermophile Methanococcus jannaschii. The 3-D fold of MJ0882 at 1.8 A highly resembles that of a methyltransferase, despite limited sequence similarity to any confirmed methyltransferase. The structure has an S-adenosylmethionine (AdoMet) binding pocket surrounded by motifs with similarities to those commonly found among AdoMet binding proteins. Preliminary biochemical experiments show that MJ0882 specifically binds to AdoMet, which is the essential co-factor for methyltransferases.
Collapse
Affiliation(s)
- Lan Huang
- Dept. of Cellular Biochemistry and Biophysics, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
69
|
Kaya Y, Ofengand J. A novel unanticipated type of pseudouridine synthase with homologs in bacteria, archaea, and eukarya. RNA (NEW YORK, N.Y.) 2003; 9:711-21. [PMID: 12756329 PMCID: PMC1370438 DOI: 10.1261/rna.5230603] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2003] [Accepted: 02/27/2003] [Indexed: 05/17/2023]
Abstract
Putative pseudouridine synthase genes are members of a class consisting of four subgroups that possess characteristic amino acid sequence motifs. These genes have been found in all organisms sequenced to date. In Escherichia coli, 10 such genes have been identified, and the 10 synthase gene products have been shown to function in making all of the pseudouridines found in tRNA and ribosomal RNA except for tRNA(Glu) pseudouridine13. In this work, a protein able to make this pseudouridine was purified by standard biochemical procedures. Amino-terminal sequencing of the isolated protein identified the synthase as YgbO. Deletion of the ygbO gene caused the loss of tRNA(Glu) pseudouridine13 and plasmid-borne restoration of the structural gene restored pseudouridine13. Reaction of the overexpressed gene product, renamed TruD, with a tRNA(Glu) transcript made in vitro also yielded only pseudouridine13. A search of the database detected 58 homologs of TruD spanning all three phylogenetic domains, including ancient organisms. Thus, we have identified a new wide-spread class of pseudouridine synthase with no sequence homology to the previously known four subgroups. The only completely conserved sequence motif in all 59 organisms that contained aspartate was GXKD, in motif II. This aspartate was essential for in vitro activity.
Collapse
Affiliation(s)
- Yusuf Kaya
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | |
Collapse
|
70
|
Swiatek-Kozlowska J, Brasuń J, Dobosz A, Sochacka E, Glowacka A. Coordination of thiouridine monophosphates with selected metal ions. J Inorg Biochem 2003; 93:119-24. [PMID: 12576273 DOI: 10.1016/s0162-0134(02)00564-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Potentiometric and spectroscopic data obtained for the complexes of two thio-substituted uridine-monophosphates with Cu(2+), Ni(2+) and Cd(2+) ions have shown that both thionucleotide are more effective ligands than their nucleoside analogues. The basic binding site for all metal ions is the sulfur atom. The chelation by adjacent N(3) donor is also likely, although unfavorable four-membered chelate ring is formed.
Collapse
Affiliation(s)
- Jolanta Swiatek-Kozlowska
- Department of Basic Medical Sciences, Wroclaw Medical University, Kochanowskiego 14, 51601 Wroclaw, Poland.
| | | | | | | | | |
Collapse
|
71
|
Ostheimer GJ, Barkan A, Matthews BW. Crystal structure of E. coli YhbY: a representative of a novel class of RNA binding proteins. Structure 2002; 10:1593-601. [PMID: 12429100 DOI: 10.1016/s0969-2126(02)00886-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
E. coli YhbY belongs to a conserved family of hypothetical proteins represented in eubacteria, archaea, and plants (Pfam code UPF0044). Three maize proteins harboring UPF0044-like domains are required for chloroplast group II intron splicing, and bioinformatic data suggest a role for prokaryotic UPF0044 members in translation. The crystal structure of YhbY has been determined. YhbY has a fold similar to that of the C-terminal domain of translation initiation factor 3 (IF3C), which binds to 16S rRNA in the 30S ribosome. Modeling studies indicate that the same surface is highly basic in all members of UPF0044, suggesting a conserved RNA binding surface. Taken together, the evidence suggests that members of UPF0044 constitute a previously unrecognized class of RNA binding domain.
Collapse
Affiliation(s)
- Gerard J Ostheimer
- Institute of Molecular Biology, 1229 University of Oregon, Eugene, OR 97403, USA
| | | | | |
Collapse
|
72
|
Anantharaman V, Koonin EV, Aravind L. Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res 2002; 30:1427-64. [PMID: 11917006 PMCID: PMC101826 DOI: 10.1093/nar/30.7.1427] [Citation(s) in RCA: 400] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA metabolism, broadly defined as the compendium of all processes that involve RNA, including transcription, processing and modification of transcripts, translation, RNA degradation and its regulation, is the central and most evolutionarily conserved part of cell physiology. A comprehensive, genome-wide census of all enzymatic and non-enzymatic protein domains involved in RNA metabolism was conducted by using sequence profile analysis and structural comparisons. Proteins related to RNA metabolism comprise from 3 to 11% of the complete protein repertoire in bacteria, archaea and eukaryotes, with the greatest fraction seen in parasitic bacteria with small genomes. Approximately one-half of protein domains involved in RNA metabolism are present in most, if not all, species from all three primary kingdoms and are traceable to the last universal common ancestor (LUCA). The principal features of LUCA's RNA metabolism system were reconstructed by parsimony-based evolutionary analysis of all relevant groups of orthologous proteins. This reconstruction shows that LUCA possessed not only the basal translation system, but also the principal forms of RNA modification, such as methylation, pseudouridylation and thiouridylation, as well as simple mechanisms for polyadenylation and RNA degradation. Some of these ancient domains form paralogous groups whose evolution can be traced back in time beyond LUCA, towards low-specificity proteins, which probably functioned as cofactors for ribozymes within the RNA world framework. The main lineage-specific innovations of RNA metabolism systems were identified. The most notable phase of innovation in RNA metabolism coincides with the advent of eukaryotes and was brought about by the merge of the archaeal and bacterial systems via mitochondrial endosymbiosis, but also involved emergence of several new, eukaryote-specific RNA-binding domains. Subsequent, vast expansions of these domains mark the origin of alternative splicing in animals and probably in plants. In addition to the reconstruction of the evolutionary history of RNA metabolism, this analysis produced numerous functional predictions, e.g. of previously undetected enzymes of RNA modification.
Collapse
Affiliation(s)
- Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, 8600 Rockville Pike, Building 389, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
73
|
Bujnicki JM. In silico analysis of the tRNA:m1A58 methyltransferase family: homology-based fold prediction and identification of new members from Eubacteria and Archaea. FEBS Lett 2001; 507:123-7. [PMID: 11684083 DOI: 10.1016/s0014-5793(01)02962-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The amino acid sequences of Gcd10p and Gcd14p, the two subunits of the tRNA:(1-methyladenosine-58; m(1)A58) methyltransferase (MTase) of Saccharomyces cerevisiae, have been analyzed using iterative sequence database searches and fold recognition programs. The results suggest that the 'catalytic' Gcd14p and 'substrate binding' Gcd10p are related to each other and to a group of prokaryotic open reading frames, which were previously annotated as hypothetical protein isoaspartate MTases in sequence databases. It is predicted that the prokaryotic proteins are genuine tRNA:m(1)A MTases based on similarity of their predicted active site to the Gcd14p family. In addition to the MTase domain, an additional domain was identified in the N-terminus of all these proteins that may be involved in interaction with tRNA. These results suggest that the eukaryotic tRNA:m(1)A58 MTase is a product of gene duplication and divergent evolution of a possibly homodimeric prokaryotic enzyme.
Collapse
Affiliation(s)
- J M Bujnicki
- Bioinformatics Laboratory, International Institute of Molecular and Cell Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland.
| |
Collapse
|
74
|
Anantharaman V, Koonin EV, Aravind L. TRAM, a predicted RNA-binding domain, common to tRNA uracil methylation and adenine thiolation enzymes. FEMS Microbiol Lett 2001; 197:215-21. [PMID: 11313137 DOI: 10.1111/j.1574-6968.2001.tb10606.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A previously undetected conserved domain is identified in two distinct classes of tRNA-modifying enzymes, namely uridine methylases of the TRM2 family and enzymes of the MiaB family that are involved in 2-methylthioadenine formation. This domain, for which the acronym TRAM is proposed after TRM2 and MiaB, is predicted to bind tRNA and deliver the RNA-modifying enzymatic domains to their targets. In addition to the two families of RNA-modifying enzymes, the TRAM domain is present in several other proteins associated with the translation machinery and in a family of small, uncharacterized archaeal proteins that are predicted to have a role in the regulation of tRNA modification or translation. Secondary structure prediction indicates that the TRAM domain adopts a simple beta-barrel fold. In addition, sequence analysis of the MiaB family enzymes showed that they share the predicted catalytic site with biotin and lipoate synthases and probably employ the same mechanism for sulfur insertion into their respective substrate.
Collapse
Affiliation(s)
- V Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|