51
|
Bortolin ML, Bachellerie JP, Clouet-d'Orval B. In vitro RNP assembly and methylation guide activity of an unusual box C/D RNA, cis-acting archaeal pre-tRNA(Trp). Nucleic Acids Res 2004; 31:6524-35. [PMID: 14602911 PMCID: PMC275556 DOI: 10.1093/nar/gkg860] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Among the large family of C/D methylation guide RNAs, the intron of euryarchaeal pre-tRNA(Trp) represents an outstanding specimen able to guide in cis, instead of in trans, two 2'-O-methylations in the pre-tRNA exons. Remarkably, both sites of methylation involve nucleotides within the bulge-helix-bulge (BHB) splicing motif, while the RNA-guided methylation and pre-tRNA splicing events depend on mutually exclusive RNA folding patterns. Using the three recombinant core proteins of archaeal C/D RNPs, we have analyzed in vitro RNP assembly of the pre-tRNA and tested its site-specific methylation activity. Recognition by L7Ae of hallmark K-turns at the C/D and C'/D' motifs appears as a crucial assembly step required for subsequent binding of a Nop5p-aFib heterodimer at each site. Unexpectedly, however, even without L7Ae but at a higher concentration of Nop5p-aFib, a substantially active RNP complex can still form, possibly reflecting the higher propensity of the cis-acting system to form guide RNA duplex(es) relative to classical trans- acting C/D RNA guides. Moreover, footprinting data of RNPs, consistent with Nop5p interacting with the non-canonical stem of the K-turn, suggest that binding of Nop5p-aFib to the pre-tRNA-L7Ae complex might direct transition from a splicing-competent structure to an RNA conformer displaying the guide RNA duplexes required for site-specific methylation.
Collapse
Affiliation(s)
- Marie-Line Bortolin
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099 du CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | | | | |
Collapse
|
52
|
|
53
|
Wang C, Meier UT. Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO J 2004; 23:1857-67. [PMID: 15044956 PMCID: PMC394235 DOI: 10.1038/sj.emboj.7600181] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Accepted: 03/03/2004] [Indexed: 11/08/2022] Open
Abstract
Mammalian H/ACA small nucleolar RNAs and telomerase RNA share common sequence and secondary structure motifs that form ribonucleoprotein particles (RNPs) with the same four core proteins, NAP57 (also dyskerin or in yeast Cbf5p), GAR1, NHP2, and NOP10. The assembly and molecular interactions of the components of H/ACA RNPs are unknown. Using in vitro transcription/translation in combination with immunoprecipitation of core proteins, UV-crosslinking, and electrophoretic mobility shift assays, we demonstrate the following. NOP10 associates with NAP57 as a prerequisite for NHP2 binding. Although NHP2 on its own binds RNA nonspecifically, this NAP57-NOP10-NHP2 core trimer specifically recognizes H/ACA RNAs. GAR1 associates independently with NAP57 near the pseudouridylase core of mature H/ACA RNPs. In contrast to other RNPs whose assembly is initiated by protein-RNA interactions, the four H/ACA core proteins form a protein-only particle that associates with H/ACA RNAs. Nonetheless, functional H/ACA snoRNPs assembled in cytosolic extracts are stable and do not exchange their RNA components, suggesting that new particle formation requires de novo synthesis.
Collapse
Affiliation(s)
- Chen Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, NY, USA
| | - U Thomas Meier
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, NY, USA
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA. Tel.: +1 718 430 3294; Fax: +1 718 430 8996; E-mail:
| |
Collapse
|
54
|
Deng L, Starostina NG, Liu ZJ, Rose JP, Terns RM, Terns MP, Wang BC. Structure determination of fibrillarin from the hyperthermophilic archaeon Pyrococcus furiosus. Biochem Biophys Res Commun 2004; 315:726-32. [PMID: 14975761 DOI: 10.1016/j.bbrc.2004.01.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Indexed: 11/30/2022]
Abstract
The methyltransferase fibrillarin is the catalytic component of ribonucleoprotein complexes that direct site-specific methylation of precursor ribosomal RNA and are critical for ribosome biogenesis in eukaryotes and archaea. Here we report the crystal structure of a fibrillarin ortholog from the hyperthermophilic archaeon Pyrococcus furiosus at 1.97A resolution. Comparisons of the X-ray structures of fibrillarin orthologs from Methanococcus jannashii and Archaeoglobus fulgidus reveal nearly identical backbone configurations for the catalytic C-terminal domain with the exception of a unique loop conformation at the S-adenosyl-l-methionine (AdoMet) binding pocket in P. furiosus. In contrast, the N-terminal domains are divergent which may explain why some forms of fibrillarin apparently homodimerize (M. jannashii) while others are monomeric (P. furiosus and A. fulgidus). Three positively charged amino acids surround the AdoMet-binding site and sequence analysis indicates that this is a conserved feature of both eukaryotic and archaeal fibrillarins. We discuss the possibility that these basic residues of fibrillarin are important for RNA-guided rRNA methylation.
Collapse
Affiliation(s)
- Lu Deng
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Massardo DR, Esposito B, Veneziano A, Wolf K, Alifano P, Del Giudice L. Hyper-expression of small nucleolar RNAs (snoRNAs) in female inflorescences of hazelnut (Corylus avellana L.) supports rRNA aggregation in vitro. PLANT & CELL PHYSIOLOGY 2003; 44:884-892. [PMID: 14519769 DOI: 10.1093/pcp/pcg111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Under certain in vitro (salt and temperature) conditions rRNA aggregation occurs in female inflorescences but not in leaves or pollen RNA preparations from hazelnut (Corylus avellana L.), a species of economic interest. This paper describes experiments addressing an explanation of this phenomenon. The experiments demonstrate that: (i) trans-acting factors induce rRNA aggregate formation in female inflorescences RNA preparations; (ii) these factors support aggregation also of heterologous rRNA; (iii) aggregation is a function of temperature pre-treatment of rRNA and not of source 18S rRNA; (iv) the factors inducing rRNA aggregates are sensitive to RNase; (v) antisense small nucleolar RNAs (snoRNAs) participate in rRNA aggregate formation. snoRNAs are involved in pre-rRNA spacer cleavages, and are required for the two most common types of rRNA modifications: 2'-O-ribose methylation and pseudouridylation. Even though it is questionable whether rRNA aggregation really happens in female inflorescence in vivo, the phenomenon observed in vitro may reflect the abundance of snoRNAs in these reproductive structures. In fact the level of accumulation of three tested snoRNAs, R1, U14 and U3, is much higher in female inflorescence than in leaves or pollen of hazelnut. This finding opens the possibility of studying the role of snoRNAs in tissue development in plants.
Collapse
Affiliation(s)
- Domenica Rita Massardo
- Istituto di Genetica e Biofisica Adriano Buzzati-Traverso--C.N.R., Via G. Marconi 10, I-80125 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
56
|
Abstract
Small nucleolar RNAs (snoRNAs) are involved in precursor ribosomal RNA (pre-rRNA) processing and rRNA base modifications (2'-O-ribose methylation and pseudouridylation). Their genomic organization show great flexibility: some are individually or polycistronically transcribed, while others are encoded within introns of other genes. Here, we present an evolutionary analysis of the U49 gene in seven species. In all species analyzed, U49 contains the typical hallmarks of C and D box motifs, and a conserved 12-15 nt sequence complementary to rRNA that define them as homologs. In mouse, human, and Drosophila U49 is found encoded within introns of different genes, and in plants it is transcribed polycistronically from four different locations. In addition, U49 has two copies in two different introns of the RpL14 gene in Drosophila. The results indicate a substantial degree of duplication and translocation of the U49 gene in evolution. In light of its variable organization we discuss which of the two proposed mechanisms of rearrangement has acted upon the U49 snoRNA gene: chromosomal duplication or transposition through an RNA intermediate.
Collapse
Affiliation(s)
- Espen Enerly
- Division of Molecular Biology, Institute of Biology, University of Oslo, Blindern, Oslo, Norway
| | | | | | | |
Collapse
|
57
|
Chen CL, Liang D, Zhou H, Zhuo M, Chen YQ, Qu LH. The high diversity of snoRNAs in plants: identification and comparative study of 120 snoRNA genes from Oryza sativa. Nucleic Acids Res 2003; 31:2601-13. [PMID: 12736310 PMCID: PMC156054 DOI: 10.1093/nar/gkg373] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Revised: 02/18/2003] [Accepted: 03/25/2003] [Indexed: 11/14/2022] Open
Abstract
Using a powerful computer-assisted analysis strategy, a large-scale search of small nucleolar RNA (snoRNA) genes in the recently released draft sequence of the rice genome was carried out. This analysis identified 120 different box C/D snoRNA genes with a total of 346 gene variants, which were predicted to guide 135 2'-O-ribose methylation sites in rice rRNAs. Though not exhaustive, this analysis has revealed that rice has the highest number of known box C/D snoRNAs among eukaryotes. Interestingly, although many snoRNA genes are conserved between rice and Arabidopsis, almost half of the identified snoRNA genes are rice specific, which may highlight further the differences in rRNA methylation patterns between monocotyledons and dicotyledons. In addition to 76 singletons, 70 clusters involving 270 snoRNA genes were also found in rice. The large number of the novel snoRNA polycistrons found in the introns of rice protein-coding genes is in contrast to the one-snoRNA-per-intron organization of vertebrates and yeast, and of Arabidopsis in which only a few intronic snoRNA gene clusters were identified. Furthermore, due to a high degree of gene duplication, rice snoRNA genes are clearly redundant and exhibit great sequence variation among isoforms, allowing generation of new snoRNAs for selection. Thus, the large snoRNA gene family in plants can serve as an excellent model for a rapid and functional evolution.
Collapse
MESH Headings
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Library
- Genes, Plant/genetics
- Genetic Variation
- Genome, Plant
- Methylation
- Molecular Sequence Data
- Multigene Family/genetics
- Oryza/genetics
- Plants/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Ribose/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Chun-Long Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, Biotechnology Research Center, Zhoushan University, Guangzhou 510275, China
| | | | | | | | | | | |
Collapse
|
58
|
Yuan G, Klämbt C, Bachellerie JP, Brosius J, Hüttenhofer A. RNomics in Drosophila melanogaster: identification of 66 candidates for novel non-messenger RNAs. Nucleic Acids Res 2003; 31:2495-507. [PMID: 12736298 PMCID: PMC156043 DOI: 10.1093/nar/gkg361] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By generating a specialised cDNA library from four different developmental stages of Drosophila melanogaster, we have identified 66 candidates for small non-messenger RNAs (snmRNAs) and have confirmed their expression by northern blot analysis. Thirteen of them were expressed at certain stages of D.melanogaster development, only. Thirty-five species belong to the class of small nucleolar RNAs (snoRNAs), divided into 15 members from the C/D subclass and 20 members from the H/ACA subclass, which mostly guide 2'-O-methylation and pseudouridylation, respectively, of rRNA and snRNAs. These also include two outstanding C/D snoRNAs, U3 and U14, both functioning as pre-rRNA chaperones. Surprisingly, the sequence of the Drosophila U14 snoRNA reflects a major change of function of this snoRNA in Diptera relative to yeast and vertebrates. Among the 22 snmRNAs lacking known sequence and structure motifs, five were located in intergenic regions, two in introns, five in untranslated regions of mRNAs, eight were derived from open reading frames, and two were transcribed opposite to an intron. Interestingly, detection of two RNA species from this group implies that certain snmRNA species are processed from alternatively spliced pre-mRNAs. Surprisingly, a few snmRNA sequences could not be found on the published D.melanogaster genome, which might suggest that more snmRNA genes (as well as mRNAs) are hidden in unsequenced regions of the genome.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Gene Expression Regulation, Developmental
- Gene Library
- Genes, Insect/genetics
- Genomics/methods
- Nucleic Acid Conformation
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nucleolar/genetics
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Guozhong Yuan
- Institute for Experimental Pathology (ZMBE), Universität Münster, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
59
|
Watkins NJ, Dickmanns A, Lührmann R. Conserved stem II of the box C/D motif is essential for nucleolar localization and is required, along with the 15.5K protein, for the hierarchical assembly of the box C/D snoRNP. Mol Cell Biol 2002; 22:8342-52. [PMID: 12417735 PMCID: PMC134055 DOI: 10.1128/mcb.22.23.8342-8352.2002] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 5' stem-loop of the U4 snRNA and the box C/D motif of the box C/D snoRNAs can both be folded into a similar stem-internal loop-stem structure that binds the 15.5K protein. The homologous proteins NOP56 and NOP58 and 61K (hPrp31) associate with the box C/D snoRNPs and the U4/U6 snRNP, respectively. This raises the intriguing question of how the two homologous RNP complexes specifically assemble onto similar RNAs. Here we investigate the requirements for the specific binding of the individual snoRNP proteins to the U14 box C/D snoRNPs in vitro. This revealed that the binding of 15.5K to the box C/D motif is essential for the association of the remaining snoRNP-associated proteins, namely, NOP56, NOP58, fibrillarin, and the nucleoplasmic proteins TIP48 and TIP49. Stem II of the box C/D motif, in contrast to the U4 5' stem-loop, is highly conserved, and we show that this sequence is responsible for the binding of NOP56, NOP58, fibrillarin, TIP48, and TIP49, but not of 15.5K, to the snoRNA. Indeed, the sequence of stem II was essential for nucleolar localization of U14 snoRNA microinjected into HeLa cells. Thus, the conserved sequence of stem II determines the specific assembly of the box C/D snoRNP.
Collapse
Affiliation(s)
- Nicholas J Watkins
- Max-Planck-Institut für Biophysikalische Chemie, Abteilung Zelluläre Biochemie, D-37070, Göttingen, Germany
| | | | | |
Collapse
|
60
|
Dez C, Noaillac-Depeyre J, Caizergues-Ferrer M, Henry Y. Naf1p, an essential nucleoplasmic factor specifically required for accumulation of box H/ACA small nucleolar RNPs. Mol Cell Biol 2002; 22:7053-65. [PMID: 12242285 PMCID: PMC139812 DOI: 10.1128/mcb.22.20.7053-7065.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Box H/ACA small nucleolar ribonucleoprotein particles (H/ACA snoRNPs) play key roles in the synthesis of eukaryotic ribosomes. The ways in which these particles are assembled and correctly localized in the dense fibrillar component of the nucleolus remain largely unknown. Recently, the essential Saccharomyces cerevisiae Naf1p protein (encoded by the YNL124W open reading frame) was found to interact in a two-hybrid assay with two core protein components of mature H/ACA snoRNPs, Cbf5p and Nhp2p (T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki, Proc. Natl. Acad. Sci. USA 98:4569-4574, 2001). Here we show that several H/ACA snoRNP components are weakly but specifically immunoprecipitated with epitope-tagged Naf1p, suggesting that the latter protein is involved in H/ACA snoRNP biogenesis, trafficking, and/or function. Consistent with this, we find that depletion of Naf1p leads to a defect in 18S rRNA accumulation. Naf1p is unlikely to directly assist H/ACA snoRNPs during pre-rRNA processing in the dense fibrillar component of the nucleolus for two reasons. Firstly, Naf1p accumulates predominantly in the nucleoplasm. Secondly, Naf1p sediments in a sucrose gradient chiefly as a free protein or associated in a complex of the size of free snoRNPs, whereas extremely little Naf1p is found in fractions containing preribosomes. These results are more consistent with a role for Naf1p in H/ACA snoRNP biogenesis and/or intranuclear trafficking. Indeed, depletion of Naf1p leads to a specific and dramatic decrease in the steady-state accumulation of all box H/ACA snoRNAs tested and of Cbf5p, Gar1p, and Nop10p. Naf1p is unlikely to be directly required for the synthesis of H/ACA snoRNP components. Naf1p could participate in H/ACA snoRNP assembly and/or transport.
Collapse
Affiliation(s)
- Christophe Dez
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul Sabatier, 31062 Toulouse Cedex 04, France
| | | | | | | |
Collapse
|
61
|
Galardi S, Fatica A, Bachi A, Scaloni A, Presutti C, Bozzoni I. Purified box C/D snoRNPs are able to reproduce site-specific 2'-O-methylation of target RNA in vitro. Mol Cell Biol 2002; 22:6663-8. [PMID: 12215523 PMCID: PMC134041 DOI: 10.1128/mcb.22.19.6663-6668.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are associated in ribonucleoprotein particles localized to the nucleolus (snoRNPs). Most of the members of the box C/D family function in directing site-specific 2'-O-methylation of substrate RNAs. Although the selection of the target nucleotide requires the antisense element and the conserved box D or D' of the snoRNA, the methyltransferase activity is supposed to reside in one of the protein components. Through protein tagging of a snoRNP-specific factor, we purified to homogeneity box C/D snoRNPs from the yeast Saccharomyces cerevisiae. Mass spectrometric analysis demonstrated the presence of Nop1p, Nop58p, Nop56p, and Snu13p as integral components of the particle. We show that purified snoRNPs are able to reproduce the site-specific methylation pattern on target RNA and that the predicted S-adenosyl-L-methionine-binding region of Nop1p is responsible for the catalytic activity.
Collapse
Affiliation(s)
- Silvia Galardi
- Department of Genetics and Molecular Biology, Cenci-Bolognetti Foundation, Institute Pasteur, University of Rome La Sapienza, Italy
| | | | | | | | | | | |
Collapse
|
62
|
Morales L, Romero I, Diez H, Del Portillo P, Montilla M, Nicholls S, Puerta C. Characterization of a candidate Trypanosoma rangeli small nucleolar RNA gene and its application in a PCR-based parasite detection. Exp Parasitol 2002; 102:72-80. [PMID: 12706742 DOI: 10.1016/s0014-4894(03)00027-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we report the isolation and characterization of a candidate Trypanosoma rangeli small nucleolar RNA (snoRNA) gene, and the development of a PCR assay for detection of the parasite based on its nucleotide sequence. This gene, isolated from a T. rangeli genomic sub-library, was named snoRNA-cl1 and is encoded by a multi-copy gene of 801bp in length. Computer sequence analysis of snoRNA-cl1 showed the presence of two sequence motifs, box C and box D, as well as of two long stretches that perfectly complement the universal core region of the mature rRNA 28S, suggesting that cl1 encodes for a Box C/D snoRNA from the parasite. Hybridization analysis using cl1 as probe, showed a weak hybridization signal with Trypanosoma cruzi DNA, demonstrating the existence of differences in this locus between these two species. Two oligonucleotide primers from this gene, which specifically amplified a 620-bp fragment in KP1 (+) and KP1 (-) strains of T. rangeli, were used in a PCR assay. The amplification allowed the detection of 1pg of DNA in the presence of heterologous DNA and no amplification was observed with different T. cruzi strains (groups I and II). In addition, the PCR assay reported here is able to detect T. rangeli in the presence of T. cruzi DNA, and is useful for detection of the parasite in samples from infected vectors.
Collapse
Affiliation(s)
- Liliana Morales
- Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad Ciencias, Universidad Javeriana, Carrera 7 No 43-82, Lab. 113, Bogotá, Colombia
| | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
In eukaryotes, the site-specific formation of the two prevalent types of rRNA modified nucleotides, 2'-O-methylated nucleotides and pseudouridines, is directed by two large families of snoRNAs. These are termed box C/D and H/ACA snoRNAs, respectively, and exert their function through the formation of a canonical guide RNA duplex at the modification site. In each family, one snoRNA acts as a guide for one, or at most two modifications, through a single, or a pair of appropriate antisense elements. The two guide families now appear much larger than anticipated and their role not restricted to ribosome synthesis only. This is reflected by the recent detection of guides that can target other cellular RNAs, including snRNAs, tRNAs and possibly even mRNAs, and by the identification of scores of tissue-specific specimens in mammals. Recent characterization of homologs of eukaryotic modification guide snoRNAs in Archaea reveals the ancient origin of these non-coding RNA families and offers new perspectives as to their range of function.
Collapse
Affiliation(s)
- Jean Pierre Bachellerie
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, 118, route de Narbonne, 31062 Toulouse cedex 4,France.
| | | | | |
Collapse
|
64
|
Abstract
An efficiently expressed rDNA plasmid was used to quantitatively analyze the effect of base changes in modified positions associated with the peptidyl transferase center of the 25S rRNA from the yeast Schizosaccharomyces pombe. The results show that, unlike normal RNA and relative to a less conserved modified position outside the center, these mutant RNAs are highly unstable and rapidly degraded with little or no effect on cell growth. These results provide direct evidence that the positions of modification can be critical sites for nuclease attack. Taken together with previous genetic analyses of rRNA modification, they raise the possibility that rRNA modification may act, at least in part, as a quality control mechanism to help ensure that only functional RNA is incorporated into active ribosomes.
Collapse
Affiliation(s)
- Xinyu Song
- Department of Molecular Biology and Genetics, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | | |
Collapse
|
65
|
Liang D, Zhou H, Zhang P, Chen YQ, Chen X, Chen CL, Qu LH. A novel gene organization: intronic snoRNA gene clusters from Oryza sativa. Nucleic Acids Res 2002; 30:3262-72. [PMID: 12136108 PMCID: PMC135747 DOI: 10.1093/nar/gkf426] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Based on the analysis of structural features and conserved elements, 27 novel snoRNA genes have been identified from rice. All of them belong to the C/D box-containing snoRNA family except for one that belongs to the H/ACA box type. The newly found genes fall into six clusters that comprise at least three snoRNA genes, and in one case as many as nine genes. Interestingly, four of the six clusters are located within the largest intron of a protein coding gene. The majority of intronic snoRNA gene clusters are simply formed by multiple copies of the same species of snoRNA gene that possess the identical functional elements. This implies a possible mechanism of duplication for the origin of repeating snoRNA coding regions in one intron. However, a few intronic snoRNA gene clusters consisting of different snoRNAs species were also observed. Polycistronic precursors from two independently transcribed clusters were demonstrated by RT-PCR and individual snoRNAs processed from the polycistronic precursors were positively determined by reverse transcription assay. Analyses of the intergenic spacers in the clusters showed that, in addition to a very high AT content, the processing signals in rice snoRNA polycistronic transcripts might be different from those of yeast. Our results demonstrate that, in both plants and mammals, numerous snoRNAs can be produced simultaneously from an mRNA precursor of a host gene despite the different arrangements. The intronic snoRNA gene cluster is a novel gene organization, which is so far unique to plants. The conservation of intronic snoRNA gene clusters in plants was further demonstrated by the study of a similar snoRNA gene organization in the first intron of a Hsp70 gene from wild rice and Zizania caduciflora.
Collapse
Affiliation(s)
- Dan Liang
- Key Laboratory of Gene Engineering of Education Ministry, Biotechnology Research Center, Zhongshan University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
66
|
Tremblay A, Lamontagne B, Catala M, Yam Y, Larose S, Good L, Elela SA. A physical interaction between Gar1p and Rnt1pi is required for the nuclear import of H/ACA small nucleolar RNA-associated proteins. Mol Cell Biol 2002; 22:4792-802. [PMID: 12052886 PMCID: PMC133895 DOI: 10.1128/mcb.22.13.4792-4802.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During rRNA biogenesis, multiple RNA and protein substrates are modified and assembled through the coordinated activity of many factors. In Saccharomyces cerevisiae, the double-stranded RNA nuclease Rnt1p and the H/ACA snoRNA pseudouridylase complex participate in the transformation of the nascent pre-rRNA transcript into 35S pre-rRNA. Here we demonstrate the binding of a component of the H/ACA complex (Gar1p) to Rnt1p in vivo and in vitro in the absence of other factors. In vitro, Rnt1p binding to Gar1p is mutually exclusive of its RNA binding and cleavage activities. Mutations in Rnt1p that disrupt Gar1p binding do not inhibit RNA cleavage in vitro but slow RNA processing, prevent nucleolar localization of H/ACA snoRNA-associated proteins, and reduce pre-rRNA pseudouridylation in vivo. These results demonstrate colocalization of various components of the rRNA maturation complex and suggest a mechanism that links rRNA pseudouridylation and cleavage factors.
Collapse
Affiliation(s)
- Annie Tremblay
- Groupe ARN, Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | | | | | | | |
Collapse
|
67
|
Gogolevskaya IK, Makarova JA, Gause LN, Kulichkova VA, Konstantinova IM, Kramerov DA. U87 RNA, a novel C/D box small nucleolar RNA from mammalian cells. Gene 2002; 292:199-204. [PMID: 12119114 DOI: 10.1016/s0378-1119(02)00678-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A novel 72 nt small nucleolar RNA (snoRNA) called U87 was found in rat liver cells. This RNA possesses the features of C/D box snoRNA family: boxes C, D', C', D, and 11 nt antisense element complementary to 28S ribosomal RNA (rRNA). The vast majority of C/D box snoRNAs direct site-specific 2'-O-ribose methylation of rRNAs. U87 RNA is suggested to be involved in 2'-O-methylation of a G(3468) residue in 28S rRNA. U87 RNA was detected in different mammalian species with slight length variability. Rat and mouse U87 RNA gene was characterized. Unlike the majority of C/D box snoRNAs U87 RNA lacks the terminal stem required for snoRNA processing. However, U87 gene is flanked by 7 bp inverted repeats potentially able to form a terminal stem in U87 RNA precursor.
Collapse
Affiliation(s)
- Irina K Gogolevskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | | | | | | | | | | |
Collapse
|
68
|
Tomasevic N, Peculis BA. Xenopus LSm proteins bind U8 snoRNA via an internal evolutionarily conserved octamer sequence. Mol Cell Biol 2002; 22:4101-12. [PMID: 12024024 PMCID: PMC133881 DOI: 10.1128/mcb.22.12.4101-4112.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
U8 snoRNA plays a unique role in ribosome biogenesis: it is the only snoRNA essential for maturation of the large ribosomal subunit RNAs, 5.8S and 28S. To learn the mechanisms behind the in vivo role of U8 snoRNA, we have purified to near homogeneity and characterized a set of proteins responsible for the formation of a specific U8 RNA-binding complex. This 75-kDa complex is stable in the absence of added RNA and binds U8 with high specificity, requiring the conserved octamer sequence present in all U8 homologues. At least two proteins in this complex can be cross-linked directly to U8 RNA. We have identified the proteins as Xenopus homologues of the LSm (like Sm) proteins, which were previously reported to be involved in cytoplasmic degradation of mRNA and nuclear stabilization of U6 snRNA. We have identified LSm2, -3, -4, -6, -7, and -8 in our purified complex and found that this complex associates with U8 RNA in vivo. This purified complex can bind U6 snRNA in vitro but does not bind U3 or U14 snoRNA in vitro, demonstrating that the LSm complex specifically recognizes U8 RNA.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- Cells, Cultured
- Conserved Sequence
- Cross-Linking Reagents/chemistry
- Evolution, Molecular
- Female
- Molecular Sequence Data
- N-Terminal Acetyltransferase C
- Oocytes
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribonucleoprotein, U4-U6 Small Nuclear/immunology
- Ribonucleoprotein, U4-U6 Small Nuclear/isolation & purification
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- Ribonucleoproteins, Small Nuclear
- Xenopus/genetics
- Xenopus Proteins/genetics
- Xenopus Proteins/metabolism
Collapse
Affiliation(s)
- Nenad Tomasevic
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1766, USA
| | | |
Collapse
|
69
|
Shimoda M, Morita S, Obata Y, Sotomaru Y, Kono T, Hatada I. Imprinting of a small nucleolar RNA gene on mouse chromosome 12. Genomics 2002; 79:483-6. [PMID: 11944978 DOI: 10.1006/geno.2002.6727] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have identified a novel, maternally expressed imprinted gene encoding a C/D-box small nucleolar RNA (snoRNA) called MBII-343, which may regulate RNA editing or alternative splicing of an as yet unknown target gene. This gene is closely linked to an imprinted gene, Meg3, on mouse distal chromosome 12, which is syntenic to human chromosome 14. The paternal duplication of mouse distal chromosome 12 leads to late embryonal/neonatal lethality, growth promotion, and cardiomyopathy, whereas maternal duplication leads to late embryonal lethality and growth retardation. Human paternal uniparental disomy for chromosome 14 leads to musculoskeletal problems and mental retardation, whereas maternal uniparental disomy leads to intrauterine growth retardation, motor developmental delay, premature puberty, hypotonia, joint laxity, macrocephaly, short statue, neonatal poor sucking, skill with jigsaw puzzles, skin picking, obesity, and maturity onset diabetes of the young.
Collapse
Affiliation(s)
- Masafumi Shimoda
- Gene Research Center, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | | | | | | | | | | |
Collapse
|
70
|
Tang TH, Rozhdestvensky TS, d'Orval BC, Bortolin ML, Huber H, Charpentier B, Branlant C, Bachellerie JP, Brosius J, Hüttenhofer A. RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing. Nucleic Acids Res 2002; 30:921-30. [PMID: 11842103 PMCID: PMC100335 DOI: 10.1093/nar/30.4.921] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The bulge-helix-bulge (BHB) motif recognised by the archaeal splicing endonuclease is also found in the long processing stems of archaeal rRNA precursors in which it is cleaved to generate pre-16S and pre-23S rRNAs. We show that in two species, Archaeoglobus fulgidus and Sulfolobus solfataricus, representatives from the two major archaeal kingdoms Euryarchaeota and Crenarchaeota, respectively, the pre-rRNA spacers cleaved at the BHB motifs surrounding pre-16S and pre-23S rRNAs subsequently become ligated. In addition, we present evidence that this is accompanied by circularization of ribosomal pre-16S and pre-23S rRNAs in both species. These data reveal a further link between intron splicing and pre-rRNA processing in Archaea, which might reflect a common evolutionary origin of the two processes. One spliced RNA species designated 16S-D RNA, resulting from religation at the BHB motif of 16S pre-rRNA, is a highly abundant and stable RNA which folds into a three-stem structure interrupted by two single-stranded regions as assessed by chemical probing. It spans a region of the pre-rRNA 5' external transcribed spacer exhibiting a highly conserved folding pattern in Archaea. Surprisingly, 16S-D RNA contains structural motifs found in archaeal C/D box small RNAs and binds to the L7Ae protein, a core component of archaeal C/D box RNPs. This supports the notion that it might have an important but still unknown role in pre-rRNA biogenesis or might even target RNA molecules other than rRNA.
Collapse
MESH Headings
- Archaeoglobus fulgidus/genetics
- Archaeoglobus fulgidus/metabolism
- Base Sequence
- Electrophoretic Mobility Shift Assay
- Introns
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Splicing
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Ribosomal Proteins/metabolism
- Sequence Homology, Nucleic Acid
- Sulfolobus/genetics
- Sulfolobus/metabolism
Collapse
Affiliation(s)
- Thean Hock Tang
- Institut für Experimentelle Pathologie/Molekulare Neurobiologie (ZMBE), Universität Münster, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Zhou H, Chen YQ, Du YP, Qu LH. The Schizosaccharomyces pombe mgU6-47 gene is required for 2'-O-methylation of U6 snRNA at A41. Nucleic Acids Res 2002; 30:894-902. [PMID: 11842100 PMCID: PMC100344 DOI: 10.1093/nar/30.4.894] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Through a computer search of DNA databases, we have identified the homologs of the mgU6-47 snoRNA gene from the yeast Schizosaccharomyces pombe, the fly Drosophila melanogaster and human. The three box C/D-containing snoRNA genes showed no significant similarity in their sequences except for an 11 nt long complementarity to U6 snRNA, suggesting that the mechanism of snoRNA guided snRNA methylation is conserved from mammals to yeast. The corresponding snoRNAs have been positively detected by reverse transcription and northern blotting. Taking advantage of the fission yeast system, we have disrupted the yeast mgU6-47 gene and demonstrated that it is absolutely required for site-specific 2'-O-methylation of U6 at position A41. No growth differences between mgU6-47 gene-disrupted and wild-type cells were observed, suggesting that the mgU6-47 gene, as for most rRNA methylation guides, is dispensable in yeast. Nevertheless, it was revealed by temperature shift assay that abolition of A41 methylation in yeast U6 snRNA might cause a small decrease in mRNA splicing efficiency. The timing of S.pombe U6 pre-RNA transport in the nucleus for splicing and methylation was also analyzed and is described.
Collapse
Affiliation(s)
- Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, Biotechnology Research Center, Zhongshan University, Guangzhou 510275, People's Republic of China
| | | | | | | |
Collapse
|
72
|
Abstract
The Nopp140 gene of Drosophila maps within 79A5 of chromosome 3. Alternative splicing yields two variants. DmNopp140 (654 residues) is the sequence homolog of vertebrate Nopp140. Its carboxy terminus is 64% identical to that of the prototypical rat Nopp140. DmNopp140-RGG (688 residues) is identical to DmNopp140 throughout its first 551 residues, but its carboxy terminus contains a glycine/arginine-rich domain that is often found in RNA-binding proteins such as vertebrate nucleolin. Both Drosophila variants localize to nucleoli in Drosophila Schneider II cells and Xenopus oocytes, specifically within the dense fibrillar components. In HeLa cells, DmNopp140-RGG localizes to intact nucleoli, whereas DmNopp140 partitions HeLa nucleoli into phase-light and phase-dark regions. The phase-light regions contain DmNopp140 and endogenous fibrillarin, whereas the phase-dark regions contain endogenous nucleolin. When coexpressed, both Drosophila variants colocalize to HeLa cell nucleoli. Both variants fail to localize to endogenous Cajal bodies in Xenopus oocyte nuclei and in HeLa cell nuclei. Endogenous HeLa coilin, however, accumulates around the periphery of phase-light regions in cells expressing DmNopp140. The carboxy truncation (DmNopp140DeltaRGG) also fails to localize to Cajal bodies, but it forms similar phase-light regions that peripherally accumulate endogenous coilin. Conversely, we see no unusual accumulation of coilin in cells expressing DmNopp140-RGG.
Collapse
Affiliation(s)
- John M Waggener
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803-1715, USA
| | | |
Collapse
|
73
|
Gleizes PE, Noaillac-Depeyre J, Léger-Silvestre I, Teulières F, Dauxois JY, Pommet D, Azum-Gelade MC, Gas N. Ultrastructural localization of rRNA shows defective nuclear export of preribosomes in mutants of the Nup82p complex. J Cell Biol 2001; 155:923-36. [PMID: 11739405 PMCID: PMC2150900 DOI: 10.1083/jcb.200108142] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To study the nuclear export of preribosomes, ribosomal RNAs were detected by in situ hybridization using fluorescence and EM, in the yeast Saccharomyces cerevisiae. In wild-type cells, semiquantitative analysis shows that the distributions of pre-40S and pre-60S particles in the nucleolus and the nucleoplasm are distinct, indicating uncoordinated transport of the two subunits within the nucleus. In cells defective for the activity of the GTPase Gsp1p/Ran, ribosomal precursors accumulate in the whole nucleus. This phenotype is reproduced with pre-60S particles in cells defective in pre-rRNA processing, whereas pre-40S particles only accumulate in the nucleolus, suggesting a tight control of the exit of the small subunit from the nucleolus. Examination of nucleoporin mutants reveals that preribosome nuclear export requires the Nup82p-Nup159p-Nsp1p complex. In contrast, mutations in the nucleoporins forming the Nup84p complex yield very mild or no nuclear accumulation of preribosome. Interestingly, domains of Nup159p required for mRNP trafficking are not necessary for preribosome export. Furthermore, the RNA helicase Dbp5p and the protein Gle1p, which interact with Nup159p and are involved in mRNP trafficking, are dispensable for ribosomal transport. Thus, the Nup82p-Nup159p-Nsp1p nucleoporin complex is part of the nuclear export pathways of preribosomes and mRNPs, but with distinct functions in these two processes.
Collapse
Affiliation(s)
- P E Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Centre Nationale de la Recherche Scientifique and Université Paul Sabatier, 31062 Toulouse cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Clouet d'Orval B, Bortolin ML, Gaspin C, Bachellerie JP. Box C/D RNA guides for the ribose methylation of archaeal tRNAs. The tRNATrp intron guides the formation of two ribose-methylated nucleosides in the mature tRNATrp. Nucleic Acids Res 2001; 29:4518-29. [PMID: 11713301 PMCID: PMC92551 DOI: 10.1093/nar/29.22.4518] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Following a search of the Pyrococcus genomes for homologs of eukaryotic methylation guide small nucleolar RNAs, we have experimentally identified in Pyrococcus abyssi four novel box C/D small RNAs predicted to direct 2'-O-ribose methylations onto the first position of the anticodon in tRNALeu(CAA), tRNALeu(UAA), elongator tRNAMet and tRNATrp, respectively. Remarkably, one of them corresponds to the intron of its presumptive target, pre-tRNATrp. This intron is predicted to direct in cis two distinct ribose methylations within the unspliced tRNA precursor, not only onto the first position of the anticodon in the 5' exon but also onto position 39 (universal tRNA numbering) in the 3' exon. The two intramolecular RNA duplexes expected to direct methylation, which both span an exon-intron junction in pre-tRNATrp, are phylogenetically conserved in euryarchaeotes. We have experimentally confirmed the predicted guide function of the box C/D intron in halophile Haloferax volcanii by mutagenesis analysis, using an in vitro splicing/RNA modification assay in which the two cognate ribose methylations of pre-tRNATrp are faithfully reproduced. Euryarchaeal pre-tRNATrp should provide a unique system to further investigate the molecular mechanisms of RNA-guided ribose methylation and gain new insights into the origin and evolution of the complex family of archaeal and eukaryotic box C/D small RNAs.
Collapse
MESH Headings
- Base Sequence
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- Genome, Archaeal
- Introns/genetics
- Methylation
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Nucleosides/genetics
- Nucleosides/metabolism
- Nucleotides/genetics
- Nucleotides/metabolism
- Phylogeny
- Plasmids/genetics
- Pyrococcus/genetics
- Pyrococcus/metabolism
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Trp/genetics
- RNA, Transfer, Trp/metabolism
- Ribose/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- B Clouet d'Orval
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099 du CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | | | | | | |
Collapse
|
75
|
Abstract
Ribosomal RNAs (rRNAs) from all sources contain modified nucleosides, whose numbers range from a few in mitochondrial rRNA to more than 200 in the complete rRNAs of some higher eukaryotes. In eukaryotic rRNA the great majority of modified nucleosides are 2'-O-methylated nucleosides or pseudouridines. The locations of most of the 2'-O-methylated nucleosides in rRNA from some representative eukaryotes are known from studies whose aim was full characterization of rRNA methylation. More recently, and particularly in connection with the discovery of methylation guide RNAs, it is often required to check for the presence or absence of 2'-O-methyl nucleosides at specified locations within rRNA. Three methods that can be applied for such "local" objectives are reviewed. Two of the methods are based on primer extension by reverse transcriptase. They exploit, respectively, a tendency of 2'-O-methyl groups to impede reverse transcriptase at low dNTP concentrations, or the resistance of phosphodiester bonds adjacent to 2'-O-methyl groups to alkaline hydrolysis. Examples of these methods are summarized. Although the two methods are relatively straightforward, they suffer from various experimental limitations, as discussed. The third method is technically more sophisticated but is capable of overcoming the limitations of the first two methods. It is based on the resistance of a target 2'-O-methylated site to cleavage by RNase H when the site is hybridized to an appropriate chimeric oligonucleotide. An overview of the approaches and methods now available for the complete mapping of 2'-O-methyl groups in rRNA is presented.
Collapse
Affiliation(s)
- B E Maden
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom.
| |
Collapse
|
76
|
King TH, Decatur WA, Bertrand E, Maxwell ES, Fournier MJ. A well-connected and conserved nucleoplasmic helicase is required for production of box C/D and H/ACA snoRNAs and localization of snoRNP proteins. Mol Cell Biol 2001; 21:7731-46. [PMID: 11604509 PMCID: PMC99944 DOI: 10.1128/mcb.21.22.7731-7746.2001] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biogenesis of small nucleolar RNA-protein complexes (snoRNPs) consists of synthesis of the snoRNA and protein components, snoRNP assembly, and localization to the nucleolus. Recently, two nucleoplasmic proteins from mice were observed to bind to a model box C/D snoRNA in vitro, suggesting that they function at an early stage in snoRNP biogenesis. Both proteins have been described in other contexts. The proteins, called p50 and p55 in the snoRNA binding study, are highly conserved and related to each other. Both have Walker A and B motifs characteristic of ATP- and GTP-binding and nucleoside triphosphate-hydrolyzing domains, and the mammalian orthologs have DNA helicase activity in vitro. Here, we report that the Saccharomyces cerevisiae ortholog of p50 (Rvb2, Tih2p, and other names) is required for production of C/D snoRNAs in vivo and, surprisingly, H/ACA snoRNAs as well. Point mutations in the Walker A and B motifs cause temperature-sensitive or lethal growth phenotypes and severe defects in snoRNA accumulation. Notably, depletion of p50 (called Rvb2 in this study) also impairs localization of C/D and H/ACA core snoRNP proteins Nop1p and Gar1p, suggesting a defect(s) in snoRNP assembly or trafficking to the nucleolus. Findings from other studies link Rvb2 orthologs with chromatin remodeling and transcription. Taken together, the present results indicate that Rvb2 is involved in an early stage of snoRNP biogenesis and may play a role in coupling snoRNA synthesis with snoRNP assembly and localization.
Collapse
Affiliation(s)
- T H King
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, 01003, USA
| | | | | | | | | |
Collapse
|
77
|
Verheggen C, Mouaikel J, Thiry M, Blanchard JM, Tollervey D, Bordonné R, Lafontaine DL, Bertrand E. Box C/D small nucleolar RNA trafficking involves small nucleolar RNP proteins, nucleolar factors and a novel nuclear domain. EMBO J 2001; 20:5480-90. [PMID: 11574480 PMCID: PMC125276 DOI: 10.1093/emboj/20.19.5480] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nucleolar localization of box C/D small nucleolar (sno) RNAs requires the box C/D motif and, in vertebrates, involves transit through Cajal bodies (CB). We report that in yeast, overexpression of a box C/D reporter leads to a block in the localization pathway with snoRNA accumulation in a specific sub-nucleolar structure, the nucleolar body (NB). The human survival of motor neuron protein (SMN), a marker of gems/CB, specifically localizes to the NB when expressed in yeast, supporting similarities between these structures. Box C/D snoRNA accumulation in the NB was decreased by mutation of Srp40 and increased by mutation of Nsr1p, two related nucleolar proteins that are homologous to human Nopp140 and nucleolin, respectively. Box C/D snoRNAs also failed to accumulate in the NB, and became delocalized to the nucleoplasm, upon depletion of any of the core snoRNP proteins, Nop1p/fibrillarin, Snu13p, Nop56p and Nop5p/Nop58p. We conclude that snoRNP assembly occurs either in the nucleoplasm, or during transit of snoRNAs through the NB, followed by routing of the complete snoRNP to functional sites of ribosome synthesis.
Collapse
Affiliation(s)
| | | | - Marc Thiry
- IGMM, IFR 24, UMR 5535 du CNRS, 34293 Montpellier Cedex 5, France,
Laboratoire de biologie cellulaire et tissulaire, Université de Liège, Liège, Belgium and ICMB, The University of Edinburgh, Edinburgh EH9 3JR, UK Present address: IRMW, FNRS-Université Libre de Bruxelles, B-1070 Brussels, Belgium Corresponding author e-mail:
D.L.J.Lafontaine and E.Bertrand contributed equally to this work
| | | | - David Tollervey
- IGMM, IFR 24, UMR 5535 du CNRS, 34293 Montpellier Cedex 5, France,
Laboratoire de biologie cellulaire et tissulaire, Université de Liège, Liège, Belgium and ICMB, The University of Edinburgh, Edinburgh EH9 3JR, UK Present address: IRMW, FNRS-Université Libre de Bruxelles, B-1070 Brussels, Belgium Corresponding author e-mail:
D.L.J.Lafontaine and E.Bertrand contributed equally to this work
| | | | - Denis L.J. Lafontaine
- IGMM, IFR 24, UMR 5535 du CNRS, 34293 Montpellier Cedex 5, France,
Laboratoire de biologie cellulaire et tissulaire, Université de Liège, Liège, Belgium and ICMB, The University of Edinburgh, Edinburgh EH9 3JR, UK Present address: IRMW, FNRS-Université Libre de Bruxelles, B-1070 Brussels, Belgium Corresponding author e-mail:
D.L.J.Lafontaine and E.Bertrand contributed equally to this work
| | - Edouard Bertrand
- IGMM, IFR 24, UMR 5535 du CNRS, 34293 Montpellier Cedex 5, France,
Laboratoire de biologie cellulaire et tissulaire, Université de Liège, Liège, Belgium and ICMB, The University of Edinburgh, Edinburgh EH9 3JR, UK Present address: IRMW, FNRS-Université Libre de Bruxelles, B-1070 Brussels, Belgium Corresponding author e-mail:
D.L.J.Lafontaine and E.Bertrand contributed equally to this work
| |
Collapse
|
78
|
Pellizzoni L, Baccon J, Charroux B, Dreyfuss G. The survival of motor neurons (SMN) protein interacts with the snoRNP proteins fibrillarin and GAR1. Curr Biol 2001; 11:1079-88. [PMID: 11509230 DOI: 10.1016/s0960-9822(01)00316-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The survival of motor neurons (SMN) protein is the protein product of the spinal muscular atrophy (SMA) disease gene. SMN and its associated proteins Gemin2, Gemin3, and Gemin4 form a large complex that plays a role in snRNP assembly, pre-mRNA splicing, and transcription. The functions of SMN in these processes are mediated by a direct interaction of SMN with components of these machineries, such as Sm proteins and RNA helicase A. RESULTS We show that SMN binds directly to fibrillarin and GAR1. Fibrillarin and GAR1 are specific markers of the two classes of small nucleolar ribonucleoprotein particles (snoRNPs) that are involved in posttranscriptional processing and modification of ribosomal RNA. SMN interaction requires the arginine- and glycine-rich domains of both fibrillarin and GAR1 and is defective in SMN mutants found in some SMA patients. Coimmunoprecipitations demonstrate that the SMN complex associates with fibrillarin and with GAR1 in vivo. The inhibition of RNA polymerase I transcription causes a transient redistribution of SMN to the nucleolar periphery and loss of fibrillarin and GAR1 colocalization with SMN in gems. Furthermore, the expression of a dominant-negative mutant of SMN (SMNDeltaN27) causes snoRNPs to accumulate outside of the nucleolus in structures that also contain components of gems and coiled (Cajal) bodies. CONCLUSIONS These findings identify fibrillarin and GAR1 as novel interactors of SMN and suggest a function for the SMN complex in the assembly and metabolism of snoRNPs. We propose that the SMN complex performs functions necessary for the biogenesis and function of diverse ribonucleoprotein complexes.
Collapse
Affiliation(s)
- L Pellizzoni
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
79
|
Cavaillé J, Vitali P, Basyuk E, Hüttenhofer A, Bachellerie JP. A novel brain-specific box C/D small nucleolar RNA processed from tandemly repeated introns of a noncoding RNA gene in rats. J Biol Chem 2001; 276:26374-83. [PMID: 11346658 DOI: 10.1074/jbc.m103544200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antisense box C/D small nucleolar RNAs (snoRNAs) guide the 2'-O-ribose methylations of eukaryotic rRNAs and small nuclear RNAs (snRNAs) through formation of a specific base pairing at each RNA methylation site. By analysis of a box C/D snoRNA cDNA library constructed from rat brain RNAs, we have identified a novel box C/D snoRNA, RBII-36, which is devoid of complementarity to rRNA or an snRNA and exhibits a brain-specific expression pattern. It is uniformly expressed in all major areas of adult rat brain (except for choroid plexus) and throughout rat brain ontogeny but exclusively detected in neurons in which it exhibits a nucleolar localization. In vertebrates, known methylation guide snoRNAs are intron-encoded and processed from transcripts of housekeeping genes. In contrast, RBII-36 snoRNA is intron-encoded in a gene preferentially expressed in the rat central nervous system and not in proliferating cells. Remarkably, this host gene, which encodes a previously reported noncoding RNA, Bsr, spans tandemly repeated 0.9-kilobase units including the snoRNA-containing intron. The novel brain-specific snoRNA appears to result not only from processing of the debranched lariat but also from endonucleolytic cleavages of unspliced Bsr RNA (i.e. an alternative splicing-independent pathway unreported so far for mammalian intronic snoRNAs). Sequences homologous to RBII-36 snoRNA were exclusively detected in the Rattus genus of rodents, suggesting a very recent origin of this brain-specific snoRNA.
Collapse
Affiliation(s)
- J Cavaillé
- UMR5099, Laboratoire de Biologie Moléculaire Eucaryote du Centre National de la Recherche Scientifique, Université Paul-Sabatier, 118 route de Narbonne, Toulouse 31062, France.
| | | | | | | | | |
Collapse
|
80
|
Xu Y, Liu L, Lopez-Estraño C, Michaeli S. Expression studies on clustered trypanosomatid box C/D small nucleolar RNAs. J Biol Chem 2001; 276:14289-98. [PMID: 11278327 DOI: 10.1074/jbc.m007007200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We analyzed three chromosomal loci of the trypanosomatid Leptomonas collosoma encoding box C/D small nucleolar RNAs (snoRNAs). All the snoRNAs that were analyzed here carry two sequences complementary to rRNA target sites and obey the +5 rule for guide methylation. Studies on transgenic parasites carrying the snoRNA-2 gene in the episomal expression vector (pX-neo) indicated that no promoter activity was found immediately adjacent to this gene. Deleting the flanking sequences of snoRNA-2 affected the expression; in the absence of the 3'-flanking (but not 5'-flanking) sequence, the expression was almost completely abolished. The snoRNA genes are transcribed as polycistronic RNA. All snoRNAs can be folded into a common stem-loop structure, which may play a role in processing the polycistronic transcript. snoRNA B2, a member of a snoRNA cluster, was expressed when cloned into the episomal vector, suggesting that each gene within a cluster is individually processed. Studies with permeable cells indicated that snoRNA gene transcription was relatively sensitive to alpha-amanitin, thus supporting transcription by RNA polymerase II. We propose that snoRNA gene expression, similar to protein-coding genes in this family, is regulated at the processing level.
Collapse
MESH Headings
- Amanitins/pharmacology
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Base Sequence
- Blotting, Northern
- Cloning, Molecular
- DNA Methylation
- DNA-Directed RNA Polymerases/metabolism
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Gene Deletion
- Genetic Vectors
- Models, Genetic
- Molecular Sequence Data
- Multigene Family
- Nucleic Acid Conformation
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Oligonucleotides/metabolism
- Plasmids/metabolism
- Promoter Regions, Genetic
- RNA Polymerase II/metabolism
- RNA, Messenger/metabolism
- RNA, Small Nucleolar/ultrastructure
- Reverse Transcriptase Polymerase Chain Reaction
- Ribose/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
- Trypanosoma/genetics
- Trypanosoma/metabolism
Collapse
Affiliation(s)
- Y Xu
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
81
|
Qu LH, Meng Q, Zhou H, Chen YQ, Liang-Hu Q, Qing M, Hui Z, Yue-Qin C. Identification of 10 novel snoRNA gene clusters from Arabidopsis thaliana. Nucleic Acids Res 2001; 29:1623-30. [PMID: 11266566 PMCID: PMC31268 DOI: 10.1093/nar/29.7.1623] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2000] [Revised: 02/05/2001] [Accepted: 02/05/2001] [Indexed: 11/13/2022] Open
Abstract
Ten novel small nucleolar RNA (snoRNA) gene clusters, consisting of two or three snoRNA genes, respectively, were identified from Arabidopsis thaliana. Twelve of the 25 snoRNA genes in these clusters are homologous to those of yeast and mammals according to the conserved antisense sequences that guide 2'-O-ribose methylation of rRNA. The remaining 13 snoRNA genes, including two 5.8S rRNA methylation guides, are new genes identified from A.thaliana. Interestingly, seven methylated nucleotides, predicted by novel snoRNAs Z41a-Z46, are methylated neither in yeast nor in vertebrates. Using primer extension at low dNTP concentration the six methylation sites were determined as expected. These snoRNAs were recognized as specific guides for 2'-O:-ribose methylation of plant rRNAs. Z42, however, did not guide the expected methylation of 25S rRNA in our assay. Thus, its function remains to be elucidated. The intergenic spacers of the gene clusters are rich in uridine (up to 40%) and most of them range in size from 35 to 100 nt. Lack of a conserved promoter element in each spacer and the determination of polycistronic transcription from a cluster by RT-PCR assay suggest that the snoRNAs encoded in the clusters are transcribed as a polycistron under an upstream promoter, and individual snoRNAs are released after processing of the precursor. Numerous snoRNA gene clusters identified from A.thaliana and other organisms suggest that the snoRNA gene cluster is an ancient gene organization existing abundantly in plants.
Collapse
Affiliation(s)
- L H Qu
- Key Laboratory of Gene Engineering of Education Ministry, Biotechnology Research Center, Zhongshan University, Guangzhou 510275, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
Cajal bodies are small nuclear organelles first described nearly 100 years ago by Ramón y Cajal in vertebrate neural tissues. They have since been found in a variety of animal and plant nuclei, suggesting that they are involved in basic cellular processes. Cajal bodies contain a marker protein of unknown function, p80-coilin, and many components involved in transcription and processing of nuclear RNAs. Among these are the three eukaryotic RNA polymerases and factors required for transcribing and processing their respective nuclear transcripts: mRNA, rRNA, and pol III transcripts. A model is discussed in which Cajal bodies are the sites for preassembly of transcriptosomes, unitary particles involved in transcription and processing of RNA. A parallel is drawn to the nucleolus and the preassembly of ribosomes, which are unitary particles involved in translation of proteins.
Collapse
Affiliation(s)
- J G Gall
- Department of Embryology, Carnegie Institution, Baltimore, Maryland 21210, USA.
| |
Collapse
|
83
|
Abstract
Most box C/D small nucleolar RNAs (snoRNAs) direct the formation of 2'-O-methylated nucleotides in ribosomal RNA and, apparently, other RNAs present in the nucleolar complex. Sites to be modified are selected by a long (>10-nt) antisense guide sequence in the snoRNA and a distance measurement from a box D or D' element that follows the snoRNA guide sequence. Modification of the substrate occurs in the region of complementarity, at a position five nucleotides upstream from box D/D'. Methylation can be targeted to novel sites by expressing a snoRNA with a new guide sequence. In some cases methylation impairs the growth rate of the cell, indicating that a functionally important nucleotide has been altered. With a view to harnessing snoRNA-directed methylation for functional mapping, we have developed a method for constructing libraries of snoRNA genes that, in principle, can introduce methylation point mutations into any rRNA segment of interest. The strategy and procedures are described here, and preliminary results are presented that show the feasibility of using this technology to probe a region of the yeast large subunit rRNA that includes the core of the peptidyltransferase center.
Collapse
Affiliation(s)
- B Liu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
84
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
85
|
Cavaillé J, Buiting K, Kiefmann M, Lalande M, Brannan CI, Horsthemke B, Bachellerie JP, Brosius J, Hüttenhofer A. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci U S A 2000; 97:14311-6. [PMID: 11106375 PMCID: PMC18915 DOI: 10.1073/pnas.250426397] [Citation(s) in RCA: 449] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have identified three C/D-box small nucleolar RNAs (snoRNAs) and one H/ACA-box snoRNA in mouse and human. In mice, all four snoRNAs (MBII-13, MBII-52, MBII-85, and MBI-36) are exclusively expressed in the brain, unlike all other known snoRNAs. Two of the human RNA orthologues (HBII-52 and HBI-36) share this expression pattern, and the remainder, HBII-13 and HBII-85, are prevalently expressed in that tissue. In mice and humans, the brain-specific H/ACA box snoRNA (MBI-36 and HBI-36, respectively) is intron-encoded in the brain-specific serotonin 2C receptor gene. The three human C/D box snoRNAs map to chromosome 15q11-q13, within a region implicated in the Prader-Willi syndrome (PWS), which is a neurogenetic disease resulting from a deficiency of paternal gene expression. Unlike other C/D box snoRNAs, two snoRNAs, HBII-52 and HBII-85, are encoded in a tandemly repeated array of 47 or 24 units, respectively. In mouse the homologue of HBII-52 is processed from intronic portions of the tandem repeats. Interestingly, these snoRNAs were absent from the cortex of a patient with PWS and from a PWS mouse model, demonstrating their paternal imprinting status and pointing to their potential role in the etiology of PWS. Despite displaying hallmarks of the two families of ubiquitous snoRNAs that guide 2'-O-ribose methylation and pseudouridylation of rRNA, respectively, they lack any telltale rRNA complementarity. Instead, brain-specific C/D box snoRNA HBII-52 has an 18-nt phylogenetically conserved complementarity to a critical segment of serotonin 2C receptor mRNA, pointing to a potential role in the processing of this mRNA.
Collapse
Affiliation(s)
- J Cavaillé
- Laboratoire de Biologie Moléculaire Eukaryote du Centre National de la Recherche Scientifique, Université Paul-Sabatier, Toulouse, 31062 France
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Watkins NJ, Ségault V, Charpentier B, Nottrott S, Fabrizio P, Bachi A, Wilm M, Rosbash M, Branlant C, Lührmann R. A common core RNP structure shared between the small nucleoar box C/D RNPs and the spliceosomal U4 snRNP. Cell 2000; 103:457-66. [PMID: 11081632 DOI: 10.1016/s0092-8674(00)00137-9] [Citation(s) in RCA: 280] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The box C/D snoRNAs function in directing 2'-O-methylation and/or as chaperones in the processing of ribosomal RNA. We show here that Snu13p (15.5 kD in human), a component of the U4/U6.U5 tri-snRNP, is also associated with the box C/D snoRNAs. Indeed, genetic depletion of Snu13p in yeast leads to a major defect in RNA metabolism. The box C/D motif can be folded into a stem-internal loop-stem structure, almost identical to the 15.5 kD binding site in the U4 snRNA. Consistent with this, the box C/D motif binds Snu13p/ 15.5 kD in vitro. The similarities in structure and function observed between the U4 snRNP (chaperone for U6) and the box C/D snoRNPs raises the interesting possibility that these particles may have evolved from a common ancestral RNP.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Evolution, Molecular
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Deletion
- HeLa Cells
- Humans
- Molecular Weight
- Nucleic Acid Conformation
- Precipitin Tests
- Protein Binding
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Recombinant Proteins
- Regulatory Sequences, Nucleic Acid/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/chemistry
- Ribonucleoprotein, U4-U6 Small Nuclear/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- Ribonucleoproteins, Small Nucleolar/chemistry
- Ribonucleoproteins, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/isolation & purification
- Ribonucleoproteins, Small Nucleolar/metabolism
- Spliceosomes/chemistry
- Spliceosomes/genetics
- Substrate Specificity
- Yeasts/genetics
- Yeasts/metabolism
Collapse
Affiliation(s)
- N J Watkins
- Max-Planck-Institut für Biophysikalische Chemie, Abteilung Zelluläre Biochemie, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Lalev AI, Abeyrathne PD, Nazar RN. Ribosomal RNA maturation in Schizosaccharomyces pombe is dependent on a large ribonucleoprotein complex of the internal transcribed spacer 1. J Mol Biol 2000; 302:65-77. [PMID: 10964561 DOI: 10.1006/jmbi.2000.4015] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interdependency of steps in the processing of pre-rRNA in Schizosaccharomyces pombe suggests that RNA processing, at least in part, acts as a quality control mechanism which helps assure that only functional RNA is incorporated into mature ribosomes. To determine further the role of the transcribed spacer regions in rRNA processing and to detect interactions which underlie the interdependencies, the ITS1 sequence was examined for its ability to form ribonucleoprotein complexes with cellular proteins. When incubated with protein extract, the spacer formed a specific large RNP. This complex was stable to fractionation by agarose or polyacrylamide gel electrophoresis. Modification exclusion analyses indicated that the proteins interact with a helical domain which is conserved in the internal transcribed spacers. Mutagenic analyses confirmed an interaction with this sequence and indicated that this domain is critical to the efficient maturation of the precursor RNA. The protein constituents, purified by affinity chromatography using the ITS1 sequence, retained an ability to form stable RNP. Protein analyses of gel purified complex, prepared with affinity-purified proteins, indicated at least 20 protein components ranging in size from 20-200 kDa. Peptide mapping by Maldi-Toff mass spectroscopy identified eight hypothetical RNA binding proteins which included four different RNA-binding motifs. Another protein was putatively identified as a pseudouridylate synthase. Additional RNA constituents were not detected. The significance of this complex with respect to rRNA maturation and interdependence in rRNA processing is discussed.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Chromatography, Affinity
- Genes, Fungal/genetics
- Molecular Weight
- Mutation/genetics
- Nucleic Acid Conformation
- Peptide Mapping
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/isolation & purification
- RNA-Binding Proteins/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Ribonucleoproteins/chemistry
- Ribonucleoproteins/genetics
- Ribonucleoproteins/isolation & purification
- Ribonucleoproteins/metabolism
- Schizosaccharomyces/genetics
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- A I Lalev
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | |
Collapse
|
88
|
Burger F, Daugeron MC, Linder P. Dbp10p, a putative RNA helicase from Saccharomyces cerevisiae, is required for ribosome biogenesis. Nucleic Acids Res 2000; 28:2315-23. [PMID: 10871363 PMCID: PMC102738 DOI: 10.1093/nar/28.12.2315] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ribosome biogenesis requires, in addition to rRNA molecules and ribosomal proteins, a multitude of trans-acting factors. Recently it has become clear that in the yeast Saccharomyces cerevisiae many RNA helicases of the DEAD-box and related families are involved in ribosome biogenesis. Here we show that the previously uncharacterised open reading frame YDL031w (renamed DBP10 for DEAD-box protein 10) encodes an essential putative RNA helicase that is required for accurate ribosome biogenesis. Genetic depletion of Dbp10p results in a deficit in 60S ribosomal subunits and an accumulation of half-mer polysomes. Furthermore, pulse-chase analyses of pre-rRNA processing reveal a strong delay in the maturation of 27SB pre-rRNA intermediates into 25S rRNA and 7S pre-rRNA. Northern blot analyses indicate that this delay leads to higher steady-state levels of 27SB species and reduced steady-state levels of 7S pre-rRNA and 25S/5.8S mature rRNAs, thus explaining the final deficit in 60S subunit and the formation of half-mer polysomes. Consistent with a direct role in ribosome biogenesis, Dbp10p was found to be located predominantly in the nucleolus.
Collapse
Affiliation(s)
- F Burger
- Département de Biochimie Médicale, CMU, 1 rue Michel Servet, CH 1211 Genève 4, Switzerland
| | | | | |
Collapse
|
89
|
Gaspin C, Cavaillé J, Erauso G, Bachellerie JP. Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes. J Mol Biol 2000; 297:895-906. [PMID: 10736225 DOI: 10.1006/jmbi.2000.3593] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ribose methylation is a prevalent type of nucleotide modification in rRNA. Eukaryotic rRNAs display a complex pattern of ribose methylations, amounting to 55 in yeast Saccharomyces cerevisiae and about 100 in vertebrates. Ribose methylations of eukaryotic rRNAs are each guided by a cognate small RNA, belonging to the family of box C/D antisense snoRNAs, through transient formation of a specific base-pairing at the rRNA modification site. In prokaryotes, the pattern of rRNA ribose methylations has been fully characterized in a single species so far, Escherichia coli, which contains only four ribose methylated rRNA nucleotides. However, the hyperthermophile archaeon Sulfolobus solfataricus contains, like eukaryotes, a large number of (yet unmapped) rRNA ribose methylations and homologs of eukaryotic box C/D small nucleolar ribonuclear proteins have been identified in archaeal genomes. We have therefore searched archaeal genomes for potential homologs of eukaryotic methylation guide small nucleolar RNAs, by combining searches for structured motifs with homology searches. We have identified a family of 46 small RNAs, conserved in the genomes of three hyperthermophile Pyrococcus species, which we have experimentally characterized in Pyrococcus abyssi. The Pyrococcus small RNAs, the first reported homologs of methylation guide small nucleolar RNAs in organisms devoid of a nucleus, appear as a paradigm of minimalist box C/D antisense RNAs. They differ from their eukaryotic homologs by their outstanding structural homogeneity, extended consensus box motifs and the quasi-systematic presence of two (instead of one) rRNA antisense elements. Remarkably, for each small RNA the two antisense elements always match rRNA sequences close to each other in rRNA structure, suggesting an important role in rRNA folding. Only a few of the predicted P. abyssi rRNA ribose methylations have been detected so far. Further analysis of these archaeal small RNAs could provide new insights into the origin and functions of methylation guide small nucleolar RNAs and illuminate the still elusive role of rRNA ribose methylations.
Collapse
MESH Headings
- Base Sequence
- Consensus Sequence/genetics
- Databases, Factual
- Eukaryotic Cells/metabolism
- Genes, Archaeal/genetics
- Genome, Archaeal
- Methylation
- Molecular Sequence Data
- Nucleic Acid Conformation
- Open Reading Frames/genetics
- Physical Chromosome Mapping
- Pyrococcus/genetics
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Ribose/metabolism
- Sequence Homology, Nucleic Acid
- Software
Collapse
Affiliation(s)
- C Gaspin
- Laboratoire de Biométrie et Intelligence Artificielle, INRA, Castanet-Tolosan, 31326, France
| | | | | | | |
Collapse
|
90
|
Abstract
The synthesis of ribosomes is one of the major metabolic pathways in all cells. In addition to around 75 individual ribosomal proteins and 4 ribosomal RNAs, synthesis of a functional eukaryotic ribosome requires a remarkable number of trans-acting factors. Here, we will discuss the recent, and often surprising, advances in our understanding of ribosome synthesis in the yeast Saccharomyces cerevisiae. These will underscore the unexpected complexity of eukaryotic ribosome synthesis.
Collapse
Affiliation(s)
- J Venema
- Department of Biochemistry and Molecular Biology, BioCentrum Amsterdam, Vrije Universiteit, The Netherlands
| | | |
Collapse
|
91
|
Pintard L, Kressler D, Lapeyre B. Spb1p is a yeast nucleolar protein associated with Nop1p and Nop58p that is able to bind S-adenosyl-L-methionine in vitro. Mol Cell Biol 2000; 20:1370-81. [PMID: 10648622 PMCID: PMC85287 DOI: 10.1128/mcb.20.4.1370-1381.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/1999] [Accepted: 11/10/1999] [Indexed: 11/20/2022] Open
Abstract
We present here the characterization of SPB1, an essential yeast gene that is required for ribosome synthesis. A cold-sensitive allele for that gene (referred to here as spb1-1) had been previously isolated as a suppressor of a mutation affecting the poly(A)-binding protein gene (PAB1) and a thermosensitive allele (referred to here as spb1-2) was isolated in a search for essential genes required for gene silencing in Saccharomyces cerevisiae. The two mutants are able to suppress the deletion of PAB1, and they both present a strong reduction in their 60S ribosomal subunit content. In an spb1-2 strain grown at the restrictive temperature, processing of the 27S pre-rRNA into mature 25S rRNA and 5.8S is completely abolished and production of mature 18S is reduced, while the abnormal 23S species is accumulated. Spb1p is a 96.5-kDa protein that is localized to the nucleolus. Coimmunoprecipitation experiments show that Spb1p is associated in vivo with the nucleolar proteins Nop1p and Nop5/58p. Protein sequence analysis reveals that Spb1p possesses a putative S-adenosyl-L-methionine (AdoMet)-binding domain, which is common to the AdoMet-dependent methyltransferases. We show here that Spb1p is able to bind [(3)H]AdoMet in vitro, suggesting that it is a novel methylase, whose possible substrates will be discussed.
Collapse
Affiliation(s)
- L Pintard
- Centre de Recherche de Biochimie Macromoléculaire du CNRS, 34293 Montpellier, France
| | | | | |
Collapse
|
92
|
Villa T, Ceradini F, Bozzoni I. Identification of a novel element required for processing of intron-encoded box C/D small nucleolar RNAs in Saccharomyces cerevisiae. Mol Cell Biol 2000; 20:1311-20. [PMID: 10648617 PMCID: PMC85272 DOI: 10.1128/mcb.20.4.1311-1320.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Processing of intron-encoded box C/D small nucleolar RNAs (snoRNAs) in metazoans through both the splicing-dependent and -independent pathways requires the conserved core motif formed by boxes C and D and the adjoining 5'-3'-terminal stem. By comparative analysis, we found that five out of six intron-encoded box C/D snoRNAs in yeast do not possess a canonical terminal stem. Instead, complementary regions within the flanking host intron sequences have been identified in all these cases. Here we show that these sequences are essential for processing of U18 and snR38 snoRNAs and that they compensate for the lack of a canonical terminal stem. We also show that the Rnt1p endonuclease, previously shown to be required for the processing of many snoRNAs encoded by monocistronic or polycistronic transcriptional units, is not required for U18 processing. Our results suggest a role of the complementary sequences in the early recognition of intronic snoRNA substrates and point out the importance of base pairing in favoring the communication between boxes C and D at the level of pre-snoRNA molecules for efficient assembly with snoRNP-specific factors.
Collapse
Affiliation(s)
- T Villa
- Istituto Pasteur, Fondazione Cenci-Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Università di Roma "La Sapienza," 00185 Rome, Italy
| | | | | |
Collapse
|
93
|
Abstract
Some genes produce RNAs that are functional instead of encoding proteins. Noncoding RNA genes are surprisingly numerous. Recently, active research areas include small nucleolar RNAs, antisense riboregulator RNAs, and RNAs involved in X-dosage compensation. Genome sequences and new algorithms have begun to make systematic computational screens for noncoding RNA genes possible.
Collapse
Affiliation(s)
- S R Eddy
- Department of Genetics, Washington University School of Medicine, St Louis 63110, USA.
| |
Collapse
|
94
|
Schul W, Adelaar B, van Driel R, de Jong L. Coiled bodies are predisposed to a spatial association with genes that contain snoRNA sequences in their introns. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19991201)75:3<393::aid-jcb5>3.0.co;2-g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
95
|
Gall JG, Bellini M, Wu Z, Murphy C. Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes. Mol Biol Cell 1999; 10:4385-402. [PMID: 10588665 PMCID: PMC25765 DOI: 10.1091/mbc.10.12.4385] [Citation(s) in RCA: 227] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1999] [Accepted: 09/24/1999] [Indexed: 01/09/2023] Open
Abstract
We have examined the distribution of RNA transcription and processing factors in the amphibian oocyte nucleus or germinal vesicle. RNA polymerase I (pol I), pol II, and pol III occur in the Cajal bodies (coiled bodies) along with various components required for transcription and processing of the three classes of nuclear transcripts: mRNA, rRNA, and pol III transcripts. Among these components are transcription factor IIF (TFIIF), TFIIS, splicing factors, the U7 small nuclear ribonucleoprotein particle, the stem-loop binding protein, SR proteins, cleavage and polyadenylation factors, small nucleolar RNAs, nucleolar proteins that are probably involved in pre-rRNA processing, and TFIIIA. Earlier studies and data presented here show that several of these components are first targeted to Cajal bodies when injected into the oocyte and only subsequently appear in the chromosomes or nucleoli, where transcription itself occurs. We suggest that pol I, pol II, and pol III transcription and processing components are preassembled in Cajal bodies before transport to the chromosomes and nucleoli. Most components of the pol II transcription and processing pathway that occur in Cajal bodies are also found in the many hundreds of B-snurposomes in the germinal vesicle. Electron microscopic images show that B-snurposomes consist primarily, if not exclusively, of 20- to 30-nm particles, which closely resemble the interchromatin granules described from sections of somatic nuclei. We suggest the name pol II transcriptosome for these particles to emphasize their content of factors involved in synthesis and processing of mRNA transcripts. We present a model in which pol I, pol II, and pol III transcriptosomes are assembled in the Cajal bodies before export to the nucleolus (pol I), to the B-snurposomes and eventually to the chromosomes (pol II), and directly to the chromosomes (pol III). The key feature of this model is the preassembly of the transcription and processing machinery into unitary particles. An analogy can be made between ribosomes and transcriptosomes, ribosomes being unitary particles involved in translation and transcriptosomes being unitary particles for transcription and processing of RNA.
Collapse
Affiliation(s)
- J G Gall
- Department of Embryology, Carnegie Institution, Baltimore, Maryland 21210, USA.
| | | | | | | |
Collapse
|
96
|
Qiu F, McCloskey JA. Selective detection of ribose-methylated nucleotides in RNA by a mass spectrometry-based method. Nucleic Acids Res 1999. [DOI: 10.1093/nar/27.18.e20-i] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
97
|
Lalev AI, Nazar RN. Structural equivalence in the transcribed spacers of pre-rRNA transcripts in Schizosaccharomyces pombe. Nucleic Acids Res 1999; 27:3071-8. [PMID: 10454602 PMCID: PMC148532 DOI: 10.1093/nar/27.15.3071] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The structure of the internal transcribed spacer 2 (ITS2) in Schizosaccharomyces pombe was re-evaluated with respect to phylogenetically conserved features in yeasts, features in other transcribed spacer regions as well as the binding of transacting factors which potentially play a role in ribosomal maturation. Computer analyses and probes for nuclease protection indicate a very simple core structure consisting of a single extended hairpin which includes the interacting termini of the mature 5.8S and 25S rRNAs. Comparisons with ITS2 sequences in greatly diverging organisms indicate that the same feature also can be recognized. This is especially clear in organisms that contain very short sequences in which the putative structures are much less ambiguous. Diversity between organisms is the result of changes in hairpin length as well as the addition of branched helices. Protein binding and gel retardation studies with the S.pombe ITS2 further indicate that, as observed in the 3" external transcribed spacer (ETS) and ITS1 regions, the extended hairpin is not only the site of intermediate RNA cleavage during rRNA processing but also a site for specific interactions with one or more soluble factors. Taken together with other analyses on transcribed spacer regions, the present data suggest that the spacer regions all may act in a similar fashion, not only to organize the maturing terminal sequences, but also serve to organize specific soluble factors possibly acting with snoRNAs or in a manner which is analogous with that of the free snoRNPs.
Collapse
MESH Headings
- Base Pairing
- Base Sequence
- Binding, Competitive
- Conserved Sequence/genetics
- Endoribonucleases/metabolism
- Evolution, Molecular
- Humans
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA-Binding Proteins/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Schizosaccharomyces/genetics
- Structure-Activity Relationship
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- A I Lalev
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
98
|
Savino TM, Bastos R, Jansen E, Hernandez-Verdun D. The nucleolar antigen Nop52, the human homologue of the yeast ribosomal RNA processing RRP1, is recruited at late stages of nucleologenesis. J Cell Sci 1999; 112 ( Pt 12):1889-900. [PMID: 10341208 DOI: 10.1242/jcs.112.12.1889] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the molecular characterization of a novel nucleolar protein, Nop52, and its subcellular distribution during the cell cycle and nucleologenesis. This protein was originally identified with human autoantibodies which were subsequently used to clone its corresponding cDNA. Transfection experiments in mammalian cells have confirmed that this cDNA encodes a nucleolar protein that accumulates in the nucleoli and at the periphery of the chromosomes. Nop52 is the putative human homologue of the yeast ribosomal RNA processing protein RRP1 which is involved in pre-rRNA processing from 27S to 25S and 5.8S. In nucleoli, Nop52 is excluded from the ribosomal RNA transcription sites, accumulates in the granular external domain and mainly colocalizes with nucleolar proteins involved in the late processing step such as hPop1 and protein B23. During the building process of the nucleolus at the end of mitosis, a sequential order was observed in the assembly of nucleolar proteins of early and late processing mainly via the prenucleolar body pathway. The order is the following: fibrillarin, nucleolin, Nop52 together with protein B23 in the prenucleolar bodies, and simultaneously with hPop1, and finally Ki-67. The evolutionary conservation of Nop52 and the lethal effects observed in gene disruption experiments, predict a critical role for Nop52 in the generation of 28S rRNA.
Collapse
Affiliation(s)
- T M Savino
- Nuclei and Cell Cycle, Institut Jacques Monod, UMR 7592, Paris, France
| | | | | | | |
Collapse
|
99
|
Michot B, Joseph N, Mazan S, Bachellerie JP. Evolutionarily conserved structural features in the ITS2 of mammalian pre-rRNAs and potential interactions with the snoRNA U8 detected by comparative analysis of new mouse sequences. Nucleic Acids Res 1999; 27:2271-82. [PMID: 10325414 PMCID: PMC148791 DOI: 10.1093/nar/27.11.2271] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mechanisms of ITS2 excision from pre-rRNA remain largely elusive. In mammals, at least two endonucleolytic cleavages are involved, which result in the transient accumulation of precursors to 5.8S rRNA termed 8S and 12S RNAs. We have sequenced ITS2 in four new species of the Mus genus and investigated its secondary structure using thermodynamic prediction and comparative approach. Phylogenetic evidence supports an ITS2 folding organized in four domains of secondary structure extending from a preserved structural core. This folding is also largely conserved for the previously available mammalian ITS2 sequences, rat and human, despite their extensive sequence divergence relative to the Mus species. Conserved structural features include the structural core, containing the 3' end of 8S pre-rRNA within a single-stranded sequence, and a stem containing the 3' end of the 12S pre-rRNA species. A putative, phylogenetically preserved pseudoknot has been detected 1 nt downstream from the 12S 3' end. Two long complementarities have also been identified, in sequences conserved among vertebrates, between the pre-rRNA 32S and the snoRNA (small nucleolar RNA) U8 which is required for the excision of Xenopus ITS2. The first complementarity involves the 5.8S-ITS2 junction and 13 nt at the 5' end of U8, whereas the other one occurs between a mature 28S rRNA segment known to be required for ITS2 excision and positions 15-25 of snoRNA U8. These two potential interactions, in combination with ITS2 folding, could organize a functional pocket containing three cleavage sites and key elements for pre-rRNA processing, suggesting a chaperone role for the snoRNA U8.
Collapse
Affiliation(s)
- B Michot
- Laboratoire de Biologie Moléculaire Eucaryote du C.N.R.S., Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France.
| | | | | | | |
Collapse
|
100
|
de la Cruz J, Kressler D, Linder P. Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci 1999; 24:192-8. [PMID: 10322435 DOI: 10.1016/s0968-0004(99)01376-6] [Citation(s) in RCA: 370] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Members of the RNA-helicase family are defined by several evolutionary conserved motifs. They are found in all organisms - from bacteria to humans - and many viruses. The minimum number of RNA helicases present within a eukaryotic cell can be predicted from the complete sequence of the Saccharomyces cerevisiae genome. Recent progress in the functional analysis of various family members has given new insights into, and confirmed the significance of these proteins for, most cellular RNA metabolic processes.
Collapse
Affiliation(s)
- J de la Cruz
- Instituto de Bioqu mica Vegetal y Fotos ntesis, Centro Isla de la Cartuja, Universidad de Sevilla-CSIC, Américo Vespucio s/n, 41092 Sevilla, Spain
| | | | | |
Collapse
|