51
|
Martín-López JV, Fishel R. The mechanism of mismatch repair and the functional analysis of mismatch repair defects in Lynch syndrome. Fam Cancer 2014; 12:159-68. [PMID: 23572416 DOI: 10.1007/s10689-013-9635-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The majority of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer (HNPCC), has been linked to heterozygous defects in DNA mismatch repair (MMR). MMR is a highly conserved pathway that recognizes and repairs polymerase misincorporation errors and nucleotide damage as well as functioning as a damage sensor that signals apoptosis. Loss-of-heterozygosity (LOH) that retains the mutant MMR allele and epigenetic silencing of MMR genes are associated with an increased mutation rate that drives carcinogenesis as well as microsatellite instability that is a hallmark of LS/HNPCC. Understanding the biophysical functions of the MMR components is crucial to elucidating the role of MMR in human tumorigenesis and determining the pathogenetic consequences of patients that present in the clinic with an uncharacterized variant of the MMR genes. We summarize the historical association between LS/HNPCC and MMR, discuss the mechanism of the MMR and finally examine the functional analysis of MMR defects found in LS/HNPCC patients and their relationship with the severity of the disease.
Collapse
Affiliation(s)
- Juana V Martín-López
- Department of Molecular Virology, Immunology and Medical Genetics, Human Cancer Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | | |
Collapse
|
52
|
Abstract
DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage.
Collapse
|
53
|
Slow conformational changes in MutS and DNA direct ordered transitions between mismatch search, recognition and signaling of DNA repair. J Mol Biol 2013; 425:4192-205. [PMID: 23973435 DOI: 10.1016/j.jmb.2013.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 01/04/2023]
Abstract
MutS functions in mismatch repair (MMR) to scan DNA for errors, identify a target site and trigger subsequent events in the pathway leading to error removal and DNA re-synthesis. These actions, enabled by the ATPase activity of MutS, are now beginning to be analyzed from the perspective of the protein itself. This study provides the first ensemble transient kinetic data on MutS conformational dynamics as it works with DNA and ATP in MMR. Using a combination of fluorescence probes (on Thermus aquaticus MutS and DNA) and signals (intensity, anisotropy and resonance energy transfer), we have monitored the timing of key conformational changes in MutS that are coupled to mismatch binding and recognition, ATP binding and hydrolysis, as well as sliding clamp formation and signaling of repair. Significant findings include (a) a slow step that follows weak initial interaction between MutS and DNA, in which concerted conformational changes in both macromolecules control mismatch recognition, and (b) rapid, binary switching of MutS conformations that is concerted with ATP binding and hydrolysis and (c) is stalled after mismatch recognition to control formation of the ATP-bound MutS sliding clamp. These rate-limiting pre- and post-mismatch recognition events outline the mechanism of action of MutS on DNA during initiation of MMR.
Collapse
|
54
|
Pillon MC, Dubinsky M, Johnston RN, Liu SL, Guarné A. Characterization of the defects in the ATP lid of E. coli MutL that cause transient hypermutability. DNA Repair (Amst) 2013; 12:864-9. [PMID: 23916559 DOI: 10.1016/j.dnarep.2013.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/05/2013] [Accepted: 07/07/2013] [Indexed: 12/12/2022]
Abstract
Mutator strains spontaneously arise in bacterial populations under stress in an attempt to increase evolutionary adaptation. Inactivation of the ubiquitous DNA mismatch repair pathway, whose normal function is to correct replication errors and hence increase replication fidelity, is often the cause of the mutator phenotype. One of the essential genes in this pathway, mutL, includes a short tandem repeat that is prone to polymerase slippage during replication. While extensive work has established that this repetitive sequence is a genuine genetic switch, the mechanism of MutL inactivation remains unclear. This short tandem repeat is translated into a LALALA motif that resides near the ATPase active site of MutL. Therefore, changes in the length of this motif are presumed to alter the ATPase activity of MutL. We have engineered variants of Escherichia coli MutL with shorter/longer LALALA motifs and characterized their ATPase and DNA binding functions. We have found that the deletion or insertion of a single LA repeat did not compromise the structural integrity of the protein, nor did it affect MutS- or DNA-binding activity. However, it severely compromised ATP binding and, consequently, engagement of the N-terminal domains; both essential activities for proper DNA mismatch repair. These results are discussed in the context of the structure of MutL.
Collapse
Affiliation(s)
- Monica C Pillon
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | | | | | | | |
Collapse
|
55
|
Groothuizen FS, Fish A, Petoukhov MV, Reumer A, Manelyte L, Winterwerp HHK, Marinus MG, Lebbink JHG, Svergun DI, Friedhoff P, Sixma TK. Using stable MutS dimers and tetramers to quantitatively analyze DNA mismatch recognition and sliding clamp formation. Nucleic Acids Res 2013; 41:8166-81. [PMID: 23821665 PMCID: PMC3783165 DOI: 10.1093/nar/gkt582] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The process of DNA mismatch repair is initiated when MutS recognizes mismatched DNA bases and starts the repair cascade. The Escherichia coli MutS protein exists in an equilibrium between dimers and tetramers, which has compromised biophysical analysis. To uncouple these states, we have generated stable dimers and tetramers, respectively. These proteins allowed kinetic analysis of DNA recognition and structural analysis of the full-length protein by X-ray crystallography and small angle X-ray scattering. Our structural data reveal that the tetramerization domains are flexible with respect to the body of the protein, resulting in mostly extended structures. Tetrameric MutS has a slow dissociation from DNA, which can be due to occasional bending over and binding DNA in its two binding sites. In contrast, the dimer dissociation is faster, primarily dependent on a combination of the type of mismatch and the flanking sequence. In the presence of ATP, we could distinguish two kinetic groups: DNA sequences where MutS forms sliding clamps and those where sliding clamps are not formed efficiently. Interestingly, this inability to undergo a conformational change rather than mismatch affinity is correlated with mismatch repair.
Collapse
Affiliation(s)
- Flora S Groothuizen
- Division of Biochemistry and CancerGenomiCs.nl, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands, European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany, Institute for Biochemistry, Justus Liebig University, Heinrich-Buff Ring 58, D-35392, Giessen, Germany, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA, Department of Cell Biology and Genetics, Cancer Genomics Center, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands and Department of Radiation Oncology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Shimada A, Kawasoe Y, Hata Y, Takahashi TS, Masui R, Kuramitsu S, Fukui K. MutS stimulates the endonuclease activity of MutL in an ATP-hydrolysis-dependent manner. FEBS J 2013; 280:3467-79. [PMID: 23679952 DOI: 10.1111/febs.12344] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/02/2013] [Accepted: 05/07/2013] [Indexed: 11/30/2022]
Abstract
In the initial steps of DNA mismatch repair, MutS recognizes a mismatched base and recruits the latent endonuclease MutL onto the mismatch-containing DNA in concert with other proteins. MutL then cleaves the error-containing strand to introduce an entry point for the downstream excision reaction. Because MutL has no intrinsic ability to recognize a mismatch and discriminate between newly synthesized and template strands, the endonuclease activity of MutL is strictly regulated by ATP-binding in order to avoid nonspecific degradation of the genomic DNA. However, the activation mechanism for its endonuclease activity remains unclear. In this study, we found that the coexistence of a mismatch, ATP and MutS unlocks the ATP-binding-dependent suppression of MutL endonuclease activity. Interestingly, ATPase-deficient mutants of MutS were unable to activate MutL. Furthermore, wild-type MutS activated ATPase-deficient mutants of MutL less efficiently than wild-type MutL. We concluded that ATP hydrolysis by MutS and MutL is involved in the mismatch-dependent activation of MutL endonuclease activity.
Collapse
Affiliation(s)
- Atsuhiro Shimada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
The mismatch repair (MMR) system detects non-Watson-Crick base pairs and strand misalignments arising during DNA replication and mediates their removal by catalyzing excision of the mispair-containing tract of nascent DNA and its error-free resynthesis. In this way, MMR improves the fidelity of replication by several orders of magnitude. It also addresses mispairs and strand misalignments arising during recombination and prevents synapses between nonidentical DNA sequences. Unsurprisingly, MMR malfunction brings about genomic instability that leads to cancer in mammals. But MMR proteins have recently been implicated also in other processes of DNA metabolism, such as DNA damage signaling, antibody diversification, and repair of interstrand cross-links and oxidative DNA damage, in which their functions remain to be elucidated. This article reviews the progress in our understanding of the mechanism of replication error repair made during the past decade.
Collapse
Affiliation(s)
- Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
58
|
Abstract
Nucleotide excision repair (NER) has allowed bacteria to flourish in many different niches around the globe that inflict harsh environmental damage to their genetic material. NER is remarkable because of its diverse substrate repertoire, which differs greatly in chemical composition and structure. Recent advances in structural biology and single-molecule studies have given great insight into the structure and function of NER components. This ensemble of proteins orchestrates faithful removal of toxic DNA lesions through a multistep process. The damaged nucleotide is recognized by dynamic probing of the DNA structure that is then verified and marked for dual incisions followed by excision of the damage and surrounding nucleotides. The opposite DNA strand serves as a template for repair, which is completed after resynthesis and ligation.
Collapse
Affiliation(s)
- Caroline Kisker
- Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, 97080 Wuerzburg, Germany.
| | | | | |
Collapse
|
59
|
Distinct requirements within the Msh3 nucleotide binding pocket for mismatch and double-strand break repair. J Mol Biol 2013; 425:1881-1898. [PMID: 23458407 DOI: 10.1016/j.jmb.2013.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, repair of insertion/deletion loops is carried out by Msh2-Msh3-mediated mismatch repair (MMR). Msh2-Msh3 is also required for 3' non-homologous tail removal (3' NHTR) in double-strand break repair. In both pathways, Msh2-Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, the kinetics of the two processes appear different; MMR is likely rapid in order to coordinate with the replication fork, whereas 3' NHTR has been shown to be a slower process. To understand the molecular requirements in both repair pathways, we performed an in vivo analysis of well-conserved residues in Msh3 that are hypothesized to be required for MMR and/or 3' NHTR. These residues are predicted to be involved in either communication between the DNA-binding and ATPase domains within the complex or nucleotide binding and/or exchange within Msh2-Msh3. We identified a set of aromatic residues within the FLY motif of the predicted Msh3 nucleotide binding pocket that are essential for Msh2-Msh3-mediated MMR but are largely dispensable for 3' NHTR. In contrast, mutations in other regions gave similar phenotypes in both assays. Based on these results, we suggest that the two pathways have distinct requirements with respect to the position of the bound ATP within Msh3. We propose that the differences are related, at least in part, to the kinetics of each pathway. Proper binding and positioning of ATP is required to induce rapid conformational changes at the replication fork, but is less important when more time is available for repair, as in 3' NHTR.
Collapse
|
60
|
Edelbrock MA, Kaliyaperumal S, Williams KJ. Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities. Mutat Res 2013; 743-744:53-66. [PMID: 23391514 DOI: 10.1016/j.mrfmmm.2012.12.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 11/18/2022]
Abstract
The field of DNA mismatch repair (MMR) has rapidly expanded after the discovery of the MutHLS repair system in bacteria. By the mid 1990s yeast and human homologues to bacterial MutL and MutS had been identified and their contribution to hereditary non-polyposis colorectal cancer (HNPCC; Lynch syndrome) was under intense investigation. The human MutS homologue 6 protein (hMSH6), was first reported in 1995 as a G:T binding partner (GTBP) of hMSH2, forming the hMutSα mismatch-binding complex. Signal transduction from each DNA-bound hMutSα complex is accomplished by the hMutLα heterodimer (hMLH1 and hPMS2). Molecular mechanisms and cellular regulation of individual MMR proteins are now areas of intensive research. This review will focus on molecular mechanisms associated with mismatch binding, as well as emerging evidence that MutSα, and in particular, MSH6, is a key protein in MMR-dependent DNA damage response and communication with other DNA repair pathways within the cell. MSH6 is unstable in the absence of MSH2, however it is the DNA lesion-binding partner of this heterodimer. MSH6, but not MSH2, has a conserved Phe-X-Glu motif that recognizes and binds several different DNA structural distortions, initiating different cellular responses. hMSH6 also contains the nuclear localization sequences required to shuttle hMutSα into the nucleus. For example, upon binding to O(6)meG:T, MSH6 triggers a DNA damage response that involves altered phosphorylation within the N-terminal disordered domain of this unique protein. While many investigations have focused on MMR as a post-replication DNA repair mechanism, MMR proteins are expressed and active in all phases of the cell cycle. There is much more to be discovered about regulatory cellular roles that require the presence of MutSα and, in particular, MSH6.
Collapse
Affiliation(s)
| | - Saravanan Kaliyaperumal
- Division of Comparative Medicine and Pathology, New England Primate Research Center, One Pine Hill Drive, Southborough, MA 01772, USA.
| | - Kandace J Williams
- University of Toledo College of Medicine and Life Sciences, Department of Biochemistry & Cancer Biology, 3000 Transverse Dr., Toledo, OH 43614, USA.
| |
Collapse
|
61
|
There and back again: new single-molecule insights in the motion of DNA repair proteins. Curr Opin Struct Biol 2012; 23:154-60. [PMID: 23260129 DOI: 10.1016/j.sbi.2012.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/24/2022]
Abstract
Cellular DNA repair machines are constantly at work supporting the integrity of our genomes. Numerous proteins cooperate to form a complex and adaptive system dedicated to detection and timely processing of DNA damage. The molecular underpinnings of how these proteins locate and discriminate DNA lesions, match homologous sequences, mend the DNA and attend to a replication in distress are of a paramount biomedical importance, but in many cases remain unclear. Combined with more conventional tools, single-molecule biochemistry has been stepping in to address the age-old problems in the DNA repair field. This review will address new insights into diffusive properties of three DNA repair systems: I will discuss the emerging model of how MutS homologues locate and respond to mismatches in the dsDNA; the mechanism by which RAD52 promotes annealing of complementary DNA strands coated with ssDNA binding protein RPA; and how the nucleoprotein filament formed by RecA recombinase on ssDNA searches for homology within duplex DNA. These three distinct DNA repair factors exemplify the dynamic nature of cellular DNA repair machines revealed by single-molecule studies.
Collapse
|
62
|
|
63
|
Hargreaves VV, Putnam CD, Kolodner RD. Engineered disulfide-forming amino acid substitutions interfere with a conformational change in the mismatch recognition complex Msh2-Msh6 required for mismatch repair. J Biol Chem 2012; 287:41232-44. [PMID: 23045530 DOI: 10.1074/jbc.m112.402495] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP binding causes the mispair-bound Msh2-Msh6 mismatch recognition complex to slide along the DNA away from the mismatch, and ATP is required for the mispair-dependent interaction between Msh2-Msh6 and Mlh1-Pms1. It has been inferred from these observations that ATP induces conformational changes in Msh2-Msh6; however, the nature of these conformational changes and their requirement in mismatch repair are poorly understood. Here we show that ATP induces a conformational change within the C-terminal region of Msh6 that protects the trypsin cleavage site after Msh6 residue Arg(1124). An engineered disulfide bond within this region prevented the ATP-driven conformational change and resulted in an Msh2-Msh6 complex that bound mispaired bases but could not form sliding clamps or bind Mlh1-Pms1. The engineered disulfide bond also reduced mismatch repair efficiency in vivo, indicating that this ATP-driven conformational change plays a role in mismatch repair.
Collapse
Affiliation(s)
- Victoria V Hargreaves
- Ludwig Institute for Cancer Research, Department of Medicine, Moores-University of California San Diego Cancer Center, and Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, California 92093-0669, USA
| | | | | |
Collapse
|
64
|
Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair. Proc Natl Acad Sci U S A 2012; 109:E3074-83. [PMID: 23012240 DOI: 10.1073/pnas.1211364109] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of proteins to locate specific targets among a vast excess of nonspecific DNA is a fundamental theme in biology. Basic principles governing these search mechanisms remain poorly understood, and no study has provided direct visualization of single proteins searching for and engaging target sites. Here we use the postreplicative mismatch repair proteins MutSα and MutLα as model systems for understanding diffusion-based target searches. Using single-molecule microscopy, we directly visualize MutSα as it searches for DNA lesions, MutLα as it searches for lesion-bound MutSα, and the MutSα/MutLα complex as it scans the flanking DNA. We also show that MutLα undergoes intersite transfer between juxtaposed DNA segments while searching for lesion-bound MutSα, but this activity is suppressed upon association with MutSα, ensuring that MutS/MutL remains associated with the damage-bearing strand while scanning the flanking DNA. Our findings highlight a hierarchy of lesion- and ATP-dependent transitions involving both MutSα and MutLα, and help establish how different modes of diffusion can be used during recognition and repair of damaged DNA.
Collapse
|
65
|
Cho WK, Jeong C, Kim D, Chang M, Song KM, Hanne J, Ban C, Fishel R, Lee JB. ATP alters the diffusion mechanics of MutS on mismatched DNA. Structure 2012; 20:1264-1274. [PMID: 22682745 DOI: 10.1016/j.str.2012.04.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 11/18/2022]
Abstract
The mismatch repair (MMR) initiation protein MutS forms at least two types of sliding clamps on DNA: a transient mismatch searching clamp (∼1 s) and an unusually stable (∼600 s) ATP-bound clamp that recruits downstream MMR components. Remarkably, direct visualization of single MutS particles on mismatched DNA has not been reported. We have combined real-time particle tracking with fluorescence resonance energy transfer (FRET) to image MutS diffusion dynamics on DNA containing a single mismatch. We show searching MutS rotates during diffusion independent of ionic strength or flow rate, suggesting continuous contact with the DNA backbone. In contrast, ATP-bound MutS clamps that are visually and successively released from the mismatch spin freely around the DNA, and their diffusion is affected by ionic strength and flow rate. These observations show that ATP binding alters the MutS diffusion mechanics on DNA, which has a number of implications for the mechanism of MMR.
Collapse
Affiliation(s)
- Won-Ki Cho
- Department of Physics, Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Cherlhyun Jeong
- Department of Physics, Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Daehyung Kim
- Department of Physics, Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Minhyeok Chang
- Department of Physics, Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Kyung-Mi Song
- Department of Chemistry, Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Jeungphill Hanne
- Department of Molecular Virology, Immunology and Medical Genetics The Ohio State University, Columbus, OH 43210, USA
| | - Changill Ban
- Department of Chemistry, Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Richard Fishel
- Department of Molecular Virology, Immunology and Medical Genetics The Ohio State University, Columbus, OH 43210, USA
- Physics Department, The Ohio State University, Columbus, OH 43210, USA
| | - Jong-Bong Lee
- Department of Physics, Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| |
Collapse
|
66
|
Large conformational changes in MutS during DNA scanning, mismatch recognition and repair signalling. EMBO J 2012; 31:2528-40. [PMID: 22505031 DOI: 10.1038/emboj.2012.95] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 03/21/2012] [Indexed: 12/18/2022] Open
Abstract
MutS protein recognizes mispaired bases in DNA and targets them for mismatch repair. Little is known about the transient conformations of MutS as it signals initiation of repair. We have used single-molecule fluorescence resonance energy transfer (FRET) measurements to report the conformational dynamics of MutS during this process. We find that the DNA-binding domains of MutS dynamically interconvert among multiple conformations when the protein is free and while it scans homoduplex DNA. Mismatch recognition restricts MutS conformation to a single state. Steady-state measurements in the presence of nucleotides suggest that both ATP and ADP must be bound to MutS during its conversion to a sliding clamp form that signals repair. The transition from mismatch recognition to the sliding clamp occurs via two sequential conformational changes. These intermediate conformations of the MutS:DNA complex persist for seconds, providing ample opportunity for interaction with downstream proteins required for repair.
Collapse
|
67
|
Abstract
In recent years, our understanding of the functioning of ABC (ATP-binding cassette) systems has been boosted by the combination of biochemical and structural approaches. However, the origin and the distribution of ABC proteins among living organisms are difficult to understand in a phylogenetic perspective, because it is hard to discriminate orthology and paralogy, due to the existence of horizontal gene transfer. In this chapter, I present an update of the classification of ABC systems and discuss a hypothetical scenario of their evolution. The hypothetical presence of ABC ATPases in the last common ancestor of modern organisms is discussed, as well as the additional possibility that ABC systems might have been transmitted to eukaryotes, after the two endosymbiosis events that led to the constitution of eukaryotic organelles. I update the functional information of selected ABC systems and introduce new families of ABC proteins that have been included recently into this vast superfamily, thanks to the availability of high-resolution three-dimensional structures.
Collapse
|
68
|
Geng H, Sakato M, DeRocco V, Yamane K, Du C, Erie DA, Hingorani M, Hsieh P. Biochemical analysis of the human mismatch repair proteins hMutSα MSH2(G674A)-MSH6 and MSH2-MSH6(T1219D). J Biol Chem 2012; 287:9777-9791. [PMID: 22277660 DOI: 10.1074/jbc.m111.316919] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The heterodimeric human MSH2-MSH6 protein initiates DNA mismatch repair (MMR) by recognizing mismatched bases that result from replication errors. Msh2(G674A) or Msh6(T1217D) mice that have mutations in or near the ATP binding site of MSH2 or ATP hydrolysis catalytic site of MSH6 develop cancer and have a reduced lifespan due to loss of the MMR pathway (Lin, D. P., Wang, Y., Scherer, S. J., Clark, A. B., Yang, K., Avdievich, E., Jin, B., Werling, U., Parris, T., Kurihara, N., Umar, A., Kucherlapati, R., Lipkin, M., Kunkel, T. A., and Edelmann, W. (2004) Cancer Res. 64, 517-522; Yang, G., Scherer, S. J., Shell, S. S., Yang, K., Kim, M., Lipkin, M., Kucherlapati, R., Kolodner, R. D., and Edelmann, W. (2004) Cancer Cell 6, 139-150). Mouse embryonic fibroblasts from these mice retain an apoptotic response to DNA damage. Mutant human MutSα proteins MSH2(G674A)-MSH6(wt) and MSH2(wt)-MSH6(T1219D) are profiled in a variety of functional assays and as expected fail to support MMR in vitro, although they retain mismatch recognition activity. Kinetic analyses of DNA binding and ATPase activities and examination of the excision step of MMR reveal that the two mutants differ in their underlying molecular defects. MSH2(wt)-MSH6(T1219D) fails to couple nucleotide binding and mismatch recognition, whereas MSH2(G674A)-MSH6(wt) has a partial defect in nucleotide binding. Nevertheless, both mutant proteins remain bound to the mismatch and fail to promote efficient excision thereby inhibiting MMR in vitro in a dominant manner. Implications of these findings for MMR and DNA damage signaling by MMR proteins are discussed.
Collapse
Affiliation(s)
- Hui Geng
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Miho Sakato
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, Connecticut 06459, and
| | - Vanessa DeRocco
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Kazuhiko Yamane
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Chunwei Du
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Dorothy A Erie
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Manju Hingorani
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, Connecticut 06459, and
| | - Peggy Hsieh
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892,.
| |
Collapse
|
69
|
Dynamical allosterism in the mechanism of action of DNA mismatch repair protein MutS. Biophys J 2012; 101:1730-9. [PMID: 21961599 DOI: 10.1016/j.bpj.2011.08.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 07/19/2011] [Accepted: 08/17/2011] [Indexed: 11/21/2022] Open
Abstract
The multidomain protein Thermus aquaticus MutS and its prokaryotic and eukaryotic homologs recognize DNA replication errors and initiate mismatch repair. MutS actions are fueled by ATP binding and hydrolysis, which modulate its interactions with DNA and other proteins in the mismatch-repair pathway. The DNA binding and ATPase activities are allosterically coupled over a distance of ∼70 Å, and the molecular mechanism of coupling has not been clarified. To address this problem, all-atom molecular dynamics simulations of ∼150 ns including explicit solvent were performed on two key complexes--ATP-bound and ATP-free MutS⋅DNA(+T bulge). We used principal component analysis in fluctuation space to assess ATP ligand-induced changes in MutS structure and dynamics. The molecular dynamics-calculated ensembles of thermally accessible structures showed markedly small differences between the two complexes. However, analysis of the covariance of dynamical fluctuations revealed a number of potentially significant interresidue and interdomain couplings. Moreover, principal component analysis revealed clusters of correlated atomic fluctuations linking the DNA and nucleotide binding sites, especially in the ATP-bound MutS⋅DNA(+T) complex. These results support the idea that allosterism between the nucleotide and DNA binding sites in MutS can occur via ligand-induced changes in motion, i.e., dynamical allosterism.
Collapse
|
70
|
Elez M, Radman M, Matic I. Stoichiometry of MutS and MutL at unrepaired mismatches in vivo suggests a mechanism of repair. Nucleic Acids Res 2012; 40:3929-38. [PMID: 22241777 PMCID: PMC3351158 DOI: 10.1093/nar/gkr1298] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mismatch repair (MMR) is an evolutionarily conserved DNA repair system, which corrects mismatched bases arising during DNA replication. MutS recognizes and binds base pair mismatches, while the MutL protein interacts with MutS–mismatch complex and triggers MutH endonuclease activity at a distal-strand discrimination site on the DNA. The mechanism of communication between these two distal sites on the DNA is not known. We used functional fluorescent MMR proteins, MutS and MutL, in order to investigate the formation of the fluorescent MMR protein complexes on mismatches in real-time in growing Escherichia coli cells. We found that MutS and MutL proteins co-localize on unrepaired mismatches to form fluorescent foci. MutL foci were, on average, 2.7 times more intense than the MutS foci co-localized on individual mismatches. A steric block on the DNA provided by the MutHE56A mutant protein, which binds to but does not cut the DNA at the strand discrimination site, decreased MutL foci fluorescence 3-fold. This indicates that MutL accumulates from the mismatch site toward strand discrimination site along the DNA. Our results corroborate the hypothesis postulating that MutL accumulation assures the coordination of the MMR activities between the mismatch and the strand discrimination site.
Collapse
Affiliation(s)
- Marina Elez
- Université Paris-Descartes, Sorbonne Paris Cité, Inserm Unit 1001, 75015 Paris, France.
| | | | | |
Collapse
|
71
|
The functions of MutL in mismatch repair: the power of multitasking. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:41-70. [PMID: 22749142 DOI: 10.1016/b978-0-12-387665-2.00003-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA mismatch repair enhances genomic stability by correcting errors that have escaped polymerase proofreading. One of the critical steps in DNA mismatch repair is discriminating the new from the parental DNA strand as only the former needs repair. In Escherichia coli, the latent endonuclease MutH carries out this function. However, most prokaryotes and all eukaryotes lack a mutH gene. MutL is a key component of this system that mediates protein-protein interactions during mismatch recognition, strand discrimination, and strand removal. Hence, it had long been thought that the primary function of MutL was coordinating sequential mismatch repair steps. However, recent studies have revealed that most MutL homologs from organisms lacking MutH encode a conserved metal-binding motif associated with a weak endonuclease activity. As MutL homologs bearing this activity are found only in organisms relying on MutH-independent DNA mismatch repair, this finding unveils yet another crucial function of the MutL protein at the strand discrimination step. In this chapter, we review recent functional and structural work aimed at characterizing the multiple functions of MutL and discuss how the endonuclease activity of MutL is regulated by other repair factors.
Collapse
|
72
|
Gupta S, Gellert M, Yang W. Mechanism of mismatch recognition revealed by human MutSβ bound to unpaired DNA loops. Nat Struct Mol Biol 2011; 19:72-8. [PMID: 22179786 PMCID: PMC3252464 DOI: 10.1038/nsmb.2175] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/12/2011] [Indexed: 12/25/2022]
Abstract
DNA mismatch repair corrects replication errors, thus reducing mutation rates and microsatellite instability. Genetic defects in this pathway cause Lynch Syndrome and various cancers in humans. Binding of a mispaired or unpaired base by bacterial MutS and eukaryotic MutSα is well characterized. We report here crystal structures of human MutSβ complexed with DNA containing insertion-deletion loops (IDL) of 2, 3, 4, or 6 unpaired nucleotides. In contrast to eukaryotic MutSα and bacterial MutS, which bind the base of a mismatched nucleotide, MutSβ binds three phosphates in an IDL. DNA is severely bent at the IDL; unpaired bases are flipped out into the major groove and partially exposed to solvent. A normal downstream basepair can become unpaired; thereby a single unpaired base can be converted to an IDL of 2 nucleotides and recognized by MutSβ. The C-terminal dimerization domains form an integral part of the MutS structure and coordinate asymmetrical ATP hydrolysis by Msh2 and Msh3 with mismatch binding to signal for repair.
Collapse
Affiliation(s)
- Shikha Gupta
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
73
|
Law S, Feig M. Base-flipping mechanism in postmismatch recognition by MutS. Biophys J 2011; 101:2223-31. [PMID: 22067162 PMCID: PMC3207177 DOI: 10.1016/j.bpj.2011.09.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 11/15/2022] Open
Abstract
DNA mismatch recognition and repair is vital for preserving the fidelity of the genome. Conserved across prokaryotes and eukaryotes, MutS is the primary protein that is responsible for recognizing a variety of DNA mismatches. From molecular dynamics simulations of the Escherichia coli MutS-DNA complex, we describe significant conformational dynamics in the DNA surrounding a G·T mismatch that involves weakening of the basepair hydrogen bonding in the basepair adjacent to the mismatch and, in one simulation, complete base opening via the major groove. The energetics of base flipping was further examined with Hamiltonian replica exchange free energy calculations revealing a stable flipped-out state with an initial barrier of ~2 kcal/mol. Furthermore, we observe changes in the local DNA structure as well as in the MutS structure that appear to be correlated with base flipping. Our results suggest a role of base flipping as part of the repair initiation mechanism most likely leading to sliding-clamp formation.
Collapse
Affiliation(s)
- Sean M. Law
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Michael Feig
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan
- Department of Chemistry, Michigan State University, East Lansing, Michigan
| |
Collapse
|
74
|
Niedziela-Majka A, Maluf NK, Antony E, Lohman TM. Self-assembly of Escherichia coli MutL and its complexes with DNA. Biochemistry 2011; 50:7868-80. [PMID: 21793594 DOI: 10.1021/bi200753b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Escherichia coli MutL protein regulates the activity of several enzymes, including MutS, MutH, and UvrD, during methyl-directed mismatch repair of DNA. We have investigated the self-association properties of MutL and its binding to DNA using analytical sedimentation velocity and equilibrium. Self-association of MutL is quite sensitive to solution conditions. At 25 °C in Tris at pH 8.3, MutL assembles into a heterogeneous mixture of large multimers. In the presence of potassium phosphate at pH 7.4, MutL forms primarily stable dimers, with the higher-order assembly states suppressed. The weight-average sedimentation coefficient of the MutL dimer in this buffer ( ̅s(20,w)) is equal to 5.20 ± 0.08 S, suggesting a highly asymmetric dimer (f/f(o) = 1.58 ± 0.02). Upon binding the nonhydrolyzable ATP analogue, AMPPNP/Mg(2+), the MutL dimer becomes more compact ( ̅s(20,w) = 5.71 ± 0.08 S; f/f(o) = 1.45 ± 0.02), probably reflecting reorganization of the N-terminal ATPase domains. A MutL dimer binds to an 18 bp duplex with a 3'-(dT(20)) single-stranded flanking region, with apparent affinity in the micromolar range. AMPPNP binding to MutL increases its affinity for DNA by a factor of ∼10. These results indicate that the presence of phosphate minimizes further MutL oligomerization beyond a dimer and that differences in solution conditions likely explain apparent discrepancies in previous studies of MutL assembly.
Collapse
Affiliation(s)
- Anita Niedziela-Majka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, Box 8231, St. Louis, Missouri 63110-1093, USA
| | | | | | | |
Collapse
|
75
|
Bilewitch JP, Degnan SM. A unique horizontal gene transfer event has provided the octocoral mitochondrial genome with an active mismatch repair gene that has potential for an unusual self-contained function. BMC Evol Biol 2011; 11:228. [PMID: 21801381 PMCID: PMC3166940 DOI: 10.1186/1471-2148-11-228] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 07/29/2011] [Indexed: 11/22/2022] Open
Abstract
Background The mitochondrial genome of the Octocorallia has several characteristics atypical for metazoans, including a novel gene suggested to function in DNA repair. This mtMutS gene is favored for octocoral molecular systematics, due to its high information content. Several hypotheses concerning the origins of mtMutS have been proposed, and remain equivocal, although current weight of support is for a horizontal gene transfer from either an epsilonproteobacterium or a large DNA virus. Here we present new and compelling evidence on the evolutionary origin of mtMutS, and provide the very first data on its activity, functional capacity and stability within the octocoral mitochondrial genome. Results The mtMutS gene has the expected conserved amino acids, protein domains and predicted tertiary protein structure. Phylogenetic analysis indicates that mtMutS is not a member of the MSH family and therefore not of eukaryotic origin. MtMutS clusters closely with representatives of the MutS7 lineage; further support for this relationship derives from the sharing of a C-terminal endonuclease domain that confers a self-contained mismatch repair function. Gene expression analyses confirm that mtMutS is actively transcribed in octocorals. Rates of mitochondrial gene evolution in mtMutS-containing octocorals are lower than in their hexacoral sister-group, which lacks the gene, although paradoxically the mtMutS gene itself has higher rates of mutation than other octocoral mitochondrial genes. Conclusions The octocoral mtMutS gene is active and codes for a protein with all the necessary components for DNA mismatch repair. A lower rate of mitochondrial evolution, and the presence of a nicking endonuclease domain, both indirectly support a theory of self-sufficient DNA mismatch repair within the octocoral mitochondrion. The ancestral affinity of mtMutS to non-eukaryotic MutS7 provides compelling support for an origin by horizontal gene transfer. The immediate vector of transmission into octocorals can be attributed to either an epsilonproteobacterium in an endosymbiotic association or to a viral infection, although DNA viruses are not currently known to infect both bacteria and eukaryotes, nor mitochondria in particular. In consolidating the first known case of HGT into an animal mitochondrial genome, these findings suggest the need for reconsideration of the means by which metazoan mitochondrial genomes evolve.
Collapse
Affiliation(s)
- Jaret P Bilewitch
- School of Biological Sciences, University of Queensland, St, Lucia, Brisbane, Queensland, Australia
| | | |
Collapse
|
76
|
Monti MC, Cohen SX, Fish A, Winterwerp HHK, Barendregt A, Friedhoff P, Perrakis A, Heck AJR, Sixma TK, van den Heuvel RHH, Lebbink JHG. Native mass spectrometry provides direct evidence for DNA mismatch-induced regulation of asymmetric nucleotide binding in mismatch repair protein MutS. Nucleic Acids Res 2011; 39:8052-64. [PMID: 21737427 PMCID: PMC3185415 DOI: 10.1093/nar/gkr498] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The DNA mismatch repair protein MutS recognizes mispaired bases in DNA and initiates repair in an ATP-dependent manner. Understanding of the allosteric coupling between DNA mismatch recognition and two asymmetric nucleotide binding sites at opposing sides of the MutS dimer requires identification of the relevant MutS.mmDNA.nucleotide species. Here, we use native mass spectrometry to detect simultaneous DNA mismatch binding and asymmetric nucleotide binding to Escherichia coli MutS. To resolve the small differences between macromolecular species bound to different nucleotides, we developed a likelihood based algorithm capable to deconvolute the observed spectra into individual peaks. The obtained mass resolution resolves simultaneous binding of ADP and AMP.PNP to this ABC ATPase in the absence of DNA. Mismatched DNA regulates the asymmetry in the ATPase sites; we observe a stable DNA-bound state containing a single AMP.PNP cofactor. This is the first direct evidence for such a postulated mismatch repair intermediate, and showcases the potential of native MS analysis in detecting mechanistically relevant reaction intermediates.
Collapse
Affiliation(s)
- Maria Chiara Monti
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Serge X. Cohen
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alexander Fish
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Herrie H. K. Winterwerp
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Peter Friedhoff
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Anastassis Perrakis
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
- *To whom correspondence should be addressed. Tel: +31 10 7043604; Fax +31 10 7044747;
| | - Titia K. Sixma
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robert H. H. van den Heuvel
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joyce H. G. Lebbink
- Biomolecular Mass Spectrometry and Proteomics Group, and Center for Biomedical Genetics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands, Institut für Biochemie FB 08, Justus-Liebig-Universität, D-35392 Giessen, Germany and Department of Cell Biology and Genetics, Cancer Genomics Center and Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
- *To whom correspondence should be addressed. Tel: +31 10 7043604; Fax +31 10 7044747;
| |
Collapse
|
77
|
Atomic force microscopy captures MutS tetramers initiating DNA mismatch repair. EMBO J 2011; 30:2881-93. [PMID: 21666597 DOI: 10.1038/emboj.2011.180] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/10/2011] [Indexed: 11/09/2022] Open
Abstract
In spite of extensive research, the mechanism by which MutS initiates DNA mismatch repair (MMR) remains controversial. We use atomic force microscopy (AFM) to capture how MutS orchestrates the first step of E. coli MMR. AFM images captured two types of MutS/DNA complexes: single-site binding and loop binding. In most of the DNA loops imaged, two closely associated MutS dimers formed a tetrameric complex in which one of the MutS dimers was located at or near the mismatch. Surprisingly, in the presence of ATP, one MutS dimer remained at or near the mismatch site and the other, while maintaining contact with the first dimer, relocated on the DNA by reeling in DNA, thereby producing expanding DNA loops. Our results indicate that MutS tetramers composed of two non-equivalent MutS dimers drive E. coli MMR, and these new observations now reconcile the apparent contradictions of previous 'sliding' and 'bending/looping' models of interaction between mismatch and strand signal.
Collapse
|
78
|
Zhong T, Zhou Y, Bi L, Zhang XE. MutS-mediated enrichment of mutated DNA produced by directed evolution in vitro. World J Microbiol Biotechnol 2011; 27:1367-72. [PMID: 25187136 DOI: 10.1007/s11274-010-0587-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 09/20/2010] [Indexed: 11/24/2022]
Abstract
Directed evolution in vitro is a powerful tool in the study and design of protein function. However, screening the desired mutants is a difficult task. To facilitate the screening, a method is proposed to eliminate wild type sequences and increase mutated DNA sequences, which is based on the preferential binding of MutS protein to heteroduplex DNA. Following error-prone PCR, amplified products are denatured and re-annealed to form heteroduplex and homoduplex DNA. Heteroduplexes are selectively bound to an engineered MutS protein and immobilized on a Strep-Tactin column. Homoduplexes are effectively removed by washing, and the final elution is enriched in mutated DNA sequences. One round of mutated DNA enrichment resulted in an about 2.3-fold of increase in mutation frequency compared to the control. The percentage of mutants rose from 44% in the control sample to 72% in the enrichment sample. Fluorescent assay by flow cytometry showed that the enrichment method increased the mutants with changed fluorescent activity by about 2.2-fold, which strongly justified the efficiency of enrichment in increasing mutants with functional changes. With reduced workload of screening and increased possibility of obtaining mutants with functional changes, the overall efficiency was improved by MutS-mediated enrichment of mutated DNA.
Collapse
Affiliation(s)
- Tianying Zhong
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | | | | | | |
Collapse
|
79
|
Winkler I, Marx AD, Lariviere D, Heinze RJ, Cristovao M, Reumer A, Curth U, Sixma TK, Friedhoff P. Chemical trapping of the dynamic MutS-MutL complex formed in DNA mismatch repair in Escherichia coli. J Biol Chem 2011; 286:17326-37. [PMID: 21454657 DOI: 10.1074/jbc.m110.187641] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ternary complex comprising MutS, MutL, and DNA is a key intermediate in DNA mismatch repair. We used chemical cross-linking and fluorescence resonance energy transfer (FRET) to study the interaction between MutS and MutL and to shed light onto the structure of this complex. Via chemical cross-linking, we could stabilize this dynamic complex and identify the structural features of key events in DNA mismatch repair. We could show that in the complex between MutS and MutL the mismatch-binding and connector domains of MutS are in proximity to the N-terminal ATPase domain of MutL. The DNA- and nucleotide-dependent complex formation could be monitored by FRET using single cysteine variants labeled in the connector domain of MutS and the transducer domain of MutL, respectively. In addition, we could trap MutS after an ATP-induced conformational change by an intramolecular cross-link between Cys-93 of the mismatch-binding domain and Cys-239 of the connector domain.
Collapse
Affiliation(s)
- Ines Winkler
- Institute for Biochemistry, FB 08, Justus Liebig University, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Michel-Marks E, Courcelle CT, Korolev S, Courcelle J. ATP binding, ATP hydrolysis, and protein dimerization are required for RecF to catalyze an early step in the processing and recovery of replication forks disrupted by DNA damage. J Mol Biol 2010; 401:579-89. [PMID: 20558179 DOI: 10.1016/j.jmb.2010.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/06/2010] [Accepted: 06/08/2010] [Indexed: 12/30/2022]
Abstract
In Escherichia coli, the recovery of replication following disruption by UV-induced DNA damage requires the RecF protein and occurs through a process that involves stabilization of replication fork DNA, resection of nascent DNA to allow the offending lesion to be repaired, and reestablishment of a productive replisome on the DNA. RecF forms a homodimer and contains an ATP binding cassette ATPase domain that is conserved among eukaryotic SMC (structural maintenance of chromosome) proteins, including cohesin, condensin, and Rad50. Here, we investigated the functions of RecF dimerization, ATP binding, and ATP hydrolysis in the progressive steps involved in recovering DNA synthesis following disruption by DNA damage. RecF point mutations with altered biochemical properties were constructed in the chromosome. We observed that protein dimerization, ATP binding, and ATP hydrolysis were essential for maintaining and processing the arrested replication fork, as well as for restoring DNA synthesis. In contrast, stabilization of the RecF protein dimer partially protected the DNA at the arrested fork from degradation, although overall processing and recovery remained severely impaired.
Collapse
|
81
|
Polosina YY, Cupples CG. Wot the 'L-Does MutL do? Mutat Res 2010; 705:228-38. [PMID: 20667509 DOI: 10.1016/j.mrrev.2010.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 11/26/2022]
Abstract
In model DNA, A pairs with T, and C with G. However, in vivo, the complementarity of the DNA strands may be disrupted by errors in DNA replication, biochemical modification of bases and recombination. In prokaryotic organisms, mispaired bases are recognized by MutS homologs which, together with MutL homologs, initiate mismatch repair. These same proteins also participate in base excision repair and nucleotide excision repair. In eukaryotes they regulate not just DNA repair but also meiotic recombination, cell-cycle delay and/or apoptosis in response to DNA damage, and hypermutation in immunoglobulin genes. Significantly, the same DNA mismatches that trigger repair in some circumstances trigger non-repair pathways in others. In this review, we argue that mismatch recognition by the MutS proteins is linked to these disparate biological outcomes through regulated interaction of MutL proteins with a wide variety of effector proteins.
Collapse
Affiliation(s)
- Yaroslava Y Polosina
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3055, STN CSC, Victoria, BC, Canada.
| | | |
Collapse
|
82
|
Fukui K. DNA mismatch repair in eukaryotes and bacteria. J Nucleic Acids 2010; 2010. [PMID: 20725617 PMCID: PMC2915661 DOI: 10.4061/2010/260512] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/24/2010] [Indexed: 12/17/2022] Open
Abstract
DNA mismatch repair (MMR) corrects mismatched base pairs mainly caused by DNA replication errors. The fundamental mechanisms and proteins involved in the early reactions of MMR are highly conserved in almost all organisms ranging from bacteria to human. The significance of this repair system is also indicated by the fact that defects in MMR cause human hereditary nonpolyposis colon cancers as well as sporadic tumors. To date, 2 types of MMRs are known: the human type and Escherichia coli type. The basic features of the former system are expected to be universal among the vast majority of organisms including most bacteria. Here, I review the molecular mechanisms of eukaryotic and bacterial MMR, emphasizing on the similarities between them.
Collapse
Affiliation(s)
- Kenji Fukui
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
83
|
Functional studies and homology modeling of Msh2-Msh3 predict that mispair recognition involves DNA bending and strand separation. Mol Cell Biol 2010; 30:3321-8. [PMID: 20421420 DOI: 10.1128/mcb.01558-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Msh2-Msh3 heterodimer recognizes various DNA mispairs, including loops of DNA ranging from 1 to 14 nucleotides and some base-base mispairs. Homology modeling of the mispair-binding domain (MBD) of Msh3 using the related Msh6 MBD revealed that mismatch recognition must be different, even though the MBD folds must be similar. Model-based point mutation alleles of Saccharomyces cerevisiae msh3 designed to disrupt mispair recognition fell into two classes. One class caused defects in repair of both small and large insertion/deletion mispairs, whereas the second class caused defects only in the repair of small insertion/deletion mispairs; mutations of the first class also caused defects in the removal of nonhomologous tails present at the ends of double-strand breaks (DSBs) during DSB repair, whereas mutations of the second class did not cause defects in the removal of nonhomologous tails during DSB repair. Thus, recognition of small insertion/deletion mispairs by Msh3 appears to require a greater degree of interactions with the DNA conformations induced by small insertion/deletion mispairs than with those induced by large insertion/deletions that are intrinsically bent and strand separated. Mapping of the two classes of mutations onto the Msh3 MBD model appears to distinguish mispair recognition regions from DNA stabilization regions.
Collapse
|
84
|
Polosina YY, Cupples CG. MutL: conducting the cell's response to mismatched and misaligned DNA. Bioessays 2010; 32:51-9. [PMID: 19953589 DOI: 10.1002/bies.200900089] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Base pair mismatches in DNA arise from errors in DNA replication, recombination, and biochemical modification of bases. Mismatches are inherently transient. They are resolved passively by DNA replication, or actively by enzymatic removal and resynthesis of one of the bases. The first step in removal is recognition of strand discontinuity by one of the MutS proteins. Mismatches arising from errors in DNA replication are repaired in favor of the base on the template strand, but other mismatches trigger base excision or nucleotide excision repair (NER), or non-repair pathways such as hypermutation, cell cycle arrest, or apoptosis. We argue that MutL homologues play a key role in determining biologic outcome by recruiting and/or activating effector proteins in response to lesion recognition by MutS. We suggest that the process is regulated by conformational changes in MutL caused by cycles of ATP binding and hydrolysis, and by physiologic changes which influence effector availability.
Collapse
Affiliation(s)
- Yaroslava Y Polosina
- Department of Biochemistry and Microbiology, University of Victoria, BC, Canada.
| | | |
Collapse
|
85
|
Lebbink JHG, Fish A, Reumer A, Natrajan G, Winterwerp HHK, Sixma TK. Magnesium coordination controls the molecular switch function of DNA mismatch repair protein MutS. J Biol Chem 2010; 285:13131-41. [PMID: 20167596 PMCID: PMC2857095 DOI: 10.1074/jbc.m109.066001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The DNA mismatch repair protein MutS acts as a molecular switch. It toggles between ADP and ATP states and is regulated by mismatched DNA. This is analogous to G-protein switches and the regulation of their “on” and “off” states by guanine exchange factors. Although GDP release in monomeric GTPases is accelerated by guanine exchange factor-induced removal of magnesium from the catalytic site, we found that release of ADP from MutS is not influenced by the metal ion in this manner. Rather, ADP release is induced by the binding of mismatched DNA at the opposite end of the protein, a long-range allosteric response resembling the mechanism of activation of heterotrimeric GTPases. Magnesium influences switching in MutS by inducing faster and tighter ATP binding, allowing rapid downstream responses. MutS mutants with decreased affinity for the metal ion are impaired in fast switching and in vivo mismatch repair. Thus, the G-proteins and MutS conceptually employ the same efficient use of the high energy cofactor: slow hydrolysis in the absence of a signal and fast conversion to the active state when required.
Collapse
Affiliation(s)
- Joyce H G Lebbink
- Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
86
|
Mastrocola AS, Heinen CD. Nuclear reorganization of DNA mismatch repair proteins in response to DNA damage. DNA Repair (Amst) 2010; 9:120-33. [PMID: 20004149 PMCID: PMC2819642 DOI: 10.1016/j.dnarep.2009.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 10/16/2009] [Accepted: 11/04/2009] [Indexed: 12/16/2022]
Abstract
The DNA mismatch repair (MMR) system is highly conserved and vital for preserving genomic integrity. Current mechanistic models for MMR are mainly derived from in vitro assays including reconstitution of strand-specific MMR and DNA binding assays using short oligonucleotides. However, fundamental questions regarding the mechanism and regulation in the context of cellular DNA replication remain. Using synchronized populations of HeLa cells we demonstrated that hMSH2, hMLH1 and PCNA localize to the chromatin during S-phase, and accumulate to a greater extent in cells treated with a DNA alkylating agent. In addition, using small interfering RNA to deplete hMSH2, we demonstrated that hMLH1 localization to the chromatin is hMSH2-dependent. hMSH2/hMLH1/PCNA proteins, when associated with the chromatin, form a complex that is greatly enhanced by DNA damage. The DNA damage caused by high doses of alkylating agents leads to a G(2) arrest after only one round of replication. In these G(2)-arrested cells, an hMSH2/hMLH1 complex persists on chromatin, however, PCNA is no longer in the complex. Cells treated with a lower dose of alkylating agent require two rounds of replication before cells arrest in G(2). In the first S-phase, the MMR proteins form a complex with PCNA, however, during the second S-phase PCNA is missing from that complex. The distinction between these complexes may suggest separate functions for the MMR proteins in damage repair and signaling. Additionally, using confocal immunofluorescence, we observed a population of hMSH6 that localized to the nucleolus. This population is significantly reduced after DNA damage suggesting that the protein is shuttled out of the nucleolus in response to damage. In contrast, hMLH1 is excluded from the nucleolus at all times. Thus, the nucleolus may act to segregate a population of hMSH2-hMSH6 from hMLH1-hPMS2 such that, in the absence of DNA damage, an inappropriate response is not invoked.
Collapse
Affiliation(s)
- Adam S. Mastrocola
- Neag Comprehensive Cancer Center and Center for Molecular Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Christopher D. Heinen
- Neag Comprehensive Cancer Center and Center for Molecular Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| |
Collapse
|
87
|
Saccharomyces cerevisiae Msh2-Msh6 DNA binding kinetics reveal a mechanism of targeting sites for DNA mismatch repair. Proc Natl Acad Sci U S A 2009; 107:680-5. [PMID: 20080735 DOI: 10.1073/pnas.0908302107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DNA mismatch repair system (MMR) identifies replication errors and damaged bases in DNA and functions to preserve genomic integrity. MutS performs the task of locating mismatched base pairs, loops and lesions and initiating MMR, and the fundamental question of how this protein targets specific sites in DNA is unresolved. To address this question, we examined the interactions between Saccharomyces cerevisiae Msh2-Msh6, a eukaryotic MutS homolog, and DNA in real time. The reaction kinetics reveal that Msh2-Msh6 binds a variety of sites at similarly fast rates (k (ON) approximately 10(7) M(-1) s(-1)), and its selectivity manifests in differential dissociation rates; e.g., the protein releases a 2-Aminopurine:T base pair approximately 90-fold faster than a G:T mismatch. On releasing the 2-Ap:T site, Msh2-Msh6 is able to move laterally on DNA to locate a nearby G:T site. The long-lived Msh2-Msh6.G:T complex triggers the next step in MMR--formation of an ATP-bound clamp--more effectively than the short-lived Msh2-Msh6.2-Ap:T complex. Mutation of Glu in the conserved Phe-X-Glu DNA binding motif stabilizes Msh2-Msh6(E339A).2-Ap:T complex, and the mutant can signal 2-Ap:T repair as effectively as wild-type Msh2-Msh6 signals G:T repair. These findings suggest a targeting mechanism whereby Msh2-Msh6 scans DNA, interrogating base pairs by transient contacts and pausing at potential target sites, and the longer the pause the greater the likelihood of MMR.
Collapse
|
88
|
Li F, Tian L, Gu L, Li GM. Evidence that nucleosomes inhibit mismatch repair in eukaryotic cells. J Biol Chem 2009; 284:33056-61. [PMID: 19808662 DOI: 10.1074/jbc.m109.049874] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The influence of chromatin structure on DNA metabolic processes, including DNA replication and repair, has been a matter of intensive studies in recent years. Although the human mismatch repair (MMR) reaction has been reconstituted using purified proteins, the influence of chromatin structure on human MMR is unknown. This study examines the interaction between human MutSalpha and a mismatch located within a nucleosome or between two nucleosomes. The results show that, whereas MutSalpha specifically recognizes both types of nucleosomal heteroduplexes, the protein bound the mismatch within a nucleosome with much lower efficiency than a naked heteroduplex or a heterology free of histone proteins but between two nucleosomes. Additionally, MutSalpha displays reduced ATPase- and ADP-binding activity when interacting with nucleosomal heteroduplexes. Interestingly, nucleosomes block ATP-induced MutSalpha sliding along the DNA helix when the mismatch is in between two nucleosomes. These findings suggest that nucleosomes may inhibit MMR in eukaryotic cells. The implications of these findings for our understanding of eukaryotic MMR are discussed.
Collapse
Affiliation(s)
- Feng Li
- Graduate Center for Toxicology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
89
|
Adenosine triphosphate stimulates Aquifex aeolicus MutL endonuclease activity. PLoS One 2009; 4:e7175. [PMID: 19777055 PMCID: PMC2744016 DOI: 10.1371/journal.pone.0007175] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 08/26/2009] [Indexed: 11/30/2022] Open
Abstract
Background Human PMS2 (hPMS2) homologues act to nick 5′ and 3′ to misincorporated nucleotides during mismatch repair in organisms that lack MutH. Mn++ was previously found to stimulate the endonuclease activity of these homologues. ATP was required for the nicking activity of hPMS2 and yPMS1, but was reported to inhibit bacterial MutL proteins from Thermus thermophilus and Aquifex aeolicus that displayed homology to hPMS2. Mutational analysis has identified the DQHA(X)2E(X)4E motif present in the C-terminus of PMS2 homologues as important for endonuclease activity. Methodologies/Principal Findings We examined the effect ATP had on the Mn++ induced nicking of supercoiled pBR322 by full-length and mutant A. aeolicus MutL (Aae MutL) proteins. Assays were single time point, enzyme titration experiments or reaction time courses. The maximum velocity for MutL nicking was determined to be 1.6±0.08×10−5 s−1 and 4.2±0.3×10−5 s−1 in the absence and presence of ATP, respectively. AMPPNP stimulated the nicking activity to a similar extent as ATP. A truncated Aae MutL protein composed of only the C-terminal 123 amino acid residues was found to nick supercoiled DNA. Furthermore, mutations in the conserved C-terminal DQHA(X)2E(X)4E and CPHGRP motifs were shown to abolish Aae MutL endonuclease activity. Conclusions ATP stimulated the Mn++ induced endonuclease activity of Aae MutL. Experiments utilizing AMPPNP implied that the stimulation did not require ATP hydrolysis. A mutation in the DQHA(X)2E(X)4E motif of Aae MutL further supported the role of this region in endonclease activity. For the first time, to our knowledge, we demonstrate that changing the histidine residue in the conserved CPHGRP motif abolishes endonucleolytic activity of a hPMS2 homologue. Finally, the C-terminal 123 amino acid residues of Aae MutL were sufficient to display Mn++ induced nicking activity.
Collapse
|
90
|
Dalhus B, Laerdahl JK, Backe PH, Bjørås M. DNA base repair--recognition and initiation of catalysis. FEMS Microbiol Rev 2009; 33:1044-78. [PMID: 19659577 DOI: 10.1111/j.1574-6976.2009.00188.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endogenous DNA damage induced by hydrolysis, reactive oxygen species and alkylation modifies DNA bases and the structure of the DNA duplex. Numerous mechanisms have evolved to protect cells from these deleterious effects. Base excision repair is the major pathway for removing base lesions. However, several mechanisms of direct base damage reversal, involving enzymes such as transferases, photolyases and oxidative demethylases, are specialized to remove certain types of photoproducts and alkylated bases. Mismatch excision repair corrects for misincorporation of bases by replicative DNA polymerases. The determination of the 3D structure and visualization of DNA repair proteins and their interactions with damaged DNA have considerably aided our understanding of the molecular basis for DNA base lesion repair and genome stability. Here, we review the structural biochemistry of base lesion recognition and initiation of one-step direct reversal (DR) of damage as well as the multistep pathways of base excision repair (BER), nucleotide incision repair (NIR) and mismatch repair (MMR).
Collapse
Affiliation(s)
- Bjørn Dalhus
- Centre for Molecular Biology and Neuroscience (CMBN), Rikshospitalet University Hospital, Oslo, Norway
| | | | | | | |
Collapse
|
91
|
The nucleotide binding dynamics of human MSH2-MSH3 are lesion dependent. Nat Struct Mol Biol 2009; 16:550-7. [PMID: 19377479 DOI: 10.1038/nsmb.1596] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 03/30/2009] [Indexed: 01/12/2023]
Abstract
Here we report that the human DNA mismatch complex MSH2-MSH3 recognizes small loops by a mechanism different from that of MSH2-MSH6 for single-base mismatches. The subunits MSH2 and MSH3 can bind either ADP or ATP with similar affinities. Upon binding to a DNA loop, however, MSH2-MSH3 adopts a single 'nucleotide signature', in which the MSH2 subunit is occupied by an ADP molecule and the MSH3 subunit is empty. Subsequent ATP binding and hydrolysis in the MSH3 subunit promote ADP-ATP exchange in the MSH2 subunit to yield a hydrolysis-independent ATP-MSH2-MSH3-ADP intermediate. Human MSH2-MSH3 and yeast Msh2-Msh6 both undergo ADP-ATP exchange in the Msh2 subunit but, apparently, have opposite requirements for ATP hydrolysis: ADP release from DNA-bound Msh2-Msh6 requires ATP stabilization in the Msh6 subunit, whereas ADP release from DNA-bound MSH2-MSH3 requires ATP hydrolysis in the MSH3 subunit. We propose a model in which lesion binding converts MSH2-MSH3 into a distinct nucleotide-bound form that is poised to be a molecular sensor for lesion specificity.
Collapse
|
92
|
Abstract
Genetically engineered mice are essential tools in both mechanistic studies and drug development in colon cancer research. Mice with mutations in the Apc gene, as well as in genes that modify or interact with Apc, are important models of familial adenomatous polyposis. Mice with mutations in the beta-catenin signaling pathway have also revealed important information about colon cancer pathogenesis, along with models for hereditary nonpolyposis colon cancer and inflammatory bowel diseases associated with colon cancer. Finally, transplantation models (xenografts)have been useful in the study of metastasis and for testing potential therapeutics. This review discusses what models have been developed most recently and what they have taught us about colon cancer formation, progression, and possible treatment strategies.
Collapse
Affiliation(s)
- Makoto Mark Taketo
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
93
|
Tian L, Gu L, Li GM. Distinct nucleotide binding/hydrolysis properties and molar ratio of MutSalpha and MutSbeta determine their differential mismatch binding activities. J Biol Chem 2009; 284:11557-62. [PMID: 19228687 DOI: 10.1074/jbc.m900908200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MutSalpha (MSH2/MSH6) and MutSbeta (MSH2/MSH3) are eukaryotic mismatch recognition proteins that preferentially process base-base and small insertion/deletion (ID) mispairs, respectively, despite the fact that cells contain a MutSalpha:MutSbeta ratio of 10:1. To explore the mechanism underlying the differential mismatch recognition by these two proteins, purified human MutSalpha and MutSbeta were analyzed individually and competitively for their abilities to interact with a T-G and an ID substrate. We show that MutSalpha has K(D) values of 26.5 and 38.2 nm for the G-T and ID substrates, respectively, and that MutSbeta has K(D) values of 76.5 and 23.5 nm for G-T and ID, respectively. Consistent with these results, competitive binding assays revealed the following relative binding affinities: MutSbeta-ID > MutSalpha-T-G > MutSalpha-ID >> MutSbeta-T-G. Interestingly, binding of MutSbeta to ID heteroduplexes is greatly stimulated when the MutSalpha:MutSbeta ratio is > or = 10. Distinct ATP/ADP binding and ATPase activities of MutSalpha and MutSbeta were also observed. In the absence of DNA, ADP binding and ATPase activities of MutSbeta are significantly higher than those of MutSalpha. However, interaction with DNA significantly stimulates the MutSalpha ATPase activity and reduces the MutSbeta ATPase activity, the consequence being that both proteins exhibit the same level of hydrolytic activity. We conclude that the preferential processing of base-base and ID heteroduplexes by MutSalpha and MutSbeta is determined by their significant differences in ATPase activity, ADP binding activity, and high cellular MutSalpha:MutSbeta ratio.
Collapse
Affiliation(s)
- Lei Tian
- Graduate Center for Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
94
|
Makharashvili N, Mi T, Koroleva O, Korolev S. RecR-mediated modulation of RecF dimer specificity for single- and double-stranded DNA. J Biol Chem 2008; 284:1425-34. [PMID: 19017635 DOI: 10.1074/jbc.m806378200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecF pathway proteins play an important role in the restart of stalled replication and DNA repair in prokaryotes. Following DNA damage, RecF, RecR, and RecO initiate homologous recombination (HR) by loading of the RecA recombinase on single-stranded (ss) DNA, protected by ssDNA-binding protein. The specific role of RecF in this process is not well understood. Previous studies have proposed that RecF directs the RecOR complex to boundaries of damaged DNA regions by recognizing single-stranded/double-stranded (ss/ds) DNA junctions. RecF belongs to ABC-type ATPases, which function through an ATP-dependent dimerization. Here, we demonstrate that the RecF of Deinococcus radiodurans interacts with DNA as an ATP-dependent dimer, and that the DNA binding and ATPase activity of RecF depend on both the structure of DNA substrate, and the presence of RecR. We found that RecR interacts as a tetramer with the RecF dimer. RecR increases the RecF affinity to dsDNA without stimulating ATP hydrolysis but destabilizes RecF binding to ssDNA and dimerization, likely due to increasing the ATPase rate. The DNA-dependent binding of RecR to the RecF-DNA complex occurs through specific protein-protein interactions without significant contributions from RecR-DNA interactions. Finally, RecF neither alone nor in complex with RecR preferentially binds to the ss/dsDNA junction. Our data suggest that the specificity of the RecFOR complex toward the boundaries of DNA damaged regions may result from a network of protein-protein and DNA-protein interactions, rather than a simple recognition of the ss/dsDNA junction by RecF.
Collapse
Affiliation(s)
- Nodar Makharashvili
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | |
Collapse
|
95
|
Tessmer I, Yang Y, Zhai J, Du C, Hsieh P, Hingorani MM, Erie DA. Mechanism of MutS searching for DNA mismatches and signaling repair. J Biol Chem 2008; 283:36646-54. [PMID: 18854319 DOI: 10.1074/jbc.m805712200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA mismatch repair is initiated by the recognition of mismatches by MutS proteins. The mechanism by which MutS searches for and recognizes mismatches and subsequently signals repair remains poorly understood. We used single-molecule analyses of atomic force microscopy images of MutS-DNA complexes, coupled with biochemical assays, to determine the distributions of conformational states, the DNA binding affinities, and the ATPase activities of wild type and two mutants of MutS, with alanine substitutions in the conserved Phe-Xaa-Glu mismatch recognition motif. We find that on homoduplex DNA, the conserved Glu, but not the Phe, facilitates MutS-induced DNA bending, whereas at mismatches, both Phe and Glu promote the formation of an unbent conformation. The data reveal an unusual role for the Phe residue in that it promotes the unbending, not bending, of DNA at mismatch sites. In addition, formation of the specific unbent MutS-DNA conformation at mismatches appears to be required for the inhibition of ATP hydrolysis by MutS that signals initiation of repair. These results provide a structural explanation for the mechanism by which MutS searches for and recognizes mismatches and for the observed phenotypes of mutants with substitutions in the Phe-Xaa-Glu motif.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Department of Chemistry and Curriculum in Applied Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Cyr JL, Heinen CD. Hereditary cancer-associated missense mutations in hMSH6 uncouple ATP hydrolysis from DNA mismatch binding. J Biol Chem 2008; 283:31641-8. [PMID: 18790734 DOI: 10.1074/jbc.m806018200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hereditary nonpolyposis colorectal cancer is caused by germline mutations in DNA mismatch repair genes. The majority of cases are associated with mutations in hMSH2 or hMLH1; however, about 12% of cases are associated with alterations in hMSH6. The hMSH6 protein forms a heterodimer with hMSH2 that is capable of recognizing a DNA mismatch. The heterodimer then utilizes its adenosine nucleotide processing ability in an, as of yet, unclear mechanism to facilitate communication between the mismatch and a distant strand discrimination site. The majority of reported mutations in hMSH6 are deletions or truncations that entirely eliminate the function of the protein; however, nearly a third of the reported variations are missense mutations whose functional significance is unclear. We analyzed seven cancer-associated single amino acid alterations in hMSH6 distributed throughout the functional domains of the protein to determine their effect on the biochemical activity of the hMSH2-hMSH6 heterodimer. Five alterations affect mismatch-stimulated ATP hydrolysis activity providing functional evidence that missense variants of hMSH6 can disrupt mismatch repair function and may contribute to disease. Of the five mutants that affect mismatch-stimulated ATP hydrolysis, only two (R976H and H1248D) affect mismatch recognition. Thus, three of the mutants (G566R, V878A, and D803G) appear to uncouple the mismatch binding and ATP hydrolysis activities of the heterodimer. We also demonstrate that these three mutations alter ATP-dependent conformation changes of hMSH2-hMSH6, suggesting that cancer-associated mutations in hMSH6 can disrupt the intramolecular signaling that coordinates mismatch binding with adenosine nucleotide processing.
Collapse
Affiliation(s)
- Jennifer L Cyr
- Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | |
Collapse
|
97
|
Huang SYN, Crothers DM. The role of nucleotide cofactor binding in cooperativity and specificity of MutS recognition. J Mol Biol 2008; 384:31-47. [PMID: 18773911 DOI: 10.1016/j.jmb.2008.08.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 08/14/2008] [Accepted: 08/20/2008] [Indexed: 10/21/2022]
Abstract
Mismatch repair (MMR) is essential for eliminating biosynthetic errors generated during replication or genetic recombination in virtually all organisms. The critical first step in Escherichia coli MMR is the specific recognition and binding of MutS to a heteroduplex, containing either a mismatch or an insertion/deletion loop of up to four nucleotides. All known MutS homologs recognize a similar broad spectrum of substrates. Binding and hydrolysis of nucleotide cofactors by the MutS-heteroduplex complex are required for downstream MMR activity, although the exact role of the nucleotide cofactors is less clear. Here, we showed that MutS bound to a 30-bp heteroduplex containing an unpaired T with a binding affinity approximately 400-fold stronger than to a 30-bp homoduplex, a much higher specificity than previously reported. The binding of nucleotide cofactors decreased both MutS specific and nonspecific binding affinity, with the latter marked by a larger drop, further increasing MutS specificity by approximately 3-fold. Kinetic studies showed that the difference in MutS K(d) for various heteroduplexes was attributable to the difference in intrinsic dissociation rate of a particular MutS-heteroduplex complex. Furthermore, the kinetic association event of MutS binding to heteroduplexes was marked by positive cooperativity. Our studies showed that the positive cooperativity in MutS binding was modulated by the binding of nucleotide cofactors. The binding of nucleotide cofactors transformed E. coli MutS tetramers, the functional unit in E. coli MMR, from a cooperative to a noncooperative binding form. Finally, we found that E. coli MutS bound to single-strand DNA with significant affinity, which could have important implication for strand discrimination in eukaryotic MMR mechanism.
Collapse
Affiliation(s)
- Shar-yin N Huang
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, P.O. Box 208114, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
98
|
Acharya S. Mutations in the signature motif in MutS affect ATP-induced clamp formation and mismatch repair. Mol Microbiol 2008; 69:1544-59. [PMID: 18673453 DOI: 10.1111/j.1365-2958.2008.06386.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SUMMARY MutS protein dimer recognizes and co-ordinates repair of DNA mismatches. Mismatch recognition by the N-terminal mismatch recognition domain and subsequent downstream signalling by MutS appear coupled to the C-terminal ATP catalytic site, Walker box, through nucleotide-mediated conformational transitions. Details of this co-ordination are not understood. The focus of this study is a conserved loop in Escherichia coli MutS that is predicted to mediate cross-talk between the two ATP catalytic sites in MutS homodimer. Mutagenesis was employed to assess the role of this loop in regulating MutS function. All mutants displayed mismatch repair defects in vivo. Biochemical characterization further revealed defects in ATP binding, ATP hydrolysis as well as effective mismatch recognition. The kinetics of initial burst of ATP hydrolysis was similar to wild type but the magnitude of the burst was reduced for the mutants. Given its proximity to the ATP bound in the opposing monomer in the crystal and its potential analogy with signature motif of ABC transporters, the results strongly suggest that the loop co-ordinates ATP binding/hydrolysis in trans by the two catalytic sites. Importantly, our data reveal that the loop plays a direct role in co-ordinating conformational changes involved in long-range communication between Walker box and mismatch recognition domains.
Collapse
Affiliation(s)
- Samir Acharya
- Department of Molecular Virology, Immunology and Medical Genetics, and Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
99
|
Hudson DF, Ohta S, Freisinger T, MacIsaac F, Sennels L, Alves F, Lai F, Kerr A, Rappsilber J, Earnshaw WC. Molecular and genetic analysis of condensin function in vertebrate cells. Mol Biol Cell 2008; 19:3070-9. [PMID: 18480406 PMCID: PMC2441691 DOI: 10.1091/mbc.e08-01-0057] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 04/14/2008] [Accepted: 05/01/2008] [Indexed: 01/02/2023] Open
Abstract
We engineered mutants into residues of SMC2 to dissect the role of ATPase function in the condensin complex. These residues are predicted to be involved in ATP binding or hydrolysis and in the Q-loop, which is thought to act as a mediator of conformational changes induced by substrate binding. All the engineered ATPase mutations resulted in lethality when introduced into SMC2 null cells. We found that ATP binding, but not hydrolysis, is essential to allow stable condensin association with chromosomes. How SMC proteins bind and interact with DNA is still a major question. Cohesin may form a ring structure that topologically encircles DNA. We examined whether condensin behaves in an analogous way to its cohesin counterpart, and we have generated a cleavable form of biologically active condensin with PreScission protease sites engineered into the SMC2 protein. This has allowed us to demonstrate that topological integrity of the SMC2-SMC4 heterodimer is not necessary for the stability of the condensin complex in vitro or for its stable association with mitotic chromosomes. Thus, despite their similar molecular organization, condensin and cohesin exhibit fundamental differences in their structure and function.
Collapse
Affiliation(s)
- Damien F. Hudson
- *Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Shinya Ohta
- *Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Tina Freisinger
- *Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
- Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Fiona MacIsaac
- *Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Lau Sennels
- *Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Flavia Alves
- *Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Fan Lai
- *Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
- Centre for Genomic Regulation, E-08003 Barcelona, Spain
| | - Alastair Kerr
- *Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Juri Rappsilber
- *Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - William C. Earnshaw
- *Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
100
|
Hsieh P, Yamane K. DNA mismatch repair: molecular mechanism, cancer, and ageing. Mech Ageing Dev 2008; 129:391-407. [PMID: 18406444 PMCID: PMC2574955 DOI: 10.1016/j.mad.2008.02.012] [Citation(s) in RCA: 306] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 02/22/2008] [Accepted: 02/28/2008] [Indexed: 02/09/2023]
Abstract
DNA mismatch repair (MMR) proteins are ubiquitous players in a diverse array of important cellular functions. In its role in post-replication repair, MMR safeguards the genome correcting base mispairs arising as a result of replication errors. Loss of MMR results in greatly increased rates of spontaneous mutation in organisms ranging from bacteria to humans. Mutations in MMR genes cause hereditary nonpolyposis colorectal cancer, and loss of MMR is associated with a significant fraction of sporadic cancers. Given its prominence in mutation avoidance and its ability to target a range of DNA lesions, MMR has been under investigation in studies of ageing mechanisms. This review summarizes what is known about the molecular details of the MMR pathway and the role of MMR proteins in cancer susceptibility and ageing.
Collapse
Affiliation(s)
- Peggy Hsieh
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|