51
|
Bhagi-Damodaran A, Petrik I, Lu Y. Using Biosynthetic Models of Heme-Copper Oxidase and Nitric Oxide Reductase in Myoglobin to Elucidate Structural Features Responsible for Enzymatic Activities. Isr J Chem 2016; 56:773-790. [PMID: 27994254 PMCID: PMC5161413 DOI: 10.1002/ijch.201600033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In biology, a heme-Cu center in heme-copper oxidases (HCOs) is used to catalyze the four-electron reduction of oxygen to water, while a heme-nonheme diiron center in nitric oxide reductases (NORs) is employed to catalyze the two-electron reduction of nitric oxide to nitrous oxide. Although much progress has been made in biochemical and biophysical studies of HCOs and NORs, structural features responsible for similarities and differences within the two enzymatic systems remain to be understood. Here, we discuss the progress made in the design and characterization of myoglobin-based enzyme models of HCOs and NORs. In particular, we focus on use of these models to understand the structure-function relations between HCOs and NORs, including the role of nonheme metals, conserved amino acids in the active site, heme types and hydrogen-bonding network in tuning enzymatic activities and total turnovers. Insights gained from these studies are summarized and future directions are proposed.
Collapse
Affiliation(s)
| | - Igor Petrik
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL. 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL. 61801
| |
Collapse
|
52
|
Bhagi-Damodaran A, Hosseinzadeh P, Mirts E, Reed J, Petrik ID, Lu Y. Design of Heteronuclear Metalloenzymes. Methods Enzymol 2016; 580:501-37. [PMID: 27586347 PMCID: PMC5156654 DOI: 10.1016/bs.mie.2016.05.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Heteronuclear metalloenzymes catalyze some of the most fundamentally interesting and practically useful reactions in nature. However, the presence of two or more metal ions in close proximity in these enzymes makes them more difficult to prepare and study than homonuclear metalloenzymes. To meet these challenges, heteronuclear metal centers have been designed into small and stable proteins with rigid scaffolds to understand how these heteronuclear centers are constructed and the mechanism of their function. This chapter describes methods for designing heterobinuclear metal centers in a protein scaffold by giving specific examples of a few heme-nonheme bimetallic centers engineered in myoglobin and cytochrome c peroxidase. We provide step-by-step procedures on how to choose the protein scaffold, design a heterobinuclear metal center in the protein scaffold computationally, incorporate metal ions into the protein, and characterize the resulting metalloproteins, both structurally and functionally. Finally, we discuss how an initial design can be further improved by rationally tuning its secondary coordination sphere, electron/proton transfer rates, and the substrate affinity.
Collapse
Affiliation(s)
- A Bhagi-Damodaran
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - P Hosseinzadeh
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - E Mirts
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - J Reed
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - I D Petrik
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Y Lu
- University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
53
|
|
54
|
Li Q, Ge F, Tan Y, Zhang G, Li W. Genome-Wide Transcriptome Profiling of Mycobacterium smegmatis MC² 155 Cultivated in Minimal Media Supplemented with Cholesterol, Androstenedione or Glycerol. Int J Mol Sci 2016; 17:E689. [PMID: 27164097 PMCID: PMC4881515 DOI: 10.3390/ijms17050689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/12/2016] [Accepted: 04/28/2016] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium smegmatis strain MC² 155 is an attractive model organism for the study of M. tuberculosis and other mycobacterial pathogens, as it can grow well using cholesterol as a carbon resource. However, its global transcriptomic response remains largely unrevealed. In this study, M. smegmatis MC² 155 cultivated in androstenedione, cholesterol and glycerol supplemented media were collected separately for a RNA-Sequencing study. The results showed that 6004, 6681 and 6348 genes were expressed in androstenedione, cholesterol and glycerol supplemented media, and 5891 genes were expressed in all three conditions, with 237 specially expressed in cholesterol added medium. A total of 1852 and 454 genes were significantly up-regulated by cholesterol compared with the other two supplements. Only occasional changes were observed in basic carbon and nitrogen metabolism, while almost all of the genes involved in cholesterol catabolism and mammalian cell entry (MCE) were up-regulated by cholesterol, but not by androstenedione. Eleven and 16 gene clusters were induced by cholesterol when compared with glycerol or androstenedione, respectively. This study provides a comprehensive analysis of the cholesterol responsive transcriptome of M. smegmatis. Our results indicated that cholesterol induced many more genes and increased the expression of the majority of genes involved in cholesterol degradation and MCE in M. smegmatis, while androstenedione did not have the same effect.
Collapse
Affiliation(s)
- Qun Li
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China.
| | - Fanglan Ge
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China.
| | - Yunya Tan
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China.
| | - Guangxiang Zhang
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China.
| | - Wei Li
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China.
| |
Collapse
|
55
|
Deka H, Ghosh S, Saha S, Gogoi K, Mondal B. Effect of ligand denticity on the nitric oxide reactivity of cobalt(ii) complexes. Dalton Trans 2016; 45:10979-88. [DOI: 10.1039/c6dt01169a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NO reactivity of three Co(ii) complexes, 1, 2 and 3 have been studied in degassed methanol solution. The complexes differ from each other in terms of denticity and flexibility of the ligand fameworks. Complex 1 undergoes reductive nitrosylation of the metal ion; 2 results in corresponding [CoIII(NO−)] complex; whereas 3 does not react with NO.
Collapse
Affiliation(s)
- Hemanta Deka
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Assam-781039
- India
| | - Somnath Ghosh
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Assam-781039
- India
| | - Soumen Saha
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Assam-781039
- India
| | - Kuldeep Gogoi
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Assam-781039
- India
| | - Biplab Mondal
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Assam-781039
- India
| |
Collapse
|
56
|
Guo LJ, Zhao B, An Q, Tian M. Characteristics of a Novel Aerobic Denitrifying Bacterium, Enterobacter cloacae Strain HNR. Appl Biochem Biotechnol 2015; 178:947-59. [DOI: 10.1007/s12010-015-1920-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
|
57
|
Isolation and characterization of three heterotrophic nitrifying-aerobic denitrifying bacteria from a sequencing batch reactor. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1161-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
58
|
Kalita A, Kumar V, Mondal B. Nitric oxide reactivity of copper(II) complexes of bidentate amine ligands. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
59
|
Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases. J Biol Inorg Chem 2015; 20:403-33. [DOI: 10.1007/s00775-014-1234-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/14/2014] [Indexed: 02/07/2023]
|
60
|
Xie H, Liu C, Chen X, Lei Q, Fang W, Zhou T. Theoretically exploring the key role of the Lys412 residue in the conversion of N2O to N2by nitrous oxide reductase from Achromobacter cycloclastes. NEW J CHEM 2015. [DOI: 10.1039/c5nj01339a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The active CuZcluster of NOR provides strong back-donation to coordinated N2O and activates the O atom of the N2O group facilitating H-bonding and protonationviathe Lys412 residue.
Collapse
Affiliation(s)
- Hujun Xie
- Department of Applied Chemistry
- Zhejiang Gongshang University
- Hangzhou 310018
- People's Republic of China
| | - Chengcheng Liu
- Department of Applied Chemistry
- Zhejiang Gongshang University
- Hangzhou 310018
- People's Republic of China
| | - Xuelin Chen
- Department of Applied Chemistry
- Zhejiang Gongshang University
- Hangzhou 310018
- People's Republic of China
| | - Qunfang Lei
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Wenjun Fang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Tao Zhou
- Department of Applied Chemistry
- Zhejiang Gongshang University
- Hangzhou 310018
- People's Republic of China
| |
Collapse
|
61
|
Schmidt HL, Robins RJ, Werner RA. Multi-factorial in vivo stable isotope fractionation: causes, correlations, consequences and applications. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2015; 51:155-199. [PMID: 25894429 DOI: 10.1080/10256016.2015.1014355] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Many physical and chemical processes in living systems are accompanied by isotope fractionation on H, C, N, O and S. Although kinetic or thermodynamic isotope effects are always the basis, their in vivo manifestation is often modulated by secondary influences. These include metabolic branching events or metabolite channeling, metabolite pool sizes, reaction mechanisms, anatomical properties and compartmentation of plants and animals, and climatological or environmental conditions. In the present contribution, the fundamentals of isotope effects and their manifestation under in vivo conditions are outlined. The knowledge about and the understanding of these interferences provide a potent tool for the reconstruction of physiological events in plants and animals, their geographical origin, the history of bulk biomass and the biosynthesis of defined representatives. It allows the use of isotope characteristics of biomass for the elucidation of biochemical pathways and reaction mechanisms and for the reconstruction of climatic, physiological, ecological and environmental conditions during biosynthesis. Thus, it can be used for the origin and authenticity control of food, the study of ecosystems and animal physiology, the reconstruction of present and prehistoric nutrition chains and paleaoclimatological conditions. This is demonstrated by the outline of fundamental and application-orientated examples for all bio-elements. The aim of the review is to inform (advanced) students from various disciplines about the whole potential and the scope of stable isotope characteristics and fractionations and to provide them with a comprehensive introduction to the literature on fundamental aspects and applications.
Collapse
Affiliation(s)
- Hanns-Ludwig Schmidt
- a Lehrstuhl für Biologische Chemie , Technische Universität München , Freising-Weihenstephan, Germany
| | | | | |
Collapse
|
62
|
Feng H, Sun Y, Zhi Y, Wei X, Luo Y, Mao L, Zhou P. Identification and characterization of the nitrate assimilation genes in the isolate of Streptomyces griseorubens JSD-1. Microb Cell Fact 2014; 13:174. [PMID: 25492123 PMCID: PMC4272520 DOI: 10.1186/s12934-014-0174-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022] Open
Abstract
Background Streptomyces griseorubens JSD-1 is a novel actinomycete isolated from soil that can utilize nitrate as its sole nitrogen source for growth and these nitrate assimilation genes active in this biotransformation are expected to be crucial. However, little is known about its genomic or genetic background related to nitrogen metabolism in this isolate. Thus, this study concentrates on identification and characterization of genes involved in nitrate assimilation. Results To investigate the molecular mechanism of nitrate metabolism, genome sequencing was performed by Illumina Miseq platform. Then the draft genome of a single linear chromosome with 8,463,223 bp and an average G+C content of 72.42% was obtained, which has been deposited at GenBank under the accession number JJMG00000000. Sequences of nitrate assimilation proteins such as nitrate reductase (EC 1.7.99.4), nitrite reductase (EC 1.7.1.4), glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 1.4.1.13) and glutamate dehydrogenase (EC 1.4.1.2) were acquired. All proteins were predicted to be intracellular enzymes and their sequences were highly identical to those from their similar species owing to the conservative character. Putative 3D structures of these proteins were also modeled based on the templates with the most identities in the PDB database. Through KEGG annotated map, these proteins proved to be located on the key positions of nitrogen metabolic signaling pathway. Finally, quantitative RT-PCR indicated that expression responses of all genes were up-regulated generally and significantly when stimulated with nitrate. Conclusion In this manuscript, we describe the genome features of an isolate of S. griseorubens JSD-1 following with identification and characterization of these nitrate assimilation proteins such as nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase and glutamate dehydrogenase accounts for the ability to utilize nitrate as its sole nitrogen source for growth through cellular localization, multiple sequence alignment, putative 3D modeling and quantitative RT-PCR. In summary, our findings provide the genomic and genetic background of utilizing nitrate of this strain. Electronic supplementary material The online version of this article (doi:10.1186/s12934-014-0174-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haiwei Feng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yujing Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yuee Zhi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xing Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yanqing Luo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Liang Mao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
63
|
Ren YX, Yang L, Liang X. The characteristics of a novel heterotrophic nitrifying and aerobic denitrifying bacterium, Acinetobacter junii YB. BIORESOURCE TECHNOLOGY 2014; 171:1-9. [PMID: 25171329 DOI: 10.1016/j.biortech.2014.08.058] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 08/09/2014] [Accepted: 08/11/2014] [Indexed: 06/03/2023]
Abstract
A novel heterotrophic nitrifying bacterium was isolated from activated sludge and was identified as Acinetobacter junii YB. The strain exhibited efficient heterotrophic nitrification-aerobic denitrification ability at a broad range of ammonium loads and had the capability to utilize hydroxylamine, nitrite and nitrate as a sole nitrogen source. Based on the nitrogen removal and enzyme assay, the nitrogen removal pathway was speculated to be achieved through heterotrophic nitrification coupled with aerobic denitrification. In addition, single-factor experiments showed that efficient heterotrophic nitrification and growth of strain YB occurred with succinate as the carbon source, pH 7.5, 37 °C, and high C/N ratio and dissolved oxygen. Furthermore, the new isolate showed capacities for aggregation and hydrophobicity. Regular variations of the flocculating ability and relative hydrophobicity were observed during the whole cultivation. The ability to perform heterotrophic nitrification-aerobic denitrification and cell aggregation demonstrated the great potential of the strain YB for future applications.
Collapse
Affiliation(s)
- Yong-Xiang Ren
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Lei Yang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xian Liang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
64
|
Fedor JG, Rothery RA, Weiner JH. A New Paradigm for Electron Transfer through Escherichia coli Nitrate Reductase A. Biochemistry 2014; 53:4549-56. [DOI: 10.1021/bi500394m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Justin G. Fedor
- Membrane
Protein Disease
Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Richard A. Rothery
- Membrane
Protein Disease
Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Joel H. Weiner
- Membrane
Protein Disease
Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
65
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
66
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
67
|
Ferroni FM, Marangon J, Neuman NI, Cristaldi JC, Brambilla SM, Guerrero SA, Rivas MG, Rizzi AC, Brondino CD. Pseudoazurin from Sinorhizobium meliloti as an electron donor to copper-containing nitrite reductase: influence of the redox partner on the reduction potentials of the enzyme copper centers. J Biol Inorg Chem 2014; 19:913-21. [DOI: 10.1007/s00775-014-1124-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
|
68
|
Fedor JG, Rothery RA, Giraldi KS, Weiner JH. Q-site occupancy defines heme heterogeneity in Escherichia coli nitrate reductase A (NarGHI). Biochemistry 2014; 53:1733-41. [PMID: 24592999 DOI: 10.1021/bi500121x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The membrane subunit (NarI) of Escherichia coli nitrate reductase A (NarGHI) contains two b-type hemes, both of which are the highly anisotropic low-spin type. Heme bD is distal to NarGH and constitutes part of the quinone binding and oxidation site (Q-site) through the axially coordinating histidine-66 residue and one of the heme bD propionate groups. Bound quinone participates in hydrogen bonds with both the imidazole of His66 and the heme propionate, rendering the EPR spectrum of the heme bD sensitive to Q-site occupancy. As such, we hypothesize that the heterogeneity in the heme bD EPR signal arises from the differential occupancy of the Q-site. In agreement with this, the heterogeneity is dependent upon growth conditions but is still apparent when NarGHI is expressed in a strain lacking cardiolipin. Furthermore, this heterogeneity is sensitive to Q-site variants, NarI-G65A and NarI-K86A, and is collapsible by the binding of inhibitors. We found that the two main gz components of heme bD exhibit differences in reduction potential and pH dependence, which we posit is due to differential Q-site occupancy. Specifically, in a quinone-bound state, heme bD exhibits an Em,8 of -35 mV and a pH dependence of -40 mV pH(-1). In the quinone-free state, however, heme bD titrates with an Em,8 of +25 mV and a pH dependence of -59 mV pH(-1). We hypothesize that quinone binding modulates the electrochemical properties of heme bD as well as its EPR properties.
Collapse
Affiliation(s)
- Justin G Fedor
- Membrane Protein Disease Research Group, Department of Biochemistry, University of Alberta , Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
69
|
The identification of the nitrate assimilation related genes in the novel Bacillus megaterium NCT-2 accounts for its ability to use nitrate as its only source of nitrogen. Funct Integr Genomics 2013; 14:219-27. [DOI: 10.1007/s10142-013-0339-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/29/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
|
70
|
Huang X, Li W, Zhang D, Qin W. Ammonium removal by a novel oligotrophic Acinetobacter sp. Y16 capable of heterotrophic nitrification-aerobic denitrification at low temperature. BIORESOURCE TECHNOLOGY 2013; 146:44-50. [PMID: 23911816 DOI: 10.1016/j.biortech.2013.07.046] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
Ammonium removal from source water is usually inhibited by insufficient carbon sources and low temperature in Northeastern China. A strain Y16 was isolated from oligotrophic niche and was identified as Acinetobacter sp. Y16. It demonstrated excellent capability for ammonium removal at 2 °C, and simultaneously produced nitrogen gas as the end product. About 66% of ammonium was removed after 36 h of incubation. Only trace accumulation of nitrate was observed during the process. The utilization of nitrite and nitrate as well as the existence of napA gene further proved the aerobic denitrification ability of strain Y16. Sodium acetate was the most favorable carbon source for ammonium oxidation by strain Y16. High rotation speed was beneficial for ammonium oxidation. Furthermore, strain Y16 could efficiently remove ammonium at low C/N ratio and low temperature conditions, which was advantageous for nitrogen removal from source water under cold temperatures.
Collapse
Affiliation(s)
- Xiaofei Huang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | - Weiguang Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Duoying Zhang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wen Qin
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
71
|
Antioxidant defense system responses and role of nitrate reductase in the redox balance maintenance in Bradyrhizobium japonicum strains exposed to cadmium. Enzyme Microb Technol 2013; 53:345-50. [DOI: 10.1016/j.enzmictec.2013.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 11/21/2022]
|
72
|
Ji B, Zhang SD, Arnoux P, Rouy Z, Alberto F, Philippe N, Murat D, Zhang WJ, Rioux JB, Ginet N, Sabaty M, Mangenot S, Pradel N, Tian J, Yang J, Zhang L, Zhang W, Pan H, Henrissat B, Coutinho PM, Li Y, Xiao T, Médigue C, Barbe V, Pignol D, Talla E, Wu LF. Comparative genomic analysis provides insights into the evolution and niche adaptation of marine Magnetospira sp. QH-2 strain. Environ Microbiol 2013; 16:525-44. [PMID: 23841906 DOI: 10.1111/1462-2920.12180] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/17/2013] [Accepted: 06/02/2013] [Indexed: 11/30/2022]
Abstract
Magnetotactic bacteria (MTB) are capable of synthesizing intracellular organelles, the magnetosomes, that are membrane-bounded magnetite or greigite crystals arranged in chains. Although MTB are widely spread in various ecosystems, few axenic cultures are available, and only freshwater Magnetospirillum spp. have been genetically analysed. Here, we present the complete genome sequence of a marine magnetotactic spirillum, Magnetospira sp. QH-2. The high number of repeats and transposable elements account for the differences in QH-2 genome structure compared with other relatives. Gene cluster synteny and gene correlation analyses indicate that the insertion of the magnetosome island in the QH-2 genome occurred after divergence between freshwater and marine magnetospirilla. The presence of a sodium-quinone reductase, sodium transporters and other functional genes are evidence of the adaptive evolution of Magnetospira sp. QH-2 to the marine ecosystem. Genes well conserved among freshwater magnetospirilla for nitrogen fixation and assimilatory nitrate respiration are absent from the QH-2 genome. Unlike freshwater Magnetospirillum spp., marine Magnetospira sp. QH-2 neither has TonB and TonB-dependent receptors nor does it grow on trace amounts of iron. Taken together, our results show a distinct, adaptive evolution of Magnetospira sp. QH-2 to marine sediments in comparison with its closely related freshwater counterparts.
Collapse
Affiliation(s)
- Boyang Ji
- Laboratoire de Chimie Bactérienne, Aix-Marseille Université, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7283, F-13402, Marseille Cedex 20, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Contrasting catalytic profiles of multiheme nitrite reductases containing CxxCK heme-binding motifs. J Biol Inorg Chem 2013; 18:655-67. [DOI: 10.1007/s00775-013-1011-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 06/01/2013] [Indexed: 10/26/2022]
|
74
|
Uversky VN. The alphabet of intrinsic disorder: II. Various roles of glutamic acid in ordered and intrinsically disordered proteins. INTRINSICALLY DISORDERED PROTEINS 2013; 1:e24684. [PMID: 28516010 PMCID: PMC5424795 DOI: 10.4161/idp.24684] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/27/2013] [Accepted: 04/12/2013] [Indexed: 11/19/2022]
Abstract
The ability of a protein to fold into unique functional state or to stay intrinsically disordered is encoded in its amino acid sequence. Both ordered and intrinsically disordered proteins (IDPs) are natural polypeptides that use the same arsenal of 20 proteinogenic amino acid residues as their major building blocks. The exceptional structural plasticity of IDPs, their capability to exist as heterogeneous structural ensembles and their wide array of important disorder-based biological functions that complements functional repertoire of ordered proteins are all rooted within the peculiar differential usage of these building blocks by ordered proteins and IDPs. In fact, some residues (so-called disorder-promoting residues) are noticeably more common in IDPs than in sequences of ordered proteins, which, in their turn, are enriched in several order-promoting residues. Furthermore, residues can be arranged according to their “disorder promoting potencies,” which are evaluated based on the relative abundances of various amino acids in ordered and disordered proteins. This review continues a series of publications on the roles of different amino acids in defining the phenomenon of protein intrinsic disorder and concerns glutamic acid, which is the second most disorder-promoting residue.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; College of Medicine; University of South Florida; Tampa, FL USA.,Institute for Biological Instrumentation; Russian Academy of Sciences; Moscow, Russia
| |
Collapse
|
75
|
Waki M, Yasuda T, Fukumoto Y, Kuroda K, Suzuki K. Effect of electron donors on anammox coupling with nitrate reduction for removing nitrogen from nitrate and ammonium. BIORESOURCE TECHNOLOGY 2013; 130:592-598. [PMID: 23334015 DOI: 10.1016/j.biortech.2012.12.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 06/01/2023]
Abstract
Anammox coupling with nitrate reduction under various electron donors was studied using sludge acclimatized to have anammox and denitrification activities. Due to a deficiency in electron donors for NO(3)(-) reduction, anammox activity in an inorganic medium containing NO(3)(-) and NH(4)(+) was lower than that in NO(2)(-) and NH(4)(+). Anammox could use NO(2)(-) competitively against denitrifiers under a very limited NO(2)(-) concentration, and additions of swine wastewater or acetate stimulated anammox activity in an inorganic medium containing NO(3)(-) and NH(4)(+) with no inhibition effects. However, a high concentration of swine wastewater caused an exponential increase in denitrification activity. The addition of hydrogen and iron stimulated anammox activity in an inorganic medium containing NO(3)(-) and NH(4)(+), but iron showed an inhibitory effect on anammox in a medium containing NO(2)(-) and NH(4)(+). Hydrogen was shown to be advantageous since it did not increase denitrification even when its addition was increased.
Collapse
Affiliation(s)
- Miyoko Waki
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Ikenodai 2, Tsukuba 305-0901, Japan.
| | | | | | | | | |
Collapse
|
76
|
Gonzalez PJ, Rivas MG, Mota CS, Brondino CD, Moura I, Moura JJ. Periplasmic nitrate reductases and formate dehydrogenases: Biological control of the chemical properties of Mo and W for fine tuning of reactivity, substrate specificity and metabolic role. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.05.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
77
|
Kumar P, Kalita A, Mondal B. Nitric oxide reactivity of Cu(ii) complexes of tetra- and pentadentate ligands: structural influence in deciding the reduction pathway. Dalton Trans 2013; 42:5731-9. [DOI: 10.1039/c3dt32580f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
78
|
Shiro Y, Sugimoto H, Tosha T, Nagano S, Hino T. Structural basis for nitrous oxide generation by bacterial nitric oxide reductases. Philos Trans R Soc Lond B Biol Sci 2012; 367:1195-203. [PMID: 22451105 DOI: 10.1098/rstb.2011.0310] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The crystal structure of the bacterial nitric oxide reductase (cNOR) from Pseudomonas aeruginosa is reported. Its overall structure is similar to those of the main subunit of aerobic and micro-aerobic cytochrome oxidases (COXs), in agreement with the hypothesis that all these enzymes are members of the haem-copper oxidase superfamily. However, substantial structural differences between cNOR and COX are observed in the catalytic centre and the delivery pathway of the catalytic protons, which should be reflected in functional differences between these respiratory enzymes. On the basis of the cNOR structure, we propose a possible reaction mechanism of nitric oxide reduction to nitrous oxide as a working hypothesis.
Collapse
|
79
|
Tikhonova T, Tikhonov A, Trofimov A, Polyakov K, Boyko K, Cherkashin E, Rakitina T, Sorokin D, Popov V. Comparative structural and functional analysis of two octaheme nitrite reductases from closely relatedThioalkalivibriospecies. FEBS J 2012; 279:4052-61. [DOI: 10.1111/j.1742-4658.2012.08811.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tamara Tikhonova
- Bach Institute of Biochemistry; Russian Academy of Sciences, Leninskii pr. 33; Moscow 119071; Russia
| | - Alexey Tikhonov
- Bach Institute of Biochemistry; Russian Academy of Sciences, Leninskii pr. 33; Moscow 119071; Russia
| | | | | | | | - Eugene Cherkashin
- National Research Centre ‘Kurchatov Institute’, Academic Kurchatov sq. 1; Moscow 123182; Russia
| | - Tatiana Rakitina
- National Research Centre ‘Kurchatov Institute’, Academic Kurchatov sq. 1; Moscow 123182; Russia
| | - Dmitry Sorokin
- Winogradsky Institute of Microbiology; Russian Academy of Sciences, Leninskii pr. 32a; Moscow 119991; Russia
| | | |
Collapse
|
80
|
Ferroni FM, Guerrero SA, Rizzi AC, Brondino CD. Overexpression, purification, and biochemical and spectroscopic characterization of copper-containing nitrite reductase from Sinorhizobium meliloti 2011. Study of the interaction of the catalytic copper center with nitrite and NO. J Inorg Biochem 2012; 114:8-14. [DOI: 10.1016/j.jinorgbio.2012.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 11/28/2022]
|
81
|
Draft genome sequence of a psychrotolerant sulfur-oxidizing bacterium, Sulfuricella denitrificans skB26, and proteomic insights into cold adaptation. Appl Environ Microbiol 2012; 78:6545-9. [PMID: 22773644 DOI: 10.1128/aem.01349-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Except for several conspicuous cases, very little is known about sulfur oxidizers living in natural freshwater environments. Sulfuricella denitrificans skB26 is a psychrotolerant sulfur oxidizer recently isolated from a freshwater lake as a representative of a new genus in the class Betaproteobacteria. In this study, an approximately 3.2-Mb draft genome sequence of strain skB26 was obtained. In the draft genome, consisting of 23 contigs, a single rRNA operon, 43 tRNA genes, and 3,133 coding sequences were identified. The identified genes include those required for sulfur oxidation, denitrification, and carbon fixation. Comparative proteomic analysis was conducted to assess cold adaptation mechanisms of this organism. From cells grown at 22°C and 5°C, proteins were extracted for analysis by nano-liquid chromatography-electrospray ionization-tandem mass spectrometry. In the cells cultured at 5°C, relative abundances of ribosomal proteins, cold shock proteins, and DEAD/DEAH box RNA helicases were increased in comparison to those at 22°C. These results suggest that maintenance of proper translation is critical for growth under low-temperature conditions, similar to the case for other cold-adapted prokaryotes.
Collapse
|
82
|
Cho JS, Yoo YJ. Mechanism and mathematical modeling of electro-enzymatic denitrification. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0363-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
83
|
Sarma M, Mondal B. Nitric oxide reactivity of copper(II) complexes of bidentate amine ligands: effect of substitution on ligand nitrosation. Dalton Trans 2012; 41:2927-34. [PMID: 22266544 DOI: 10.1039/c2dt11082b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three copper(ii) complexes with bidentate ligands L(1), L(2) and L(3) [L(1), N,N(/)-dimethylethylenediamine; L(2), N,N(/)-diethylethylenediamine and L(3), N,N(/)-diisobutylethylenediamine], respectively, were synthesized as their perchlorate salts. The single crystal structures for all the complexes were determined. The nitric oxide reactivity of the complexes was studied in acetonitrile solvent. The formation of thermally unstable [Cu(II)-NO] intermediate on reaction of the complexes with nitric oxide in acetonitrile solution was observed prior to the reduction of copper(II) centres to copper(I). The reduction was found to result with a simultaneous mono- and di-nitrosation at the secondary amine sites of the ligand. All the nitrosation products were isolated and characterized. The ratio of the yield of mono- and di-nitrosation product was found to be dependent on the N-substitution present in the ligand framework.
Collapse
Affiliation(s)
- Moushumi Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | | |
Collapse
|
84
|
Trofimov AA, Polyakov KM, Tikhonova TV, Tikhonov AV, Safonova TN, Boyko KM, Dorovatovskii PV, Popov VO. Covalent modifications of the catalytic tyrosine in octahaem cytochromecnitrite reductase and their effect on the enzyme activity. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:144-53. [DOI: 10.1107/s0907444911052632] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/06/2011] [Indexed: 11/10/2022]
|
85
|
Moraes BS, Foresti E. Determination of the intrinsic kinetic parameters of sulfide-oxidizing autotrophic denitrification in differential reactors containing immobilized biomass. BIORESOURCE TECHNOLOGY 2012; 104:250-256. [PMID: 22142506 DOI: 10.1016/j.biortech.2011.11.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 05/31/2023]
Abstract
Nitrogen removal coupled with sulfide oxidation has potential for the treatment of effluents from anaerobic reactors because they contain sulfide, which can be used as an endogenous electron donor for denitrification. This work evaluated the intrinsic kinetics of sulfide-oxidizing autotrophic denitrification via nitrate and nitrite in systems containing attached cells. Differential reactors were fed with nitrified synthetic domestic sewage and different sulfide concentrations. The intrinsic kinetic parameters of nitrogen removal were determined when the mass transfer resistance was negligible. This bioprocess could be described by a half-order kinetic model for biofilms. The half-order kinetic coefficients ranged from 0.425 to 0.658 mg N(1/2) L(-1/2) h(-1) for denitrification via nitrite and from 0.190 to 0.609 mg N(1/2) L(-1/2) h(-1) for denitrification via nitrate. In this latter, the lower value was due to the use of electrons donated from intermediary sulfur compounds whose formation and subsequent consumption were detected.
Collapse
Affiliation(s)
- B S Moraes
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400, Centro, 13566-590 São Carlos, SP, Brazil.
| | | |
Collapse
|
86
|
Sarma M, Kumar V, Kalita A, Deka RC, Mondal B. Nitric oxide reactivity of copper(ii) complexes of bidentate amine ligands: effect of chelate ring size on the stability of a [CuII–NO] intermediate. Dalton Trans 2012; 41:9543-52. [DOI: 10.1039/c2dt30721a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
87
|
Takeda H, Takahashi N, Hatano R, Hashidoko Y. Active N2O emission from bacterial microbiota of Andisol farmland and characterization of some N2O emitters. J Basic Microbiol 2011; 52:477-86. [DOI: 10.1002/jobm.201100241] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 09/04/2011] [Indexed: 11/10/2022]
|
88
|
Zhao HP, Van Ginkel S, Tang Y, Kang DW, Rittmann B, Krajmalnik-Brown R. Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:10155-10162. [PMID: 22017212 DOI: 10.1021/es202569b] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We studied the microbial functional and structural interactions between nitrate (NO(3)(-)) and perchlorate (ClO(4)(-)) reductions in the hydrogen (H(2))-based membrane biofilm reactor (MBfR). When H(2) was not limiting, ClO(4)(-) and NO(3)(-) reductions were complete, and the MBfR's biofilm was composed mainly of bacteria from the ε- and β-proteobacteria classes, with autotrophic genera Sulfuricurvum, Hydrogenophaga, and Dechloromonas dominating the biofilm. Based on functional-gene and pyrosequencing assays, Dechloromonas played the most important role in ClO(4)(-) reduction, while Sulfuricurvum and Hydrogenophaga were responsible for NO(3)(-) reduction. When H(2) delivery was insufficient to completely reduce both electron acceptors, NO(3)(-) reduction out-competed ClO(4)(-) reduction for electrons from H(2), and mixotrophs become important in the MBfR biofilm. β-Proteobacteria became the dominant class, and Azonexus replaced Sulfuricurvum as a main genus. The changes suggest that facultative, NO(3)(-)-reducing bacteria had advantages over strict autotrophs when H(2) was limiting, because organic microbial products became important electron donors when H(2) was severely limiting.
Collapse
Affiliation(s)
- He-Ping Zhao
- Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287-5701, United States.
| | | | | | | | | | | |
Collapse
|
89
|
Doctorovich F, Bikiel D, Pellegrino J, Suárez SA, Larsen A, Martí MA. Nitroxyl (azanone) trapping by metalloporphyrins. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2011.04.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
90
|
Interfacial electrochemical electron transfer in biology - towards the level of the single molecule. FEBS Lett 2011; 586:526-35. [PMID: 22024483 DOI: 10.1016/j.febslet.2011.10.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/04/2011] [Accepted: 10/11/2011] [Indexed: 11/21/2022]
Abstract
Physical electrochemistry has undergone a remarkable evolution over the last few decades, integrating advanced techniques and theory from solid state and surface physics. Single-crystal electrode surfaces have been a core notion, opening for scanning tunnelling microscopy directly in aqueous electrolyte (in situ STM). Interfacial electrochemistry of metalloproteins is presently going through a similar transition. Electrochemical surfaces with thiol-based promoter molecular monolayers (SAMs) as biomolecular electrochemical environments and the biomolecules themselves have been mapped with unprecedented resolution, opening a new area of single-molecule bioelectrochemistry. We consider first in situ STM of small redox molecules, followed by in situ STM of thiol-based SAMs as molecular views of bioelectrochemical environments. We then address electron transfer metalloproteins, and multi-centre metalloenzymes including applied single-biomolecular perspectives based on metalloprotein/metallic nanoparticle hybrids.
Collapse
|
91
|
Hino T, Nagano S, Sugimoto H, Tosha T, Shiro Y. Molecular structure and function of bacterial nitric oxide reductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:680-7. [PMID: 22001779 DOI: 10.1016/j.bbabio.2011.09.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 10/17/2022]
Abstract
The crystal structure of the membrane-integrated nitric oxide reductase cNOR from Pseudomonas aeruginosa was determined. The smaller NorC subunit of cNOR is comprised of 1 trans-membrane helix and a hydrophilic domain, where the heme c is located, while the larger NorB subunit consists of 12 trans-membrane helices, which contain heme b and the catalytically active binuclear center (heme b(3) and non-heme Fe(B)). The roles of the 5 well-conserved glutamates in NOR are discussed, based on the recently solved structure. Glu211 and Glu280 appear to play an important role in the catalytic reduction of NO at the binuclear center by functioning as a terminal proton donor, while Glu215 probably contributes to the electro-negative environment of the catalytic center. Glu135, a ligand for Ca(2+) sandwiched between two heme propionates from heme b and b(3), and the nearby Glu138 appears to function as a structural factor in maintaining a protein conformation that is suitable for electron-coupled proton transfer from the periplasmic region to the active site. On the basis of these observations, the possible molecular mechanism for the reduction of NO by cNOR is discussed. This article is part of a Special Issue entitled: Respiratory Oxidases.
Collapse
|
92
|
Community profiling and gene expression of fungal assimilatory nitrate reductases in agricultural soil. ISME JOURNAL 2011; 5:1771-83. [PMID: 21562596 PMCID: PMC3197165 DOI: 10.1038/ismej.2011.53] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although fungi contribute significantly to the microbial biomass in terrestrial ecosystems, little is known about their contribution to biogeochemical nitrogen cycles. Agricultural soils usually contain comparably high amounts of inorganic nitrogen, mainly in the form of nitrate. Many studies focused on bacterial and archaeal turnover of nitrate by nitrification, denitrification and assimilation, whereas the fungal role remained largely neglected. To enable research on the fungal contribution to the biogeochemical nitrogen cycle tools for monitoring the presence and expression of fungal assimilatory nitrate reductase genes were developed. To the ∼100 currently available fungal full-length gene sequences, another 109 partial sequences were added by amplification from individual culture isolates, representing all major orders occurring in agricultural soils. The extended database led to the discovery of new horizontal gene transfer events within the fungal kingdom. The newly developed PCR primers were used to study gene pools and gene expression of fungal nitrate reductases in agricultural soils. The availability of the extended database allowed affiliation of many sequences to known species, genera or families. Energy supply by a carbon source seems to be the major regulator of nitrate reductase gene expression for fungi in agricultural soils, which is in good agreement with the high energy demand of complete reduction of nitrate to ammonium.
Collapse
|
93
|
Magalon A, Fedor JG, Walburger A, Weiner JH. Molybdenum enzymes in bacteria and their maturation. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2010.12.031] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
94
|
Field SJ, Roldan MD, Marritt SJ, Butt JN, Richardson DJ, Watmough NJ. Electron transfer to the active site of the bacterial nitric oxide reductase is controlled by ligand binding to heme b₃. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:451-7. [PMID: 21296048 DOI: 10.1016/j.bbabio.2011.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/26/2011] [Accepted: 01/30/2011] [Indexed: 10/18/2022]
Abstract
The active site of the bacterial nitric oxide reductase from Paracoccus denitrificans contains a dinuclear centre comprising heme b₃ and non heme iron (Fe(B)). These metal centres are shown to be at isopotential with midpoint reduction potentials of E(m) ≈ +80 mV. The midpoint reduction potentials of the other two metal centres in the enzyme, heme c and heme b, are greater than the dinuclear centre suggesting that they act as an electron receiving/storage module. Reduction of the low-spin heme b causes structural changes at the dinuclear centre which allow access to substrate molecules. In the presence of the substrate analogue, CO, the midpoint reduction potential of heme b₃ is raised to a region similar to that of heme c and heme b. This leads us to suggest that reduction of the electron transfer hemes leads to an opening of the active site which allows substrate to bind and in turn raises the reduction potential of the active site such that electrons are only delivered to the active site following substrate binding.
Collapse
Affiliation(s)
- Sarah J Field
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR47TJ, UK
| | | | | | | | | | | |
Collapse
|
95
|
Ferroni FM, Rivas MG, Rizzi AC, Lucca ME, Perotti NI, Brondino CD. Nitrate reduction associated with respiration in Sinorhizobium meliloti 2011 is performed by a membrane-bound molybdoenzyme. Biometals 2011; 24:891-902. [PMID: 21432624 DOI: 10.1007/s10534-011-9442-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
Abstract
The purification and biochemical characterization of the respiratory membrane-bound nitrate reductase from Sinorhizobium meliloti 2011 (Sm NR) is reported together with the optimal conditions for cell growth and enzyme production. The best biomass yield was obtained under aerobic conditions in a fed-batch system using Luria-Bertani medium with glucose as carbon source. The highest level of Sm NR production was achieved using microaerobic conditions with the medium supplemented with both nitrate and nitrite. Sm NR is a mononuclear Mo-protein belonging to the DMSO reductase family isolated as a heterodimeric enzyme containing two subunits of 118 and 45 kDa. Protein characterization by mass spectrometry showed homology with respiratory nitrate reductases. UV-Vis spectra of as-isolated and dithionite reduced Sm NR showed characteristic absorption bands of iron-sulfur and heme centers. Kinetic studies indicate that Sm NR follows a Michaelis-Menten mechanism (K (m) = 97 ± 11 μM, V = 9.4 ± 0.5 μM min(-1), and k (cat) = 12.1 ± 0.6 s(-1)) and is inhibited by azide, chlorate, and cyanide with mixed inhibition patterns. Physiological and kinetic studies indicate that molybdenum is essential for NR activity and that replacement of this metal for tungsten inhibits the enzyme. Although no narGHI gene cluster has been annotated in the genome of rhizobia, the biochemical characterization indicates that Sm NR is a Mo-containing NR enzyme with molecular organization similar to NarGHI.
Collapse
Affiliation(s)
- Felix M Ferroni
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, S3000ZAA Santa Fe, Argentina
| | | | | | | | | | | |
Collapse
|
96
|
Sarma M, Mondal B. Nitric Oxide Reduction of Copper(II) Complexes: Spectroscopic Evidence of Copper(II)−Nitrosyl Intermediate. Inorg Chem 2011; 50:3206-12. [DOI: 10.1021/ic1011988] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Moushumi Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Biplab Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
97
|
Gao J, Wang Y, Hovsepyan A, Bonzongo JCJ. Effects of engineered nanomaterials on microbial catalyzed biogeochemical processes in sediments. JOURNAL OF HAZARDOUS MATERIALS 2011; 186:940-945. [PMID: 21159427 DOI: 10.1016/j.jhazmat.2010.11.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 05/30/2023]
Abstract
Engineered nanomaterials (ENMs) are anticipated to find use in many human activities and commercial products. Concerns are therefore being raised regarding their environmental fate and toxicological implications, which remain largely unknown. In this study, we investigate the effects of C(60), nano-Ag and CdSe quantum dots (QD) on microbial-catalyzed oxidation of organic matter in freshwater sediments. Sediment slurries spiked with sodium acetate at a final concentration of 150 mg/L were separately treated with pre-identified toxic levels of the tested ENMs. The study focused primarily on acetate oxidation by nitrate reducing bacteria. Sediment slurries were incubated under anaerobic conditions in parallel with control samples, and changes in concentrations of acetate, nitrate and nitrite tracked over time. The results showed that tested C(60) concentration completely inhibited the microbial oxidation of acetate, whereas the addition of nano-Ag and CdSe QD to sediment slurries negatively affected the rates of acetate oxidation. Under conditions with nitrate as prevalent electron acceptor, reaction rates of acetate degradation decreased from 0.44 day(-1) in control slurries to 0.24 day(-1) and 0.20 day(-1) in slurries treated with nano-Ag and CdSe QD, respectively. These preliminary results call for further investigations on potential long-term effects of ENMs on microbial driven basic ecosystem services.
Collapse
Affiliation(s)
- Jie Gao
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | |
Collapse
|
98
|
Abstract
The nitrogen cycle describes the processes through which nitrogen is converted between its various chemical forms. These transformations involve both biological and abiotic redox processes. The principal processes involved in the nitrogen cycle are nitrogen fixation, nitrification, nitrate assimilation, respiratory reduction of nitrate to ammonia, anaerobic ammonia oxidation (anammox) and denitrification. All of these are carried out by micro-organisms, including bacteria, archaea and some specialized fungi. In the present article, we provide a brief introduction to both the biochemical and ecological aspects of these processes and consider how human activity over the last 100 years has changed the historic balance of the global nitrogen cycle.
Collapse
|
99
|
Almeida MG, Serra A, Silveira CM, Moura JJ. Nitrite biosensing via selective enzymes--a long but promising route. SENSORS (BASEL, SWITZERLAND) 2010; 10:11530-55. [PMID: 22163541 PMCID: PMC3231041 DOI: 10.3390/s101211530] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 11/19/2010] [Accepted: 12/06/2010] [Indexed: 12/21/2022]
Abstract
The last decades have witnessed a steady increase of the social and political awareness for the need of monitoring and controlling environmental and industrial processes. In the case of nitrite ion, due to its potential toxicity for human health, the European Union has recently implemented a number of rules to restrict its level in drinking waters and food products. Although several analytical protocols have been proposed for nitrite quantification, none of them enable a reliable and quick analysis of complex samples. An alternative approach relies on the construction of biosensing devices using stable enzymes, with both high activity and specificity for nitrite. In this paper we review the current state-of-the-art in the field of electrochemical and optical biosensors using nitrite reducing enzymes as biorecognition elements and discuss the opportunities and challenges in this emerging market.
Collapse
Affiliation(s)
- M. Gabriela Almeida
- REQUIMTE—Departmento de Química, Faculdade de Ciencias e Tecnologia (UNL), 2829-516 Monte Caparica, Portugal; E-Mails: (A.S.); (C.M.S.); (J.J.G.M.)
- Escola Superior de Saude Egas Moniz, Campus Universitario, Quinta da Granja, 2829-511 Monte Caparica, Portugal
| | - Alexandra Serra
- REQUIMTE—Departmento de Química, Faculdade de Ciencias e Tecnologia (UNL), 2829-516 Monte Caparica, Portugal; E-Mails: (A.S.); (C.M.S.); (J.J.G.M.)
| | - Celia M. Silveira
- REQUIMTE—Departmento de Química, Faculdade de Ciencias e Tecnologia (UNL), 2829-516 Monte Caparica, Portugal; E-Mails: (A.S.); (C.M.S.); (J.J.G.M.)
| | - Jose J.G. Moura
- REQUIMTE—Departmento de Química, Faculdade de Ciencias e Tecnologia (UNL), 2829-516 Monte Caparica, Portugal; E-Mails: (A.S.); (C.M.S.); (J.J.G.M.)
| |
Collapse
|
100
|
Duca M, Cucarella MO, Rodriguez P, Koper MTM. Direct Reduction of Nitrite to N2 on a Pt(100) Electrode in Alkaline Media. J Am Chem Soc 2010; 132:18042-4. [DOI: 10.1021/ja1092503] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matteo Duca
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Mar Oroval Cucarella
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Paramaconi Rodriguez
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Marc T. M. Koper
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|