51
|
Shabbir Z, Sardar A, Shabbir A, Abbas G, Shamshad S, Khalid S, Murtaza G, Dumat C, Shahid M. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. CHEMOSPHERE 2020; 259:127436. [PMID: 32599387 DOI: 10.1016/j.chemosphere.2020.127436] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 05/27/2023]
Abstract
Copper (Cu) is an essential metal for human, animals and plants, although it is also potentially toxic above supra-optimal levels. In plants, Cu is an essential cofactor of numerous metalloproteins and is involved in several biochemical and physiological processes. However, excess of Cu induces oxidative stress inside plants via enhanced production of reactive oxygen species (ROS). Owing to its dual nature (essential and a potential toxicity), this metal involves a complex network of uptake, sequestration and transport, essentiality, toxicity and detoxification inside the plants. Therefore, it is vital to monitor the biogeo-physiochemical behavior of Cu in soil-plant-human systems keeping in view its possible essential and toxic roles. This review critically highlights the latest understanding of (i) Cu adsorption/desorption in soil (ii) accumulation in plants, (iii) phytotoxicity, (iv) tolerance mechanisms inside plants and (v) health risk assessment. The Cu-mediated oxidative stress and resulting up-regulation of several enzymatic and non-enzymatic antioxidants have been deliberated at molecular and cellular levels. Moreover, the role of various transporter proteins in Cu uptake and its proper transportation to target metalloproteins is critically discussed. The review also delineates Cu build-up in plant food and accompanying health disorders. Finally, this review proposes some future perspectives regarding Cu biochemistry inside plants. The review, to a large extent, presents a complete picture of the biogeo-physiochemical behavior of Cu in soil-plant-human systems supported with up-to-date 10 tables and 5 figures. It can be of great interest for post-graduate level students, scientists, industrialists, policymakers and regulatory authorities.
Collapse
Affiliation(s)
- Zunaira Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Aneeza Sardar
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Abrar Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Saliha Shamshad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Ghulam Murtaza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, 5 allée Machado A., 31058, Toulouse, Cedex 9, France; Université de Toulouse, INP-ENSAT, Avenue de l'Agrobiopole, 31326, Auzeville-Tolosane, France; Association Réseau-Agriville, France
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan. http://reseau-agriville.com/
| |
Collapse
|
52
|
De Tullio MC. Is ascorbic acid a key signaling molecule integrating the activities of 2-oxoglutarate-dependent dioxygenases? Shifting the paradigm. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2020; 178:104173. [DOI: 10.1016/j.envexpbot.2020.104173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
53
|
VanArsdale E, Pitzer J, Payne GF, Bentley WE. Redox Electrochemistry to Interrogate and Control Biomolecular Communication. iScience 2020; 23:101545. [PMID: 33083771 PMCID: PMC7516135 DOI: 10.1016/j.isci.2020.101545] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cells often communicate by the secretion, transport, and perception of molecules. Information conveyed by molecules is encoded, transmitted, and decoded by cells within the context of the prevailing microenvironments. Conversely, in electronics, transmission reliability and message validation are predictable, robust, and less context dependent. In turn, many transformative advances have resulted by the formal consideration of information transfer. One way to explore this potential for biological systems is to create bio-device interfaces that facilitate bidirectional information transfer between biology and electronics. Redox reactions enable this linkage because reduction and oxidation mediate communication within biology and can be coupled with electronics. By manipulating redox reactions, one is able to combine the programmable features of electronics with the ability to interrogate and modulate biological function. In this review, we examine methods to electrochemically interrogate the various components of molecular communication using redox chemistry and to electronically control cell communication using redox electrogenetics.
Collapse
Affiliation(s)
- Eric VanArsdale
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall 8278 Paint Branch Drive, College Park, MD 20742, USA.,Institute of Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, Room 5102, A. James Clark Hall, College Park, MD 20742, USA
| | - Juliana Pitzer
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Gregory F Payne
- Institute of Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, Room 5102, A. James Clark Hall, College Park, MD 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall 8278 Paint Branch Drive, College Park, MD 20742, USA.,Institute of Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, Room 5102, A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
54
|
Ripening-related cell wall modifications in olive (Olea europaea L.) fruit: A survey of nine genotypes. Food Chem 2020; 338:127754. [PMID: 32829296 DOI: 10.1016/j.foodchem.2020.127754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/01/2020] [Accepted: 08/01/2020] [Indexed: 11/21/2022]
Abstract
The production of olive (Olea europaea L.) is very important economically in many areas of the world, and particularly in countries around the Mediterranean basin. Ripening-associated modifications in cell wall composition and structure of fruits play an important role in attributes like firmness or susceptibility to infestations, rots and mechanical damage, but limited information on these aspects is currently available for olive. In this work, cell wall metabolism was studied in fruits from nine olive cultivars ('Arbequina', 'Argudell', 'Empeltre', 'Farga', 'Manzanilla', 'Marfil', 'Morrut', 'Picual' and 'Sevillenca') picked at three maturity stages (green, turning and ripe). Yields of alcohol-insoluble residue (AIR) recovered from fruits, as well as calcium content in fruit pericarp, decreased along ripening. Cultivar-specific diversity was observed in time-course change patterns of enzyme activity, particularly for those acting on arabinosyl- and galactosyl-rich pectin side chains. Even so, fruit firmness levels were associated to higher pectin methylesterase (PME) activity and calcium contents. In turn, fruit firmness correlated inversely with ascorbate content and with α-l-arabinofuranosidase (AFase) and β-galactosidase (β-Gal) activities, resulting in preferential loss of neutral sugars from cell wall polymers.
Collapse
|
55
|
Singh RR, Verstraeten B, Siddique S, Tegene AM, Tenhaken R, Frei M, Haeck A, Demeestere K, Pokhare S, Gheysen G, Kyndt T. Ascorbate oxidation activates systemic defence against root-knot nematode Meloidogyne graminicola in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4271-4284. [PMID: 32242224 DOI: 10.1093/jxb/eraa171] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/02/2020] [Indexed: 05/23/2023]
Abstract
Ascorbic acid (AA) is the major antioxidant buffer produced in the shoot tissue of plants. Previous studies on root-knot nematode (RKN; Meloidogyne graminicola)-infected rice (Oryza sativa) plants showed differential expression of AA-recycling genes, although their functional role was unknown. Our results confirmed increased dehydroascorbate (DHA) levels in nematode-induced root galls, while AA mutants were significantly more susceptible to nematode infection. External applications of ascorbate oxidase (AO), DHA, or reduced AA, revealed systemic effects of ascorbate oxidation on rice defence versus RKN, associated with a primed accumulation of H2O2 upon nematode infection. To confirm and further investigate these systemic effects, a transcriptome analysis was done on roots of foliar AO-treated plants, revealing activation of the ethylene (ET) response and jasmonic acid (JA) biosynthesis pathways in roots, which was confirmed by hormone measurements. Activation of these pathways by methyl-JA, or ethephon treatment can complement the susceptibility phenotype of the rice Vitamin C (vtc1) mutant. Experiments on the jasmonate signalling (jar1) mutant or using chemical JA/ET inhibitors confirm that the effects of ascorbate oxidation are dependent on both the JA and ET pathways. Collectively, our data reveal a novel pathway in which ascorbate oxidation induces systemic defence against RKNs.
Collapse
Affiliation(s)
| | | | - Shahid Siddique
- Institute of Crop Science and Resource Conservation, Department of Molecular Phytomedicine, University of Bonn, Bonn, Germany
- Department of Entomology and Nematology, UC Davis, One Shields Avenue, CA, USA
| | | | - Raimund Tenhaken
- Department of Bio Sciences; Plant Physiology, University of Salzburg, Salzburg, Austria
| | - Michael Frei
- Institute of Crop Science and Resource Conservation, Crop Science, University of Bonn, Bonn, Germany
| | - Ashley Haeck
- Department of Green Chemistry and Technology, Research Group EnVOC, Ghent University, Ghent, Belgium
| | - Kristof Demeestere
- Department of Green Chemistry and Technology, Research Group EnVOC, Ghent University, Ghent, Belgium
| | - Somnath Pokhare
- Institute of Crop Science and Resource Conservation, Department of Molecular Phytomedicine, University of Bonn, Bonn, Germany
| | | | - Tina Kyndt
- Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
56
|
Ding H, Wang B, Han Y, Li S. The pivotal function of dehydroascorbate reductase in glutathione homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3405-3416. [PMID: 32107543 DOI: 10.1093/jxb/eraa107] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/25/2020] [Indexed: 05/20/2023]
Abstract
Under natural conditions, plants are exposed to various abiotic and biotic stresses that trigger rapid changes in the production and removal of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). The ascorbate-glutathione pathway has been recognized to be a key player in H2O2 metabolism, in which reduced glutathione (GSH) regenerates ascorbate by reducing dehydroascorbate (DHA), either chemically or via DHA reductase (DHAR), an enzyme belonging to the glutathione S-transferase (GST) superfamily. Thus, DHAR has been considered to be important in maintaining the ascorbate pool and its redox state. Although some GSTs and peroxiredoxins may contribute to GSH oxidation, analysis of Arabidopsis dhar mutants has identified the key role of DHAR in coupling H2O2 to GSH oxidation. The reaction of DHAR has been proposed to proceed by a ping-pong mechanism, in which binding of DHA to the free reduced form of the enzyme is followed by binding of GSH. Information from crystal structures has shed light on the formation of sulfenic acid at the catalytic cysteine of DHAR that occurs with the reduction of DHA. In this review, we discuss the molecular properties of DHAR and its importance in coupling the ascorbate and glutathione pools with H2O2 metabolism, together with its functions in plant defense, growth, and development.
Collapse
Affiliation(s)
- Haiyan Ding
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Bipeng Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yi Han
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
57
|
Lemmens E, Alós E, Rymenants M, De Storme N, Keulemans WJ. Dynamics of ascorbic acid content in apple (Malus x domestica) during fruit development and storage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:47-59. [PMID: 32197136 DOI: 10.1016/j.plaphy.2020.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Vitamin C is a crucial antioxidant and cofactor for both plants and humans. Apple fruits generally contain low levels of vitamin C, making vitamin C content an interesting trait for apple crop improvement. With the aim of breeding high vitamin C apple cultivars it is important to get an insight in the natural biodiversity of vitamin C content in apple fruits. In this study, quantification of ascorbic acid (AsA), dehydroascorbic acid (DHA), and total AsA (AsA + DHA) in apple pulp of 79 apple accessions at harvest revealed significant variation, indicating a large genetic biodiversity. High density genotyping using an 8 K SNP array identified 21 elite and 58 local cultivars in this germplasm, with local accessions showing similar levels of total AsA but higher amounts of DHA compared to elite varieties. Out of the 79 apple cultivars screened, ten genotypes with either the highest or the lowest concentration of total AsA at harvest were used for monitoring vitamin C dynamics during fruit development and storage. For all these cultivars, the AsA/DHA ratio in both apple pulp and peel increased throughout fruit development, whereas the AsA/DHA balance always shifted towards the oxidized form during storage and shelf life, putatively reflecting an abiotic stress response. Importantly, at any point during apple fruit development and storage, the apple peel contained a higher level of vitamin C compared to the pulp, most likely because of its direct exposure to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Eline Lemmens
- Laboratory for Plant Genetics and Crop Improvement, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium.
| | - Enriqueta Alós
- Laboratory for Plant Genetics and Crop Improvement, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Marijn Rymenants
- Laboratory for Plant Genetics and Crop Improvement, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium; Better3fruit N.V., Steenberg 36, B-3202, Rillaar, Belgium
| | - Nico De Storme
- Laboratory for Plant Genetics and Crop Improvement, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Wannes Johan Keulemans
- Laboratory for Plant Genetics and Crop Improvement, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| |
Collapse
|
58
|
Wang J, Zhai L, Ma J, Zhang J, Wang GG, Liu X, Zhang S, Song J, Wu Y. Comparative physiological mechanisms of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects on leaves and roots of Zelkova serrata. MYCORRHIZA 2020; 30:341-355. [PMID: 32388674 DOI: 10.1007/s00572-020-00954-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi enhance plant salt tolerance. However, physiological mechanisms of enhanced salt tolerance in leaves and roots of trees rarely have been compared. To reveal the different mechanisms, our study utilized comprehensive analyses of leaves and roots to examine the effects of Funneliformis mosseae on the salinity tolerance of Zelkova serrata. Seedlings of Z. serrata were exposed to four salt levels in a greenhouse with and without F. mosseae inoculation. Treatment comparisons revealed that following F. mosseae inoculation, (1) nutrient deficiency caused by osmotic stress was mitigated by the fungus enhancing nutrient contents (K, Ca, and Mg) in roots and (N, P, K, Ca, and Mg) in leaves, with Ca and K contents being higher in both leaves and roots; (2) mycorrhizas alleviated ion toxicity by maintaining a favorable ion balance (e.g., K+/Na+), and this regulatory effect was higher in leaves than that in roots; and (3) oxidative damage was reduced by an increase in the activities of antioxidant enzymes and accumulation of antioxidant compounds in mycorrhizal plants although the increase differed in leaves and roots. In particular, AM fungus-enhanced catalase activity and reduced glutathione content only occurred in leaves, whereas an enhanced content of reduced ascorbic acid was only noted in roots. Growth, root vitality, leaf photosynthetic pigments, net photosynthetic rate, and dry weight were higher in seedlings with AM fungus inoculation. These results suggest that AM fungus inoculation improved salinity tolerance of Z. serrata, but the physiological mechanisms differed between leaves and roots.
Collapse
Affiliation(s)
- Jinping Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, Jiangsu, China
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, 29634, USA
| | - Lu Zhai
- Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jieyi Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, Jiangsu, China
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, Jiangsu, China.
| | - G Geoff Wang
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, 29634, USA.
| | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, Jiangsu, China
| | - Shuifeng Zhang
- Department of Forest Fire, Nanjing Forest Police College, Nanjing, 210023, Jiangsu, China
| | - Juan Song
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, Jiangsu, China
| | - Yingkang Wu
- Dafeng Forest Farm, Yancheng, 224136, Jiangsu, China
| |
Collapse
|
59
|
Dai L, Kobayashi K, Nouchi I, Masutomi Y, Feng Z. Quantifying determinants of ozone detoxification by apoplastic ascorbate in peach (Prunus persica) leaves using a model of ozone transport and reaction. GLOBAL CHANGE BIOLOGY 2020; 26:3147-3162. [PMID: 32090419 DOI: 10.1111/gcb.15049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/10/2020] [Indexed: 05/23/2023]
Abstract
Ascorbate in leaf apoplast (ASCapo ) reacts with ozone (O3 ) and thereby reduces O3 flux reaching plasmalemma (Fpl ). Some studies have shown significant protection of cells from O3 by ASCapo , while others have questioned its efficacy. Hypothesizing that the protection by ASCapo depends on other variables, we quantified determinants of O3 detoxification with a model of O3 transport and reaction in apoplast. The model determines ascorbic acid concentration in apoplast (AAapo ) using measured values of O3 concentration (co ), leaf tissue ascorbic acid concentration (AAleaf ), cell wall thickness (L3 ), apoplastic pH (pHapo ), and stomatal conductance (Gsw ). We compared the measured and model-estimated AAapo in leaves of peach (Prunus persica) grown in open-top chambers under non-filtered air (NF) and elevated (EO3 : NF + 80 ppb) O3 concentrations. The estimated AAapo in individual leaves agreed well with the measured values (R2 = .91). Analyses of the simulation results yielded the following findings: (a) The efficacy of O3 reduction with ASCapo as quantified by fractional reduction (ϕ3 ) of O3 flux at the surface of plasmalemma (Fpl ) was lowered from 70% in NF to 40% in EO3 due to the reduction of L3 . The EO3 reduced AAapo , but the lower Gsw and L3 in EO3 increased AAapo resulting in no significant change in AAapo due to EO3 . ϕ3 can be calculated with measured values of AAapo and L3 , and Fpl can be estimated with the measurement-based ϕ3 . (b) When c0 is increased, Fpl increased curvilinearly with the increase of Fst : nominal O3 flux via stomatal diffusion, exhibiting apparent threshold on Fst . The deviation of Fpl from Fst became greater when L3 , pHapo , and AAleaf were increased. The quantification of ϕ3 and Fpl using leaf traits shall facilitate the understanding of the mechanisms of differential plant sensitivity to O3 and improve quantification of the O3 impacts on plants.
Collapse
Affiliation(s)
- Lulu Dai
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Kazuhiko Kobayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- College of Agriculture, Ibaraki University, Ami, Japan
| | - Isamu Nouchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Masutomi
- College of Agriculture, Ibaraki University, Ami, Japan
| | - Zhaozhong Feng
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| |
Collapse
|
60
|
Liu L, Wang B, Liu D, Zou C, Wu P, Wang Z, Wang Y, Li C. Transcriptomic and metabolomic analyses reveal mechanisms of adaptation to salinity in which carbon and nitrogen metabolism is altered in sugar beet roots. BMC PLANT BIOLOGY 2020; 20:138. [PMID: 32245415 PMCID: PMC7118825 DOI: 10.1186/s12870-020-02349-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 03/23/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Beta vulgaris L. is one of the main sugar-producing crop species and is highly adaptable to saline soil. This study explored the alterations to the carbon and nitrogen metabolism mechanisms enabling the roots of sugar beet seedlings to adapt to salinity. RESULTS The ionome, metabolome, and transcriptome of the roots of sugar beet seedlings were evaluated after 1 day (short term) and 7 days (long term) of 300 mM Na+ treatment. Salt stress caused reactive oxygen species (ROS) damage and ion toxicity in the roots. Interestingly, under salt stress, the increase in the Na+/K+ ratio compared to the control ratio on day 7 was lower than that on day 1 in the roots. The transcriptomic results showed that a large number of differentially expressed genes (DEGs) were enriched in various metabolic pathways. A total of 1279 and 903 DEGs were identified on days 1 and 7, respectively, and were mapped mainly to 10 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Most of the genes were involved in carbon metabolism and amino acid (AA) biosynthesis. Furthermore, metabolomic analysis revealed that sucrose metabolism and the activity of the tricarboxylic acid (TCA) cycle increased in response to salt stress. After 1 day of stress, the content of sucrose decreased, whereas the content of organic acids (OAs) such as L-malic acid and 2-oxoglutaric acid increased. After 7 days of salt stress, nitrogen-containing metabolites such as AAs, betaine, melatonin, and (S)-2-aminobutyric acid increased significantly. In addition, multiomic analysis revealed that the expression of the gene encoding xanthine dehydrogenase (XDH) was upregulated and that the expression of the gene encoding allantoinase (ALN) was significantly downregulated, resulting in a large accumulation of allantoin. Correlation analysis revealed that most genes were significantly related to only allantoin and xanthosine. CONCLUSIONS Our study demonstrated that carbon and nitrogen metabolism was altered in the roots of sugar beet plants under salt stress. Nitrogen metabolism plays a major role in the late stages of salt stress. Allantoin, which is involved in the purine metabolic pathway, may be a key regulator of sugar beet salt tolerance.
Collapse
Affiliation(s)
- Lei Liu
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| | - Bin Wang
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| | - Dan Liu
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| | - Chunlei Zou
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| | - Peiran Wu
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| | - Ziyang Wang
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| | - Yubo Wang
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| | - Caifeng Li
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| |
Collapse
|
61
|
Patwa N, Chatterjee C, Basak J. Differential responses of Phaseolus vulgaris cultivars following mungbean yellow mosaic India virus infection. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:817-828. [PMID: 32255942 PMCID: PMC7113345 DOI: 10.1007/s12298-019-00741-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 09/16/2019] [Accepted: 11/25/2019] [Indexed: 05/31/2023]
Abstract
Phaseolus vulgaris, commonly known as French bean is a vital leguminous crop worldwide and India stood 1st rank in dry bean and 4th rank in green bean production worldwide (FAOSTAT 2017). However, this production is severely affected by Mungbean yellow mosaic India virus (MYMIV) infection. Hence it is very important to identify MYMIV tolerant P. vulgaris cultivars. MYMIV infection results in the production of reactive oxygen species and plant cells have evolved complex defense mechanisms at different levels to overcome the damage. Our study for the first time focused on the changes at the morphological and biochemical level, as well as on the relative quantification of MYMIV genes in nine cultivars of P. vulgaris after MYMIV infection. Highest growth and the highest accumulation of four antioxidants of cv. 'Anupam' after MYMIV infection, established that cv. 'Anupam' was less affected by MYMIV infection amongst all nine cultivars. Relative quantification studies also correlated well with these results. Additionally, there is a consistent level of photosynthetic pigments content in mock- and MYMIV-treated seedlings of cv. 'Anupam' over early infection period. Combining all the results we conclude that cv. 'Anupam' is a MYMIV tolerant cultivar.
Collapse
Affiliation(s)
- Nisha Patwa
- Department of Biotechnology, Visva-Bharati, Siksha Bhavana, Santiniketan, West Bengal 731235 India
- Present Address: Horticultural Insects Research Laboratory, USDA-ARS, Application Technology Research Unit, 1680 Madison Ave., Wooster, OH 44691 USA
| | - Chitra Chatterjee
- Department of Biotechnology, Visva-Bharati, Siksha Bhavana, Santiniketan, West Bengal 731235 India
| | - Jolly Basak
- Department of Biotechnology, Visva-Bharati, Siksha Bhavana, Santiniketan, West Bengal 731235 India
| |
Collapse
|
62
|
Foyer CH, Kyndt T, Hancock RD. Vitamin C in Plants: Novel Concepts, New Perspectives, and Outstanding Issues. Antioxid Redox Signal 2020; 32:463-485. [PMID: 31701753 DOI: 10.1089/ars.2019.7819] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Significance: The concept that vitamin C (l-ascorbic acid) is at the heart of the peroxide processing and redox signaling hub in plants is well established, but our knowledge of the precise mechanisms involved remains patchy at best. Recent Advances: Ascorbate participates in the multifaceted signaling pathways initiated by both reactive oxygen species (ROS) and reactive nitrogen species. Crucially, the apoplastic ascorbate/dehydroascorbate (DHA) ratio that is regulated by ascorbate oxidase (AO) sculpts the apoplastic ROS (apoROS) signal that controls polarized cell growth, biotic and abiotic defences, and cell to cell signaling, as well as exerting control over the light-dependent regulation of photosynthesis. Critical Issues: Here we re-evaluate the roles of ascorbate in photosynthesis and other processes, addressing the question of how much we really know about the regulation of ascorbate homeostasis and its functions in plants, or how AO is regulated to modulate apoROS signals. Future Directions: The role of microRNAs in the regulation of AO activity in relation to stress perception and signaling must be resolved. Similarly, the molecular characterization of ascorbate transporters and mechanistic links between photosynthetic and respiratory electron transport and ascorbate synthesis/homeostasis are a prerequisite to understanding ascorbate homeostasis and function. Similarly, there is little in vivo evidence for ascorbate functions as an enzyme cofactor.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Tina Kyndt
- Department Biotechnology, University of Ghent, Ghent, Belgium
| | - Robert D Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
63
|
Allies or Enemies: The Role of Reactive Oxygen Species in Developmental Processes of Black Cottonwood ( Populus trichocarpa). Antioxidants (Basel) 2020; 9:antiox9030199. [PMID: 32120843 PMCID: PMC7139288 DOI: 10.3390/antiox9030199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
In contrast to aboveground organs (stems and leaves), developmental events and their regulation in underground organs, such as pioneer and fine roots, are quite poorly understood. The objective of the current study was to achieve a better understanding of the physiological and molecular role of reactive oxygen species (ROS) and ROS-related enzymes in the process of stem and pioneer root development in black cottonwood (Populus trichocarpa), as well as in the senescence of leaves and fine roots. Results of a transcriptomic analysis revealed that primary/secondary growth and senescence are accompanied by substantial changes in the expression of genes related to oxidative stress metabolism. We observed that some mechanisms common for above- and under-ground organs, e.g., the expression of superoxide dismutase (SOD) genes and SOD activity, declined during stems' and pioneer roots' development. Moreover, the localization of hydrogen peroxide (H2O2) and superoxide (O2•-) in the primary and secondary xylem of stems and pioneer roots confirms their involvement in xylem cell wall lignification and the induction of programmed cell death (PCD). H2O2 and O2•- in senescing fine roots were present in the same locations as demonstrated previously for ATG8 (AuTophaGy-related) proteins, implying their participation in cell degradation during senescence, while O2•- in older leaves was also localized similarly to ATG8 in chloroplasts, suggesting their role in chlorophagy. ROS and ROS-related enzymes play an integral role in the lignification of xylem cell walls in Populus trichocarpa, as well as the induction of PCD during xylogenesis and senescence.
Collapse
|
64
|
Yang Z, Li JL, Liu LN, Xie Q, Sui N. Photosynthetic Regulation Under Salt Stress and Salt-Tolerance Mechanism of Sweet Sorghum. FRONTIERS IN PLANT SCIENCE 2020; 10:1722. [PMID: 32010174 PMCID: PMC6974683 DOI: 10.3389/fpls.2019.01722] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/09/2019] [Indexed: 05/18/2023]
Abstract
Sweet sorghum is a C4 crop with the characteristic of fast-growth and high-yields. It is a good source for food, feed, fiber, and fuel. On saline land, sweet sorghum can not only survive, but increase its sugar content. Therefore, it is regarded as a potential source for identifying salt-related genes. Here, we review the physiological and biochemical responses of sweet sorghum to salt stress, such as photosynthesis, sucrose synthesis, hormonal regulation, and ion homeostasis, as well as their potential salt-resistance mechanisms. The major advantages of salt-tolerant sweet sorghum include: 1) improving the Na+ exclusion ability to maintain ion homeostasis in roots under salt-stress conditions, which ensures a relatively low Na+ concentration in shoots; 2) maintaining a high sugar content in shoots under salt-stress conditions, by protecting the structures of photosystems, enhancing photosynthetic performance and sucrose synthetase activity, as well as inhibiting sucrose degradation. To study the regulatory mechanism of such genes will provide opportunities for increasing the salt tolerance of sweet sorghum by breeding and genetic engineering.
Collapse
Affiliation(s)
- Zhen Yang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biological Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jin-Lu Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
65
|
García G, Clemente-Moreno MJ, Díaz-Vivancos P, García M, Hernández JA. The Apoplastic and Symplastic Antioxidant System in Onion: Response to Long-Term Salt Stress. Antioxidants (Basel) 2020; 9:E67. [PMID: 31940899 PMCID: PMC7022848 DOI: 10.3390/antiox9010067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/17/2023] Open
Abstract
The response of apoplastic antioxidant systems in root and leaf tissues from two onion genotypes ('Texas 502', salt-sensitive and 'Granex 429', salt-resistant) in response to salinity was studied. Electrolyte leakage data indicated the membrane integrity impairing by the effect of salts, especially in 'Texas 502'. We detected superoxide dismutase (SOD) and peroxidase (POX) activity in the root and leaf apoplastic fractions from onion plants. Salinity increased SOD activity in the root symplast of 'Texas 502' and in 'Granex 429' leaves. In contrast, salinity reduced SOD activity in the leaf and root apoplastic fractions from 'Texas 502'. In 'Granex 429', salt-stress increased leaf apoplastic POX activity and symplastic catalase (CAT) activity of both organs, but a decline in root apoplastic POX from 'Texas 502' took place. Salt-stress increased monodehydroascorbate reductase (MDHAR) in root and leaf symplast and in root glutathione reductase GR, mainly in 'Granex 429', but only in this genotype, leaf dehydroascorbate reductase (DHAR) activity increased. In contrast, a decline in leaf GR was produced only in 'Texas 502'. Salinity increased leaf ASC levels, and no accumulation of dehydroascorbate (DHA) was observed in roots in both cases. These responses increased the redox state of ascorbate, especially in roots. In contrast, salinity declined reduced glutathione (GSH), but oxidised glutathione (GSSG) was accumulated in leaves, decreasing the redox state of glutathione. Salinity slightly increased root GSH concentration in the salt-tolerant genotype and was unchanged in the salt-sensitive genotype, but no accumulation of GSSG was produced, favoring the rise and/or maintenance of the redox state of the glutathione. These results suggest that the lower sensitivity to salt in 'Granex 429' could be related to a better performance of the antioxidant machinery under salinity conditions.
Collapse
Affiliation(s)
- Grisaly García
- Departamento de Ciencias Biológicas, Decanato de Agronomía, Universidad Centroccidental Lisandro Alvarado UCLA, Barquisimeto 3001, Estado Lara, Venezuela;
| | - María José Clemente-Moreno
- Grupo de Biotecnología de Frutales, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), 30100 Murcia, Spain; (M.J.C.-M.); (P.D.-V.)
| | - Pedro Díaz-Vivancos
- Grupo de Biotecnología de Frutales, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), 30100 Murcia, Spain; (M.J.C.-M.); (P.D.-V.)
| | - Marina García
- Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí. Portoviejo, Manabí 130105, Ecuador;
- Instituto de Botánica Agrícola, Facultad de Agronomía, Universidad Central de Venezuela, Av. 19 de abril, Maracay 1050, Estado Aragua, Venezuela
| | - José Antonio Hernández
- Grupo de Biotecnología de Frutales, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), 30100 Murcia, Spain; (M.J.C.-M.); (P.D.-V.)
| |
Collapse
|
66
|
Chen X, Li S, Zhao X, Zhu X, Wang Y, Xuan Y, Liu X, Fan H, Chen L, Duan Y. Modulation of (Homo)Glutathione Metabolism and H 2O 2 Accumulation during Soybean Cyst Nematode Infections in Susceptible and Resistant Soybean Cultivars. Int J Mol Sci 2020; 21:E388. [PMID: 31936278 PMCID: PMC7013558 DOI: 10.3390/ijms21020388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 12/25/2022] Open
Abstract
In plant immune responses, reactive oxygen species (ROS) act as signaling molecules that activate defense pathways against pathogens, especially following resistance (R) gene-mediated pathogen recognition. Glutathione (GSH), an antioxidant and redox regulator, participates in the removal of hydrogen peroxide (H2O2). However, the mechanism of GSH-mediated H2O2 generation in soybeans (Glycine max (L.) Merr.) that are resistant to the soybean cyst nematode (SCN; Heterodera glycines Ichinohe) remains unclear. To elucidate this underlying relationship, the feeding of race 3 of H. glycines with resistant cultivars, Peking and PI88788, was compared with that on a susceptible soybean cultivar, Williams 82. After 5, 10, and 15 days of SCN infection, we quantified γ-glutamylcysteine (γ-EC) and (homo)glutathione ((h)GSH), and a gene expression analysis showed that GSH metabolism in resistant cultivars differed from that in susceptible soybean roots. ROS accumulation was examined both in resistant and susceptible roots upon SCN infection. The time of intense ROS generation was related to the differences of resistance mechanisms in Peking and PI88788. ROS accumulation that was caused by the (h)GSH depletion-arrested nematode development in susceptible Williams 82. These results suggest that (h)GSH metabolism in resistant soybeans plays a key role in the regulation of ROS-generated signals, leading to resistance against nematodes.
Collapse
Affiliation(s)
- Xi Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Shuang Li
- Shaanxi key Laboratory of Chinese Jujube, Yan’an University, Yan’an 716000, China;
- College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Xuebing Zhao
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Yuanyuan Wang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110000, China
| | - Yuanhu Xuan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Xiaoyu Liu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Sciences, Shenyang Agricultural University, Shenyang 110000, China
| | - Haiyan Fan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Lijie Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Yuxi Duan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| |
Collapse
|
67
|
Feng BH, Li GY, Islam M, Fu WM, Zhou YQ, Chen TT, Tao LX, Fu GF. Strengthened antioxidant capacity improves photosynthesis by regulating stomatal aperture and ribulose-1,5-bisphosphate carboxylase/oxygenase activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110245. [PMID: 31779890 DOI: 10.1016/j.plantsci.2019.110245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 05/10/2023]
Abstract
ABA is important for plant growth and development; however, it also inhibits photosynthesis by regulating the stomatal aperture and ribulose-1,5-bisphosphate carboxylase/oxygenase activity. Noteworthy, this negative effect can be alleviated by antioxidants including ascorbic acid (AsA) and catalase (CAT), but the underlying mechanism remains unclear. Two rice cultivars, Zhefu802 (recurrent parent) and its near-isogenic line, fgl were selected and planted in a greenhouse with 30/24 °C (day/night) under natural sunlight conditions. Compared to fgl, Zhefu802 had significantly lower net photosynthetic rate (PN) and stomatal conductance (Cond) as well as significantly higher ABA and H2O2 contents. However, AsA and CAT increased PN, Cond, and stomatal aperture, which decreased H2O2 and malondialdehyde (MDA) levels. In this process, AsA and CAT significantly increased the ribulose-1,5-bisphosphate carboxylase activity, while they strongly decreased the ribulose-1,5-bisphosphate oxygenase activity, and finally caused an obvious decrease in the ratio of photorespiration (Pr) to PN. Additionally, AsA and CAT significantly increased the expression levels of RbcS and RbcL genes of leaves, while H2O2 significantly decreased them, especially the RbcS gene. In summary, the removal of H2O2 by AsA and CAT can improve the leaf photosynthesis by alleviating the inhibition on the stomatal conductance and ribulose-1,5-bisphosphate carboxylase capacity caused by ABA.
Collapse
Affiliation(s)
- B H Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - G Y Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Md Islam
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Department of Agricultural Extension, Ministry of Agriculture, Dhaka 1215, Bangladesh
| | - W M Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Y Q Zhou
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - T T Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - L X Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Department of Agricultural Extension, Ministry of Agriculture, Dhaka 1215, Bangladesh.
| | - G F Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Department of Agricultural Extension, Ministry of Agriculture, Dhaka 1215, Bangladesh.
| |
Collapse
|
68
|
Dewhirst RA, Murray L, Mackay CL, Sadler IH, Fry SC. Characterisation of the non-oxidative degradation pathway of dehydroascorbic acid in slightly acidic aqueous solution. Arch Biochem Biophys 2019; 681:108240. [PMID: 31883928 DOI: 10.1016/j.abb.2019.108240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Abstract
Although l-ascorbate (vitamin C) is an important biological antioxidant, its degradation pathways in vivo remain incompletely characterised. Ascorbate is oxidised to dehydroascorbic acid, which can be either hydrolysed to diketogulonate (DKG) or further oxidised. DKG can be further degraded, oxidatively or non-oxidatively. Here we characterise DKG products formed non-enzymically and non-oxidatively at 20 °C and at a slightly acidic pH typical of the plant apoplast. High-voltage electrophoresis revealed at least five products, including two novel CPLs (epimers of 2-carboxy-l-threo-pentonolactone), which slowly interconverted with CPA (2-carboxy-l-threo-pentonate). One of the two CPLs has an exceptionally low pKa. The CPL structures were supported by MS [(C6H7O7)-] and by 1H and 13C NMR spectroscopy. Xylonate and its lactone also appeared. Experiments with [1-14C]DKG showed that all five products (including the 5-carbon xylonate and its lactone) retained DKG's carbon-1; therefore, most xylonate arose by decarboxylation of CPLs or CPA, one of whose -COOH groups originates from C-2 or C-3 of DKG after a 'benzilic acid rearrangement'. Since CPLs appeared before CPA, a DKG lactone is probably the main species undergoing this rearrangement. CPA and CPL also form non-enzymically in vivo, where they may be useful to researchers as 'fingerprints', or to organisms as 'signals', indicating a non-oxidative, slightly acidic biological compartment.
Collapse
Affiliation(s)
- Rebecca A Dewhirst
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Lorna Murray
- EastCHEM School of Chemistry, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| | - C Logan Mackay
- EastCHEM School of Chemistry, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Ian H Sadler
- EastCHEM School of Chemistry, The University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
69
|
Alzahrani Y, Rady MM. Compared to antioxidants and polyamines, the role of maize grain-derived organic biostimulants in improving cadmium tolerance in wheat plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109378. [PMID: 31254855 DOI: 10.1016/j.ecoenv.2019.109378] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/07/2019] [Accepted: 06/20/2019] [Indexed: 05/07/2023]
Abstract
Recently, the strategy of seed soaking has been successfully applied using extracts from different plant parts for healthy growth of plant under different environmental stresses. Compared to antioxidants like ascorbic acid (AsA) and glutathione (GSH) or polyamines (PAs) like spermine (SPM), spermidine (SPD), and putrescine (PUT), the effects of seed soaking using maize grain extract (MGE) on the biomass, productivity, phytohormones, and antioxidant defense system and its different components were examined with Cd2+-stressed wheat plants. In a preliminary study, seed soaking using AsA + GSH or PUT + SPD + SPM was more effective in increasing shoot fresh and dry weights, SPAD chlorophyll, and grain yield, and reducing malondialdehyde (MDA) content than individuals. In addition, MGE at 2% was more efficient than other concentrations. Therefore, they were selected for the main study. In the main study, compared to the control, seed soaking in AsA + GSH, PUT + SPD + SPM or MGE had positive effects on plant growth, yield, photosynthetic efficiency, contents and redox states of AsA and GSH, contents of PAs and plant hormones to varying degrees. Proline content and its metabolism enzymes activity, contents of soluble protein, N-compounds, soluble sugars, and α-tocopherol (α-TOC), and activities of antioxidant enzymes were not affected. However, contents of MDA and hydrogen peroxide (H2O2) were significantly reduced under normal conditions. Under Cd2+ stress (1.2 mM), along with the detrimental increases in the contents of MDA, H2O2 and Cd2+, contents of N-compounds, soluble sugars, proline content and its metabolism enzymes activities, AsA and GSH and their redox states, and polyamines, and activities of antioxidant enzymes were increased. In contrast, plant growth and yield, photosynthetic efficiency, soluble protein, and plant hormones were significantly reduced compared to the control. However, all of these attributes were significantly improved to varying degrees along with reduced contents of Cd2+, MDA, and H2O2 by seed soaking in AsA + GSH, PUT + SPD + SPM or MGE compared to the Cd2+-stressed control. Compared to AsA + GSH or PUT + SPD + SPM, seed soaking in MGE at 2% conferred the best results. Therefore, it is recommended to soak wheat seeds using MGE to improve plant growth and productivity by restricting the inhibitory influences of oxidative stress induced by Cd2+ stress.
Collapse
Affiliation(s)
- Yahya Alzahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Mostafa M Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
| |
Collapse
|
70
|
Matsumoto Y, Hattori M. Characterization of multicopper oxidase genes in the green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae), with focus on salivary gland-specific genes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21602. [PMID: 31328822 DOI: 10.1002/arch.21602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multicopper oxidase (MCO) enzymes are present ubiquitously and act on diverse substrates. Recently, the presence of multiple MCO genes has been described in many insects. Based on sialotranscriptome data, we identified and comprehensively characterized six MCO genes: NcLac1S, 1G, and 2-5 in the green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae). NcLac1S and NcLac1G belong to the MCO1 ortholog of other insects. NcLac2 forms a clade with MCO2s involved in the sclerotization and pigmentation of the cuticle. NcLac3 and NcLac4 form a clade with NlMCO3 -5 of the hemipteran Nilaparvata luges. NcLac5 forms a clade with MCORPs (MCO-related proteins) that lack amino acid residues normally highly conserved in copper-coordinated MCOs. NcLac1S and NcLac3 were specifically expressed in the salivary glands; whereas NcLac5 was primarily expressed in the salivary glands. Only NcLac3 protein is considered to have laccase activity in the salivary glands and salivary sheaths ejected by the insect. NcLac1G expression was relatively high in the testis. NcLac2 and NcLac4 were specifically expressed in the integument and in Malpighian tubules, respectively. Knockdown by RNA interference (RNAi) of either NcLac2 and NcLac5 in nymphs caused high mortality. All NcLac2-knockdown nymphs showed depigmentation and soft cuticle, and eventually died, as did other MCO2-knockdown insects. DsNcLac5-injected nymphs (third, fourth, and fifth-instar) showed high mortality, but injection into adults had no effect on survival or number of eggs deposited, suggesting that NcLac5 is not essential for survival after molting (eclosion). NcLac5 could be a promising target gene for control of N. cincticeps.
Collapse
Affiliation(s)
- Yukiko Matsumoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Makoto Hattori
- Ex. Insect-Plant Interaction Research Unit, National Institute Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| |
Collapse
|
71
|
Gago J, Carriquí M, Nadal M, Clemente-Moreno MJ, Coopman RE, Fernie AR, Flexas J. Photosynthesis Optimized across Land Plant Phylogeny. TRENDS IN PLANT SCIENCE 2019; 24:947-958. [PMID: 31362860 DOI: 10.1016/j.tplants.2019.07.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 05/08/2023]
Abstract
Until recently, few data were available on photosynthesis and its underlying mechanistically limiting factors in plants, other than crops and model species. Currently, a new large pool of data from extant representatives of basal terrestrial plant groups is emerging, allowing exploration of how photosynthetic capacity (Amax) increases from minimum values in bryophytes to maximum in tracheophytes, which is associated to an optimization of the balance between its limiting factors. From predominant mesophyll conductance limitation (lm) in bryophytes and lycophytes (fern allies) to stomatal conductance (ls) and lm colimitation in pteridophytes (ferns) and gymnosperms, a balanced colimitation by the three limitations is finally reached in angiosperms. We discuss the implications of this new knowledge for future biotechnological attempts to improve crop photosynthesis.
Collapse
Affiliation(s)
- Jorge Gago
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain.
| | - Marc Carriquí
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain
| | - María José Clemente-Moreno
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain
| | - Rafael Eduardo Coopman
- Ecophysiology Laboratory for Forest Conservation, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Campus Isla Teja, Casilla 567, Valdivia, Chile
| | - Alisdair Robert Fernie
- Central Metabolism Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain.
| |
Collapse
|
72
|
Song W, Wang F, Chen L, Ma R, Zuo X, Cao A, Xie S, Chen X, Jin X, Li H. GhVTC1, the Key Gene for Ascorbate Biosynthesis in Gossypium hirsutum, Involves in Cell Elongation Under Control of Ethylene. Cells 2019; 8:cells8091039. [PMID: 31492030 PMCID: PMC6769745 DOI: 10.3390/cells8091039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 02/02/2023] Open
Abstract
L-Ascorbate (Asc) plays important roles in cell growth and plant development, and its de novo biosynthesis was catalyzed by the first rate-limiting enzyme VTC1. However, the function and regulatory mechanism of VTC1 involved in cell development is obscure in Gossypium hirsutum. Herein, the Asc content and AsA/DHA ratio were accumulated and closely linked with fiber development. The GhVTC1 encoded a typical VTC1 protein with functional conserved domains and expressed preferentially during fiber fast elongation stages. Functional complementary analysis of GhVTC1 in the loss-of-function Arabidopsis vtc1-1 mutants indicated that GhVTC1 is genetically functional to rescue the defects of mutants to normal or wild type (WT). The significant shortened primary root in vtc1-1 mutants was promoted to the regular length of WT by the ectopic expression of GhVTC1 in the mutants. Additionally, GhVTC1 expression was induced by ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and the GhVTC1 promoter showed high activity and included two ethylene-responsive elements (ERE). Moreover, the 5'-truncted promoters containing the ERE exhibited increased activity by ACC treatment. Our results firstly report the cotton GhVTC1 function in promoting cell elongation at the cellular level, and serve as a foundation for further understanding the regulatory mechanism of Asc-mediated cell growth via the ethylene signaling pathway.
Collapse
Affiliation(s)
- Wangyang Song
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Fei Wang
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Lihua Chen
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Rendi Ma
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Xiaoyu Zuo
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Aiping Cao
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Shuangquan Xie
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Xifeng Chen
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Xiang Jin
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
73
|
Clemente-Moreno MJ, Gago J, Díaz-Vivancos P, Bernal A, Miedes E, Bresta P, Liakopoulos G, Fernie AR, Hernández JA, Flexas J. The apoplastic antioxidant system and altered cell wall dynamics influence mesophyll conductance and the rate of photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1031-1046. [PMID: 31215089 DOI: 10.1111/tpj.14437] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/18/2019] [Accepted: 06/06/2019] [Indexed: 05/28/2023]
Abstract
Mesophyll conductance (gm ), the diffusion of CO2 from substomatal cavities to the carboxylation sites in the chloroplasts, is a highly complex trait driving photosynthesis (net CO2 assimilation, AN ). However, little is known concerning the mechanisms by which it is dynamically regulated. The apoplast is considered as a 'key information bridge' between the environment and cells. Interestingly, most of the environmental constraints affecting gm also cause apoplastic responses, cell wall (CW) alterations and metabolic rearrangements. Since CW thickness is a key determinant of gm , we hypothesize that other changes in this cellular compartiment should also influence gm . We study the relationship between the antioxidant apoplastic system and CW metabolism and the gm responses in tobacco plants (Nicotiana sylvestris L.) under two abiotic stresses (drought and salinity), combining in vivo gas-exchange measurements with analyses of antioxidant activities, CW composition and primary metabolism. Stress treatments imposed substantial reductions in AN (58-54%) and gm (59%), accompanied by a strong antioxidant enzymatic response at the apoplastic and symplastic levels. Interestingly, apoplastic but not symplastic peroxidases were positively related to gm . Leaf anatomy remained mostly stable; however, the stress treatments significantly affected the CW composition, specifically pectins, which showed significant relationships with AN and gm . The treatments additionally promoted a differential primary metabolic response, and specific CW-related metabolites including galactose, glucosamine and hydroxycinnamate showed exclusive relationships with gm independent of the stress. These results suggest that gm responses can be attributed to specific changes in the apoplastic antioxidant system and CW metabolism, opening up more possibilities for improving photosynthesis using breeding/biotechnological strategies.
Collapse
Affiliation(s)
- María José Clemente-Moreno
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)-Instituto de Agroecología y Economía del Agua (INAGEA), ctra. Valldemossa km 7,5, Palma de Mallorca, Spain
| | - Jorge Gago
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)-Instituto de Agroecología y Economía del Agua (INAGEA), ctra. Valldemossa km 7,5, Palma de Mallorca, Spain
| | - Pedro Díaz-Vivancos
- Fruit Tree Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, PO Box 164, E-30100, Murcia, Spain
| | - Agustina Bernal
- Fruit Tree Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, PO Box 164, E-30100, Murcia, Spain
| | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Campus Ciudad Universitaria, 28040, Pozuelo de Alarcón, Madrid, Spain
| | - Panagiota Bresta
- Laboratory of Plant Physiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece
| | - Georgios Liakopoulos
- Laboratory of Plant Physiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece
| | - Alisdair R Fernie
- Central Metabolism Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - José Antonio Hernández
- Fruit Tree Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, PO Box 164, E-30100, Murcia, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)-Instituto de Agroecología y Economía del Agua (INAGEA), ctra. Valldemossa km 7,5, Palma de Mallorca, Spain
| |
Collapse
|
74
|
Merget B, Forbes KJ, Brennan F, McAteer S, Shepherd T, Strachan NJC, Holden NJ. Influence of Plant Species, Tissue Type, and Temperature on the Capacity of Shiga-Toxigenic Escherichia coli To Colonize, Grow, and Be Internalized by Plants. Appl Environ Microbiol 2019; 85:e00123-19. [PMID: 30902860 PMCID: PMC6532046 DOI: 10.1128/aem.00123-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022] Open
Abstract
Contamination of fresh produce with pathogenic Escherichia coli, including Shiga-toxigenic E. coli (STEC), represents a serious risk to human health. Colonization is governed by multiple bacterial and plant factors that can impact the probability and suitability of bacterial growth. Thus, we aimed to determine whether the growth potential of STEC for plants associated with foodborne outbreaks (two leafy vegetables and two sprouted seed species) is predictive of the colonization of living plants, as assessed from growth kinetics and biofilm formation in plant extracts. The fitness of STEC isolates was compared to that of environmental E. coli isolates at temperatures relevant to plant growth. Growth kinetics in plant extracts varied in a plant-dependent and isolate-dependent manner for all isolates, with spinach leaf lysates supporting the highest rates of growth. Spinach extracts also supported the highest levels of biofilm formation. Saccharides were identified to be the major driver of bacterial growth, although no single metabolite could be correlated with growth kinetics. The highest level of in planta colonization occurred on alfalfa sprouts, though internalization was 10 times more prevalent in the leafy vegetables than in sprouted seeds. Marked differences in in planta growth meant that the growth potential of STEC could be inferred only for sprouted seeds. In contrast, biofilm formation in extracts related to spinach colonization. Overall, the capacity of E. coli to colonize, grow, and be internalized within plants or plant-derived matrices was influenced by the isolate type, plant species, plant tissue type, and temperature, complicating any straightforward relationship between in vitro and in planta behaviors.IMPORTANCE Fresh produce is an important vehicle for STEC transmission, and experimental evidence shows that STEC can colonize plants as secondary hosts, but differences in the capacity to colonize occur between different plant species and tissues. Therefore, an understanding of the impact that these plant factors have on the ability of STEC to grow and establish is required for food safety considerations and risk assessment. Here, we determined whether growth and the ability of STEC to form biofilms in plant extracts could be related to specific plant metabolites or could predict the ability of the bacteria to colonize living plants. Growth rates for sprouted seeds (alfalfa and fenugreek) but not those for leafy vegetables (lettuce and spinach) exhibited a positive relationship between plant extracts and living plants. Therefore, the detailed variations at the level of the bacterial isolate, plant species, and tissue type all need to be considered in risk assessment.
Collapse
Affiliation(s)
- Bernhard Merget
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Biological Sciences, The University of Aberdeen, Aberdeen, United Kingdom
| | - Ken J Forbes
- School of Medicine and Dentistry, The University of Aberdeen, Aberdeen, United Kingdom
| | - Fiona Brennan
- Teagasc, Department of Environment, Soils and Land-Use, Wexford, Republic of Ireland
| | - Sean McAteer
- Roslin Institute & R(D)SVS, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tom Shepherd
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Norval J C Strachan
- School of Biological Sciences, The University of Aberdeen, Aberdeen, United Kingdom
| | - Nicola J Holden
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
75
|
Chin DC, Senthil Kumar R, Suen CS, Chien CY, Hwang MJ, Hsu CH, Xuhan X, Lai ZX, Yeh KW. Plant Cytosolic Ascorbate Peroxidase with Dual Catalytic Activity Modulates Abiotic Stress Tolerances. iScience 2019; 16:31-49. [PMID: 31146130 PMCID: PMC6542772 DOI: 10.1016/j.isci.2019.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/10/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
Ascorbic acid-glutathione (AsA-GSH) cycle represents important antioxidant defense system in planta. Here we utilized Oncidium cytosolic ascorbate peroxidase (OgCytAPX) as a model to demonstrate that CytAPX of several plants possess dual catalytic activity of both AsA and GSH, compared with the monocatalytic activity of Arabidopsis APX (AtCytAPX). Structural modeling and site-directed mutagenesis identified that three amino acid residues, Pro63, Asp75, and Tyr97, are required for oxidization of GSH in dual substrate catalytic type. Enzyme kinetic study suggested that AsA and GSH active sites are distinctly located in cytosolic APX structure. Isothermal titration calorimetric and UV-visible analysis confirmed that cytosolic APX is a heme-containing protein, which catalyzes glutathione in addition to ascorbate. Biochemical and physiological evidences of transgenic Arabidopsis overexpressing OgCytAPX1 exhibits efficient reactive oxygen species-scavenging activity, salt and heat tolerances, and early flowering, compared with Arabidopsis overexpressing AtCytAPX. Thus results on dual activity CytAPX impose significant advantage on evolutionary adaptive mechanism in planta.
Collapse
Affiliation(s)
- Dan-Chu Chin
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | | | - Ching-Shu Suen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Yu Chien
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Xu Xuhan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong Xiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
76
|
Li T, Huang Y, Xu ZS, Wang F, Xiong AS. Salicylic acid-induced differential resistance to the Tomato yellow leaf curl virus among resistant and susceptible tomato cultivars. BMC PLANT BIOLOGY 2019; 19:173. [PMID: 31046667 PMCID: PMC6498608 DOI: 10.1186/s12870-019-1784-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/16/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND In higher plants, salicylic acid (SA) plays important roles in inducing resistance to biotic and abiotic stresses. Tomato yellow leaf curl virus (TYLCV) causes a highly devastating viral disease in plants, particularly in tomato. However, the roles of SA in inducing tomato plant resistance to TYLCV remain unclear. RESULTS In this study, we investigated whether the exogenous application of SA can improve the resistance of tomato plants to TYLCV in two tomato cultivars, resistant 'Zhefen-702' and susceptible 'Jinpeng-1'. The impacts of SA on the accumulation of ascorbic acid (AsA) and biosynthetic gene expression, the activity of some important reactive oxygen species (ROS)-scavenging enzymes, and the expression patterns of stress-related genes were also determined. Results indicated that SA can effectively regulate the accumulation of AsA, especially in 'Jinpeng-1'. Similarly, the expression patterns of most of the AsA biosynthetic genes showed a negative relationship with AsA accumulation in the resistant and susceptible tomato cultivars. In the two tomato cultivars, the activities of ascorbate peroxidase (APX) and peroxidase (POD) in the SA + TYLCV treated plants were increased during the experiment period except at 14 days (APX in 'Jinpeng-1' was also at 4 days) post infected (dpi) with TYLCV. Simultaneously, the activity of SOD was reduced in 'Jinpeng-1' and increased in 'Zhefen-702' after treatment with SA + TYLCV. SA can substantially induce the expression of ROS-scavenging genes at different extents. From 2 to 10 dpi, the virus content in the SA + TYLCV treated plants was remarkably lower than those in the TYLCV treated plants in 'Jinpeng-1'and Zhefen-702'. CONCLUSIONS The above results suggest that SA can enhance tomato plant resistance by modulating the expression of genes encoding for ROS-scavenging players, altering the activity of resistance-related enzymes, and inducing the expression of pathogenesis-related genes to produce systemic acquired resistance. Simultaneously, these results confirm that SA is a resistance-inducing factor against TYLCV infection that can be effectively applied in tomato plants.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 China
| | - Ying Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 China
| |
Collapse
|
77
|
Duprey A, Taib N, Leonard S, Garin T, Flandrois JP, Nasser W, Brochier-Armanet C, Reverchon S. The phytopathogenic nature of Dickeya aquatica 174/2 and the dynamic early evolution of Dickeya pathogenicity. Environ Microbiol 2019; 21:2809-2835. [PMID: 30969462 DOI: 10.1111/1462-2920.14627] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022]
Abstract
Dickeya is a genus of phytopathogenic enterobacterales causing soft rot in a variety of plants (e.g. potato, chicory, maize). Among the species affiliated to this genus, Dickeya aquatica, described in 2014, remained particularly mysterious because it had no known host. Furthermore, while D. aquatica was proposed to represent a deep-branching species among Dickeya genus, its precise phylogenetic position remained elusive. Here, we report the complete genome sequence of the D. aquatica type strain 174/2. We demonstrate the affinity of D. aquatica strain 174/2 for acidic fruits such as tomato and cucumber and show that exposure of this bacterium to acidic pH induces twitching motility. An in-depth phylogenomic analysis of all available Dickeya proteomes pinpoints D. aquatica as the second deepest branching lineage within this genus and reclassifies two lineages that likely correspond to new genomospecies (gs.): Dickeya gs. poaceaephila (Dickeya sp NCPPB 569) and Dickeya gs. undicola (Dickeya sp 2B12), together with a new putative genus, tentatively named Prodigiosinella. Finally, from comparative analyses of Dickeya proteomes, we infer the complex evolutionary history of this genus, paving the way to study the adaptive patterns and processes of Dickeya to different environmental niches and hosts. In particular, we hypothesize that the lack of xylanases and xylose degradation pathways in D. aquatica could reflect adaptation to aquatic charophyte hosts which, in contrast to land plants, do not contain xyloglucans.
Collapse
Affiliation(s)
- Alexandre Duprey
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Najwa Taib
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Simon Leonard
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Tiffany Garin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Jean-Pierre Flandrois
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - William Nasser
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Céline Brochier-Armanet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Sylvie Reverchon
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| |
Collapse
|
78
|
Dai L, Feng Z, Pan X, Xu Y, Li P, Lefohn AS, Harmens H, Kobayashi K. Increase of apoplastic ascorbate induced by ozone is insufficient to remove the negative effects in tobacco, soybean and poplar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:380-388. [PMID: 30448508 DOI: 10.1016/j.envpol.2018.11.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Apoplastic ascorbate (ASCapo) is an important contributor to the detoxification of ozone (O3). The objective of the study is to explore whether ASCapo is stimulated by elevated O3 concentrations. The detoxification of O3 by ASCapo was quantified in tobacco (Nicotiana L), soybean (Glycine max (L.) Merr.) and poplar (Populus L), which were exposed to charcoal-filtered air (CF) and elevated O3 treatments (E-O3). ASCapo in the three species were significantly increased by E-O3 compared with the values in the filtered treatment. For all three species, E-O3 significantly increased the malondialdehyde (MDA) content and decreased light-saturated rate of photosynthesis (Asat), suggesting that high O3 has induced injury/damage to plants. E-O3 significantly increased redox state in the apoplast (redox stateapo) for all species, whereas no effect on the apoplastic dehydroascorbate (DHAapo) was observed. In leaf tissues, E-O3 significantly enhanced reduced-ascorbate (ASC) and total ascorbate (ASC+DHA) in soybean and poplar, but significantly reduced these in tobacco, indicating different antioxidative capacity to the high O3 levels among the three species. Total antioxidant capacity in the apoplast (TACapo) was significantly increased by E-O3 in tobacco and poplar, but leaf tissue TAC was significantly enhanced only in tobacco. Leaf tissue superoxide anion (O2•-) in poplar and hydrogen peroxide (H2O2) in tobacco and soybean were significantly increased by E-O3. The diurnal variation of ASCapo, with maximum values occurring in the late morning and lower values experienced in the afternoon, appeared to play an important role in the harmful effects of O3 on tobacco, soybean and poplar.
Collapse
Affiliation(s)
- Lulu Dai
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan District, Beijing, 100049, China
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan District, Beijing, 100049, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Xiaodong Pan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan District, Beijing, 100049, China
| | - Pin Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan District, Beijing, 100049, China
| | - Allen S Lefohn
- A.S.L. & Associates, 302 North Last Chance Gulch, Suite 410, Helena, MT, 59601, USA
| | - Harry Harmens
- Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Kazuhiko Kobayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyoku, Tokyo, Japan
| |
Collapse
|
79
|
Zechmann B. Compartment-Specific Importance of Ascorbate During Environmental Stress in Plants. Antioxid Redox Signal 2018; 29:1488-1501. [PMID: 28699398 DOI: 10.1089/ars.2017.7232] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SIGNIFICANCE Ascorbate is an essential antioxidant in plants. Total contents and its redox state in organelles are crucial to fight and signal oxidative stress. Recent Advances: With quantitative immunoelectron microscopy and biochemical methods, highest ascorbate contents have recently been measured in peroxisomes (23 mM) and the cytosol (22 mM), lowest ones in vacuoles (2 mM), and intermediate concentrations (4-16 mM) in all other organelles. CRITICAL ISSUES The accumulation of ascorbate in chloroplasts and peroxisomes is crucial for plant defense. Its depletion in chloroplasts, peroxisomes, and mitochondria during biotic stress leads to the accumulation of reactive oxygen species (ROS) and the development of chlorosis and necrosis. In the apoplast and vacuoles, ascorbate is the most important antioxidant for the detoxification of ROS. The cytosol acts as a hub for ascorbate metabolism as it reduces its oxidized forms that are produced in the cytosol or imported from other cell compartments. It is a sink for ascorbate that is produced in mitochondria, distributes ascorbate to all organelles, and uses ascorbate to detoxify ROS. As ascorbate and its redox state are involved in protein synthesis and modifications, it can be concluded that ascorbate in the cytosol senses oxidative stress and regulates plant growth, development, and defense. FUTURE DIRECTIONS Future research should focus on (1) dissecting roles of ascorbate in vacuoles and the lumen of the endoplasmic reticulum, (2) identifying the physiological relevance of ascorbate transporters, and (3) correlating current data with changes in the subcellular distribution of related enzymes, ROS, and gene expression patterns.
Collapse
Affiliation(s)
- Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University , Waco, Texas
| |
Collapse
|
80
|
Dewhirst RA, Fry SC. The oxidation of dehydroascorbic acid and 2,3-diketogulonate by distinct reactive oxygen species. Biochem J 2018; 475:3451-3470. [PMID: 30348642 PMCID: PMC6225978 DOI: 10.1042/bcj20180688] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
Abstract
l-Ascorbate, dehydro-l-ascorbic acid (DHA), and 2,3-diketo-l-gulonate (DKG) can all quench reactive oxygen species (ROS) in plants and animals. The vitamin C oxidation products thereby formed are investigated here. DHA and DKG were incubated aerobically at pH 4.7 with peroxide (H2O2), 'superoxide' (a ∼50 : 50 mixture of [Formula: see text] and [Formula: see text]), hydroxyl radicals (•OH, formed in Fenton mixtures), and illuminated riboflavin (generating singlet oxygen, 1O2). Products were monitored electrophoretically. DHA quenched H2O2 far more effectively than superoxide, but the main products in both cases were 4-O-oxalyl-l-threonate (4-OxT) and smaller amounts of 3-OxT and OxA + threonate. H2O2, but not superoxide, also yielded cyclic-OxT. Dilute Fenton mixture almost completely oxidised a 50-fold excess of DHA, indicating that it generated oxidant(s) greatly exceeding the theoretical •OH yield; it yielded oxalate, threonate, and OxT. 1O2 had no effect on DHA. DKG was oxidatively decarboxylated by H2O2, Fenton mixture, and 1O2, forming a newly characterised product, 2-oxo-l-threo-pentonate (OTP; '2-keto-l-xylonate'). Superoxide yielded negligible OTP. Prolonged H2O2 treatment oxidatively decarboxylated OTP to threonate. Oxidation of DKG by H2O2, Fenton mixture, or 1O2 also gave traces of 4-OxT but no detectable 3-OxT or cyclic-OxT. In conclusion, DHA and DKG yield different oxidation products when attacked by different ROS. DHA is more readily oxidised by H2O2 and superoxide; DKG more readily by 1O2 The diverse products are potential signals, enabling organisms to respond appropriately to diverse stresses. Also, the reaction-product 'fingerprints' are analytically useful, indicating which ROS are acting in vivo.
Collapse
Affiliation(s)
- Rebecca A Dewhirst
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, U.K
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, U.K.
| |
Collapse
|
81
|
Li Y, Yang M, Liu L, Zhang R, Cui Y, Dang P, Ge X, Chen X. Effects of 1-butyl-3-methylimidazolium chloride on the photosynthetic system and metabolism of maize (Zea mays L.) seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:648-654. [PMID: 29933134 DOI: 10.1016/j.ecoenv.2018.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/03/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Ionic liquids (ILs) are widely used in various chemical processes. However, a growing number of studies have found that ILs are potentially toxic to different types of living organisms, including crops. The present study analysed the effects of 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) on the photosynthetic system and metabolism of maize seedlings. Results showed that [C4mim]Cl could significantly reduce maize leaf chlorophyll level and cause extensive leaf bleaching. The activity of photosystem II (PSII) was significantly inhibited when seedlings exposed to higher concentration of [C4mim]Cl. The maximum quantum yield of PSII and the potential efficiency of PSII were reduced by 63% and 88% under 800 mg/L [C4mim]Cl treatment in comparison with the control treatment. The RNA sequencing analysis performed to examine gene expression profiles of maize leaves under [C4mim]Cl treatment revealed 639 differentially expressed genes (DEGs), 115 of which were categorized into different metabolic pathways. Among these DEGs, the seven genes involved in the photosynthetic Calvin cycle were down-regulated by [C4mim]Cl exposure. For carbohydrates and amino acids metabolism, the genes for starch synthesis were down-regulated, while the genes for amino acids and protein degradation were up-regulated. The changes observed in these major metabolic pathways might be an important reason for [C4mim]Cl toxicity.
Collapse
Affiliation(s)
- Yajun Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Miao Yang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Le Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruoyu Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuhui Cui
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengfei Dang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuemei Ge
- Nanjing Forestry University, Nanjing 210037, China
| | - Xiaohong Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
82
|
Galsurker O, Doron-Faigenboim A, Teper-Bamnolker P, Daus A, Lers A, Eshel D. Differential response to heat stress in outer and inner onion bulb scales. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4047-4064. [PMID: 29788446 PMCID: PMC6054243 DOI: 10.1093/jxb/ery189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/15/2018] [Indexed: 05/28/2023]
Abstract
The formation of brown protective skin in onion bulbs can be induced by rapid post-harvest heat treatment. Onions that are peeled to different depths and are exposed to heat stress show that only the outer scales form the dry brown skin, whereas the inner scales maintain high water content and do not change color. Our study demonstrates that browning of the outer scale during heat treatment is due to an enzymatic process that is associated with high levels of oxidation components, such as peroxidase and quercetin glucoside. De novo transcriptome analysis revealed differential molecular responses of the outer and inner scales to heat stress. Genes involved in lipid metabolism, oxidation pathways, and cell-wall modification were highly expressed in the outer scale during heating. Defense response-related genes such as those encoding heat-shock proteins, antioxidative stress defense, or production of osmoprotectant metabolites were mostly induced in the inner scale in response to heat exposure. These transcriptomic data led to a conceptual model that suggests sequential processes for the development of browning and desiccation of the outer scale versus processes associated with defense response and heat tolerance in the inner scales.
Collapse
Affiliation(s)
- Ortal Galsurker
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
- The Robert H. Smith Institute of Field Crops and Vegetables, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Adi Doron-Faigenboim
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Paula Teper-Bamnolker
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Avinoam Daus
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Amnon Lers
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Dani Eshel
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
83
|
Smirnoff N. Ascorbic acid metabolism and functions: A comparison of plants and mammals. Free Radic Biol Med 2018; 122:116-129. [PMID: 29567393 PMCID: PMC6191929 DOI: 10.1016/j.freeradbiomed.2018.03.033] [Citation(s) in RCA: 348] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023]
Abstract
Ascorbic acid is synthesised by eukaryotes, the known exceptions being primates and some other animal groups which have lost functional gulonolactone oxidase. Prokaryotes do not synthesise ascorbate and do not need an ascorbate supply, so the functions that are essential for mammals and plants are not required or are substituted by other compounds. The ability of ascorbate to donate electrons enables it to act as a free radical scavenger and to reduce higher oxidation states of iron to Fe2+. These reactions are the basis of its biological activity along with the relative stability of the resulting resonance stabilised monodehydroascorbate radical. The importance of these properties is emphasised by the evolution of at least three biosynthetic pathways and production of an ascorbate analogue, erythroascorbate, by fungi. The iron reducing activity of ascorbate maintains the reactive centre Fe2+ of 2-oxoglutarate-dependent dioxygenases (2-ODDs) thus preventing inactivation. These enzymes have diverse functions and, recently, the possibility that ascorbate status in mammals could influence 2-ODDs involved in histone and DNA demethylation thereby influencing stem cell differentiation and cancer has been uncovered. Ascorbate is involved in iron uptake and transport in plants and animals. While the above biochemical functions are shared between mammals and plants, ascorbate peroxidase (APX) is an enzyme family limited to plants and photosynthetic protists. It provides these organisms with increased capacity to remove H2O2 produced by photosynthetic electron transport and photorespiration. The Fe reducing activity of ascorbate enables hydroxyl radical production (pro-oxidant effect) and the reactivity of dehydroascorbate (DHA) and reaction of its degradation products with proteins (dehydroascorbylation and glycation) is potentially damaging. Ascorbate status influences gene expression in plants and mammals but at present there is little evidence that it acts as a specific signalling molecule. It most likely acts indirectly by influencing the redox state of thiols and 2-ODD activity. However, the possibility that dehydroascorbylation is a regulatory post-translational protein modification could be explored.
Collapse
Affiliation(s)
- Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
84
|
Semida WM, Hemida KA, Rady MM. Sequenced ascorbate-proline-glutathione seed treatment elevates cadmium tolerance in cucumber transplants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 154:171-179. [PMID: 29471279 DOI: 10.1016/j.ecoenv.2018.02.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 05/03/2023]
Abstract
During its life cycle, plant has to cope with a number of abiotic stresses including cadmium stress. Cadmium (Cd) is highly toxic to plant and greatly influences its growth and entire metabolism. Antioxidants have to enable plant to beat such stresses. Therefore, effects of ascorbate (AsA), proline (Pro) and glutathione (GSH) applied, as seed soaking solutions, singly or in a sequence on cucumber transplant growth, physio-biochemical attributes and antioxidant defense system activity were investigated under 2 mM Cd stress. Adding Cd to transplants in irrigation water reduced photosynthetic efficiency, and nutrient (K+ and Ca2+) contents, while increased the activity of defense systems (non-enzymatic and enzymatic antioxidants) and Cd2+ contents in roots and leaves. Exogenous AsA, Pro and GSH applied singly or in a sequence improved transplant growth (e.g., shoot length, leaf area, shoot fresh weight and shoot dry weight), photosynthetic efficiency (i.e., SPAD chlorophyll, Fv/Fm and PI), transplant health (i.e., increased leaf MSI and RWC, and decreased root and leaf Cd2+ contents), antioxidant defense systems activity (enzymatic; superoxide dismutase, catalase, glutathione reductase and ascorbate peroxidase, and non-enzymatic; Pro, AsA and GSH antioxidants) and nutrient (K+ and Ca2+) contents. These positive results were obtained under irrigation with or without Cd, AsA. Sequenced AsA-Pro-GSH was the best treatment of which this study recommends to use, followed by GSH treatment, for growing cucumber transplants under Cd stress.
Collapse
Affiliation(s)
- Wael M Semida
- Horticulture Department, Faculty of Agriculture, Fayoum University, 63514 Fayoum, Egypt
| | - Khaulood A Hemida
- Botany Department, Faculty of Science, Fayoum University, 63514 Fayoum, Egypt
| | - Mostafa M Rady
- Botany Department, Faculty of Agriculture, Fayoum University, 63514 Fayoum, Egypt.
| |
Collapse
|
85
|
Farhangi-Abriz S, Torabian S. Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. PROTOPLASMA 2018; 255:953-962. [PMID: 29330582 DOI: 10.1007/s00709-017-1202-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/28/2017] [Indexed: 05/25/2023]
Abstract
Materials with a particle size less than 100 nm are classified as nano-materials. The physical and chemical properties of nano-materials can vary considerably from those of bulk materials of the same composition. Silicon (Si) still fails to get recognized as an essential nutrient for plant growth and development, however the beneficial effects in terms of growth, biotic and abiotic stress resistance have been indicated in a variety of plant species for their growth. The aim of this study was to investigate the effects of different nano-silicon rates on the growth and antioxidant activities of soybean (Glycine max L. cv. M7) under salt stress. The results showed that salinity decreased shoot and root dry weight, potassium (K+) concentration in the root and leaf; however, increased sodium (Na+) concentration, catalase, peroxidase, ascorbate peroxidase and superoxide dismutase activities, phenolic components, ascorbic acid and α-tocopherol contents, lipid peroxidation, hydrogen peroxide, and oxygen radical's concentration. Between the treatments, 0.5 and 1 mM of nanosilicon oxide (nano-SiO2) improved shoot and root growth of seedlings. In contrast, a foliar application of SiO2 at 2 mM reduced the soybean growth. Overall, exogenous nano-silicon alleviated the salt stress by increase in K+ concentration, antioxidant activities, non-enzymatic compounds and decreasing of Na+ concentration, lipid peroxidation, and reactive oxygen species production.
Collapse
Affiliation(s)
- Salar Farhangi-Abriz
- Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Shahram Torabian
- Department of Agronomy, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| |
Collapse
|
86
|
Karpinska B, Zhang K, Rasool B, Pastok D, Morris J, Verrall SR, Hedley PE, Hancock RD, Foyer CH. The redox state of the apoplast influences the acclimation of photosynthesis and leaf metabolism to changing irradiance. PLANT, CELL & ENVIRONMENT 2018; 41:1083-1097. [PMID: 28369975 PMCID: PMC5947596 DOI: 10.1111/pce.12960] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/13/2017] [Accepted: 03/22/2017] [Indexed: 05/03/2023]
Abstract
The redox state of the apoplast is largely determined by ascorbate oxidase (AO) activity. The influence of AO activity on leaf acclimation to changing irradiance was explored in wild-type (WT) and transgenic tobacco (Nicotiana tobaccum) lines containing either high [pumpkin AO (PAO)] or low [tobacco AO (TAO)] AO activity at low [low light (LL); 250 μmol m-2 s-1 ] and high [high light (HL); 1600 μmol m-2 s-1 ] irradiance and following the transition from HL to LL. AO activities changed over the photoperiod, particularly in the PAO plants. AO activity had little effect on leaf ascorbate, which was significantly higher under HL than under LL. Apoplastic ascorbate/dehydroascorbate (DHA) ratios and threonate levels were modified by AO activity. Despite decreased levels of transcripts encoding ascorbate synthesis enzymes, leaf ascorbate increased over the first photoperiod following the transition from HL to LL, to much higher levels than LL-grown plants. Photosynthesis rates were significantly higher in the TAO leaves than in WT or PAO plants grown under HL but not under LL. Sub-sets of amino acids and fatty acids were lower in TAO and WT leaves than in the PAO plants under HL, and following the transition to LL. Light acclimation processes are therefore influenced by the apoplastic as well as chloroplastic redox state.
Collapse
Affiliation(s)
- Barbara Karpinska
- Centre for Plant Sciences, School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Kaiming Zhang
- Centre for Plant Sciences, School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- College of ForestryHenan Agricultural UniversityZhengzhou450002China
| | - Brwa Rasool
- Centre for Plant Sciences, School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Daria Pastok
- Centre for Plant Sciences, School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Jenny Morris
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Susan R. Verrall
- Information and Computational SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Pete E. Hedley
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Robert D. Hancock
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Christine H. Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
87
|
Ghorbani B, Pakkish Z, Najafzadeh R. Shelf life improvement of grape (Vitis vinifera L. cv. Rish Baba) using nitric oxide (NO) during chilling damage. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1373663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | - Zahra Pakkish
- Department of Horticultural Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Roghayeh Najafzadeh
- Department of Medicinal Plants, Higher Education Center Shahid Bakeri Miyandoab, Urmia University, Miyandoab, Iran
| |
Collapse
|
88
|
Ramadan T, Abd-Alla MH, Elenany AE, Alzohri M, Nafady IM. Differential Antioxidative Responses to Environmental Constraints in Shoots and Roots of Wild Legumes. GLOBAL JOURNAL OF BOTANICAL SCIENCE 2017; 5:63-73. [DOI: 10.12974/2311-858x.2017.05.02.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The current study aimed to explore the antioxidant system of five legumes inhabiting regions with different conditions. In these legumes, H2O2 generation and lipid peroxidation enhanced in roots of plants inhabiting the Mediterranean region (MR) and Sinai (S) where high soluble salts and low water content in the soil were estimated. High levels of phenols and ascorbic acid were detected in shoots of these plants compared with those inhabiting the Nile region (NR) or Oases (O), which characterized by low soluble salts and high water content. There were great variations between species in their responses to adverse conditions, and enhanced activities of antioxidant enzymes were recorded in plants inhabiting the more stressful habitats. Roots and shoots of legumes responded differentially to oxidative stresses regarding the induction of enhanced or suppressed activities of a definite antioxidative enzym. While CAT activity increased in shoots, GP activity greatly stimulated in roots of legumes at different habitats. The activity of APX decreased in roots but increased in shoots by the harsh conditions of habitate showing minimum and maximum activities in roots and shoots, respectively, in plants inhabiting S. The activity of CAT and APX increased in shoots by increasing the concentration of H2O2, while the over expression of GP gene in roots enhanced scavenging H2O2 to a level between 6% to 37% of its concentration in shoots. Genes expression of the antioxidant enzymes (CAT, GP and APX) more regulated, especially in shoots, by the environmental constraints than the differences between species.
Collapse
|
89
|
Loix C, Huybrechts M, Vangronsveld J, Gielen M, Keunen E, Cuypers A. Reciprocal Interactions between Cadmium-Induced Cell Wall Responses and Oxidative Stress in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1867. [PMID: 29163592 PMCID: PMC5671638 DOI: 10.3389/fpls.2017.01867] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/12/2017] [Indexed: 05/18/2023]
Abstract
Cadmium (Cd) pollution renders many soils across the world unsuited or unsafe for food- or feed-orientated agriculture. The main mechanism of Cd phytotoxicity is the induction of oxidative stress, amongst others through the depletion of glutathione. Oxidative stress can damage lipids, proteins, and nucleic acids, leading to growth inhibition or even cell death. The plant cell has a variety of tools to defend itself against Cd stress. First and foremost, cell walls might prevent Cd from entering and damaging the protoplast. Both the primary and secondary cell wall have an array of defensive mechanisms that can be adapted to cope with Cd. Pectin, which contains most of the negative charges within the primary cell wall, can sequester Cd very effectively. In the secondary cell wall, lignification can serve to immobilize Cd and create a tougher barrier for entry. Changes in cell wall composition are, however, dependent on nutrients and conversely might affect their uptake. Additionally, the role of ascorbate (AsA) as most important apoplastic antioxidant is of considerable interest, due to the fact that oxidative stress is a major mechanism underlying Cd toxicity, and that AsA biosynthesis shares several links with cell wall construction. In this review, modifications of the plant cell wall in response to Cd exposure are discussed. Focus lies on pectin in the primary cell wall, lignification in the secondary cell wall and the importance of AsA in the apoplast. Regarding lignification, we attempt to answer the question whether increased lignification is merely a consequence of Cd toxicity, or rather an elicited defense response. We propose a model for lignification as defense response, with a central role for hydrogen peroxide as substrate and signaling molecule.
Collapse
Affiliation(s)
| | | | | | | | | | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
90
|
Zhou Y, Yang Z, Gao L, Liu W, Liu R, Zhao J, You J. Changes in element accumulation, phenolic metabolism, and antioxidative enzyme activities in the red-skin roots of Panax ginseng. J Ginseng Res 2017; 41:307-315. [PMID: 28701871 PMCID: PMC5489752 DOI: 10.1016/j.jgr.2016.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Red-skin root disease has seriously decreased the quality and production of Panax ginseng (ginseng). METHODS To explore the disease's origin, comparative analysis was performed in different parts of the plant, particularly the epidermis, cortex, and/or fibrous roots of 5-yr-old healthy and diseased red-skin ginseng. The inorganic element composition, phenolic compound concentration, reactive oxidation system, antioxidant concentrations such as ascorbate and glutathione, activities of enzymes related to phenolic metabolism and oxidation, and antioxidative system particularly the ascorbate-glutathione cycle were examined using conventional methods. RESULTS Aluminum (Al), iron (Fe), magnesium, and phosphorus were increased, whereas manganese was unchanged and calcium was decreased in the epidermis and fibrous root of red-skin ginseng, which also contained higher levels of phenolic compounds, higher activities of the phenolic compound-synthesizing enzyme phenylalanine ammonia-lyase and the phenolic compound oxidation-related enzymes guaiacol peroxidase and polyphenoloxidase. As the substrate of guaiacol peroxidase, higher levels of H2O2 and correspondingly higher activities of superoxide dismutase and catalase were found in red-skin ginseng. Increased levels of ascorbate and glutathione; increased activities of l-galactose 1-dehydrogenase, ascorbate peroxidase, ascorbic acid oxidase, and glutathione reductase; and lower activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione peroxidase were found in red-skin ginseng. Glutathione-S-transferase activity remained constant. CONCLUSION Hence, higher element accumulation, particularly Al and Fe, activated multiple enzymes related to accumulation of phenolic compounds and their oxidation. This might contribute to red-skin symptoms in ginseng. It is proposed that antioxidant and antioxidative enzymes, especially those involved in ascorbate-glutathione cycles, are activated to protect against phenolic compound oxidation.
Collapse
Key Words
- AAO, ascorbic acid oxidase
- APX, ascorbate peroxidase
- Al, aluminum
- Asc, ascorbate
- CAT, catalase
- DHA, dehydroascorbate
- DHAR, dehydroascorbate reductase
- GPX, glutathione peroxidase
- GR, glutathione reductase
- GSH, glutathione
- GST, glutathione-S-transferase
- GuPX, guaiacol peroxidase
- MDA, malondialdehyde
- MDHAR, monodehydroascorbate reductase
- PAL, phenylalanine ammonia-lyase
- PPO, polyphenoloxidase
- Panax ginseng
- SOD, superoxide dismutase
- ascorbate
- ginseng, Panax ginseng
- l-GalDH, l-galactose 1-dehydrogenase
- phenolic compounds
- red-skin ginseng disease
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiangfeng You
- Laboratory of Soil and Plant Molecular Genetics, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
91
|
Li R, Xin S, Tao C, Jin X, Li H. Cotton Ascorbate Oxidase Promotes Cell Growth in Cultured Tobacco Bright Yellow-2 Cells through Generation of Apoplast Oxidation. Int J Mol Sci 2017; 18:E1346. [PMID: 28644407 PMCID: PMC5535839 DOI: 10.3390/ijms18071346] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 01/31/2023] Open
Abstract
Ascorbate oxidase (AO) plays an important role in cell growth through the modulation of reduction/oxidation (redox) control of the apoplast. Here, a cotton (Gossypium hirsutum) apoplastic ascorbate oxidase gene (GhAO1) was obtained from fast elongating fiber tissues. GhAO1 belongs to the multicopper oxidase (MCO) family and includes a signal peptide and several transmembrane regions. Analyses of quantitative real-time polymerase chain reaction (QRT-PCR) and enzyme activity showed that GhAO1 was expressed abundantly in 15-day post-anthesis (dpa) wild-type (WT) fibers in comparison with fuzzless-lintless (fl) mutant ovules. Subcellular distribution analysis in onion cells demonstrated that GhAO1 is localized in the cell wall. In transgenic tobacco bright yellow-2 (BY-2) cells with ectopic overexpression of GhAO1, the enhancement of cell growth with 1.52-fold increase in length versus controls was indicated, as well as the enrichment of both total ascorbate in whole-cells and dehydroascorbate acid (DHA) in apoplasts. In addition, promoted activities of AO and monodehydroascorbate reductase (MDAR) in apoplasts and dehydroascorbate reductase (DHAR) in whole-cells were displayed in transgenic tobacco BY-2 cells. Accumulation of H₂O₂, and influenced expressions of Ca2+ channel genes with the activation of NtMPK9 and NtCPK5 and the suppression of NtTPC1B were also demonstrated in transgenic tobacco BY-2 cells. Finally, significant induced expression of the tobacco NtAO gene in WT BY-2 cells under indole-3-acetic acid (IAA) treatment appeared; however, the sensitivity of the NtAO gene expression to IAA disappeared in transgenic BY-2 cells, revealing that the regulated expression of the AO gene is under the control of IAA. Taken together, these results provide evidence that GhAO1 plays an important role in fiber cell elongation and may promote cell growth by generating the oxidation of apoplasts, via the auxin-mediated signaling pathway.
Collapse
Affiliation(s)
- Rong Li
- College of Life Sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi 832003, China.
| | - Shan Xin
- College of Life Sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi 832003, China.
| | - Chengcheng Tao
- College of Life Sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi 832003, China.
| | - Xiang Jin
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Hongbin Li
- College of Life Sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
92
|
Sabagh AEL, Abdelaal KAA, Barutcular C. Impact of antioxidants supplementation on growth, yield and quality traits of canola (Brassica napus L.) under irrigation intervals in north nile delta of Egypt. ACTA ACUST UNITED AC 2017. [DOI: 10.18006/2017.5(2).163.172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
93
|
M. B, M. MR, N. H, M. SU. Exogenous ascorbic acid improved tolerance in maize (Zea mays L.) by increasing antioxidant activity under salinity stress. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajar2017.12295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
94
|
Akram NA, Shafiq F, Ashraf M. Ascorbic Acid-A Potential Oxidant Scavenger and Its Role in Plant Development and Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:613. [PMID: 28491070 PMCID: PMC5405147 DOI: 10.3389/fpls.2017.00613] [Citation(s) in RCA: 366] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/04/2017] [Indexed: 05/18/2023]
Abstract
Over-production of reactive oxygen species (ROS) in plants under stress conditions is a common phenomenon. Plants tend to counter this problem through their ability to synthesize ROS neutralizing substances including non-enzymatic and enzymatic antioxidants. In this context, ascorbic acid (AsA) is one of the universal non-enzymatic antioxidants having substantial potential of not only scavenging ROS, but also modulating a number of fundamental functions in plants both under stress and non-stress conditions. In the present review, the role of AsA, its biosynthesis, and cross-talk with different hormones have been discussed comprehensively. Furthermore, the possible involvement of AsA-hormone crosstalk in the regulation of several key physiological and biochemical processes like seed germination, photosynthesis, floral induction, fruit expansion, ROS regulation and senescence has also been described. A simplified and schematic AsA biosynthetic pathway has been drawn, which reflects key intermediates involved therein. This could pave the way for future research to elucidate the modulation of plant AsA biosynthesis and subsequent responses to environmental stresses. Apart from discussing the role of different ascorbate peroxidase isoforms, the comparative role of two key enzymes, ascorbate peroxidase (APX) and ascorbate oxidase (AO) involved in AsA metabolism in plant cell apoplast is also discussed particularly focusing on oxidative stress perception and amplification. Limited progress has been made so far in terms of developing transgenics which could over-produce AsA. The prospects of generation of transgenics overexpressing AsA related genes and exogenous application of AsA have been discussed at length in the review.
Collapse
Affiliation(s)
- Nudrat A. Akram
- Department of Botany, Government College University FaisalabadFaisalabad, Pakistan
| | - Fahad Shafiq
- Department of Botany, Government College University FaisalabadFaisalabad, Pakistan
| | - Muhammad Ashraf
- Pakistan Science FoundationIslamabad, Pakistan
- Department of Botany and Microbiology, King Saud UniversityRiyadh, Saudi Arabia
| |
Collapse
|
95
|
Kärkönen A, Dewhirst RA, Mackay CL, Fry SC. Metabolites of 2,3-diketogulonate delay peroxidase action and induce non-enzymic H 2O 2 generation: Potential roles in the plant cell wall. Arch Biochem Biophys 2017; 620:12-22. [PMID: 28315301 PMCID: PMC5398285 DOI: 10.1016/j.abb.2017.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/22/2017] [Accepted: 03/12/2017] [Indexed: 10/25/2022]
Abstract
A proportion of the plant's l-ascorbate (vitamin C) occurs in the apoplast, where it and its metabolites may act as pro-oxidants and anti-oxidants. One ascorbate metabolite is 2,3-diketogulonate (DKG), preparations of which can non-enzymically generate H2O2 and delay peroxidase action on aromatic substrates. As DKG itself generates several by-products, we characterised these and their ability to generate H2O2 and delay peroxidase action. DKG preparations rapidly produced a by-product, compound (1), with λmax 271 and 251 nm at neutral and acidic pH respectively. On HPLC, (1) co-eluted with the major H2O2-generating and peroxidase-delaying principle. Compound (1) was slowly destroyed by ascorbate oxidase, and was less stable at pH 6 than at pH 1. Electrophoresis of an HPLC-enriched preparation of (1) suggested a strongly acidic (pKa ≈ 2.3) compound. Mass spectrometry suggested that un-ionised (1) has the formula C6H6O5, i.e. it is a reduction product of DKG (C6H8O7). In conclusion, compound (1) is the major H2O2-generating, peroxidase-delaying principle formed non-enzymically from DKG in the pathway ascorbate → dehydroascorbic acid → DKG → (1). We hypothesise that (1) generates apoplastic H2O2 (and consequently hydroxyl radicals) and delays cell-wall crosslinking - both these effects favouring wall loosening, and possibly playing a role in pathogen defence.
Collapse
Affiliation(s)
- Anna Kärkönen
- Department of Agricultural Sciences, Viikki Plant Science Center, University of Helsinki, Finland; The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK.
| | - Rebecca A Dewhirst
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - C Logan Mackay
- EastCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
96
|
Podgórska A, Burian M, Szal B. Extra-Cellular But Extra-Ordinarily Important for Cells: Apoplastic Reactive Oxygen Species Metabolism. FRONTIERS IN PLANT SCIENCE 2017; 8:1353. [PMID: 28878783 PMCID: PMC5572287 DOI: 10.3389/fpls.2017.01353] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/20/2017] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS), by their very nature, are highly reactive, and it is no surprise that they can cause damage to organic molecules. In cells, ROS are produced as byproducts of many metabolic reactions, but plants are prepared for this ROS output. Even though extracellular ROS generation constitutes only a minor part of a cell's total ROS level, this fraction is of extraordinary importance. In an active apoplastic ROS burst, it is mainly the respiratory burst oxidases and peroxidases that are engaged, and defects of these enzymes can affect plant development and stress responses. It must be highlighted that there are also other less well-known enzymatic or non-enzymatic ROS sources. There is a need for ROS detoxification in the apoplast, and almost all cellular antioxidants are present in this space, but the activity of antioxidant enzymes and the concentration of low-mass antioxidants is very low. The low antioxidant efficiency in the apoplast allows ROS to accumulate easily, which is a condition for ROS signaling. Therefore, the apoplastic ROS/antioxidant homeostasis is actively engaged in the reception and reaction to many biotic and abiotic stresses.
Collapse
Affiliation(s)
| | | | - Bożena Szal
- *Correspondence: Bożena Szal, Anna Podgórska,
| |
Collapse
|
97
|
Penella C, Calatayud Á, Melgar JC. Ascorbic Acid Alleviates Water Stress in Young Peach Trees and Improves Their Performance after Rewatering. FRONTIERS IN PLANT SCIENCE 2017; 8:1627. [PMID: 28979284 PMCID: PMC5611396 DOI: 10.3389/fpls.2017.01627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/05/2017] [Indexed: 05/21/2023]
Abstract
Exogenous application of biochemicals has been found to improve water stress tolerance in herbaceous crops but there are limited studies on deciduous fruit trees. The goal of this research was to study if ascorbic acid applications could improve physiological mechanisms associated with water stress tolerance in young fruit trees. Ascorbic acid was foliarly applied at a concentration of 250 ppm to water-stressed and well-watered peach trees (control) of two cultivars ('Scarletprince' and 'CaroTiger'). Trees received either one or two applications, and 1 week after the second application all trees were rewatered to field capacity. Upon rewatering, CO2 assimilation and stomatal conductance of water-stressed 'Scarletprince' trees sprayed with ascorbic acid (one or two applications) were similar to those of well-irrigated trees, but water-stressed trees that had not received ascorbic acid did not recover photosynthetical functions. Also, water status in sprayed water-stressed 'Scarletprince' trees was improved to values similar to control trees. On the other hand, water-stressed 'CaroTiger' trees needed two applications of ascorbic acid to reach values of CO2 assimilation similar to control trees but these applications did not improve their water status. In general terms, different response mechanisms to cope with water stress in presence of ascorbic acid were found in each cultivar, with 'Scarletprince' trees preferentially using proline as compatible solute and 'CaroTiger' trees relying on stomatal regulation. The application of ascorbic acid reduced cell membrane damage and increased catalase activity in water-stressed trees of both cultivars. These results suggest that foliar applications of ascorbic acid could be used as a management practice for improving water stress tolerance of young trees under suboptimal water regimes.
Collapse
Affiliation(s)
- Consuelo Penella
- Departamento de Horticultura, Instituto Valenciano de Investigaciones AgrariasValencia, Spain
| | - Ángeles Calatayud
- Departamento de Horticultura, Instituto Valenciano de Investigaciones AgrariasValencia, Spain
| | - Juan C. Melgar
- Department of Plant and Environmental Sciences, Clemson University, ClemsonSC, United States
- *Correspondence: Juan C. Melgar,
| |
Collapse
|
98
|
Transcriptional reprogramming of genes related to ascorbate and glutathione biosynthesis, turnover and translocation in aphid-challenged maize seedlings. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
99
|
Takahashi M, Shigeto J, Shibata T, Sakamoto A, Morikawa H. Differential abilities of nitrogen dioxide and nitrite to nitrate proteins in thylakoid membranes isolated from Arabidopsis leaves. PLANT SIGNALING & BEHAVIOR 2016; 11:e1237329. [PMID: 27661771 PMCID: PMC5117089 DOI: 10.1080/15592324.2016.1237329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/09/2016] [Indexed: 05/09/2023]
Abstract
Exposure of Arabidopsis leaves to nitrogen dioxide (NO2) results in nitration of specific chloroplast proteins. To determine whether NO2 itself and/or nitrite derived from NO2 can nitrate proteins, Arabidopsis thylakoid membranes were isolated and treated with NO2-bubbled or potassium nitrite (KNO2) buffer, followed by protein extraction, electrophoresis, and immunoblotting using an anti-3-nitrotyrosine (NT) antibody. NO2 concentrations in the NO2-bubbled buffer were calculated by numerically solving NO2 dissociation kinetic equations. The two buffers were adjusted to have identical nitrite concentrations. Both treatments yielded an NT-immunopositive band that LC/MS identified as PSBO1. The difference in the band intensity between the 2 treatments was designated nitration by NO2. Both NO2 and nitrite mediated nitration of proteins, and the nitration ability per unit NO2 concentration was ∼100-fold greater than that of nitrite.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Jun Shigeto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Tatsuo Shibata
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Atsushi Sakamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
100
|
Xin S, Tao C, Li H. Cloning and Functional Analysis of the Promoter of an Ascorbate Oxidase Gene from Gossypium hirsutum. PLoS One 2016; 11:e0161695. [PMID: 27597995 PMCID: PMC5012575 DOI: 10.1371/journal.pone.0161695] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/10/2016] [Indexed: 01/19/2023] Open
Abstract
Apoplastic ascorbate oxidase (AO) plays significant roles in plant cell growth. However, the mechanism of underlying the transcriptional regulation of AO in Gossypium hirsutum remains unclear. Here, we obtained a 1,920-bp promoter sequence from the Gossypium hirsutum ascorbate oxidase (GhAO1) gene, and this GhAO1 promoter included a number of known cis-elements. Promoter activity analysis in overexpressing pGhAO1::GFP-GUS tobacco (Nicotiana benthamiana) showed that the GhAO1 promoter exhibited high activity, driving strong reporter gene expression in tobacco trichomes, leaves and roots. Promoter 5'-deletion analysis demonstrated that truncated GhAO1 promoters with serial 5'-end deletions had different GUS activities. A 360-bp fragment was sufficient to activate GUS expression. The P-1040 region had less GUS activity than the P-720 region, suggesting that the 320-bp region from nucleotide -720 to -1040 might include a cis-element acting as a silencer. Interestingly, an auxin-responsive cis-acting element (TGA-element) was uncovered in the promoter. To analyze the function of the TGA-element, tobacco leaves transformed with promoters with different 5' truncations were treated with indole-3-acetic acid (IAA). Tobacco leaves transformed with the promoter regions containing the TGA-element showed significantly increased GUS activity after IAA treatment, implying that the fragment spanning nucleotides -1760 to -1600 (which includes the TGA-element) might be a key component for IAA responsiveness. Analyses of the AO promoter region and AO expression pattern in Gossypium arboreum (Ga, diploid cotton with an AA genome), Gossypium raimondii (Gr, diploid cotton with a DD genome) and Gossypium hirsutum (Gh, tetraploid cotton with an AADD genome) indicated that AO promoter activation and AO transcription were detected together only in D genome/sub-genome (Gr and Gh) cotton. Taken together, these results suggest that the 1,920-bp GhAO1 promoter is a functional sequence with a potential effect on fiber cell development, mediated by TGA-element containing sequences, via the auxin-signaling pathway.
Collapse
Affiliation(s)
- Shan Xin
- College of life sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China
| | - Chengcheng Tao
- College of life sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China
| | - Hongbin Li
- College of life sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|