51
|
Liapis E, McLuckie KIE, Lewis PD, Farmer PB, Brown K. Mutagenicity of tamoxifen DNA adducts in human endometrial cells and in silico prediction of p53 mutation hotspots. Nucleic Acids Res 2008; 36:5933-45. [PMID: 18805907 PMCID: PMC2566887 DOI: 10.1093/nar/gkn586] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tamoxifen elevates the risk of endometrial tumours in women and alpha-(N(2)-deoxyguanosinyl)-tamoxifen adducts are reportedly present in endometrial tissue of patients undergoing therapy. Given the widespread use of tamoxifen there is considerable interest in elucidating the mechanisms underlying treatment-associated cancer. Using a combined experimental and multivariate statistical approach we have examined the mutagenicity and potential consequences of adduct formation by reactive intermediates in target uterine cells. pSP189 plasmid containing the supF gene was incubated with alpha-acetoxytamoxifen or 4-hydroxytamoxifen quinone methide (4-OHtamQM) to generate dG-N(2)-tamoxifen and dG-N(2)-4-hydroxytamoxifen, respectively. Plasmids were replicated in Ishikawa cells then screened in Escherichia coli. Treatment with both alpha-acetoxytamoxifen and 4-OHtamQM caused a dose-related increase in adduct levels, resulting in a damage-dependent increase in mutation frequency for alpha-acetoxytamoxifen; 4-OHtamQM had no apparent effect. Only alpha-acetoxytamoxifen generated statistically different supF mutation spectra relative to the spontaneous pattern, with most mutations being GC-->TA transversions. Application of the LwPy53 algorithm to the alpha-acetoxytamoxifen spectrum predicted strong GC-->TA hotspots at codons 244 and 273. These signature alterations do not correlate with current reports of the mutations observed in endometrial carcinomas from treated women, suggesting that dG-N(2)-tam adduct formation in the p53 gene is not a prerequisite for endometrial cancer initiation in women.
Collapse
Affiliation(s)
- Evagelos Liapis
- Department of Cancer Studies and Molecular Medicine, Department of Biochemistry, University of Leicester, Leicester, LE2 7LX, UK
| | | | | | | | | |
Collapse
|
52
|
Jain N, Reshetnyak YK, Gao L, Chiarelli MP, Cho BP. Fluorescence probing of aminofluorene-induced conformational heterogeneity in DNA duplexes. Chem Res Toxicol 2008; 21:445-52. [PMID: 18193841 PMCID: PMC2819298 DOI: 10.1021/tx7003536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence spectroscopy was used to study carcinogen-induced conformational heterogeneity in DNA duplexes. The fluorophore 2-aminopurine (AP) was incorporated adjacent (5') to the lesion (G*) in eight different DNA duplexes [d(5'-CTTCT PG* NCCTC-3'):d(5'-GAGGN XTAGAAG-3'), G* = FAF adduct, P = AP, N = G, A, C, T, and X = C, A] modified by FAF [ N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene], a fluorine-tagged model DNA adduct derived from the potent carcinogen 2-aminofluorene. Steady-state measurements showed that fluorescence intensity and Stern-Volmer constants ( Ksv) derived from acrylamide quenching experiments decreased for all carcinogen-modified duplexes relative to the controls, which suggests greater AP stacking in the duplex upon adduct formation. Conformation-specific stacking of AP with the neighboring adduct was evidenced by a sequence-dependent variation in fluorescence intensity, position of emission maximum, degree of emission quenching by acrylamide, and temperature-dependent spectral changes. The magnitude of stacking was in the order of FAF residue in base-displaced stacked (S) > minor groove wedged (W) > major groove B type (B). This work represents a novel utility of AP in probing adduct-induced conformational heterogeneities in DNA duplexes.
Collapse
Affiliation(s)
| | | | | | | | - Bongsup P. Cho
- To whom correspondence should be addressed. Tel: 401-874-5024. Fax: 401-874-5766.
| |
Collapse
|
53
|
Chakravarti D, Venugopal D, Mailander PC, Meza JL, Higginbotham S, Cavalieri EL, Rogan EG. The role of polycyclic aromatic hydrocarbon-DNA adducts in inducing mutations in mouse skin. Mutat Res 2008; 649:161-78. [PMID: 17931959 PMCID: PMC2254211 DOI: 10.1016/j.mrgentox.2007.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 08/17/2007] [Accepted: 08/31/2007] [Indexed: 11/29/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAH) form stable and depurinating DNA adducts in mouse skin to induce preneoplastic mutations. Some mutations transform cells, which then clonally expand to establish tumors. Strong clues about the mutagenic mechanism can be obtained if the PAH-DNA adducts can be correlated with both preneoplastic and tumor mutations. To this end, we studied mutagenesis in PAH-treated early preneoplastic skin (1 day after exposure) and in the induced papillomas in SENCAR mice. Papillomas were studied by PCR amplification of the H-ras gene and sequencing. For benzo[a]pyrene (BP), BP-7,8-dihydrodiol (BPDHD), 7,12-dimethylbenz[a]anthracene (DMBA) and dibenzo[a,l]pyrene (DB[a,l]P), the codon 13 (GGC to GTC) and codon 61 (CAA to CTA) mutations in papillomas corresponded to the relative levels of Gua and Ade-depurinating adducts, despite BP and BPDHD forming significant amounts of stable DNA adducts. Such a relationship was expected for DMBA and DB[a,l]P, as they formed primarily depurinating adducts. These results suggest that depurinating adducts play a major role in forming the tumorigenic mutations. To validate this correlation, preneoplastic skin mutations were studied by cloning H-ras PCR products and sequencing individual clones. DMBA- and DB[a,l]P-treated skin showed primarily A.T to G.C mutations, which correlated with the high ratio of the Ade/Gua-depurinating adducts. Incubation of skin DNA with T.G-DNA glycosylase eliminated most of these A.T to G.C mutations, indicating that they existed as G.T heteroduplexes, as would be expected if they were formed by errors in the repair of abasic sites generated by the depurinating adducts. BP and its metabolites induced mainly G.C to T.A mutations in preneoplastic skin. However, PCR over unrepaired anti-BPDE-N(2)dG adducts can generate similar mutations as artifacts of the study protocol, making it difficult to establish an adduct-mutation correlation for determining which BP-DNA adducts induce the early preneoplastic mutations. In conclusion, this study suggests that depurinating adducts play a major role in PAH mutagenesis.
Collapse
|
54
|
Xu P, Oum L, Beese LS, Geacintov NE, Broyde S. Following an environmental carcinogen N2-dG adduct through replication: elucidating blockage and bypass in a high-fidelity DNA polymerase. Nucleic Acids Res 2007; 35:4275-88. [PMID: 17576677 PMCID: PMC1934992 DOI: 10.1093/nar/gkm416] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have investigated how a benzo[a]pyrene-derived N2-dG adduct, 10S(+)-trans-anti-[BP]-N2-dG ([BP]G*), is processed in a well-characterized Pol I family model replicative DNA polymerase, Bacillus fragment (BF). Experimental results are presented that reveal relatively facile nucleotide incorporation opposite the lesion, but very inefficient further extension. Computational studies follow the possible bypass of [BP]G* through the pre-insertion, insertion and post-insertion sites as BF alternates between open and closed conformations. With dG* in the normal B-DNA anti conformation, BP seriously disturbs the polymerase structure, positioning itself either deeply in the pre-insertion site or on the crowded evolving minor groove side of the modified template, consistent with a polymerase-blocking conformation. With dG* in the less prevalent syn conformation, BP causes less distortion: it is either out of the pre-insertion site or in the major groove open pocket of the polymerase. Thus, the syn conformation can account for the observed relatively easy incorporation of nucleotides, with mutagenic purines favored, opposite the [BP]G* adduct. However, with the lesion in the BF post-insertion site, more serious distortions caused by the adduct even in the syn conformation explain the very inefficient extension observed experimentally. In vivo, a switch to a potentially error-prone bypass polymerase likely dominates translesion bypass.
Collapse
Affiliation(s)
- Pingna Xu
- Department of Biology and Department of Chemistry, New York University, New York, NY and Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Lida Oum
- Department of Biology and Department of Chemistry, New York University, New York, NY and Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Lorena S. Beese
- Department of Biology and Department of Chemistry, New York University, New York, NY and Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Nicholas E. Geacintov
- Department of Biology and Department of Chemistry, New York University, New York, NY and Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Suse Broyde
- Department of Biology and Department of Chemistry, New York University, New York, NY and Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
- *To whom correspondence should be addressed. (212)998-8231(212)995-4015
| |
Collapse
|
55
|
Mocquet V, Kropachev K, Kolbanovskiy M, Kolbanovskiy A, Tapias A, Cai Y, Broyde S, Geacintov NE, Egly JM. The human DNA repair factor XPC-HR23B distinguishes stereoisomeric benzo[a]pyrenyl-DNA lesions. EMBO J 2007; 26:2923-32. [PMID: 17525733 PMCID: PMC1894768 DOI: 10.1038/sj.emboj.7601730] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Accepted: 04/30/2007] [Indexed: 12/27/2022] Open
Abstract
Benzo[a]pyrene (B[a]P), a known environmental pollutant and tobacco smoke carcinogen, is metabolically activated to highly tumorigenic B[a]P diol epoxide derivatives that predominantly form N(2)-guanine adducts in cellular DNA. Although nucleotide excision repair (NER) is an important cellular defense mechanism, the molecular basis of recognition of these bulky lesions is poorly understood. In order to investigate the effects of DNA adduct structure on NER, three stereoisomeric and conformationally different B[a]P-N(2)-dG lesions were site specifically incorporated into identical 135-mer duplexes and their response to purified NER factors was investigated. Using a permanganate footprinting assay, the NER lesion recognition factor XPC/HR23B exhibits, in each case, remarkably different patterns of helix opening that is also markedly distinct in the case of an intra-strand crosslinked cisplatin adduct. The different extents of helix distortions, as well as differences in the overall binding of XPC/HR23B to double-stranded DNA containing either of the three stereoisomeric B[a]P-N(2)-dG lesions, are correlated with dual incisions catalyzed by a reconstituted incision system of six purified NER factors, and by the full NER apparatus in cell-free nuclear extracts.
Collapse
Affiliation(s)
- Vincent Mocquet
- Chemistry Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Strasbourg, France
| | | | | | | | - Angels Tapias
- Chemistry Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Strasbourg, France
| | - Yuqin Cai
- Chemistry Department, New York University, New York, NY, USA
| | - Suse Broyde
- Biology Department, New York University, New York, NY, USA
| | - Nicholas E Geacintov
- Chemistry Department, New York University, New York, NY, USA
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA. Tel.: +1 212 998 8407; Fax: +1 212 998 8421; E-mail:
| | - Jean-Marc Egly
- Chemistry Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Strasbourg, France
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA. Tel.: +1 212 998 8407; Fax: +1 212 998 8421; E-mail:
| |
Collapse
|
56
|
Lakshman MK, Keeler JC, Ngassa FN, Hilmer JH, Pradhan P, Zajc B, Thomasson KA. Highly diastereoselective synthesis of nucleoside adducts from the carcinogenic benzo[a]pyrene diol epoxide and a computational analysis. J Am Chem Soc 2007; 129:68-76. [PMID: 17199284 PMCID: PMC2659345 DOI: 10.1021/ja063902u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A diastereoselective synthesis of the nucleoside adducts corresponding to a cis ring-opening of the carcinogen (+/-)-7 beta, 8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BaP DE-2) by 2'-deoxyadenosine and 2'-deoxyguanosine is described. The key intermediate (+/-)-10alpha-amino-7beta,8alpha,9alpha-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene was synthesized by a highly diastereoselective dihydroxylation wherein phenylboronic acid was a water surrogate. The resulting boronate ester was converted to a tetraol derivative in which two of the four hydroxyl groups (trans 7, 8) were protected as benzoate esters while the remaining two (cis 9, 10) were free. The cis glycol entity was then subjected to a reaction with 1-chlorocarbonyl-1-methylethylacetate to yield an intermediate chloro monoacetoxy dibenzoate. Displacement of the halide with azide, complete cleavage of the esters, and catalytic reduction of the azide yielded the requisite amino triol. Fluoride displacement from appropriately protected nucleoside derivatives, 6-fluoropurine 2'-deoxyribonucleoside and 2-fluoro-2'-deoxyinosine, by the amino triol then yielded diastereomeric pairs of diol epoxide-adducted 2'-deoxyadenosine (dA) and 2'-deoxyguanosine (dG) nucleosides. Small aliquots of these adducts were separated for characterization purposes. The present approach provides the first diastereoselective synthesis of the cis adducts of BaP DE-2 with 2'-deoxyguanosine as well as the first synthesis of both dA and dG adducts from a common intermediate. An informative analysis of the 1H NMR spectra of the cis adducts synthesized and comparisons to the trans adducts are reported. To gain insight into the diastereoselectivity in the key dihydroxylation step, a computational analysis, including molecular mechanics (MMFF94) and semiempirical AM1 geometry optimizations, yielded results that are in fairly good agreement with the experimental observations.
Collapse
|
57
|
Meneni S, Liang F, Cho BP. Examination of the long-range effects of aminofluorene-induced conformational heterogeneity and its relevance to the mechanism of translesional DNA synthesis. J Mol Biol 2006; 366:1387-400. [PMID: 17217958 PMCID: PMC1850230 DOI: 10.1016/j.jmb.2006.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 12/06/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
Adduct-induced conformational heterogeneity complicates the understanding of how DNA adducts exert mutation. A case in point is the N-deacetylated AF lesion [N-(2'-deoxyguanosin-8-yl)-2-aminofluorene], the major adduct derived from the strong liver carcinogen N-acetyl-2-aminofluorene. Three conformational families have been previously characterized and are dependent on the positioning of the aminofluorene rings: B is in the "B-DNA" major groove, S is "stacked" into the helix with base-displacement, and W is "wedged" into the minor groove. Here, we conducted (19)F NMR, CD, T(m), and modeling experiments at various primer positions with respect to a template modified by a fluorine tagged AF-adduct (FAF). In the first set, the FAF-G was paired with C and in the second set it was paired with A. The FAF-G:C oligonucleotides were found to preferentially adopt the B or S-conformers while the FAF-G:A mismatch ones preferred the B and W-conformers. The conformational preferences of both series were dependent on temperature and complementary strand length; the largest differences in conformation were displayed at lower temperatures. The CD and T(m) results are in general agreement with the NMR data. Molecular modeling indicated that the aminofluorene moiety in the minor groove of the W-conformer would impose a steric clash with the tight-packing amino acid residues on the DNA binding area of the Bacillus fragment (BF), a replicative DNA polymerase. In the case of the B-type conformer, the carcinogenic moiety resides in the solvent-exposed major groove throughout the replication/translocation process. The present dynamic NMR results, combined with previous primer extension kinetic data by Miller & Grollman, support a model in which adduct-induced conformational heterogeneities at positions remote from the replication fork affect polymerase function through a long-range DNA-protein interaction.
Collapse
Affiliation(s)
| | | | - Bongsup P. Cho
- *Address correspondence to: Bongsup P. Cho, Dept. of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, Rhode Island 02881, Tel. 401-874-5024; Fax. 401-874-5766;
| |
Collapse
|
58
|
Zhao H, Li Q, Li J, Zeng C, Hu S, Yu J. The study of neighboring nucleotide composition and transition/transversion bias. ACTA ACUST UNITED AC 2006; 49:395-402. [PMID: 16989286 DOI: 10.1007/s11427-006-2002-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Base substitution is one of the raw fuels that produce genetic variation and drive evolution. Recent studies have shown that the genome components affect mutation patterns to some extent. In order to infer the correlation between the Transition/Transversion ratio (Ts/Tv) and the number of immediately adjacent A and T nucleotides, we investigated 3611007 Oryza sativa SNPs (including 45462 coding SNPs, and 242811 intronic SNPs) and 32019 Arabidopsis SNPs. The results show that Ts/Tv is negatively correlated with the number of immediately adjacent A and T in O. sativa and Arabidopsis. We further calculated AT2 (the number of SNPs whose immediately adjacent nucleotides are either A or T) and AT0 (the number of SNPs whose immediately adjacent nucleotides are either C or G) for all 6 types of SNPs. C/G SNP of O. sativa and Arabidopsis has the highest AT2/AT0, which denotes C/G SNP may be influenced by the adjacent A and T nucleotides mostly. For SNPs in O. sativa, the neighboring effect of A and T nucleotides is limited to 2 nucleotides on both sides; for SNPs in Arabidopsis, the effect extends no more than 4 nucleotides on both sides.
Collapse
Affiliation(s)
- Hui Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100030, China
| | | | | | | | | | | |
Collapse
|
59
|
Batra VK, Shock DD, Prasad R, Beard WA, Hou EW, Pedersen LC, Sayer JM, Yagi H, Kumar S, Jerina DM, Wilson SH. Structure of DNA polymerase beta with a benzo[c]phenanthrene diol epoxide-adducted template exhibits mutagenic features. Proc Natl Acad Sci U S A 2006; 103:17231-6. [PMID: 17079493 PMCID: PMC1630674 DOI: 10.1073/pnas.0605069103] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We have determined the crystal structure of the human base excision repair enzyme DNA polymerase beta (Pol beta) in complex with a 1-nt gapped DNA substrate containing a template N2-guanine adduct of the tumorigenic (-)-benzo[c]phenanthrene 4R,3S-diol 2S,1R-epoxide in the gap. Nucleotide insertion opposite this adduct favors incorrect purine nucleotides over the correct dCMP and hence can be mutagenic. The structure reveals that the phenanthrene ring system is stacked with the base pair immediately 3' to the modified guanine, thereby occluding the normal binding site for the correct incoming nucleoside triphosphate. The modified guanine base is displaced downstream and prevents the polymerase from achieving the catalytically competent closed conformation. The incoming nucleotide binding pocket is distorted, and the adducted deoxyguanosine is in a syn conformation, exposing its Hoogsteen edge, which can hydrogen-bond with dATP or dGTP. In a reconstituted base excision repair system, repair of a deaminated cytosine (i.e., uracil) opposite the adducted guanine was dramatically decreased at the Pol beta insertion step, but not blocked. The efficiency of gap-filling dCMP insertion opposite the adduct was diminished by >6 orders of magnitude compared with an unadducted templating guanine. In contrast, significant misinsertion of purine nucleotides (but not dTMP) opposite the adducted guanine was observed. Pol beta also misinserts a purine nucleotide opposite the adduct with ungapped DNA and exhibits limited bypass DNA synthesis. These results indicate that Pol beta-dependent base excision repair of uracil opposite, or replication through, this bulky DNA adduct can be mutagenic.
Collapse
Affiliation(s)
- Vinod K. Batra
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - David D. Shock
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Rajendra Prasad
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - William A. Beard
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Esther W. Hou
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Lars C. Pedersen
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Jane M. Sayer
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda MD 20892; and
| | - Haruhiko Yagi
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda MD 20892; and
| | - Subodh Kumar
- Environmental Toxicology and Chemistry Laboratory, Great Lakes Center, Buffalo State College, Buffalo, NY 14222
| | - Donald M. Jerina
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda MD 20892; and
| | - Samuel H. Wilson
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
60
|
Swede H, Bartos JD, Chen N, Shaukat A, Dutt SS, McQuaid DA, Natarajan N, Rodriguez-Bigas MA, Nowak NJ, Wiseman SM, Alrawi S, Brenner BM, Petrelli NJ, Cummings KM, Stoler DL, Anderson GR. Genomic profiles of colorectal cancers differ based on patient smoking status. CANCER GENETICS AND CYTOGENETICS 2006; 168:98-104. [PMID: 16843098 DOI: 10.1016/j.cancergencyto.2006.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 02/13/2006] [Indexed: 11/30/2022]
Abstract
Human sporadic colorectal cancer is the result of a lengthy somatic evolutionary process facilitated by various forms of genomic instability. Such instability arises endogenously from mutations in genes whose role is to preserve genomic integrity, and exogenously from environmental agents that generate genomic damage. We have found that cigarette smoking shifts the genomic profiles and genomic instability patterns of colorectal carcinomas. The genomic profiles of 57 consecutive cancers were examined; 31 cases were current or former smokers and 26 were nonsmokers. Genome-wide allelotypes of 348 markers were examined, along with comparative genomic hybridization (CGH) on ordered BAC microarrays, microsatellite instability, and inter-(simple sequence repeat) polymerase chain reaction instability. Tumors from nonsmokers exhibited losses of heterozygosity, particularly on chromosomes 14 and 18, whereas tumors from smokers exhibited a more diffuse pattern of allelic losses. Tumors from smokers exhibited higher overall rates of loss of heterozygosity, but showed lower rates of background microsatellite instability (MSI-L). On BAC array CGH, higher levels of generalized amplifications and deletions were observed in tumors from smokers, differentially affecting male smokers. In the transforming growth factor-beta signaling pathway, MADH4 mutations were more common in tumors from smokers, whereas transforming growth factor-beta RII mutations were more common among nonsmokers.
Collapse
Affiliation(s)
- Helen Swede
- Connecticut Tumor Registry, 410 Capitol Avenue, Hartford, CT 06134, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Zhao H, Li QZ, Zeng CQ, Yang HM, Yu J. Neighboring-nucleotide effects on the mutation patterns of the rice genome. GENOMICS PROTEOMICS & BIOINFORMATICS 2006; 3:158-68. [PMID: 16487081 PMCID: PMC5172528 DOI: 10.1016/s1672-0229(05)03021-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
DNA composition dynamics across genomes of diverse taxonomy is a major subject of genome analyses. DNA composition changes are characteristics of both replication and repair machineries. We investigated 3,611,007 single nucleotide polymorphisms (SNPs) generated by comparing two sequenced rice genomes from distant inbred lines (subspecies), including those from 242,811 introns and 45,462 protein-coding sequences (CDSs). Neighboring-nucleotide effects (NNEs) of these SNPs are diverse, depending on structural content-based classifications (genome-wide, intronic, and CDS) and sequence context-based categories (A/C, A/G, A/T, C/G, C/T, and G/T substitutions) of the analyzed SNPs. Strong and evident NNEs and nucleotide proportion biases surrounding the analyzed SNPs were observed in 1−3 bp sequences on both sides of an SNP. Strong biases were observed around neighboring nucleotides of protein-coding SNPs, which exhibit a periodicity of three in nucleotide content, constrained by a combined effect of codon-related rules and DNA repair mechanisms. Unlike a previous finding in the human genome, we found negative correlation between GC contents of chromosomes and the magnitude of corresponding bias of nucleotide C at −1 site and G at +1 site. These results will further our understanding of the mutation mechanism in rice as well as its evolutionary implications.
Collapse
Affiliation(s)
- Hui Zhao
- Beijing Genomics Institute, Chinese Academy of Sciences (CAS), Beijing 101300, China
- Graduate School, CAS, Beijing 100039, China
| | - Qi-Zhai Li
- Beijing Genomics Institute, Chinese Academy of Sciences (CAS), Beijing 101300, China
- Academy of Mathematics and Systems Science, CAS, Beijing 100080, China
- Graduate School, CAS, Beijing 100039, China
| | - Chang-Qing Zeng
- Beijing Genomics Institute, Chinese Academy of Sciences (CAS), Beijing 101300, China
| | - Huan-Ming Yang
- Beijing Genomics Institute, Chinese Academy of Sciences (CAS), Beijing 101300, China
- Corresponding authors.
| | - Jun Yu
- Beijing Genomics Institute, Chinese Academy of Sciences (CAS), Beijing 101300, China
- Corresponding authors.
| |
Collapse
|
62
|
Seo KY, Nagalingam A, Miri S, Yin J, Chandani S, Kolbanovskiy A, Shastry A, Loechler EL. Mirror image stereoisomers of the major benzo[a]pyrene N2-dG adduct are bypassed by different lesion-bypass DNA polymerases in E. coli. DNA Repair (Amst) 2006; 5:515-22. [PMID: 16483853 DOI: 10.1016/j.dnarep.2005.12.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 12/05/2005] [Accepted: 12/14/2005] [Indexed: 11/25/2022]
Abstract
The potent mutagen/carcinogen benzo[a]pyrene (B[a]P) is metabolically activated to (+)-anti-B[a]PDE, which induces a full spectrum of mutations (e.g., G-to-T, G-to-A, -1 frameshifts, etc.) via its major adduct [+ta]-B[a]P-N2-dG. We recently showed that the dominant G-to-T mutation depends on DNA polymerase V (DNAP V), but not DNAPs IV or II, when studied in a 5'-TG sequence in E. coli. Herein we investigate what DNAPs are responsible for non-mutagenic bypass with [+ta]-B[a]P-N2-dG, along with its mirror image adduct [-ta]-B[a]P-N2-dG. Each adduct is built into a 5'-TG sequence in a single stranded M13 phage vector, which is then transformed into eight different E. coli strains containing all combinations of proficiency and deficiency in the three lesion-bypass DNAPs II, IV and V. Based on M13 progeny output, non-mutagenic bypass with [-ta]-B[a]P-N2-dG depends on DNAP IV. In contrast, non-mutagenic bypass with [+ta]-B[a]P-N2-dG depends on both DNAPs IV and V, where arguments suggest that DNAP IV is involved in dCTP insertion, while DNAP V is involved in extension of the adduct-G:C base pair. Numerous findings indicate that DNAP II has a slight inhibitory effect on the bypass of [+ta]- and [-ta]-B[a]P-N2-dG in the case of both DNAPs IV and V. In conclusion, for efficient non-mutagenic bypass (dCTP insertion) in E. coli, [+ta]-B[a]P-N2-dG requires DNAPs IV and V, [-ta]-B[a]P-N2-dG requires only DNAP IV, while DNAP II is inhibitory to both, and experiments to investigate these differences should provide insights into the mechanism and purpose of these lesion-bypass DNAPs.
Collapse
Affiliation(s)
- Kwang Young Seo
- Biology Department, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Meneni SR, D'Mello R, Norigian G, Baker G, Gao L, Chiarelli MP, Cho BP. Sequence effects of aminofluorene-modified DNA duplexes: thermodynamic and circular dichroism properties. Nucleic Acids Res 2006; 34:755-63. [PMID: 16449208 PMCID: PMC1356535 DOI: 10.1093/nar/gkj480] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/14/2005] [Accepted: 01/14/2005] [Indexed: 11/12/2022] Open
Abstract
Circular dichroism (CD) and UV-melting experiments were conducted with 16 oligodeoxynucleotides modified by the carcinogen 2-aminofluorene, whose sequence around the lesion was varied systematically [d(CTTCTNG[AF]NCCTC), N = G, A, C, T], to gain insight into the factors that determine the equilibrium between base-displaced stacked (S) and external B-type (B) duplex conformers. Differing stabilities among the duplexes can be attributed to different populations of S and B conformers. The AF modification always resulted in sequence-dependent thermal (T(m)) and thermodynamic (-DeltaG degrees ) destabilization. The population of B-type conformers derived from eight selected duplexes (i.e. -AG*N- and -CG*N-) was inversely proportional to the -DeltaG degrees and T(m) values, which highlights the importance of carcinogen/base stacking in duplex stabilization even in the face of disrupted Watson-Crick base pairing in S-conformation. CD studies showed that the extent of the adduct-induced negative ellipticities in the 290-350 nm range is correlated linearly with -DeltaG degrees and T(m), but inversely with the population of B-type conformations. Taken together, these results revealed a unique interplay between the extent of carcinogenic interaction with neighboring base pairs and the thermodynamic properties of the AF-modified duplexes. The sequence-dependent S/B heterogeneities have important implications in understanding how arylamine-DNA adducts are recognized in nucleotide excision repair.
Collapse
Affiliation(s)
- Srinivasa Rao Meneni
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode IslandKingston, RI 02881, USA
- Department of Chemistry, Loyola UniversityChicago, IL 60626, USA
| | - Rhijuta D'Mello
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode IslandKingston, RI 02881, USA
- Department of Chemistry, Loyola UniversityChicago, IL 60626, USA
| | - Gregory Norigian
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode IslandKingston, RI 02881, USA
- Department of Chemistry, Loyola UniversityChicago, IL 60626, USA
| | - Gregory Baker
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode IslandKingston, RI 02881, USA
- Department of Chemistry, Loyola UniversityChicago, IL 60626, USA
| | - Lan Gao
- Department of Chemistry, Loyola UniversityChicago, IL 60626, USA
| | | | - Bongsup P. Cho
- To whom correspondence should be addressed at Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, RI 02881, USA. Tel: +1 401 874 5024; Fax: +1 401 874 5766;
| |
Collapse
|
64
|
K'Owino I, Sadik O. Impedance Spectroscopy: A Powerful Tool for Rapid Biomolecular Screening and Cell Culture Monitoring. ELECTROANAL 2005. [DOI: 10.1002/elan.200503371] [Citation(s) in RCA: 228] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
65
|
Seo KY, Nagalingam A, Tiffany M, Loechler EL. Mutagenesis studies with four stereoisomeric N2-dG benzo[a]pyrene adducts in the identical 5′-CGC sequence used in NMR studies: G→T mutations dominate in each case. Mutagenesis 2005; 20:441-8. [PMID: 16311255 DOI: 10.1093/mutage/gei061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon (PAH) and a potent mutagen/carcinogen found ubiquitously in the environment. B[a]P is primarily metabolized to diol epoxides, which react principally at N2-dG in DNA. B[a]P-N2-dG adducts have been shown to induce a variety of mutations, notably G-->T, G-->A, G-->C and -1 frameshifts. Four stereoisomers of B[a]P-N2-dG (designated: [+ta]-;, [+ca]-, [-ta] and [-ca]) were studied by NMR in duplex 11mers in a 5'-CGC sequence context, and each adopted a different adduct conformation (Geacintov, et al. (1997) Chem. Res. Toxicol., 10, 111). Herein these four identical B[a]P-containing 11mers are built into duplex plasmid genomes and mutagenesis studied in Escherichia coli following SOS-induction. In nucleotide excision repair (NER) proficient E.coli, no adduct-derived mutants are detected. In NER deficient E.coli, G-->T mutations dominate for all four stereoisomers [+ta]-, [+ca]-, [-ta] and [-ca]-B[a]P-N(2)-dG, and mutation frequency is similar. Thus, the mutagenic pattern for these four B[a]P-N2-dG stereoisomers is the same, in spite of the fact that they adopt dramatically different conformations in ds-oligonucleotides as determined by NMR. These findings suggest that adduct conformation must be fluid enough in the 5'-CGC sequence that the duplex DNA conformation can interconvert to mutagenic and non-mutagenic conformations during lesion-bypass. A comparison of all published studies with these four B[a]P-N2-dG stereoisomers in E.coli reveals that B[a]P-N2-dG adduct stereochemistry tends to have a lesser impact on mutagenic pattern (e.g. G-->T versus G-->A mutations) than does DNA sequence context, which is discussed.
Collapse
Affiliation(s)
- Kwang-Young Seo
- Biology Department, Boston University, 24 Cummington Street, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
66
|
Nagalingam A, Seo KY, Loechler EL. Mutagenesis studies of the major benzo[a]pyrene N2-dG adduct in a 5'-TG versus a 5'-UG sequence: removal of the methyl group causes a modest decrease in the [G->T/G->A] mutational ratio. Mutagenesis 2005; 20:105-10. [PMID: 15755802 DOI: 10.1093/mutage/gei014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The potent mutagen/carcinogen benzo[a]pyrene (B[a]P) is metabolically activated to (+)-anti-B[a]PDE, which induces a full spectrum of mutations primarily at the G:C base pairs (e.g. GC-->TA, GC-->AT, etc.). Each of these mutations can be induced by its major adduct [+ta]-B[a]P-N(2)-dG, where DNA sequence context appears to influence both the quantitative and qualitative pattern of mutagenesis. We noted previously that 5'-TG sequences tend to have a higher fraction of G-->T mutations for both [+ta]-B[a]P-N(2)-dG and (+)-anti-B[a]PDE in comparison with 5'-CG, 5'-GG or 5'-AG sequences. To investigate a possible structural element for this trend, the role (if any) of the methyl group on the 5'-T is considered. Using adduct site-specific means, the [G-->T/G-->A] mutational ratio for [+ta]-B[a]P-N(2)-dG is determined to be approximately 1.08 in a 5'-TGT sequence, and approximately 0.60 in a 5'-UGT sequence. (G-->C mutations are minor.) Although this modest approximately 1.8-fold decrease in [G-->T/G-->A] ratio is statistically significant (P = 0.03), it suggests that the methyl group on the 5'-T is not the main reason why a 5'-T tends to enhance G-->T mutations. This study was prompted by an adduct conformational hypothesis, which predicted that the removal of the methyl group in a 5'-TG sequence would lower the fraction of G-->T mutations; however, the approximately 1.8-fold decrease is too small to do additional experiments to assess whether this conformational hypothesis, or other hypotheses, are the true cause of the decrease, which is discussed in this paper.
Collapse
|
67
|
Abstract
Tobacco consumption has been clearly implicated in the causation of many cancer types, with irrefutable evidence to support the association in multiple organ systems. Tobacco cessation leads to reduced cancer risk and improved survival of those under treatment for their already established cancers. As understanding of the mechanisms by which tobacco products cause cancer increases, clinicians may be able to identify those at highest risk for tobacco-related malignancies and allow for more focused interventions toward risk reduction among current tobacco users. This article reviews the carcinogens present in tobacco products, the mechanisms by which tobacco causes cancer, and the various tumor types causally related to tobacco use.
Collapse
Affiliation(s)
- Jason S Levitz
- Division of Hematology/Oncology, North Shore University Hospital, 300 Community Drive, Manhasset, NY 11030, USA
| | | | | |
Collapse
|
68
|
Pufulete M, Battershill J, Boobis A, Fielder R. Approaches to carcinogenic risk assessment for polycyclic aromatic hydrocarbons: a UK perspective. Regul Toxicol Pharmacol 2004; 40:54-66. [PMID: 15265606 DOI: 10.1016/j.yrtph.2004.04.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Indexed: 10/26/2022]
Abstract
This paper reviews the approaches to carcinogenic risk assessment of polycyclic aromatic hydrocarbons (PAHs) in air pollution with emphasis on high potency PAHs such as dibenzo[a,l]pyrene (DB[a,l]P). The potency of DB[a,l]P may be 100-fold greater than benzo[a]pyrene (B[a]P); thus the B[a]P surrogate approach currently used to monitor for compliance with UK air pollution standards may not be appropriate. It is suggested that an approach based on potency equivalency factors (PEFs) could be developed to include highly potent PAHs provided an appropriate reference data set for relevant PAHs using a route acceptable for inhalation risk assessment is selected. Available data suggest that intratracheal administration of low doses of PAHs to rats is likely to simulate the kinetics of inhalation exposure to PAHs in a feasible manner. The use of a measure of total DNA adducts as an endpoint, which correlates well with lung tumourigenicity, would provide surrogate data for setting PEFs without the need for long-term bioassays in rodents. Further, dose-response studies using intratracheal administration of a range of PAHs singly and in combination to assess additivity are required to develop a PEF system for inhalation PEFs derived from DNA adduct measurements.
Collapse
Affiliation(s)
- M Pufulete
- Nutrition, Food and Health Research Centre, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NN, UK
| | | | | | | |
Collapse
|
69
|
Cho BP. Dynamic conformational heterogeneities of carcinogen-DNA adducts and their mutagenic relevance. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2004; 22:57-90. [PMID: 16291518 DOI: 10.1081/lesc-200038217] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Arylamines and polycyclic aromatic hydrocarbons (PAHs), which are known as "bulky" carcinogens, have been studied extensively and upon activation in vivo, react with cellular DNA to form DNA-adducts. The available structure data accumulated thus far has revealed that conformational heterogeneity is a common theme among duplex DNA modified with these carcinogens. Several conformationally diverse structures have been elucidated and found to be in equilibrium in certain cases. The dynamics of the heterogeneity appear to be modulated by the nature of the adduct structure and the base sequences neighboring the lesion site. These can be termed as "adduct- and sequence-induced conformational heterogeneities," respectively. Due to the small energy differences, the population levels of these conformers could readily be altered within the active sites of repair or replicate enzymes. Thus, the complex role of "enzyme-induced conformational heterogeneity" must also be taken into consideration for the establishment of a functional structure-mutation relationship. Ultimately, a major challenge in mutation structural biology is to carry out adduct- and site-specific experiments in a conformationally specific manner within biologically relevant environments. Results from such experiments should provide an accurate account of how a single chemically homogenous adduct gives rise to complex multiple mutations, the earliest step in the induction of cancer.
Collapse
Affiliation(s)
- Bongsup P Cho
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02882, USA.
| |
Collapse
|
70
|
Abstract
The devastating link between tobacco products and human cancers results from a powerful alliance of two factors - nicotine and carcinogens. Without either one of these, tobacco would be just another commodity, instead of being the single greatest cause of death due to preventable cancer. Nicotine is addictive and toxic, but it is not carcinogenic. This addiction, however, causes people to use tobacco products continually, and these products contain many carcinogens. What are the mechanisms by which this deadly combination leads to 30% of cancer-related deaths in developed countries, and how can carcinogen biomarkers help to reveal these mechanisms?
Collapse
Affiliation(s)
- Stephen S Hecht
- University of Minnesota Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
71
|
Lee CH, Loechler EL. Molecular modeling of the major benzo[a]pyrene N2-dG adduct in cases where mutagenesis results are known in double stranded DNA. Mutat Res 2003; 529:59-76. [PMID: 12943920 DOI: 10.1016/s0027-5107(03)00107-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The potent mutagen/carcinogen benzo[a]pyrene (B[a]P) is metabolically activated to (+)-anti-B[a]PDE, which induces a full spectrum of mutations (e.g. GC-->TA, GC-->AT, etc.). One hypothesis for this complexity is that different mutations are induced by different conformations of its major adduct [+ta]-B[a]P-N2-dG when bypassed during DNA replication (probably by different DNA polymerases). Previous molecular modeling studies suggested that B[a]P-N2-dG adducts can in principle adopt at least 16 potential conformational classes in ds-DNA. Herein we report on molecular modeling studies with the eight conformations most likely to be relevant to base substitution mutagenesis in 10 cases where mutagenesis has been studied in ds-DNA plasmids in E. coli with B[a]P-N2-dG adducts of differing stereoisomers and DNA sequence contexts, as well as in five cases where the conformation is known by NMR. Of the approximately 11,000 structures generated in this study, the computed lowest energy structures are reported for 120 cases (i.e. eight conformations and 15 examples), and their conformations compared. Of the eight conformations, four are virtually always computed to be high in energy. The remaining four lower energy conformations include two with the BP moiety in the minor groove (designated: BPmi5 and BPmi3), and two base-displaced conformations, one with the dG moiety in the major groove (designated: Gma5) and one with the dG in the minor groove (designated: Gmi3). Interestingly, these four are the only conformations that have been observed for B[a]P-N2-dG adducts in NMR studies. Independent of sequence contexts and adduct stereochemistry, BPmi5 structures tend to look reasonably similar, as do BPmi3 structures, while the base-displaced structures Gma5 and BPmi3 tend to show greater variability in structure. A correlation was sought between modeling and mutagenesis results in the case of the low energy conformations BPmi5, BPmi3, Gma5 and Gma3. Plots of log[(G-->T)/(G-->A)] versus energy[(conformation X)-(conformation Y)] were constructed for all six pairwise combinations of these four conformations, and the only plot giving a straight line involved Gma5 and Gmi3. While this finding is striking, its significance is unclear (as discussed).
Collapse
Affiliation(s)
- Chiu Hong Lee
- Biology Department, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | |
Collapse
|
72
|
Perlow RA, Broyde S. Extending the understanding of mutagenicity: structural insights into primer-extension past a benzo[a]pyrene diol epoxide-DNA adduct. J Mol Biol 2003; 327:797-818. [PMID: 12654264 DOI: 10.1016/s0022-2836(03)00187-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
DNA polymerase enzymes employ a number of innate fidelity mechanisms to ensure the faithful replication of the genome. However, when confronted with DNA damage, their fidelity mechanisms can be evaded, resulting in a mutation that may contribute to the carcinogenic process. The environmental carcinogen benzo[a]pyrene is metabolically activated to reactive intermediates, including the tumorigenic (+)-anti-benzo[a]pyrene diol epoxide, which can attack DNA at the exocyclic amino group of guanine to form the major (+)-trans-anti-[BP]-N(2)-dG adduct. Bulky adducts such as (+)-trans-anti-[BP]-N(2)-dG primarily block DNA replication, but are occasionally bypassed and cause mutations if paired with an incorrect base. In vitro standing-start primer-extension assays show that the preferential insertion of A opposite (+)-trans-anti-[BP]-N(2)-dG is independent of the sequence context, but the primer is extended preferentially when dT is positioned opposite the damaged base in a 5'-CG*T-3' sequence context. Regardless of the base positioned opposite (+)-trans-anti-[BP]-N(2)-dG, extension of the primer past the lesion site poses the greatest block to polymerase progression. In order to gain insight into primer-extension of each base opposite (+)-trans-anti-[BP]-N(2)-dG, we carried out molecular modeling and 1.25 ns unrestrained molecular dynamics simulations of the adduct in the +1 position of the template within the replicative pol I family T7 DNA polymerase. Each of the four bases was modeled at the 3' terminus of the primer, incorporated opposite the adduct, and the next-to-be replicated base was in the active site with its Watson-Crick partner as the incoming nucleotide. As in our studies of nucleotide incorporation, (+)-trans-anti-[BP]-N(2)-dG was modeled in the syn conformation in the +1 position, with the BP moiety on the open major groove side of the primer-template duplex region, leaving critical protein-DNA interactions intact. The present work revealed that the efficiency of primer-extension past this bulky adduct opposite each of the four bases in the 5'-CG*T-3' sequence can be rationalized by the stability of interactions between the polymerase protein, primer-template DNA and incoming nucleotide. However, the relative stabilization of each nucleotide opposite (+)-trans-anti-[BP]-N(2)-dG in the +1 position (T > G > A > or = C) differed from that when the adduct and partner were the nascent base-pair (A > T > or = G > C). In addition, extension past (+)-trans-anti-[BP]-N(2)-dG may pose a greater block to a high fidelity DNA polymerase than does nucleotide incorporation opposite the adduct because the presence of the modified base-pair in the +1 position is more disruptive to the polymerase-DNA interactions than it is within the active site itself. The dN:(+)-trans-anti-[BP]-N(2)-dG base-pair is strained to shield the bulky aromatic BP moiety from contact with the solvent in the +1 position, causing disruption of protein-DNA interactions that would likely result in decreased extension of the base-pair. These studies reveal in molecular detail the kinds of specific structural interactions that determine the function of a processive DNA polymerase when challenged by a bulky DNA adduct.
Collapse
Affiliation(s)
- Rebecca A Perlow
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | |
Collapse
|
73
|
Brown K, Harvey CA, Turteltaub KW, Shields SJ. Structural characterization of carcinogen-modified oligodeoxynucleotide adducts using matrix-assisted laser desorption/ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:68-79. [PMID: 12526008 DOI: 10.1002/jms.401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The aim of this study was to determine the chemical structure of in vitro 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-modified oligodeoxynucleotides (ODNs) by exonuclease digestion and matrix-assisted laser desorption/ionization mass spectrometry. A single-stranded 11-mer ODN, 5'-d(CCATCGCTACC), was reacted with N-acetoxy-PhIP, resulting in the formation of one major and eight minor PhIP-ODN adducts. A 10 min treatment of the major and one minor PhIP-ODN adduct with a 3'-exonuclease, bovine intestinal mucosa phosphodiesterase (BIMP), and a 5'-exonuclease, bovine spleen phosphodiesterase, results in inhibition of the primary exonuclease activity at deoxyguanosine (dG) producing 5'-d(CCATCG(PhIP)) and 5'-d(G(PhIP)CTACC) product ions, respectively. Post-source decay (PSD) of these enzymatic end products identifies dG as the sole modification site in two 11-mer ODN-PhIP adducts. PSD of the minor PhIP-ODN adduct digestion end product, 5'-d(CCATCG(PhIP)), also reveals that the PhIP adducted guanine moiety is in an oxidized form. Prolonged treatment of the PhIP-ODN adducts at 37 degrees C with BIMP induces a non-specific, or endonuclease, enzymatic activity culminating in the formation of deoxyguanosine 5'-monophosphate-PhIP (5'-dGMP-PhIP). The PSD fragmentation pattern of the 5'-dGMP-PhIP [M + H](+) ion of the major adduct confirms PhIP binds to the C-8 position of dG. For the minor adduct, PSD results suggest that PhIP binds to the C-8 position of an oxidized guanine, supporting the hypothesis that this adduct arises from oxidative degradation, resulting in a spirobisguanidino structure.
Collapse
Affiliation(s)
- Karen Brown
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, P.O. Box 808, California 94531, USA
| | | | | | | |
Collapse
|
74
|
Taylor JS. New structural and mechanistic insight into the A-rule and the instructional and non-instructional behavior of DNA photoproducts and other lesions. Mutat Res 2002; 510:55-70. [PMID: 12459443 DOI: 10.1016/s0027-5107(02)00252-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The A-rule in mutagenesis was originally proposed to explain the preponderance of X-->T mutations observed for abasic sites and UV damaged sites. It was deduced that when a polymerase was faced with a non-instructional lesion, typified by an abasic site, it would preferentially incorporate an A. In the absence of any other compelling explanation, any lesion causing an X-->T mutation has often been classified as non-instructional to account for its apparent lack of instructional ability. The A-rule and the classification of lesions as non-instructional were formulated before the active sites of any polymerases or the mechanism by which they synthesized DNA were known. Since then, much structural and kinetic data on DNA polymerases has emerged to suggest mechanistic explanations for the A-rule and the instructive and non-instructive behavior of lesions such as cis-syn dimers. Polymerases involved in the replication of undamaged DNA have highly constrained active sites that evolved to only accommodate the templating base and the complementary nucleotide and as a result are relatively intolerant of modifications that alter the size and shape of the nascent base pair. On the other hand, DNA damage bypass polymerases have much more open and less constrained active sites, which are much more tolerant of modifications. An otherwise instructional lesion would become non-instructional if it were unable to fit into the active site, and thereby behave transiently like an abasic site, leading to the insertion of whichever nucleotide is favored by the polymerase, generally an A. In this review, what is known about the active sites and mechanisms of replicative and DNA damage bypass polymerases will be discussed with regard to the A-rule and non-instructive behavior of lesions, typified by dipyrimidine photoproducts.
Collapse
|
75
|
Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 2002; 21:7435-51. [PMID: 12379884 DOI: 10.1038/sj.onc.1205803] [Citation(s) in RCA: 761] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It is estimated that cigarette smoking kills over 1 000 000 people each year by causing lung cancer as well as many other neoplasmas. p53 mutations are frequent in tobacco-related cancers and the mutation load is often higher in cancers from smokers than from nonsmokers. In lung cancers, the p53 mutational patterns are different between smokers and nonsmokers with an excess of G to T transversions in smoking-associated cancers. The prevalence of G to T transversions is 30% in smokers' lung cancer but only 12% in lung cancers of nonsmokers. A similar trend exists, albeit less marked, in laryngeal cancers and in head and neck cancers. This type of mutation is infrequent in most other tumors aside from hepatocellular carcinoma. At several p53 mutational hotspots common to all cancers, such as codons 248 and 273, a large fraction of the mutations are G to T events in lung cancers but are almost exclusively G to A transitions in non-tobacco-related cancers. Two important classes of tobacco smoke carcinogens are the polycyclic aromatic hydrocarbons (PAH) and the nicotine-derived nitrosamines. Recent studies have indicated that there is a strong coincidence of G to T transversion hotspots in lung cancers and sites of preferential formation of PAH adducts along the p53 gene. Endogenously methylated CpG dinucleotides are the preferred sites for G to T transversions, accounting for more than 50% of such mutations in lung tumors. The same dinucleotide, when present within CpG-methylated mutational reporter genes, is the target of G to T transversion hotspots in cells exposed to the model PAH compound benzo[a]pyrene-7,8-diol-9,10-epoxide. As summarized here, a number of other tobacco smoke carcinogens also can cause G to T transversion mutations. The available data suggest that p53 mutations in lung cancers can be attributed to direct DNA damage from cigarette smoke carcinogens rather than to selection of pre-existing endogenous mutations.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, California, CA 91010, USA.
| | | | | | | | | | | |
Collapse
|
76
|
Perlow RA, Kolbanovskii A, Hingerty BE, Geacintov NE, Broyde S, Scicchitano DA. DNA adducts from a tumorigenic metabolite of benzo[a]pyrene block human RNA polymerase II elongation in a sequence- and stereochemistry-dependent manner. J Mol Biol 2002; 321:29-47. [PMID: 12139931 DOI: 10.1016/s0022-2836(02)00593-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Many carcinogens exert their cancer-causing effects by reacting with DNA either directly or following metabolic activation, resulting in covalently linked combination molecules known as carcinogen-DNA adducts. The presence of such lesions in the genome increases the error frequency of the replication machinery, causing mutations that contribute to the initiation and progression of cancer. Cellular DNA repair pathways remove carcinogen adducts from DNA, thus averting the mutagenic potential of many DNA lesions by reducing their presence in the genome. Bulky DNA adducts, like those derived from a number of activated environmental carcinogens such as polycyclic aromatic hydrocarbons (PAHs), are primarily repaired by the nucleotide excision repair (NER) pathway. Transcription-coupled NER (TC-NER) preferentially removes lesions from the transcribed strand of actively expressed genes, and RNA polymerase II stalled at the lesion quite possibly initiates the pathway. Among the bulky DNA adducts that are subject to TC-NER are those resulting from the reaction of the metabolically activated PAH benzo[a]pyrene (BP) with DNA. The P450 mixed-function oxygenases convert BP into a number of reactive intermediates, including tumorigenic (+)- and non-tumorigenic (-)-anti-benzo[a]pyrene diol epoxide (BPDE) that react with DNA via trans epoxide opening to form (+)-trans-anti-[BP]-N(2)-dG ((+)-ta[BP]G) and (-)-trans-anti-[BP]-N(2)-dG ((-)-ta[BP]G), respectively. To test the effect of these lesions on RNA synthesis, in vitro transcription assays using human nuclear extracts were performed with DNA templates containing an RNAPII promoter and a stereochemically pure (+)- or (-)-ta[BP]G adduct on the transcribed or non-transcribed strand. Transcription past (+)- or (-)-ta[BP]G adducts was investigated in the same sequence context to examine stereochemical effects. The (+)-ta[BP]G adduct was investigated in two different local sequence contexts to determine if the surrounding bases influence the adduct's ability to block transcription. These experiments revealed that (+)- and (-)-ta[BP]G adducts on the transcribed strand of the DNA template block RNAPII in a sequence and stereochemistry-dependent manner; however, adducts on the non-transcribed strand do not block elongation significantly but may increase pausing at innate pause sites. In order to elucidate biologically influential differences between the (+)- and (-)-ta[BP]G structures, the DUPLEX program was used to carry out potential energy minimization searches at model transcription junctions. The lowest-energy minimum for the (+)-ta[BP]G adduct gives a structure in which the benzo[a]pyrenyl ring system resides in the minor groove of the heteroduplex region. In contrast, the lowest-energy minimum for a (-)-ta[BP]G adduct shows an orientation in which the benzo[a]pyrenyl group adopts a carcinogen/base-stacked conformation. These conformational preferences may contribute to the differential treatment of (+)- and (-)-ta[BP]G adducts by human RNAPII. In addition, while previous experiments showed that BPDE adducts cause T7RNAP to produce a ladder of truncated transcripts, RNAPII is blocked entirely at only one or two positions by the (+)- and (-)-ta[BP]G adducts, depending on sequence context. It is likely that these differences between the behaviors of T7RNAP and human RNAPII are a result of the structural characteristics of the enzymes' active sites, a hypothesis that is explored in light of their known crystal structures.
Collapse
Affiliation(s)
- Rebecca A Perlow
- Department of Biology, New York University, 100 Washington Square East, Mail Code 5181, New York 10003, USA
| | | | | | | | | | | |
Collapse
|
77
|
Wilson VL. Detecting rare mutations associated with cancer risk. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2002; 1:283-93. [PMID: 12083960 DOI: 10.2165/00129785-200101040-00005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For more than a decade, investigators have been searching for a means of determining the risk of individuals developing cancer by detecting rare oncogenic mutations. The accumulation of mutations and the clonal evolvement of tumors provide opportunities for monitoring disease development and intervening prior to the presentation of clinical symptoms, or determining the risk of disease relapse during remission. A number of techniques, mostly polymerase chain reaction (PCR)-based, have been developed that enable the detection of rare oncogenic mutations within the range of 10(-2) to 10(-4) wild-type cells. Only a handful of procedures enable the detection of intragenic single base mutations at one mutant in 10-6 or better. These ultra-sensitive mutation detection techniques have produced some interesting results regarding single base mutation spectra and frequencies in p53, Harvey-ras, N-ras, and other reporter genes and DNA sequences in human tissues. Although there is evidence that some individuals may harbor cells or clones expressing genomic instability, the connection with the processes of carcinogenesis is still tenuous. There remains a need for rigorous epidemiological studies employing these ultra-sensitive mutation detection procedures. Since genomic instability is considered key to tumor development, the relevance of the detection of hypermutable clones in individuals is discussed in the context of cancer risk.
Collapse
Affiliation(s)
- V L Wilson
- Department of Environmental Studies, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| |
Collapse
|
78
|
Abstract
Organisms control the specificity and frequency with which they mutate via their complement of proteins. The mismatch repair (MMR) proteins correct errors after they are made. The DNA polymerases of the cell determine the response to damaged DNA which has not been repaired by excision. Polymerase action can be considered as consisting of three main steps: addition of a base, proofreading of the added nucleotide and elongation. Each of these steps is kinetically complex and can be modulated. The modulation accounts for different behaviors of organisms in response to stress. The recent findings of DNA polymerases with properties appropriate for dealing with damaged DNA may help to account for the phenomenon of spontaneous mutation and for the hypermutability associated with immunoglobulin maturation and carcinogenesis.
Collapse
Affiliation(s)
- Bernard S Strauss
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
79
|
Colgin LM, Hackmann AFM, Emond MJ, Monnat RJ. The unexpected landscape of in vivo somatic mutation in a human epithelial cell lineage. Proc Natl Acad Sci U S A 2002; 99:1437-42. [PMID: 11818556 PMCID: PMC122209 DOI: 10.1073/pnas.032655699] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2001] [Accepted: 12/07/2001] [Indexed: 11/18/2022] Open
Abstract
Few data exist on somatic mutation in the epithelial cell lineages that play a central role in human biology and disease. To delineate the "landscape" of somatic mutation in a human epithelial cell lineage, we determined the frequency and molecular nature of somatic mutations occurring in vivo in the X-linked HPRT gene of kidney tubular epithelial cells. Kidney epithelial mutants were frequent (range 0.5 to 4.2 x 10(-4)) and contained a high proportion of unreported HPRT base substitutions, -1-bp deletions and multiple mutations. This spectrum of somatic mutation differed from HPRT mutations identified in human peripheral blood T lymphocytes and from germ-line HPRT mutations identified in Lesch-Nyhan syndrome or hyperuricemia patients. Our results indicate that DNA damage and mutagenesis may have unusual or mechanistically interesting features in kidney tubular epithelium, and that somatic mutation may play a more important role in human kidney disease than has been previously appreciated.
Collapse
Affiliation(s)
- Lorel M Colgin
- Department of Pathology, University of Washington, Box 357705, Seattle, WA 98195-7705, USA
| | | | | | | |
Collapse
|
80
|
Uno S, Dalton TP, Shertzer HG, Genter MB, Warshawsky D, Talaska G, Nebert DW. Benzo[a]pyrene-induced toxicity: paradoxical protection in Cyp1a1(-/-) knockout mice having increased hepatic BaP-DNA adduct levels. Biochem Biophys Res Commun 2001; 289:1049-56. [PMID: 11741297 DOI: 10.1006/bbrc.2001.6110] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that cytochrome P450 1A1 (CYP1A1), CYP1B1, and prostaglandin-endoperoxide synthase (PTGS2) are inducible by benzo[a]pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin), and all three metabolize BaP to reactive DNA-binding intermediates and excreted products. Because these three enzymes show differing patterns of basal levels, inducibility, and tissue-specific expression, animal studies are necessary to delineate the role of CYP1A1 in BaP-mediated toxicity. In mice receiving large daily doses of BaP (500 mg/kg i.p.), Cyp1a1(-/-) knockout mice are protected by surviving longer than Cyp1a1(+/-) heterozygotes. We found that a single 500 mg/kg dose of BaP induces hepatic CYP1A1 mRNA, protein, and enzyme activity in Cyp1a1(+/-) but not in Cyp1a1(-/-) mice; TCDD pretreatment increases further the CYP1A1 in Cyp1a1(+/-) but not Cyp1a1(-/-) mice. Although a single 500 mg/kg dose of BaP was toxic to Cyp1a1(+/-) mice (serum liver enzyme elevated about 2-fold above control levels at 48 h), Cyp1a1(-/-) mice displayed no hepatotoxicity. Unexpectedly, we found 4-fold higher BaP-DNA adduct levels in Cyp1a1(-/-) than in Cyp1a1(+/-) mice; TCDD pretreatment lowered the levels of BaP-DNA adducts in both genotypes, suggesting the involvement of other TCDD-inducible detoxification enzymes. BaP was cleared from the blood much faster in Cyp1a1(+/-) than Cyp1a1(-/-) mice. Our results suggest that absence of the CYP1A1 enzyme protects the intact animal from BaP-mediated liver toxicity and death, by decreasing the formation of large amounts of toxic metabolites, whereas much slower metabolic clearance of BaP in Cyp1a1(-/-) mice leads to greater formation of BaP-DNA adducts.
Collapse
Affiliation(s)
- S Uno
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0056, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Several lines of research are now converging towards an integrated understanding of mutational mechanisms and their evolutionary implications. Experimentally, crystal structures reveal the effect of sequence context on polymerase fidelity; large-scale sequencing projects generate vast amounts of sequence polymorphism data; and locus-specific databases are being constructed. Computationally, software and analytical tools have been developed to analyze mutational data, to identify mutational hot spots, and to compare the signatures of mutagenic agents.
Collapse
Affiliation(s)
- M Zavolan
- Laboratory of Computational Genomics, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| | | |
Collapse
|
82
|
Yeh GC, Daschner PJ, Lopaczynska J, MacDonald CJ, Ciolino HP. Modulation of glucose-6-phosphate dehydrogenase activity and expression is associated with aryl hydrocarbon resistance in vitro. J Biol Chem 2001; 276:34708-13. [PMID: 11463792 DOI: 10.1074/jbc.m105680200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mutagenic effect of environmental carcinogens has been well documented in animal models and in human studies but the mechanisms involved in preventing carcinogen insult have not been fully elucidated. In this study we examined the molecular and biochemical changes associated with carcinogen resistance in a series of aryl hydrocarbon-resistant MCF-7 cell lines developed by exposure to benzo[a]pyrene (BP). The cell lines were designated as AH(R40), AH(R100), and AH(R200) to denote their increasing fold resistance to BP compared with wild type cells. These cell lines were also resistant to another aryl hydrocarbon (AH), dimethylbenz[a]anthracene, but not to pleiotropic drugs (doxorubicin, vinblastine, and taxol). The resistant cell lines showed an increase in the level of the primary intracellular antioxidant, reduced glutathione, corresponding to increasing AH resistance. However, there was no change in glutathione reductase activity. The generation of reduced glutathione requires NADPH, and we therefore examined the activity and expression of the rate-limiting enzyme in NADPH production, glucose-6-phosphate dehydrogenase (G6PD). An increase in G6PD specific activity was associated with increasing aryl hydrocarbon resistance. This was due to an increased expression of G6PD in resistant cells, which was demonstrated by increases in both protein and mRNA levels. However, there was no increase in the transcription rate of G6PD in the resistant cell lines, indicating that the increase G6PD expression is due to a post-transcriptional modulation, which was confirmed by actinomycin D chase experiments. These results demonstrate that modulation of G6PD expression and activity is an important mechanism in AH resistance.
Collapse
Affiliation(s)
- G C Yeh
- Cellular Defense and Carcinogenesis Section, Basic Research Laboratory, NCI at Frederick, National Institutes of Health, Frederick, Maryland 21702, USA.
| | | | | | | | | |
Collapse
|