51
|
Gao Q, Zhang W, Li T, Yang G, Zhu W, Chen N, Jin H. The efficacy and safety of glucokinase activators for the treatment of type-2 diabetes mellitus: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e24873. [PMID: 33607862 PMCID: PMC7899907 DOI: 10.1097/md.0000000000024873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Glucokinase activators are a novel family of glucose-lowering agents used for the treatment of type-2 diabetes mellitus (T2DM). Glucokinase activators blind to GK activate the enzyme allosterically. Treatment with different GKAs has been shown to reduce fasting and postprandial glucose in patients with type 2 diabetes. We compared the efficacy/safety of glucokinase activators in T2DM patients through a meta-analysis. METHODS We searched PubMed, Excerpt Medica Database, and Cochrane Central Register of Controlled Trials databases for articles published before December 30, 2020. Two independent reviewers extracted the information from article. The quality of articles were assessed by 2 independent reviewers using the 5 items of scale proposed by Jadad. We computed the weighted mean difference and 95% confidence interval (CI) for a change from baseline to the study endpoint for glucokinase activators vs placebo. Egger test and Begg test were used to assess the possible publication bias caused by the tendency of published studies to be positive. RESULTS The present meta-analysis will compare the efficacy and safety of glucokinase activators and placebo for the treatment of T2DM. CONCLUSIONS This meta-analysis will provide advanced evidence on the efficacy and safety of glucokinase activators for the treatment of T2DM. ETHICS AND DISSEMINATION Ethical approval and patient consent are not required because this study is a literature-based study. This systematic review and meta-analysis will be published in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42021220364.
Collapse
|
52
|
Yang R, Ren S, Jin X, Sun Y, Dong Y, Zhang J, Liang W, Chen L. Determination of unbound fraction of dorzagliatin in human plasma by equilibrium dialysis and LC-MS/MS and its application to a clinical pharmacokinetic study. J Pharm Biomed Anal 2020; 195:113854. [PMID: 33388639 DOI: 10.1016/j.jpba.2020.113854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 10/22/2022]
Abstract
Dorzagliatin, a novel glucokinase (GK) activator targeting both pancreatic and hepatic GK, is currently in late-stage clinical development for treatment of type 2 diabetes (T2D). For the optimization of dosing regimens to ensure adequate safety and efficacy, it is critical to have a deep understanding of pharmacokinetic (PK) and pharmacodynamic (PD) profiles of the drug in various targeting patient populations, considering the fact that T2D adversely affects a vast patient population who often times also suffer from a wide range of comorbidities including severe liver and/or kidney damage. Since drug efficacy seems to be closely related to unbound drug concentrations at the site of action, therefore, the determination of plasma unbound concentrations/fractions of dorzagliatin is of crucial importance, especially when performing the PK/PD assessment in those special populations. In the current study, a method was developed and validated for determining the unbound fraction (fu) of dorzagliatin in human plasma by using equilibrium dialysis for the separation of the bound and unbound drug, and LC-MS/MS for subsequent quantification. We have successfully addressed two widely recognized challenges for determination of the fu, i.e., the lack of knowledge on the "true fu" and the difficulty in assessing the accuracy and reproducibility of the measurement. Using this method, a 0.2 mL aliquot of human plasma samples were first dialyzed against 0.35 mL of phosphate buffered saline buffer at 37 °C for 5 h in the equilibrium dialysis device to separate the unbound dorzagliatin. Afterwards, post-dialysis samples were extracted by protein precipitation using acetonitrile. Separation of dorzagliatin and potential interferences were achieved using a Gemini C18 column coupled with gradient elution. Subsequent detection was carried out on tandem mass spectrometer operated by multiple reaction monitoring in positive mode using electrospray ionization. The standard curve over the concentration range of 0.125-250 ng/mL exhibits good linearity. The method was fully validated meeting the requirements in current bioanalytical guidance and was successfully applied in a clinical PK study of dorzagliatin in healthy volunteers and patients with renal function impairment. Method reproducibility was demonstrated in incurred sample reanalysis. With demonstrated accuracy, stability and reproducibility, reliable analytical results were obtained from clinical samples for PK/PD interpretation, providing valuable insight for the development of dorzagliatin.
Collapse
Affiliation(s)
- Rong Yang
- Hua Medicine (Shanghai) Ltd., Shanghai, China.
| | - Shuang Ren
- Hua Medicine (Shanghai) Ltd., Shanghai, China
| | - Xiaowei Jin
- Hua Medicine (Shanghai) Ltd., Shanghai, China
| | - Yu Sun
- Hua Medicine (Shanghai) Ltd., Shanghai, China
| | - Yanli Dong
- Hua Medicine (Shanghai) Ltd., Shanghai, China
| | | | | | - Li Chen
- Hua Medicine (Shanghai) Ltd., Shanghai, China.
| |
Collapse
|
53
|
Zeng Z, Huang SY, Sun T. Pharmacogenomic Studies of Current Antidiabetic Agents and Potential New Drug Targets for Precision Medicine of Diabetes. Diabetes Ther 2020; 11:2521-2538. [PMID: 32930968 PMCID: PMC7548012 DOI: 10.1007/s13300-020-00922-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/29/2022] Open
Abstract
Diabetes is a major threat to people's health and has become a burden worldwide. Current drugs for diabetes have limitations, such as different drug responses among individuals, failure to achieve glycemic control, and adverse effects. Exploring more effective therapeutic strategies for patients with diabetes is crucial. Currently pharmacogenomics has provided potential for individualized drug therapy based on genetic and genomic information of patients, and has made precision medicine possible. Responses and adverse effects to antidiabetic drugs are significantly associated with gene polymorphisms in patients. Many new targets for diabetes also have been discovered and developed, and even entered clinical trial phases. This review summarizes pharmacogenomic evidence of some current antidiabetic agents applied in clinical settings, and highlights potential drugs with new targets for diabetes, which represent a more effective treatment in the future.
Collapse
Affiliation(s)
- Zhiwei Zeng
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, China
| | - Shi-Ying Huang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, China.
| |
Collapse
|
54
|
Zheng S, Shao F, Ding Y, Fu Z, Fu Q, Ding S, Xie L, Chen J, Zhou S, Zhang H, Zhou H, Chen Y, Sun C, Zhu J, Zheng X, Yang T. Safety, Pharmacokinetics, and Pharmacodynamics of Globalagliatin, a Glucokinase Activator, in Chinese Patients with Type 2 Diabetes Mellitus: A Randomized, Phase Ib, 28-day Ascending Dose Study. Clin Drug Investig 2020; 40:1155-1166. [PMID: 33125674 DOI: 10.1007/s40261-020-00971-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND OBJECTIVES Globalagliatin, a glucokinase activator, plays a vital role in glucose homeostasis. The aim of this study was to assess the safety, pharmacokinetics, and pharmacodynamics of globalagliatin in Chinese patients with type 2 diabetes. METHODS In this dose-titration study, 24 patients were randomized (3:1 ratio) to receive globalagliatin or placebo. The 28-day titration was divided into two stages, each comprising 12 subjects. In stage I (low-dose), globalagliatin or placebo was administered at ascending doses of 20, 40, 80, and 120 mg once daily, increased at weekly intervals. As the treatment was well tolerated, stage II (high-dose) was initiated, with ascending doses of 80, 160, 240, and 320 mg. Safety, pharmacokinetic and pharmacodynamic analysis were conducted. RESULTS Following once-daily titration with ascending doses of globalagliatin of 20-120 mg (stage I) and 80-320 mg (stage II) for 7 days, globalagliatin caused mildly high incidences of hypoglycemia and hypertriglyceridemia. The mean maximum plasma concentration (Cmax) of globalagliatin increased from 7.76 to 138.13 ng/mL (stage I), and 29.36 to 471.50 ng/mL (stage II), which occurred at 3-5 h post-dose. A steady state was achieved after 7 days of once-daily dosing in stage I and stage II, respectively. Mean area under the plasma-concentration curve for steady-state 24-h interval (AUC0-24) increased from 106.13 to 2461.95 ng·h/mL (stage I) and 369.71 to 9218.38 ng·h/mL (stage II). Fasting plasma glucose (FPG) decreased continuously during the titration period. Compared with the placebo, high-dose globalagliatin significantly increased the reductions in FPG, the area under the curve of 24-h glucose levels, and glycated albumin, with least-squares mean changes (relative to baseline) of - 4.08 mmol/L (95% CI - 5.05 to - 3.12) (P < 0.01), - 103.93 mmol/L (95% CI - 135.80 to - 72.06) (P < 0.01), and - 4.71% (95% CI - 6.91 to - 2.51) (P < 0.01)), respectively. High-dose globalagliatin significantly increased the Matsuda index, indicating improved insulin resistance. CONCLUSIONS Globalagliatin was well tolerated and showed favorable pharmacokinetic profiles in Chinese patients with type 2 diabetes. High-dose globalagliatin reduced plasma glucose, and improved insulin resistance. TRIAL REGISTRATION Clinicaltrials.gov indentifier, NCT03414892.
Collapse
Affiliation(s)
- Shuai Zheng
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Feng Shao
- Phase I Clinical Trial Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Ding
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Zhenzhen Fu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Qi Fu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Sijia Ding
- Phase I Clinical Trial Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lijun Xie
- Phase I Clinical Trial Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Chen
- Phase I Clinical Trial Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sufeng Zhou
- Phase I Clinical Trial Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongwen Zhang
- Phase I Clinical Trial Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongwen Zhou
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yang Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Caixia Sun
- Suzhou Yabao Pharmaceutical R&D Co., Ltd., Suzhou, Jiangsu, China
| | - Jing Zhu
- Suzhou Yabao Pharmaceutical R&D Co., Ltd., Suzhou, Jiangsu, China
| | - Xuqin Zheng
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
55
|
Liu W, Yao C, Shang Q, Liu Y, Liu C, Meng F. Insights into the binding of dorzagliatin with glucokinase: A molecular dynamics simulation. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620500273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human glucokinase (GK) is a potentially attractive target for diabetes, playing a prominent role in the control of glucose homeostasis. Dorzagliatin is the first GK activator (GKA) to enter phase III clinical trial. In this study, the possible binding mode of dorzagliatin with GK was investigated via the molecular simulation method. Two other systems in the absence of dorzagliatin and glucose were also studied to disclose the roles of dorzagliatin and glucose. The outcomes revealed that dorzagliatin can create the characteristic hydrogen bonds of GKA with Arg63, and Arg63 can form hydrogen bonds with nearby residues, making a tight binding hydrogen bond network around dorzagliatin. The presence of dorzagliatin can stabilize glucokinase for a period of time, and the binding of glucose may prevent the GK conformational change to a certain extent. Our results may be beneficial to mechanism understanding of GKA, and will be useful in design of novel GKAs for treating metabolic diseases.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, P. R. China
| | - Chenhui Yao
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, P. R. China
| | - Qian Shang
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, P. R. China
| | - Yuqiang Liu
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, P. R. China
| | - Changying Liu
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, P. R. China
| | - Fancui Meng
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, P. R. China
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, P. R. China
| |
Collapse
|
56
|
Johansson KS, Sonne DP, Knop FK, Christensen MB. What is on the horizon for type 2 diabetes pharmacotherapy? – An overview of the antidiabetic drug development pipeline. Expert Opin Drug Discov 2020; 15:1253-1265. [DOI: 10.1080/17460441.2020.1791078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Karl Sebastian Johansson
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - David Peick Sonne
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Bring Christensen
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
57
|
|
58
|
Brouwers MCGJ, Simons N, Stehouwer CDA, Isaacs A. Non-alcoholic fatty liver disease and cardiovascular disease: assessing the evidence for causality. Diabetologia 2020; 63:253-260. [PMID: 31713012 PMCID: PMC6946734 DOI: 10.1007/s00125-019-05024-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is highly prevalent among individuals with type 2 diabetes. Although epidemiological studies have shown that NAFLD is associated with cardiovascular disease (CVD), it remains unknown whether NAFLD is an active contributor or an innocent bystander. Plasma lipids, low-grade inflammation, impaired fibrinolysis and hepatokines are potential mediators of the relationship between NAFLD and CVD. The Mendelian randomisation approach can help to make causal inferences. Studies that used common variants in PNPLA3, TM6SF2 and GCKR as instruments to investigate the relationship between NAFLD and coronary artery disease (CAD) have reported contrasting results. Variants in PNPLA3 and TM6SF2 were found to protect against CAD, whereas variants in GCKR were positively associated with CAD. Since all three genes have been associated with non-alcoholic steatohepatitis, the second stage of NAFLD, the question of whether low-grade inflammation is an important mediator of the relationship between NAFLD and CAD arises. In contrast, the differential effects of these genes on plasma lipids (i.e. lipid-lowering for PNPLA3 and TM6SF2, and lipid-raising for GCKR) strongly suggest that plasma lipids account for their differential effects on CAD risk. This concept has recently been confirmed in an extended set of 12 NAFLD susceptibility genes. From these studies it appears that plasma lipids are an important mediator between NAFLD and CVD risk. These findings have important clinical implications, particularly for the design of anti-NAFLD drugs that also affect lipid metabolism.
Collapse
Affiliation(s)
- Martijn C G J Brouwers
- Division of Endocrinology and Metabolic Disease, Department of Internal Medicine, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX, Maastricht, the Netherlands.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| | - Nynke Simons
- Division of Endocrinology and Metabolic Disease, Department of Internal Medicine, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX, Maastricht, the Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Coen D A Stehouwer
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Aaron Isaacs
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, the Netherlands
- Department of Biochemistry, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
59
|
Egan A, Vella A. TTP399: an investigational liver-selective glucokinase (GK) activator as a potential treatment for type 2 diabetes. Expert Opin Investig Drugs 2019; 28:741-747. [DOI: 10.1080/13543784.2019.1654993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Aoife Egan
- Division of Endocrinology and Diabetes, Diabetes and Metabolism Department of Medicine, Rochester, MN, USA
| | - Adrian Vella
- Division of Endocrinology and Diabetes, Diabetes and Metabolism Department of Medicine, Rochester, MN, USA
| |
Collapse
|
60
|
Bloomgarden Z. Glucokinase and the potential of glucokinase activation in type 2 diabetes. J Diabetes 2019; 11:626-627. [PMID: 31013387 DOI: 10.1111/1753-0407.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Zachary Bloomgarden
- Department of Medicine, Division of Endocrinology, Diabetes, and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
61
|
Matschinsky FM, Wilson DF. The Central Role of Glucokinase in Glucose Homeostasis: A Perspective 50 Years After Demonstrating the Presence of the Enzyme in Islets of Langerhans. Front Physiol 2019; 10:148. [PMID: 30949058 PMCID: PMC6435959 DOI: 10.3389/fphys.2019.00148] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/07/2019] [Indexed: 01/05/2023] Open
Abstract
It is hypothesized that glucokinase (GCK) is the glucose sensor not only for regulation of insulin release by pancreatic β-cells, but also for the rest of the cells that contribute to glucose homeostasis in mammals. This includes other cells in endocrine pancreas (α- and δ-cells), adrenal gland, glucose sensitive neurons, entero-endocrine cells, and cells in the anterior pituitary. Glucose transport is by facilitated diffusion and is not rate limiting. Once inside, glucose is phosphorylated to glucose-6-phosphate by GCK in a reaction that is dependent on glucose throughout the physiological range of concentrations, is irreversible, and not product inhibited. High glycerol phosphate shuttle, pyruvate dehydrogenase, and pyruvate carboxylase activities, combined with low pentose-P shunt, lactate dehydrogenase, plasma membrane monocarboxylate transport, and glycogen synthase activities constrain glucose-6-phosphate to being metabolized through glycolysis. Under these conditions, glycolysis produces mostly pyruvate and little lactate. Pyruvate either enters the citric acid cycle through pyruvate dehydrogenase or is carboxylated by pyruvate carboxylase. Reducing equivalents from glycolysis enter oxidative phosphorylation through both the glycerol phosphate shuttle and citric acid cycle. Raising glucose concentration increases intramitochondrial [NADH]/[NAD+] and thereby the energy state ([ATP]/[ADP][Pi]), decreasing [Mg2+ADP] and [AMP]. [Mg2+ADP] acts through control of KATP channel conductance, whereas [AMP] acts through regulation of AMP-dependent protein kinase. Specific roles of different cell types are determined by the diverse molecular mechanisms used to couple energy state to cell specific responses. Having a common glucose sensor couples complementary regulatory mechanisms into a tightly regulated and stable glucose homeostatic network.
Collapse
Affiliation(s)
- Franz M Matschinsky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
62
|
Hodson L, Brouwers MCGJ. Non-alcoholic fatty liver disease concerns with glucokinase activators. Lancet Diabetes Endocrinol 2018; 6:684-685. [PMID: 30143184 DOI: 10.1016/s2213-8587(18)30196-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Martijn C G J Brouwers
- Department of Internal Medicine, Division of Endocrinology and Metabolic Diseases, Maastricht University Medical Centre, Maastricht, 6200 MD, Netherlands.
| |
Collapse
|
63
|
Li X, Chen L. Non-alcoholic fatty liver disease concerns with glucokinase activators - Authors' reply. Lancet Diabetes Endocrinol 2018; 6:685. [PMID: 30143186 DOI: 10.1016/s2213-8587(18)30201-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/23/2022]
Affiliation(s)
- Xiaoying Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Chen
- Hua Medicine, Shanghai 201203, China.
| |
Collapse
|
64
|
Zhu XX, Zhu DL, Li XY, Li YL, Jin XW, Hu TX, Zhao Y, Li YG, Zhao GY, Ren S, Zhang Y, Ding YH, Chen L. Dorzagliatin (HMS5552), a novel dual-acting glucokinase activator, improves glycaemic control and pancreatic β-cell function in patients with type 2 diabetes: A 28-day treatment study using biomarker-guided patient selection. Diabetes Obes Metab 2018; 20:2113-2120. [PMID: 29707866 DOI: 10.1111/dom.13338] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 01/04/2023]
Abstract
AIMS To investigate the pharmacokinetics and pharmacodynamics of a dual-acting glucokinase activator, dorzagliatin, and its safety, tolerability and effect on pancreatic β-cell function in Chinese patients with type 2 diabetes (T2D). MATERIALS AND METHODS A total of 24 T2D patients were selected, utilizing a set of predefined clinical biomarkers, and were randomized to receive dorzagliatin 75 mg twice or once daily (BID, QD respectively) for 28 days. Changes in HbA1c and glycaemic parameters from baseline to Day 28 were assessed. In addition, changes in β-cell function from baseline to Day 32 were evaluated. RESULTS Significant reductions in HbA1c were observed in both regimens on Day 28 (-0.79%, 75 mg BID; -1.22%, 75 mg QD). Similar trends were found in the following parameters, including reductions from baseline in fasting plasma glucose by 1.20 mmol/L and 1.51 mmol/L, in 2-hour postprandial glucose by 2.48 mmol/L and 5.03 mmol/L, and in glucose AUC0-24 by 18.59% and 20.98%, for the BID and QD groups, respectively. Both regimens resulted in improvement in β-cell function as measured by steady state HOMA 2 parameter, %B, which increased by 36.31% and 40.59%, and by dynamic state parameter, ΔC30 /ΔG30 , which increased by 24.66% and 167.67%, for the BID and QD groups, respectively. Dorzagliatin was well tolerated in both regimens, with good pharmacokinetic profiles. CONCLUSIONS Dorzagliatin treatment for 28 days in Chinese T2D patients, selected according to predefined biomarkers, resulted in significant improvement in β-cell function and glycaemic control. The safety and pharmacokinetic profile of dorzagliatin supports a subsequent Phase II trial design and continued clinical development.
Collapse
Affiliation(s)
- Xiao-Xue Zhu
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Da-Long Zhu
- Department of Endocrinology and Metabolism, Nanjing Drum Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiao-Ying Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ya-Lin Li
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Xiao-Wei Jin
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Tian-Xin Hu
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Yu Zhao
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Yong-Guo Li
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Gui-Yu Zhao
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Shuang Ren
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Yi Zhang
- Hua Medicine (Shanghai) Limited, Shanghai, China
| | - Yan-Hua Ding
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Li Chen
- Hua Medicine (Shanghai) Limited, Shanghai, China
| |
Collapse
|
65
|
Scheen AJ. New hope for glucokinase activators in type 2 diabetes? Lancet Diabetes Endocrinol 2018; 6:591-593. [PMID: 29735393 DOI: 10.1016/s2213-8587(18)30133-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 01/05/2023]
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, Academic Hospital of Liège, Liège, Belgium; Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines, University of Liège, Liège B-4000, Belgium.
| |
Collapse
|