51
|
Ji C, Guo N, Li L. Differential dimethyl labeling of N-termini of peptides after guanidination for proteome analysis. J Proteome Res 2006; 4:2099-108. [PMID: 16335955 DOI: 10.1021/pr050215d] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe an enabling technique for proteome analysis based on isotope-differential dimethyl labeling of N-termini of tryptic peptides followed by microbore liquid chromatography (LC) matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS). In this method, lysine side chains are blocked by guanidination to prevent the incorporation of multiple labels, followed by N-terminal labeling via reductive amination using d(0),(12)C-formaldehyde or d(2),(13)C-formaldehyde. Relative quantification of peptide mixtures is achieved by examining the MALDI mass spectra of the peptide pairs labeled with different isotope tags. A nominal mass difference of 6 Da between the peptide pair allows negligible interference between the two isotopic clusters for quantification of peptides of up to 3000 Da. Since only the N-termini of tryptic peptides are differentially labeled and the a(1) ions are also enhanced in the MALDI MS/MS spectra, interpretation of the fragment ion spectra to obtain sequence information is greatly simplified. It is demonstrated that this technique of N-terminal dimethylation (2ME) after lysine guanidination (GA) or 2MEGA offers several desirable features, including simple experimental procedure, stable products, using inexpensive and commercially available reagents, and negligible isotope effect on reversed-phase separation. LC-MALDI MS combined with this 2MEGA labeling technique was successfully used to identify proteins that included polymorphic variants and low abundance proteins in bovine milk. In addition, by analyzing a mixture of two equal amounts of milk whey fraction as a control, it is shown that the measured average ratio for 56 peptide pairs from 14 different proteins is 1.02, which is very close to the theoretical ratio of 1.00. The calculated percentage error is 2.0% and relative standard deviation is 4.6%.
Collapse
Affiliation(s)
- Chengjie Ji
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
52
|
Locati D, Morandi S, Zanotti M, Arnoldi A. Preliminary approaches for the development of a high-performance liquid chromatography/electrospray ionization tandem mass spectrometry method for the detection and label-free semi-quantitation of the main storage proteins of Lupinus albus in foods. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:1305-16. [PMID: 16548055 DOI: 10.1002/rcm.2450] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Since recent literature has indicated that white lupin (Lupinus albus) may be a useful source of hypocholesterolemic proteins to be used in functional food formulation, our final goal is the development of a fast and automated high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS) method for the detection and the label-free semi-quantitation of the main lupin globulins in lupin foods and food ingredients. We present here some preliminary results in this direction. As a first step a total protein extract (TPE-WF) from lupin flakes was pre-fractionated by anion-exchange chromatography and each fraction was digested with trypsin and analyzed by HPLC/ESI-MS/MS. Subsequently, the tryptic digest of TPE-WF was directly analyzed by HPLC/ESI-MS/MS without any pre-fractionation. Eventually, in order to test the applicability of the method to real samples, a lupin beverage and two lupin protein isolates were analyzed. Both Mascot and Spectrum Mill MS Proteomics Workbench software were used to identify the protein composition in these samples and Spectrum Mill was used also to test the possibility of developing a label-free semi-quantitation method based on peptide hits. Encouraging results were obtained especially in the detection of the hypocholesterolemic component beta-conglutin.
Collapse
Affiliation(s)
- Daniela Locati
- Department of Agri-Food Molecular Sciences, Laboratory of Food Chemistry and Mass Spectrometry, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | | | | | | |
Collapse
|
53
|
DeKeyser SS, Li L. Matrix-assisted laser desorption/ionization Fourier transform mass spectrometry quantitation via in cell combination. Analyst 2005; 131:281-90. [PMID: 16440095 DOI: 10.1039/b510831d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we describe a novel method for quantitation using a Fourier transform mass spectrometer (FTMS) equipped with a MALDI ion source. The unique instrumental configuration of FTMS and its ion trapping and storing capabilities enable ion packets originating from two physically distinct samples to be combined in the ion cyclotron resonance (ICR) cell prior to detection. These features are exploited to combine analyte ions from two differentially labeled samples spotted separately and then combined in the ICR cell to generate a single mass spectrum containing isotopically paired peaks for quantitative comparison of relative ion abundances. The utility of this new quantitation via in cell combination (QUICC) approach is explored using peptide standards, a bovine serum albumin tryptic digest, and a crude neuronal tissue extract. We show that spectra acquired using the QUICC scheme are comparable to those obtained from premixing the isotopically labeled samples in solution. In addition, we show direct tissue in situ isotopic formaldehyde labeling of a crustacean neuroendocrine organ, thus demonstrating the potential application of the QUICC methodology for direct tissue quantitative analysis.
Collapse
Affiliation(s)
- Stephanie S DeKeyser
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | | |
Collapse
|
54
|
Salih E. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches. MASS SPECTROMETRY REVIEWS 2005; 24:828-846. [PMID: 15538747 DOI: 10.1002/mas.20042] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The general fields of biological sciences have seen phenomenal transformations in the past two decades at the level of data acquisition, understanding biological processes, and technological developments. Those advances have been made partly because of the advent of molecular biology techniques (which led to genomics) coupled to the advances made in mass spectrometry (MS) to provide the current capabilities and developments in proteomics. However, our current knowledge that approximately 30,000 human genes may code for up to 1 million or more proteins disengage the interface between the genome sequence database algorithms and MS to generate a major interest in independent de novo MS/MS sequence determination. Significant progress has been made in this area through procedures to covalently modify peptide N- and C-terminal amino-acids by sulfonation and guanidination to permit rapid de novo sequence determination by MS/MS analysis. A number of strategies that have been developed to perform qualitative and quantitative proteomics range from 2D-gel electrophoresis, affinity tag reagents, and stable-isotope labeling. Those procedures, combined with MS/MS peptide sequence analysis at the subpicomole level, permit the rapid and effective identification and quantification of a large number of proteins within a given biological sample. The identification of proteins per se, however, is not always sufficient to interpret biological function because many of the naturally occurring proteins are post-translationally modified. One such modification is protein phosphorylation, which regulates a large array of cellular biochemical pathways of the biological system. Traditionally, the study of phosphoprotein structure-function relationships involved classical protein chemistry approaches that required protein purification, peptide mapping, and the identification of the phosphorylated peptide regions and sites by N-terminal sequence analysis. Recent advances made in mass spectrometry have clearly revolutionized the studies of phosphoprotein biochemistry, and include the development of specific strategies to preferentially enrich phosphoproteins by covalent-modifications that incorporate affinity tags that use the physicochemical properties of phosphoaminoacids. The phosphoserine/phosphothreonine-containing proteins/peptides are derivatized under base-catalyzed conditions by thiol agents; mono- and di-thiol reagents both have been used in such studies. The thiol agent may have: (i) an affinity tag for protein enrichment; (ii) stable-isotopic variants for relative quantitation; or (iii) a combination of the moieties in (i) and (ii). These strategies and techniques, together with others, are reviewed, including their practical application to the study of phosphoprotein biochemistry and structure-function. The consensus of how classical protein chemistry and current MS technology overlap into special case of proteomics, namely "phosphoproteomics," will be discussed.
Collapse
Affiliation(s)
- Erdjan Salih
- Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopaedic Surgery, Harvard Medical School and Children's Hospital Boston, Boston, MA 02115, USA. Erdjan.Salih@Gardenof knowledge.org
| |
Collapse
|
55
|
Park SJ, Lee SY, Cho J, Kim TY, Lee JW, Park JH, Han MJ. Global physiological understanding and metabolic engineering of microorganisms based on omics studies. Appl Microbiol Biotechnol 2005; 68:567-79. [PMID: 16041571 DOI: 10.1007/s00253-005-0081-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2005] [Revised: 06/23/2005] [Accepted: 06/24/2005] [Indexed: 10/25/2022]
Abstract
Through metabolic engineering, scientists seek to modify the metabolic pathways of living organisms to facilitate optimized, efficient production of target biomolecules. During the past decade, we have seen notable improvements in biotechnology, many of which have been based on metabolically engineered microorganisms. Recent developments in the fields of functional genomics, transcriptomics, proteomics, and metabolomics have changed metabolic engineering strategies from the local pathway level to the whole system level. This article focuses on recent advances in the field of metabolic engineering, which have been powered by the combined approaches of the various "omics" that allow us to understand the microbial metabolism at a global scale and to develop more effectively redesigned metabolic pathways for the enhanced production of target bioproducts.
Collapse
Affiliation(s)
- S J Park
- Corporate R&D, LG Chem, Ltd./Research Park, Yuseong-gu, Daejeon, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
56
|
Ji C, Li L. Quantitative proteome analysis using differential stable isotopic labeling and microbore LC-MALDI MS and MS/MS. J Proteome Res 2005; 4:734-42. [PMID: 15952720 DOI: 10.1021/pr049784w] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrate an approach for global quantitative analysis of protein mixtures using differential stable isotopic labeling of the enzyme-digested peptides combined with microbore liquid chromatography (LC) matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS). Microbore LC provides higher sample loading, compared to capillary LC, which facilitates the quantification of low abundance proteins in protein mixtures. In this work, microbore LC is combined with MALDI MS via a heated droplet interface. The compatibilities of two global peptide labeling methods (i.e., esterification to carboxylic groups and dimethylation to amine groups of peptides) with this LC-MALDI technique are evaluated. Using a quadrupole-time-of-flight mass spectrometer, MALDI spectra of the peptides in individual sample spots are obtained to determine the abundance ratio among pairs of differential isotopically labeled peptides. MS/MS spectra are subsequently obtained from the peptide pairs showing significant abundance differences to determine the sequences of selected peptides for protein identification. The peptide sequences determined from MS/MS database search are confirmed by using the overlaid fragment ion spectra generated from a pair of differentially labeled peptides. The effectiveness of this microbore LC-MALDI approach is demonstrated in the quantification and identification of peptides from a mixture of standard proteins as well as E. coli whole cell extract of known relative concentrations. It is shown that this approach provides a facile and economical means of comparing relative protein abundances from two proteome samples.
Collapse
Affiliation(s)
- Chengjie Ji
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | |
Collapse
|
57
|
Karp NA, Griffin JL, Lilley KS. Application of partial least squares discriminant analysis to two-dimensional difference gel studies in expression proteomics. Proteomics 2005; 5:81-90. [PMID: 15744836 DOI: 10.1002/pmic.200400881] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Two-dimensional difference gel electrophoresis (DIGE) is a tool for measuring changes in protein expression between samples involving pre-electrophoretic labeling ith cyanine dyes. In multi-gel experiments, univariate statistical tests have been used to identify differential expression between sample types by looking for significant changes in spot volume. Multivariate statistical tests, which look for correlated changes between sample types, provide an alternate approach for identifying spots with differential expression. Partial least squares-discriminant analysis (PLS-DA), a multivariate statistical approach, was combined with an iterative threshold process to identify which protein spots had the greatest contribution to the model, and compared to univariate test for three datasets. This included one dataset where no biological difference was expected. The novel multivariate approach, detailed here, represents a method to complement the univariate approach in identification of differentially expressed protein spots. This new approach has the advantages of reduced risk of false-positives and the identification of spots that are significantly altered in terms of correlated expression rather than absolute expression values.
Collapse
Affiliation(s)
- Natasha A Karp
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | | | |
Collapse
|
58
|
Gao J, Friedrichs MS, Dongre AR, Opiteck GJ. Guidelines for the routine application of the peptide hits technique. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:1231-8. [PMID: 15978832 DOI: 10.1016/j.jasms.2004.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 11/30/2004] [Accepted: 12/03/2004] [Indexed: 05/03/2023]
Abstract
A set of guidelines has been developed for using the peptide hits technique (PHT) as a semi-quantitative screening tool for the identification of proteins that change in abundance in a complex mixture. The dataset that formed the basis for these experiments was created using a cell lysate derived from the yeast Saccharomyces cerevisiae, spiked at various levels with serum albumin (BSA), and analyzed by LC/MS/MS and SEQUEST. Knowing that the level of only one protein (BSA) actually changed in the mixture allowed for the development and refinement of the necessary bioinformatics and statistical analyses, e.g., principal component analysis (PCA), normalization, and analysis of variation (ANOVA). As expected, the number of BSA peptide hits changed in proportion to the amount of BSA added to the sample. PCA was able to clearly distinguish between the spiked samples and the untreated sample, indicating that PCA may be able to classify samples, e.g., healthy versus diseased, in future experiments. The use of an endogenous "housekeeping" protein was found to be superior to the use of total hits for data normalization prior to analysis. An ANOVA based model readily identified BSA as a protein of interest, that is, one likely to be changing from amongst the background proteins, indicating that an ANOVA model may be able to identify individual proteins in target or biomarker discovery experiments. General guidelines based on these combined observations are set forth for future analyses and the rapid screening for candidate proteins of interest.
Collapse
Affiliation(s)
- Ji Gao
- Pharmaceutical Research Institute, Bristol-Myers Squibb Company, Princeton, New Jersey 08534-5400, USA.
| | | | | | | |
Collapse
|
59
|
Li X, Wilm M, Franz T. Silicone/graphite coating for on-target desalting and improved peptide mapping performance of matrix-assisted laser desorption/ionization-mass spectrometry targets in proteomic experiments. Proteomics 2005; 5:1460-71. [PMID: 15838907 DOI: 10.1002/pmic.200401023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In two-dimensional gel electrophoresis-based proteomic experiments matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) peptide mass fingerprinting is often the technique of choice in identifying proteins. Here, we present a novel surface coating technique for MALDI-MS targets that improves manual and automatic sample analysis. A mixture of silicone and graphite is spread in the form of a thin layer over the target. Due to the hydrophobicity of the coating, aqueous solutions can be applied to relatively small spots very precisely using a robotic system. At least four times more liquid can be concentrated on the same area compared to uncoated steel targets. alpha-cyano-4-hydrocinnamic acid crystallizes in form of very small crystals evenly distributed over the surface. The search for "hot spots" during the analysis is not necessary, which supports the automatic acquisition of data. The homogeneous crystal layer can be very effectively washed on-target without encountering major sample losses. This efficient washing and the focused application of aqueous samples replace expensive and time-consuming reversed phase micro column based sample clean-ups. When analyzing peptide mixtures, the signal intensities are up to five times higher than with preparations of the same un-desalted samples on steel targets, since four times more sample can be loaded. The mass resolution remains unaffected by the surface coating. After usage the coating can be removed, followed by a new coating avoiding any carry-over of sample to the next analysis. All these properties make the precoating of MALDI-MS targets with a silicone/graphite layer an ideal technique for routine analysis in large-scale proteomic experiments.
Collapse
Affiliation(s)
- Xinping Li
- European Molecular Biology Laboratory, Proteomic Core Facility, Heidelberg, Germany
| | | | | |
Collapse
|
60
|
Silva JC, Denny R, Dorschel CA, Gorenstein M, Kass IJ, Li GZ, McKenna T, Nold MJ, Richardson K, Young P, Geromanos S. Quantitative Proteomic Analysis by Accurate Mass Retention Time Pairs. Anal Chem 2005; 77:2187-200. [PMID: 15801753 DOI: 10.1021/ac048455k] [Citation(s) in RCA: 481] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Current methodologies for protein quantitation include 2-dimensional gel electrophoresis techniques, metabolic labeling, and stable isotope labeling methods to name only a few. The current literature illustrates both pros and cons for each of the previously mentioned methodologies. Keeping with the teachings of William of Ockham, "with all things being equal the simplest solution tends to be correct", a simple LC/MS based methodology is presented that allows relative changes in abundance of proteins in highly complex mixtures to be determined. Utilizing a reproducible chromatographic separations system along with the high mass resolution and mass accuracy of an orthogonal time-of-flight mass spectrometer, the quantitative comparison of tens of thousands of ions emanating from identically prepared control and experimental samples can be made. Using this configuration, we can determine the change in relative abundance of a small number of ions between the two conditions solely by accurate mass and retention time. Employing standard operating procedures for both sample preparation and ESI-mass spectrometry, one typically obtains under 5 ppm mass precision and quantitative variations between 10 and 15%. The principal focus of this paper will demonstrate the quantitative aspects of the methodology and continue with a discussion of the associated, complementary qualitative capabilities.
Collapse
Affiliation(s)
- Jeffrey C Silva
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Che FY, Fricker LD. Quantitative peptidomics of mouse pituitary: comparison of different stable isotopic tags. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:238-249. [PMID: 15706629 DOI: 10.1002/jms.743] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Determining the relative levels of neuropeptides in two samples is important for many biological studies. An efficient, sensitive and accurate technique for relative quantitative analysis involves tagging the peptides in the two samples with isotopically distinct labels, pooling the samples and analyzing them using liquid chromatography/mass spectrometry (LC/MS). In this study, we compared two different sets of isotopic tags for analysis of endogenous mouse pituitary peptides: succinic anhydride with either four hydrogens or deuteriums and [3-(2,5-dioxopyrrolidin-1-yloxycarbonyl)propyl]trimethylammonium chloride with either nine hydrogens or deuteriums. These two labels react with amines and impart either a negative charge (succinyl) or a positive charge (4-trimethylammoniumbutyryl (TMAB)). Every endogenous mouse pituitary peptide labeled with the light TMAB reagent eluted from the C18 reversed-phase column at essentially the same time as the corresponding peptide labeled with the heavy reagent. Most of the peptides labeled with succinyl groups also showed co-elution of the heavy- and light-labeled forms on LC/MS. The mass difference between the heavy and light TMAB reagents (9 Da per label) was larger than that of the heavy and light succinyl labels (4 Da per label), and for some peptides the larger mass difference provided more accurate determination of the relative abundance of each form. Altogether, using both labels, 82 peptides were detected in Cpe(fat/fat) mouse pituitary extracts. Of these, only 16 were detected with both labels, 41 were detected only with the TMAB label and 25 were detected only with the succinyl label. A number of these peptides were de novo sequenced using low-energy collisional tandem mass spectrometry. Whereas the succinyl group was stable to the collision-induced dissociation of the peptide, the TMAB-labeled peptides lost 59 Da per H9 TMAB group. Several peptides identified in this analysis represent previously undescribed post-translational processing products of known pituitary prohormones. In conclusion, both succinyl and TMAB isotopic labels are useful for quantitative peptidomics, and together these two labels provide more complete coverage of the endogenous peptides.
Collapse
Affiliation(s)
- Fa-Yun Che
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
62
|
Sakai J, Kojima S, Yanagi K, Kanaoka M. 18O-labeling quantitative proteomics using an ion trap mass spectrometer. Proteomics 2005; 5:16-23. [PMID: 15744833 DOI: 10.1002/pmic.200300885] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe a method for simultaneous identification and quantitation of proteins within complex mixtures. The method consists of 18O-labeling, a simple stable isotope-coding that requires merely enzymatic digestion in 18O-water, in combination with a capillary-liquid chromatography electrospray ion-trap mass spectrometer. In a separate experiment using the same sample and a spike test, we demonstrate that the difference ration was calculated accurately using the 18O-labeling method even if the protein was part of a complex mixture. Our data also suggest that the accuracy of the quantitation can be improved by averaging the difference ratios of several peptides. In comparing our method with the isotope-coded affinity tag (ICAT) method, we show that the 18O-labeling method has the advantages of better recovery and fewer isotope effects. Therefore, the 18O-labeling method is a powerful tool for large-scale proteomics applications.
Collapse
Affiliation(s)
- Jun Sakai
- Genomic Science Laboratories, Sumitomo Pharmaceuticals Co., Ltd., Osaka 554-0022, Japan.
| | | | | | | |
Collapse
|
63
|
Römpp A, Taban IM, Mihalca R, Duursma MC, Mize TH, McDonnel LA, Heeren RMA. Examples of Fourier transform ion cyclotron resonance mass spectrometry developments: from ion physics to remote access biochemical mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2005; 11:443-56. [PMID: 16322650 DOI: 10.1255/ejms.732] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The application of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) for high resolution biomolecular analysis has increased greatly after 30 years of innovation since its conception in 1974. FT- ICR-MS can now routinely be used for the analysis of complex organic mixtures such as biological or petrochemical samples. Many of these new possibilities have been the results of many different instrumental developments. This paper provides a mini review of selected instrumental developments that now allow these measurements. The development of soft ionization techniques such as electrospray ionization and matrix assisted laser desorption and ionisation was crucial for the analysis of biological macromolecules. Improved ion transport optics led to an increase in sensitivity. New ICR cell designs complement the capabilities of FT-ICR-MS by allowing a more thorough study of the mechanism and kinetics of ion reactions in the gas-phase. A selected example of electron capture dissociation (ECD) employs these developments to investigate the role of peptide conformation in ECD. Improved electronics and software allow faster and more flexible experiments. All these improvements led to an increase in speed and sensitivity that are necessary to couple FT-MS to fast separation techniques such as nano-high performance liquid chromatography. The modern FT-ICR-MS instruments can be incorporated in virtual organizations allowing remote access to unique infrastructure. This concept of remote experimentation opens new possibilities for scientific collaborations between expert scientists at different locations and allows the efficient use of this expensive instrumentation.
Collapse
Affiliation(s)
- A Römpp
- FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
64
|
Schmidt A, Kellermann J, Lottspeich F. A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 2005; 5:4-15. [PMID: 15602776 DOI: 10.1002/pmic.200400873] [Citation(s) in RCA: 363] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stable isotope labelling in combination with mass spectrometry has emerged as a powerful tool to identify and relatively quantify thousands of proteins within complex protein mixtures. Here we describe a novel method, termed isotope-coded protein label (ICPL), which is capable of high-throughput quantitative proteome profiling on a global scale. Since ICPL is based on stable isotope tagging at the frequent free amino groups of isolated intact proteins, it is applicable to any protein sample, including extracts from tissues or body fluids, and compatible to all separation methods currently employed in proteome studies. The method showed highly accurate and reproducible quantification of proteins and yielded high sequence coverage, indispensable for the detection of post-translational modifications and protein isoforms. The efficiency (e.g. accuracy, dynamic range, sensitivity, speed) of the approach is demonstrated by comparative analysis of two differentially spiked proteomes.
Collapse
|
65
|
Abstract
Proteomics is the measurement of one or more protein populations or proteomes, preferably in a quantitative manner. A protein population may be the set of proteins found in an organism, in a tissue or biofluid, in a cell, or in a subcellular compartment. A population also may be the set of proteins with a common characteristic, for example, those that interact with each other in molecular complexes, those involved in the same process such as signal transduction or cell cycle control, or those that share a common posttranslational modification such as phosphorylation or glycosylation. Proteomics experiments that involve mass spectrometry are divided into five categories: (1) protein identification, (2) protein quantitation or differential analysis, (3) protein-protein interactions, (4) post-translational modifications, and (5) structural proteomics. Each of these proteomics categories is reviewed. Examples are given for quantitative experiments involving two-dimensional gel electrophoresis, and for gel-free analysis using isotope-coded affinity tags. The impact of proteomics on biological research and on drug development is discussed. Challenges for further development in proteomics are presented, including sample preparation, sensitivity, dynamic range, and automation.
Collapse
Affiliation(s)
- John T Stults
- Predicant Biosciences, Inc., South San Francisco, California, USA
| | | |
Collapse
|
66
|
Gao J, Opiteck GJ, Friedrichs MS, Dongre AR, Hefta SA. Changes in the protein expression of yeast as a function of carbon source. J Proteome Res 2004; 2:643-9. [PMID: 14692458 DOI: 10.1021/pr034038x] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Protein expression trends in yeast were monitored as a function of carbon source (glucose versus galactose) using multidimensional high performance liquid chromatography (HPLC) coupled to gas-phase fractionation, using relative intensity triggering (GPFri). Size exclusion HPLC was used to separate whole cell lysates, and following proteolysis of these fractions, each was separated by reversed phase HPLC, which was coupled on-line via electrospray to an ion trap mass spectrometer. The GPFri technique increased the dynamic range of proteins detected by increasing the number of peptide ions subjected to low energy collision induced dissociation to the 24 most intense ions in each of the survey scans. No protein or peptide labeling was used; instead, the number of SEQUEST identifications for each peptide (previously termed "hits") were used as a semiquantitative means of assessing both the direction (increase vs decrease) and significance of change in protein abundance. None of the traditional SEQUEST filters, e.g., Xcorr, DelCn, Sp, Rsp, etc., were employed in this study. Instead, a Student's t-test was used to distinguish those proteins that significantly and reproducibly changed between carbon sources from those that did not. This relied on the SEQUEST misassignments occurring in equal proportion between treatments and thereby negating each other; statistically significant changes in SEQUEST assignments were nonrandom events by definition and therefore reflective of correct identifications. This method of data analysis showed a large degree of concordance with results reported by other groups in similar transcriptional profiling and proteomic experiments. In all, 176 and 231 (fold-change > or = 1.1; p < or = 0.05) proteins were identified as being increased in peptide hit number when the yeast cells' source of carbon was changed between glucose and galactose, respectively.
Collapse
Affiliation(s)
- Ji Gao
- Pharmaceutical Research Institute, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-5400, USA
| | | | | | | | | |
Collapse
|
67
|
Krokhin OV, Craig R, Spicer V, Ens W, Standing KG, Beavis RC, Wilkins JA. An improved model for prediction of retention times of tryptic peptides in ion pair reversed-phase HPLC: its application to protein peptide mapping by off-line HPLC-MALDI MS. Mol Cell Proteomics 2004; 3:908-19. [PMID: 15238601 DOI: 10.1074/mcp.m400031-mcp200] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proposed model is based on the measurement of the retention times of 346 tryptic peptides in the 560- to 4,000-Da mass range, derived from a mixture of 17 protein digests. These peptides were measured in HPLC-MALDI MS runs, with peptide identities confirmed by MS/MS. The model relies on summation of the retention coefficients of the individual amino acids, as in previous approaches, but additional terms are introduced that depend on the retention coefficients for amino acids at the N-terminal of the peptide. In the 17-protein mixture, optimization of two sets of coefficients, along with additional compensation for peptide length and hydrophobicity, yielded a linear dependence of retention time on hydrophobicity, with an R2 value about 0.94. The predictive capability of the model was used to distinguish peptides with close m/z values and for detailed peptide mapping of selected proteins. Its applicability was tested on columns of different sizes, from nano- to narrow-bore, and for direct sample injection, or injection via a pre-column. It can be used for accurate prediction of retention times for tryptic peptides on reversed-phase (300-A pore size) columns of different sizes with a linear water-ACN gradient and with TFA as the ion-pairing modifier.
Collapse
Affiliation(s)
- O V Krokhin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | | | | | | | | | | | | |
Collapse
|
68
|
Hirsch J, Hansen KC, Burlingame AL, Matthay MA. Proteomics: current techniques and potential applications to lung disease. Am J Physiol Lung Cell Mol Physiol 2004; 287:L1-23. [PMID: 15187006 DOI: 10.1152/ajplung.00301.2003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proteomics aims to study the whole protein content of a biological sample in one set of experiments. Such an approach has the potential value to acquire an understanding of the complex responses of an organism to a stimulus. The large vascular and air space surface area of the lung expose it to a multitude of stimuli that can trigger a variety of responses by many different cell types. This complexity makes the lung a promising, but also challenging, target for proteomics. Important steps made in the last decade have increased the potential value of the results of proteomics studies for the clinical scientist. Advances in protein separation and staining techniques have improved protein identification to include the least abundant proteins. The evolution in mass spectrometry has led to the identification of a large part of the proteins of interest rather than just describing changes in patterns of protein spots. Protein profiling techniques allow the rapid comparison of complex samples and the direct investigation of tissue specimens. In addition, proteomics has been complemented by the analysis of posttranslational modifications and techniques for the quantitative comparison of different proteomes. These methodologies have made the application of proteomics on the study of specific diseases or biological processes under clinically relevant conditions possible. The quantity of data that is acquired with these new techniques places new challenges on data processing and analysis. This article provides a brief review of the most promising proteomics methods and some of their applications to pulmonary research.
Collapse
Affiliation(s)
- Jan Hirsch
- Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Ave. HSW 825, San Francisco, CA 94143-0130, USA.
| | | | | | | |
Collapse
|
69
|
Hurst GB, Lankford TK, Kennel SJ. Mass spectrometric detection of affinity purified crosslinked peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:832-839. [PMID: 15144972 DOI: 10.1016/j.jasms.2004.02.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Revised: 02/13/2004] [Accepted: 02/13/2004] [Indexed: 05/24/2023]
Abstract
Chemical crosslinking of proteins combined with mass spectrometric analysis of the tryptic digest of the products shows considerable promise as a tool for interrogating structure and geometry of proteins and protein complexes. An impediment to the use of this tool has been the difficulty of distinguishing crosslinked peptide pairs from non-crosslinked peptides, and from the products of side reactions. We describe the use of a commercially available biotinylated crosslinking reagent, sulfo-SBED, that allows affinity-based enrichment of crosslinked species. An intramolecular crosslink is prepared using the peptide neurotensin as a model system. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra show the predicted crosslinking product, as well as several side products. Finally, we describe the optimized enrichment of biotinylated species, and reduction of non-specific binding, for a batch-mode affinity separation based on immobilized monomeric avidin.
Collapse
Affiliation(s)
- Gregory B Hurst
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, USA.
| | | | | |
Collapse
|
70
|
Abstract
Abstract
The recent sequencing of a number of genomes has raised the level of opportunities for studies on proteins. This area of research has been described with the all-embracing term, proteomics. In proteomics, the use of mass spectrometric techniques enables genomic databases to be used to establish the identity of proteins with relatively little data, compared to the era before genome sequencing. The use of related analytical techniques also offers the opportunity to gain information on regulation, via posttranslational modification, and potential new diagnostic and prognostic indicators. Relative quantification of proteins and peptides in cellular and extracellular material remains a challenge for proteomics and mass spectrometry. This review presents an analysis of the present and future impact of these proteomic technologies with emphasis on relative quantification for hematologic research giving an appraisal of their potential benefits.
Collapse
Affiliation(s)
- Ileana M Cristea
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester, United Kingdom
| | | | | |
Collapse
|
71
|
Abstract
Toxicogenomics represents the merging of toxicology with technologies that have been developed, together with bioinformatics, to identify and quantify global gene expression changes. It represents a new paradigm in drug development and risk assessment, which promises to generate a wealth of information towards an increased understanding of the molecular mechanisms that lead to drug toxicity and efficacy, and of DNA polymorphisms responsible for individual susceptibility to toxicity. Gene expression profiling, through the use of DNA microarray and proteomic technologies will aid in establishing links between expression profiles, mode of action and traditional toxic endpoints. Such patterns of gene expression, or 'molecular fingerprints' could be used as diagnostic or predictive markers of exposure, that is characteristic of a specific mechanism of induction of that toxic or efficacious effect. It is anticipated that toxicogenomics will be increasingly integrated into all phases of the drug development process particularly in mechanistic and predictive toxicology, and biomarker discovery. This review provides an overview of the expression profiling technologies applied in toxicogenomics. and discusses the promises as well as the future challenges of applying this discipline to the drug development process.
Collapse
Affiliation(s)
- Nelson Guerreiro
- Novartis Pharma AG, Pharmacogenomics, Preclinical Safety, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
72
|
Abstract
The recent completion of human, Anopheles gambiae, and Plasmodium falciparum genomes relevant to the study of human malaria allows the application of modern proteomic technologies to complement previously implemented conventional approaches. Proteomic analysis has been employed to elucidate global protein expression profiles, subcellular localization of gene products, and host-pathogen interactions that are central to disease pathogenesis and treatment. The high-throughput nature of these techniques is in accord with the pace of drug and vaccine development that have the potential to directly reduce the morbidity and mortality of disease.
Collapse
Affiliation(s)
- Jeffrey R Johnson
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
73
|
Zhang B, McDonald C, Li L. Combining Liquid Chromatography with MALDI Mass Spectrometry Using a Heated Droplet Interface. Anal Chem 2004; 76:992-1001. [PMID: 14961730 DOI: 10.1021/ac034934s] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel interfacing technology is described to combine solution-based separation techniques such as liquid chromatography (LC) with matrix-assisted laser desorption ionization (MALDI) mass spectrometry. The interface includes a transfer tube having an inlet and an outlet, the inlet being adapted to accept the LC effluents and the outlet being adapted to form continuously replaced, hanging droplets of the liquid stream, and a MALDI sample plate mounted below the outlet of the transfer tube for collecting the droplets. The liquid stream in the transfer tube is heated to a temperature sufficient to cause partial evaporation of the carrier solvent from the hanging droplets. The droplets are dislodged to the MALDI plate, which is heated to above the boiling point of the carrier solvent to cause further evaporation of the carrier solvent from the collected droplets. It is found that analytes can be fractionated and deposited to a sample spot of 0.8 mm in diameter when a liquid flow rate of up to 50 microL/min and a fractionation interval of 1 min/spot are used. Flow rate of up to 200 microL/min can be used with a deposition sample spot of 2.4 mm in diameter on a commercial MALDI target. This heated droplet interface does not introduce sample loss, and the detection sensitivity of LC/MALDI is similar to that of standard MALDI, i.e., low femtomoles for peptide analysis with a microliter sample deposition. It is compatible with microbore and narrow-bore column separation, thus allowing the injection of a larger amount of sample for separation and analysis, compared to a capillary column LC/MALDI system. The detection dynamic range is shown to be in the order of 10(6) for peptide mixture analysis, which is 4 orders of magnitude greater than standard MALDI. The application of this interface for combining LC with MALDI MS/MS is demonstrated in the proteome analysis of water-soluable protein components of E. coli K12 extracts.
Collapse
Affiliation(s)
- Boyan Zhang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | | |
Collapse
|
74
|
Marshall J, Jankowski A, Furesz S, Kireeva I, Barker L, Dombrovsky M, Zhu W, Jacks K, Ingratta L, Bruin J, Kristensen E, Zhang R, Stanton E, Takahashi M, Jackowski G. Human Serum Proteins Preseparated by Electrophoresis or Chromatography Followed by Tandem Mass Spectrometry. J Proteome Res 2004; 3:364-82. [PMID: 15253417 DOI: 10.1021/pr034039p] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrophoretic and chromatographic sample preparations were compared and together detected the presence of some 600 types of protein products in human serum. Proteins from crude serum preseparated by ionic electrophoresis, chromatography, or a combination of both were analyzed. Proteins were digested with trypsin or chymotrypsin. Naturally occurring peptides were also collected by reversed-phase chromatography. The resulting peptides were identified by tandem mass spectrometry. The peptides were either desorbed by a laser from a metal chip into a quadrupole-time-of-flight mass spectrometer or ionized as an electro-spray from reversed-phase chromatography via a metal needle under voltage into an ion-trap mass spectrometer. All of the commonly known proteins associated with serum were detected, and the two mass spectrometers agreed on the identity of abundant serum proteins. Preseparation of serum proteins prior to digestion markedly enhanced the capacity to detect un-common proteins from blood. Electrophoretic- and chromatography-based experiments were found to be complementary. Many novel cellular proteins not previously associated with serum were recorded.
Collapse
Affiliation(s)
- John Marshall
- SYNX PHARMA, 1 Marmac Drive, Toronto, Ontario, Canada M9W 1E7.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Schmidt F, Donahoe S, Hagens K, Mattow J, Schaible UE, Kaufmann SHE, Aebersold R, Jungblut PR. Complementary Analysis of the Mycobacterium tuberculosis Proteome by Two-dimensional Electrophoresis and Isotope-coded Affinity Tag Technology. Mol Cell Proteomics 2004; 3:24-42. [PMID: 14557599 DOI: 10.1074/mcp.m300074-mcp200] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Classical proteomics combined two-dimensional gel electrophoresis (2-DE) for the separation and quantification of proteins in a complex mixture with mass spectrometric identification of selected proteins. More recently, the combination of liquid chromatography (LC), stable isotope tagging, and tandem mass spectrometry (MS/MS) has emerged as an alternative quantitative proteomics technology. We have analyzed the proteome of Mycobacterium tuberculosis, a major human pathogen comprising about 4,000 genes, by (i) 2-DE and mass spectrometry (MS) and by (ii) the isotope-coded affinity tag (ICAT) reagent method and MS/MS. The data obtained by either technology were compared with respect to their selectivity for certain protein types and classes and with respect to the accuracy of quantification. Initial datasets of 60,000 peptide MS/MS spectra and 1,800 spots for the ICAT-LC/MS and 2-DE/MS methods, respectively, were reduced to 280 and 108 conclusively identified and quantified proteins, respectively. ICAT-LC/MS showed a clear bias for high M(r) proteins and was complemented by the 2-DE/MS method, which showed a preference for low M(r) proteins and also identified cysteine-free proteins that were transparent to the ICAT-LC/MS method. Relative quantification between two strains of the M. tuberculosis complex also revealed that the two technologies provide complementary quantitative information; whereas the ICAT-LC/MS method quantifies the sum of the protein species of one gene product, the 2-DE/MS method quantifies at the level of resolved protein species, including post-translationally modified and processed polypeptides. Our data indicate that different proteomic technologies applied to the same sample provide complementary types of information that contribute to a more complete understanding of the biological system studied.
Collapse
Affiliation(s)
- Frank Schmidt
- Core Facility Protein Analysis, Max Planck Institute for Infection Biology, D-10117 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
Affinity chromatography is a powerful protein separation method that is based on the specific interaction between immobilized ligands and target proteins. Peptides can also be separated effectively by affinity chromatography through the use of peptide-specific ligands. Both two-dimensional electrophoresis (2-DE)- and non-2-DE-based proteomic approaches benefit from the application of affinity chromatography. Before protein separation by 2-DE, affinity separation is used primarily for preconcentration and pretreatment of samples. Those applications entail the removal of one protein or a class of proteins that might interfere with 2-DE resolution, the concentration of low-abundance proteins to enable them to be visualized in the gel, and the classification of total protein into two or more groups for further separation by gel electrophoresis. Non-2-DE-based approaches have extensively employed affinity chromatography to reduce the complexity of protein and peptide mixtures. Prior to mass spectrometry (MS), preconcentration and capture of specific proteins or peptides to enhance sensitivity can be accomplished by using affinity adsorption. Affinity purification of protein complexes followed by identification of proteins by MS serves as a powerful tool for generating a map of protein-protein interactions and cellular locations of complexes. Affinity chromatography of peptide mixtures, coupled with mass spectrometry, provides a tool for the study of protein posttranslational modification (PTM) sites and quantitative proteomics. Quantitation of proteomes is possible via the use of isotope-coded affinity tags and isolation of proteolytic peptides by affinity chromatography. An emerging area of proteomics technology development is miniaturization. Affinity chromatography is becoming more widely used for exploring PTM and protein-protein interactions, especially with a view toward developing new general tag systems and strategies of chemical derivatization on peptides for affinity selection. More applications of affinity-based purification can be expected, including increasing the resolution in 2-DE, improving the sensitivity of MS quantification, and incorporating purification as part of multidimensional liquid chromatography experiments.
Collapse
Affiliation(s)
- Wen-Chien Lee
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 621, Taiwan.
| | | |
Collapse
|
77
|
Marcus K, Schmidt O, Schaefer H, Hamacher M, van Hall A, Meyer HE. Proteomics--application to the brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2004; 61:285-311. [PMID: 15482819 DOI: 10.1016/s0074-7742(04)61011-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Katrin Marcus
- Medical Proteom-Center, Ruhr-University of Bochum, Bochum, Germany 44780
| | | | | | | | | | | |
Collapse
|
78
|
Maras B, Barra D, Schininà ME, Cardone F, Pocchiari M. Prion (PrPres) allotypes profiling: a new perspectives from mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2004; 10:371-382. [PMID: 15187296 DOI: 10.1255/ejms.602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biochemical methods employed for PrPres allotypes profiling are reviewed and compared with the latest mass spectrometric approaches. Emphasis is put on the advantages offered by a recently proposed electrospray strategy.
Collapse
Affiliation(s)
- Bruno Maras
- Dipartmento de Scienze Biochemiche A Rossi Fnelli, Università La Sapienza, Rome, Italy
| | | | | | | | | |
Collapse
|
79
|
Li KW, Hornshaw MP, Van Der Schors RC, Watson R, Tate S, Casetta B, Jimenez CR, Gouwenberg Y, Gundelfinger ED, Smalla KH, Smit AB. Proteomics Analysis of Rat Brain Postsynaptic Density. J Biol Chem 2004; 279:987-1002. [PMID: 14532281 DOI: 10.1074/jbc.m303116200] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The postsynaptic density contains multiple protein complexes that together relay the presynaptic neurotransmitter input to the activation of the postsynaptic neuron. In the present study we took two independent proteome approaches for the characterization of the protein complement of the postsynaptic density, namely 1) two-dimensional gel electrophoresis separation of proteins in conjunction with mass spectrometry to identify the tryptic peptides of the protein spots and 2) isolation of the trypsin-digested sample that was labeled with isotope-coded affinity tag, followed by liquid chromatography-tandem mass spectrometry for the partial separation and identification of the peptides, respectively. Functional grouping of the identified proteins indicates that the postsynaptic density is a structurally and functionally complex organelle that may be involved in a broad range of synaptic activities. These proteins include the receptors and ion channels for glutamate neurotransmission, proteins for maintenance and modulation of synaptic architecture, sorting and trafficking of membrane proteins, generation of anaerobic energy, scaffolding and signaling, local protein synthesis, and correct protein folding and breakdown of synaptic proteins. Together, these results imply that the postsynaptic density may have the ability to function (semi-) autonomously and may direct various cellular functions in order to integrate synaptic physiology.
Collapse
Affiliation(s)
- Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Research Institute of Neurosciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Chelius D, Zhang T, Wang G, Shen RF. Global Protein Identification and Quantification Technology Using Two-Dimensional Liquid Chromatography Nanospray Mass Spectrometry. Anal Chem 2003; 75:6658-65. [PMID: 14640742 DOI: 10.1021/ac034607k] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple and reliable method is described here for the identification and relative quantification of proteins in complex mixtures using two-dimensional liquid chromatography/tandem mass spectrometry. The method is based on the classical proteomic analysis where proteins are digested with trypsin and the resulting peptides are separated by multidimensional liquid chromatography. The separated peptides are analyzed by tandem mass spectrometry and identified via a database search algorithm such as SEQUEST. The peak areas (integrated ion counts over the peptide elution time) of all identified peptides are calculated, and the relative concentration of each protein is determined by comparing the peak areas of all peptides from that protein in one sample versus those from the other. Using this strategy, we compared the relative level of protein expression of A431 cells (an epidermal cell line) grown in the presence or absence of epidermal growth factor (EGF). Our results are consistent with the published observations of the transient effects of EGF. In addition, the difference in the concentrations of several phosphopeptides determined in our studies suggests the possibility of several new targets involved in the EGF cell-signaling pathway. This global protein identification and quantification technology should prove to be a valuable means for comparing proteomes in biological samples subjected to differential treatments.
Collapse
Affiliation(s)
- Dirk Chelius
- Proteomics Division, Thermo Finnigan Corporation, 355 River Oaks Parkway, San Jose, California 95134, USA.
| | | | | | | |
Collapse
|
81
|
Marvin LF, Roberts MA, Fay LB. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clin Chim Acta 2003; 337:11-21. [PMID: 14568176 DOI: 10.1016/j.cccn.2003.08.008] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-Tof-MS) has recently become a popular and versatile method to analyze macromolecules from biological origin. In this paper, we will review the application of MALDI-Tof-MS in clinical chemistry and biology. MALDI-Tof-MS is used in clinical chemistry, e.g. disease markers can be identified with MALDI-MS analysis in combination with 1-D and 2-D gel electrophoresis separations thanks to either peptide mass fingerprinting (PMF) or peptide sequence tag (PST) followed by data base searching. In microbiology, MALDI-Tof-MS is employed to analyze specific peptides or proteins directly desorbed from intact viruses, bacteria and spores. The capability to register biomarker ions in a broad m/z range, which are unique and representative for individual microorganisms, forms the basis of taxonomic identification of bacteria by MALDI-Tof-MS. Moreover, this technique can be applied to study either the resistance of bacteria to antibiotics or the antimicrobial compounds secreted by other bacterial species. More recently, the method was also successfully applied to DNA sequencing (genotyping) as well as screening for mutations. High-throughput genotyping of single-nucleotide polymorphisms has the potential to become a routine method for both laboratory and clinical applications. Moreover, posttranscriptional modifications of RNA can be analyzed by MALDI using nucleotide-specific RNAses combined with further fragmentation by post source decay (PSD).
Collapse
Affiliation(s)
- Laure F Marvin
- Nestlé Research Center, Nestec Ltd, Vers-chez-les-Blanc, PO Box 44, 1000 Lausanne 26, Switzerland.
| | | | | |
Collapse
|
82
|
Marshall J, Kupchak P, Zhu W, Yantha J, Vrees T, Furesz S, Jacks K, Smith C, Kireeva I, Zhang R, Takahashi M, Stanton E, Jackowski G. Processing of serum proteins underlies the mass spectral fingerprinting of myocardial infarction. J Proteome Res 2003; 2:361-72. [PMID: 12938926 DOI: 10.1021/pr030003l] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The MALDI-TOF spectra of peptides from the sera of normal and myocardial infarction patients produced patterns that provided an accurate diagnostic of MI. In myocardial infarction, the spectral pattern originated from the cleavage of complement C3 alpha chain to release the C3f peptide and cleavage of fibrinogen to release peptide A. The fibrinogen peptide A and complement C3f peptide were in turn progressively truncated by aminopeptidases to produce two families of fragments that formed the characteristic spectral pattern of MI. Time course and inhibitor studies demonstrated that the peptide patterns in the serum reflect the balance of disease-specific-protease and aminopeptidase activity ex vivo.
Collapse
Affiliation(s)
- John Marshall
- SYNX PHARMA, 1 Marmac Drive, Toronto, Ontario, Canada M9W 1E7.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
PURPOSE OF REVIEW Proteomics encompasses a group of technologies that attempt to separate, identify and characterize a global set of proteins. This review will highlight the technologies available, outline the capabilities, advantages and disadvantages of each and briefly describe applications in nephrology. RECENT FINDINGS Proteomics provides information about abundance, location, chemical modification and protein-protein interactions that is not available from genomic technologies. Several proteomic approaches are now widely available. Liquid chromatography/mass spectrometry, two-dimensional gel electrophoresis, antibody arrays and protein chips (surface enhanced laser desorption ionization) provide opportunities to identify and compare an abundance of proteins as well as to determine posttranslational modifications, subcellular location and molecular interactions. Recent advances such as multidimensional chromatographic analysis and isotope coded affinity tags have expanded the usefulness of these approaches. SUMMARY Proteomic technologies are improving and developing rapidly. These techniques will be valuable tools to develop markers for disease, identify and evaluate proteins as drug targets and understand renal physiology at the protein level.
Collapse
Affiliation(s)
- John M Arthur
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
84
|
Zhang H, Li XJ, Martin DB, Aebersold R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 2003; 21:660-6. [PMID: 12754519 DOI: 10.1038/nbt827] [Citation(s) in RCA: 1153] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2002] [Accepted: 03/17/2003] [Indexed: 02/08/2023]
Abstract
Quantitative proteome profiling using stable isotope protein tagging and automated tandem mass spectrometry (MS/MS) is an emerging technology with great potential for the functional analysis of biological systems and for the detection of clinical diagnostic or prognostic marker proteins. Owing to the enormous complexity of proteomes, their comprehensive analysis is an as-yet-unresolved technical challenge. However, biologically or clinically important information can be obtained if specific, information-rich protein classes, or sub-proteomes, are isolated and analyzed. Glycosylation is the most common post-translational modification. Here we describe a method for the selective isolation, identification and quantification of peptides that contain N-linked carbohydrates. It is based on the conjugation of glycoproteins to a solid support using hydrazide chemistry, stable isotope labeling of glycopeptides and the specific release of formerly N-linked glycosylated peptides via peptide- N-glycosidase F (PNGase F). The recovered peptides are then identified and quantified by MS/MS. We applied the approach to the analysis of plasma membrane proteins and proteins contained in human blood serum.
Collapse
Affiliation(s)
- Hui Zhang
- Institute for Systems Biology, 1441 N 34th Street, Seattle, Washington 98103-8904, USA
| | | | | | | |
Collapse
|
85
|
Ericson C, Phung QT, Horn DM, Peters EC, Fitchett JR, Ficarro SB, Salomon AR, Brill LM, Brock A. An automated noncontact deposition interface for liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 2003; 75:2309-15. [PMID: 12918971 DOI: 10.1021/ac026409j] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new multichannel deposition system was developed for off-line liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry (LC/MALDI-MS). This system employs a pulsed electric field to transfer the eluents from multiple parallel columns directly onto MALDI targets without the column outlets touching the target surface. The deposition device performs well with a wide variety of solvents that have different viscosities, vapor pressures, polarities, and ionic strengths. Surface-modified targets were used to facilitate concentration and precise positioning of samples, allowing for efficient automation of high-throughput MALDI analysis. The operational properties of this system allow the user to prepare samples using MALDI matrixes whose properties range from hydrophilic to hydrophobic. The latter, exemplified by alpha-cyano-4-hydroxycinnamic acid, were typically processed with a multistep deposition method consisting of precoating of individual spots on the target plate, sample deposition, and sample recrystallization steps. Using this method, 50 amol of angiotensin II was detected reproducibly with high signal-to-noise ratio after LC separation. Experimental results show that there is no significant decrease in chromatographic resolution using this device. To assess the behavior of the apparatus for complex mixtures, 5 microg of a tryptic digest of the cytosolic proteins of yeast was analyzed by LC/MALDI-MS and more than 13,500 unique analytes were detected in a single LC/MS analysis.
Collapse
Affiliation(s)
- Christer Ericson
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Stable isotopic labeling and mass spectrometry as a means to determine differences in protein expression. Trends Analyt Chem 2003. [DOI: 10.1016/s0165-9936(03)00505-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
87
|
Lill J. Proteomic tools for quantitation by mass spectrometry. MASS SPECTROMETRY REVIEWS 2003; 22:182-194. [PMID: 12838544 DOI: 10.1002/mas.10048] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Techniques for the quantitation of proteins and peptides by mass spectrometry (MS) are reviewed. A range of labeling processes is discussed, including metabolic, enzymatic, and chemical labeling, and techniques that can be employed for comparative and absolute quantitation are presented. Advantages and drawbacks of the techniques are discussed, and suggestions for the appropriate uses of the methodologies are explained. Overall, the metabolic incorporation of isotopic labels provides the most accurate labeling strategy, and is most useful when an internal standard for comparative quantitation is needed. However, that technique is limited to research that uses cultured cells.
Collapse
Affiliation(s)
- Jennie Lill
- ActivX Biosciences, 11025 North Torrey Pines Rd., La Jolla, California 92037, USA.
| |
Collapse
|
88
|
Ranish JA, Yi EC, Leslie DM, Purvine SO, Goodlett DR, Eng J, Aebersold R. The study of macromolecular complexes by quantitative proteomics. Nat Genet 2003; 33:349-55. [PMID: 12590263 DOI: 10.1038/ng1101] [Citation(s) in RCA: 303] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 01/19/2003] [Indexed: 11/08/2022]
Abstract
We describe a generic strategy for determining the specific composition, changes in the composition, and changes in the abundance of protein complexes. It is based on the use of isotope-coded affinity tag (ICAT) reagents and mass spectrometry to compare the relative abundances of tryptic peptides derived from suitable pairs of purified or partially purified protein complexes. In a first application, the genuine protein components of a large RNA polymerase II (Pol II) preinitiation complex (PIC) were distinguished from a background of co-purifying proteins by comparing the relative abundances of peptides derived from a control sample and the specific complex that was purified from nuclear extracts by a single-step promoter DNA affinity procedure. In a second application, peptides derived from immunopurified STE12 protein complexes isolated from yeast cells in different states were used to detect quantitative changes in the abundance of the complexes, and to detect dynamic changes in the composition of the samples. The use of quantitative mass spectrometry to guide identification of specific complex components in partially purified samples, and to detect quantitative changes in the abundance and composition of protein complexes, provides the researcher with powerful new tools for the comprehensive analysis of macromolecular complexes.
Collapse
Affiliation(s)
- Jeffrey A Ranish
- Institute for Systems Biology, 1441 North 34th Street, Seattle, Washington 98103-8904, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Griffin TJ, Lock CM, Li XJ, Patel A, Chervetsova I, Lee H, Wright ME, Ranish JA, Chen SS, Aebersold R. Abundance ratio-dependent proteomic analysis by mass spectrometry. Anal Chem 2003; 75:867-74. [PMID: 12622378 DOI: 10.1021/ac026127j] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The goal of quantitative proteomics is to determine the identity and relative quantity of each protein present in two or more complex protein samples. Here we describe a novel approach to quantitative proteomics. It is based on a highly accurate algorithm for the automated quantification of chromatographically fractionated, isotope-coded affinity-tagged peptides and MALDI quadrupole time-of-flight tandem mass spectrometry for their identification. The method is capable of detecting and selectively identifying those proteins within a complex mixture that show a difference in relative abundance. We demonstrate the effectiveness and the versatility of this approach in the analysis of a standard protein mixture, protein expression profiling in a human prostate cancer cell line model, and identification of the specific components of the multiprotein transcriptional machinery in S. cerevisiae.
Collapse
Affiliation(s)
- Timothy J Griffin
- Institute for Systems Biology, 1441 North 34th Street, Seattle, Washington 98103, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
The use of stable isotopes as internal standards in mass spectrometry has opened a new era for quantitative proteomics. Depending on the point at which the label is introduced, most procedures can be classified as in vivo labeling, in vitro pre-digestion labeling or in vitro post-digestion labeling. In vivo labeling has been used for cells that can be grown in culture and has the advantage of being more accurate. The pre-digestion and post-digestion labeling procedures are suitable for all types of sample including human body fluids and biopsies. Several new mass spectrometric strategies mark significant achievements in determining relative protein concentrations and in quantifying post-translational modifications. However, further technology developments are needed for understanding the complexity of a dynamic system like the proteome.
Collapse
Affiliation(s)
- Salvatore Sechi
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, DHHS, Bethesda, MD 20892-5460, USA.
| | | |
Collapse
|
91
|
Abstract
Developing the ability to quantify changes in protein abundance between cells subjected to a variety of physiological and environmental conditions is an extremely active area of proteome research. Although advances in chromatography, mass spectrometry instrumentation, and bioinformatics have contributed to producing a viable method for comparative proteome-wide analyses, the highest precision of quantitation is based, in part, upon improved methods for chemical and metabolic stable isotope labeling of proteins and peptides. The ability to quantify differences in protein expression and post-translational modifications using stable isotope labeling has been achieved, but insights into the biochemical mechanisms that will contribute to the development of new biotechnologies have yet to be realized.
Collapse
Affiliation(s)
- Michael B Goshe
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, PO Box 999, MSIN K8-98, Richland, WA 99352, USA
| | | |
Collapse
|
92
|
Krokhin OV, Ens W, Standing KG. Characterizing degradation products of peptides containing N-terminal Cys residues by (off-line high-performance liquid chromatography)/matrix-assisted laser desorption/ionization quadrupole time-of-flight measurements. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:2528-2534. [PMID: 14608624 PMCID: PMC7169202 DOI: 10.1002/rcm.1236] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 09/24/2003] [Accepted: 09/24/2003] [Indexed: 05/24/2023]
Abstract
A transformation analogous to the well-known conversion of an N-terminal glutamine residue to pyroglutamic acid is the cyclization of an N-terminal carboxyamidomethylated cysteine residue (the normal product of alkylation with iodoacetamide). This yields 5-oxothiomorpholine-3-carboxylic acid, with the same 17 Da mass loss observed in the Gln reaction. Nineteen tryptic peptides with Cys at the N-terminal were identified for this study, and compared with eight with N-terminal Gln. When examined by MALDI-QqTOF and (off-line HPLC)/MALDI-QqTOF measurements, these were all found to undergo the cyclization reactions. The average degree of degradation during overnight digestion was found to be approximately 51 and approximately 34% for Cys and Gln, respectively; more detailed information on the time course of the reactions was obtained for the peptides CCTESLVNR and QYYTVFDR. Taking this modification into account while sequencing is likely to increase the probability of protein identification by peptide mass fingerprinting, especially for cysteine-rich proteins.
Collapse
Affiliation(s)
- Oleg V. Krokhin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Manitoba Centre for Proteomics, University of Manitoba, 805 JBRC, 715 McDermot Ave., Winnipeg, MB, R3E 3P4, Canada
| | - Werner Ens
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Manitoba Centre for Proteomics, University of Manitoba, 805 JBRC, 715 McDermot Ave., Winnipeg, MB, R3E 3P4, Canada
| | - Kenneth G. Standing
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Manitoba Centre for Proteomics, University of Manitoba, 805 JBRC, 715 McDermot Ave., Winnipeg, MB, R3E 3P4, Canada
| |
Collapse
|
93
|
He Y, Zhong W, Yeung ES. Multiplexed on-column protein digestion and capillary electrophoresis for high-throughput comprehensive peptide mapping. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 782:331-41. [PMID: 12458016 DOI: 10.1016/s1570-0232(02)00698-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A novel scheme based on multiplexed capillary electrophoresis (CE) has been developed for high-throughput, low-cost and comprehensive peptide mapping. Orthogonal peptide maps of the protein of interest were obtained by using multiple reaction conditions with three different enzymes (trypsin, pepsin, and chymotrypsin), and multiple separation conditions with six zone electrophoresis buffers and two micellar electrokinetic chromatography (MEKC) buffers. Fifteen nanoliters of two protein samples (beta-lactoglobulin A and beta-lactoglobulin B) were separately mixed on-column and digested independently at 37 degrees C for 10 min to produce peptides in a 20-capillary system. The resulting peptides were detected simultaneously at 214 nm by a photodiode array detector. The overall analysis time from reaction to detection was about 40 min.
Collapse
Affiliation(s)
- Yan He
- Ames Laboratory, US Department of Energy, Iowa 50011, USA
| | | | | |
Collapse
|
94
|
Abstract
Multidimensional peptide separation will play an increasingly important role in the drive to identify and quantitate the proteome. By increasing the peak and load capacity, multidimensional approaches increase the number and dynamic range of peptides that can be analyzed in a complex biological organism. Separation methods using different physical properties of peptides have been combined with varying degrees of success. The ultimate goal is a rapid separation strategy that can be coupled with analytical methods, such as mass spectrometry, to provide comprehensive monitoring of the changing concentration, interactions, and structures of proteins in the proteome.
Collapse
Affiliation(s)
- Andrew J Link
- Dept of Microbiology and Immunology, Vanderbilt University School of Medicine, 1 161 21st Ave South, Nashville, TN 37232-2363, USA.
| |
Collapse
|
95
|
Flory MR, Griffin TJ, Martin D, Aebersold R. Advances in quantitative proteomics using stable isotope tags. Trends Biotechnol 2002; 20:S23-9. [PMID: 12570156 DOI: 10.1016/s1471-1931(02)00203-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A great deal of current biological and clinical research is directed at the interpretation of the information contained in the human genome sequence in terms of the structure, function and control of biological systems and processes. Proteomics, the systematic analysis of proteins, is becoming a critical component in this endeavor because proteomic measurements are carried out directly on proteins--the catalysts and effectors of essentially all biological functions. To detect changes in protein profiles that might provide important diagnostic or functional insights, proteomic analyses necessarily have to be quantitative. This article summarizes recent technological advances in quantitative proteomics.
Collapse
Affiliation(s)
- Mark R Flory
- Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103-8904, USA
| | | | | | | |
Collapse
|
96
|
Dumas ME, Debrauwer L, Beyet L, Lesage D, André F, Paris A, Tabet JC. Analyzing the physiological signature of anabolic steroids in cattle urine using pyrolysis/metastable atom bombardment mass spectrometry and pattern recognition. Anal Chem 2002; 74:5393-404. [PMID: 12403598 DOI: 10.1021/ac025656k] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyrolysis coupled to metastable atom bombardment (MAB) and time-of-flight mass spectrometry (TOFMS) is used for generating mass spectra from bovine urine samples obtained from cattle treated with anabolic steroids. These spectra constitute fingerprints, which can be discriminated by multivariate statistical analysis. Four main conclusions can be drawn from this work: (i) The use of different metastable gases, such as Xe*, Kr*, or N2*, as an energy-tunable ionization beamline allows control of the internal energy and the dissociation processes of the produced odd electron molecular ions, thus giving rise to complementary mass spectra fingerprints. (ii) A variable transformation depending on the biofluid matrix suitably contracts the frequency distribution of the generated data for low m/z ratios holding information related to endogenous metabolites encountered in urine. (iii) Coupling variable selection to statistical pattern recognition methods results in low error rates (< 1%) for predicting MAB mass fingerprints, especially using lineardiscriminant analysis (LDA). (iv) LDA discriminates controls from treated animals and also correlates to quantitative physiological responses induced by anabolic steroids. This work shows that Py-MAB-TOFMS could be a suitable method for complementary monitoring anabolic use in sports, medicine, and cattle breeding, as well as monitoring many other long-lasting although weak physiological disruptions.
Collapse
|
97
|
Abstract
Mass spectrometry plays an essential role in proteomics analysis and research. In recent years, it has been increasingly recognized that a key to proteomics using mass spectrometry relies not only on the instrument itself, but also on the analytical strategies and front-end sample-handling techniques. The advances of separations and mass spectrometry are having an increasing impact on the discovery of disease biomarkers and the understanding of cellular processes.
Collapse
Affiliation(s)
- Wenjun Mo
- Barnett Institute and Department of Chemistry, Northeastern University, 341 Mugar Hall, 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
98
|
Kenyon GL, DeMarini DM, Fuchs E, Galas DJ, Kirsch JF, Leyh TS, Moos WH, Petsko GA, Ringe D, Rubin GM, Sheahan LC. Defining the Mandate of Proteomics in the Post-Genomics Era: Workshop Report. Mol Cell Proteomics 2002. [DOI: 10.1016/s1535-9476(20)34374-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
99
|
Bondarenko PV, Chelius D, Shaler TA. Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. Anal Chem 2002; 74:4741-9. [PMID: 12349978 DOI: 10.1021/ac0256991] [Citation(s) in RCA: 294] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this report, we describe an approach for identification and relative quantitation of individual proteins within mixtures using LC/MS/MS analysis of protein digests. First, the proteins are automatically identified by correlating the tandem mass spectra with peptide sequences from a database. Then, peak areas of identified peptides from one protein are added together to define the total reconstructed peak area of the protein digest. The total reconstructed peak area is further normalized to the peak area of an internal standard protein digest present in the mixture at a constant level. The method was illustrated using digested mixtures of five standard proteins as follows. One protein was gradually diluted while the other four components were present in the mixtures at constant level. This study revealed that relative peak area of the variable protein increased linearly (trend line R2 = 0.9978) with increasing amount from 10 to 1000 fmol, while relative peak areas of four constant proteins remained approximately the same (within 20% relative standard deviation). To further evaluate the applicability of this method for the quantitation of proteins from complex mixtures, human plasma protein digest was spiked with 200 and 400 fmol of myoglobin digest. Total peak area of myoglobin peptides was normalized to the total peak area of apolipoprotein A-I peptides from human plasma, which played the role of an internal standard. The myoglobin/apolipoprotein A-I peak area ratio was 2 times larger for the human plasma digest spiked with a double amount of myoglobin. After several repetitions, the error of the relative peak area measurements remained below 11%, suggesting that the method described here can be used for relative concentration measurements of proteins in the complex biological mixtures. In the presented method, chemical derivatization steps are not needed to create an internal standard, as in isotope-coded affinity tag or similar methods.
Collapse
|
100
|
Tholey A, Wittmann C, Kang MJ, Bungert D, Hollemeyer K, Heinzle E. Derivatization of small biomolecules for optimized matrix-assisted laser desorption/ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2002; 37:963-973. [PMID: 12271439 DOI: 10.1002/jms.355] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) is a powerful tool for the measurement of low molecular mass compounds of biological interest. The limitations for this method are the volatility of many analytes, possible interference with matrix signals or bad ionization or desorption behavior of the compounds. We investigated the application of well-known and straightforward one-pot derivatization procedures to circumvent these problems. The derivatizations tested allow the measurement and the labeling of alcohols, aldehydes and ketones, carboxylic acids, alpha-ketocarboxylic acids and amines.
Collapse
Affiliation(s)
- Andreas Tholey
- Technische Biochemie, Universität des Saarlandes, 66123 Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|