51
|
Rinas A, Mali VS, Espino JA, Jones LM. Development of a Microflow System for In-Cell Footprinting Coupled with Mass Spectrometry. Anal Chem 2016; 88:10052-10058. [DOI: 10.1021/acs.analchem.6b02357] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Aimee Rinas
- Department
of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | | | - Jessica A. Espino
- Department
of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Lisa M. Jones
- Department
of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
52
|
Mass-spectrometric exploration of proteome structure and function. Nature 2016; 537:347-55. [PMID: 27629641 DOI: 10.1038/nature19949] [Citation(s) in RCA: 1387] [Impact Index Per Article: 154.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 07/15/2016] [Indexed: 12/18/2022]
Abstract
Numerous biological processes are concurrently and coordinately active in every living cell. Each of them encompasses synthetic, catalytic and regulatory functions that are, almost always, carried out by proteins organized further into higher-order structures and networks. For decades, the structures and functions of selected proteins have been studied using biochemical and biophysical methods. However, the properties and behaviour of the proteome as an integrated system have largely remained elusive. Powerful mass-spectrometry-based technologies now provide unprecedented insights into the composition, structure, function and control of the proteome, shedding light on complex biological processes and phenotypes.
Collapse
|
53
|
Donnarumma D, Faleri A, Costantino P, Rappuoli R, Norais N. The role of structural proteomics in vaccine development: recent advances and future prospects. Expert Rev Proteomics 2016; 13:55-68. [PMID: 26714563 DOI: 10.1586/14789450.2016.1121113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vaccines are the most effective way to fight infectious diseases saving countless lives since their introduction. Their evolution during the last century made use of the best technologies available to continuously increase their efficacy and safety. Mass spectrometry (MS) and proteomics are already playing a central role in the identification and characterization of novel antigens. Over the last years, we have been witnessing the emergence of structural proteomics in vaccinology, as a major tool for vaccine candidate discovery, antigen design and life cycle management of existing products. In this review, we describe the MS techniques associated to structural proteomics and we illustrate the contribution of structural proteomics to vaccinology discussing potential applications.
Collapse
|
54
|
Vandermarliere E, Stes E, Gevaert K, Martens L. Resolution of protein structure by mass spectrometry. MASS SPECTROMETRY REVIEWS 2016; 35:653-665. [PMID: 25536908 DOI: 10.1002/mas.21450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Typically, mass spectrometry is used to identify the peptides present in a complex peptide mixture and subsequently the precursor proteins. As such, mass spectrometry focuses mainly on the primary structure, the (modified) amino acid sequence of peptides and proteins. In contrast, the three-dimensional structure of a protein is typically determined with protein X-ray crystallography or NMR. Despite the close relationship between these two aspects of protein studies (sequence and structure), mass spectrometry and structure determination are not frequently combined. Nevertheless, this combination of approaches, dubbed conformational proteomics, can offer insight into the function, working mechanism, and conformational status of a protein. In this review, we will discuss the developments at the intersection of mass spectrometry-based proteomics and protein structure determination and start from a brief overview of the classic approaches to identify protein structure along with their advantages and disadvantages. We will subsequently discuss the ability of mass spectrometry to overcome some of the hurdles of these classic methods. Finally, we will provide an outlook on the interplay of mass spectrometry and protein structure determination, and highlight several recent experiments in which mass spectrometry was successfully used to either aid or complement structure elucidation. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:653-665, 2016.
Collapse
Affiliation(s)
- Elien Vandermarliere
- Department of Medical Protein Research, VIB, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, B- 9000, Ghent, Belgium
| | - Elisabeth Stes
- Department of Medical Protein Research, VIB, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, B- 9000, Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, B- 9000, Ghent, Belgium
| | - Lennart Martens
- Department of Medical Protein Research, VIB, B-9000, Ghent, Belgium.
- Department of Biochemistry, Ghent University, B- 9000, Ghent, Belgium.
| |
Collapse
|
55
|
Weisz DA, Gross ML, Pakrasi HB. The Use of Advanced Mass Spectrometry to Dissect the Life-Cycle of Photosystem II. FRONTIERS IN PLANT SCIENCE 2016; 7:617. [PMID: 27242823 PMCID: PMC4862242 DOI: 10.3389/fpls.2016.00617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/22/2016] [Indexed: 05/23/2023]
Abstract
Photosystem II (PSII) is a photosynthetic membrane-protein complex that undergoes an intricate, tightly regulated cycle of assembly, damage, and repair. The available crystal structures of cyanobacterial PSII are an essential foundation for understanding PSII function, but nonetheless provide a snapshot only of the active complex. To study aspects of the entire PSII life-cycle, mass spectrometry (MS) has emerged as a powerful tool that can be used in conjunction with biochemical techniques. In this article, we present the MS-based approaches that are used to study PSII composition, dynamics, and structure, and review the information about the PSII life-cycle that has been gained by these methods. This information includes the composition of PSII subcomplexes, discovery of accessory PSII proteins, identification of post-translational modifications and quantification of their changes under various conditions, determination of the binding site of proteins not observed in PSII crystal structures, conformational changes that underlie PSII functions, and identification of water and oxygen channels within PSII. We conclude with an outlook for the opportunity of future MS contributions to PSII research.
Collapse
Affiliation(s)
- Daniel A. Weisz
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Himadri B. Pakrasi
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
| |
Collapse
|
56
|
Rinas A, Espino JA, Jones LM. An efficient quantitation strategy for hydroxyl radical-mediated protein footprinting using Proteome Discoverer. Anal Bioanal Chem 2016; 408:3021-31. [PMID: 26873216 DOI: 10.1007/s00216-016-9369-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/17/2016] [Accepted: 01/27/2016] [Indexed: 01/12/2023]
Abstract
Hydroxyl radical protein footprinting coupled with mass spectrometry has become an invaluable technique for protein structural characterization. In this method, hydroxyl radicals react with solvent exposed amino acid side chains producing stable, covalently attached labels. Although this technique yields beneficial information, the extensive list of known oxidation products produced make the identification and quantitation process considerably complex. Currently, the methods available for analysis either involve manual analysis steps, or limit the amount of searchable modifications or the size of sequence database. This creates a bottleneck which can result in a long and arduous analysis process, which is further compounded in a complex sample. Here, we report the use of a new footprinting analysis method for both peptide and residue-level analysis, demonstrated on the GCaMP2 synthetic construct in calcium free and calcium bound states. This method utilizes a customized multi-search node workflow developed for an on-market search platform in conjunction with a quantitation platform developed using a free Excel add-in. Moreover, the method expedites the analysis process, requiring only two post-search hours to complete quantitation, regardless of the size of the experiment or the sample complexity.
Collapse
Affiliation(s)
- Aimee Rinas
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford St LD326, Indianapolis, IN, 46202, USA
| | - Jessica A Espino
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford St LD326, Indianapolis, IN, 46202, USA
| | - Lisa M Jones
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford St LD326, Indianapolis, IN, 46202, USA.
| |
Collapse
|
57
|
Madsen JA, Yin Y, Qiao J, Gill V, Renganathan K, Fu WY, Smith S, Anderson J. Covalent Labeling Denaturation Mass Spectrometry for Sensitive Localized Higher Order Structure Comparisons. Anal Chem 2016; 88:2478-88. [PMID: 26750983 DOI: 10.1021/acs.analchem.5b04736] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein higher order structure (HOS) describes the three-dimensional folding arrangement of a given protein and plays critical roles in structure/function relationships. As such, it is a key product quality attribute that is monitored during biopharmaceutical development. Covalent labeling of surface residues, combined with mass spectrometry analysis, has increasingly played an important role in characterizing localized protein HOS. Since the label can potentially induce conformation changes, protocols generally use a small amount of label to ensure that the integrity of the protein HOS is not disturbed. The present study, however, describes a method that purposely uses high amounts of isobaric label (levels that induce denaturation) to enhance the sensitivity and resolution for detecting localized structural differences between two or more biological products. The method proved to be highly discriminative, detecting differences in HOS affecting as little as 2.5-5% of the molecular population, levels at which circular dichroism and nuclear magnetic resonance spectroscopy fingerprinting, both gold standard HOS techniques, were unable to adequately differentiate. The methodology was shown to have comparable sensitivity to differential scanning calorimetry for detecting HOS differences. In addition, the workflow presented herein can also quantify other product attributes such as post-translational modifications and site-specific glycosylation, using a single liquid chromatography-tandem mass spectrometry (LC-MS/MS) run with automated data analysis. We applied this technique to characterize a large (>90 kDa), multiply glycosylated therapeutic protein under different heat stress conditions and aggregation states.
Collapse
Affiliation(s)
- James A Madsen
- Momenta Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Yan Yin
- Momenta Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Jing Qiao
- Momenta Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Vanessa Gill
- Momenta Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | | | - Wing-Yee Fu
- Momenta Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Stephen Smith
- Momenta Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - James Anderson
- Momenta Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
58
|
Abstract
Specific conformations of signaling proteins can serve as “signals” in signal transduction by being recognized by receptors.
Collapse
Affiliation(s)
- Peter Tompa
- VIB Structural Biology Research Center (SBRC)
- Brussels
- Belgium
- Vrije Universiteit Brussel
- Brussels
| |
Collapse
|
59
|
Rivera-Santiago RF, Sriswasdi S, Harper SL, Speicher DW. Probing structures of large protein complexes using zero-length cross-linking. Methods 2015; 89:99-111. [PMID: 25937394 PMCID: PMC4628899 DOI: 10.1016/j.ymeth.2015.04.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/10/2015] [Accepted: 04/24/2015] [Indexed: 02/02/2023] Open
Abstract
Structural mass spectrometry (MS) is a field with growing applicability for addressing complex biophysical questions regarding proteins and protein complexes. One of the major structural MS approaches involves the use of chemical cross-linking coupled with MS analysis (CX-MS) to identify proximal sites within macromolecules. Identified cross-linked sites can be used to probe novel protein-protein interactions or the derived distance constraints can be used to verify and refine molecular models. This review focuses on recent advances of "zero-length" cross-linking. Zero-length cross-linking reagents do not add any atoms to the cross-linked species due to the lack of a spacer arm. This provides a major advantage in the form of providing more precise distance constraints as the cross-linkable groups must be within salt bridge distances in order to react. However, identification of cross-linked peptides using these reagents presents unique challenges. We discuss recent efforts by our group to minimize these challenges by using multiple cycles of LC-MS/MS analysis and software specifically developed and optimized for identification of zero-length cross-linked peptides. Representative data utilizing our current protocol are presented and discussed.
Collapse
Affiliation(s)
- Roland F Rivera-Santiago
- The Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, United States; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Sira Sriswasdi
- The Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, United States; Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Sandra L Harper
- The Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, United States
| | - David W Speicher
- The Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, United States; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
60
|
Gómez GE, Monti JLE, Mundo MR, Delfino JM. Solvent Mimicry with Methylene Carbene to Probe Protein Topography. Anal Chem 2015; 87:10080-7. [DOI: 10.1021/acs.analchem.5b02724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gabriela Elena Gómez
- Departamento de Química
Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - José Luis E. Monti
- Departamento de Química
Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Mariana Rocío Mundo
- Departamento de Química
Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - José María Delfino
- Departamento de Química
Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| |
Collapse
|
61
|
Quantitative mapping of protein structure by hydroxyl radical footprinting-mediated structural mass spectrometry: a protection factor analysis. Biophys J 2015; 108:107-15. [PMID: 25564857 DOI: 10.1016/j.bpj.2014.11.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 11/23/2022] Open
Abstract
Measurements from hydroxyl radical footprinting (HRF) provide rich information about the solvent accessibility of amino acid side chains of a protein. Traditional HRF data analyses focus on comparing the difference in the modification/footprinting rate of a specific site to infer structural changes across two protein states, e.g., between a free and ligand-bound state. However, the rate information itself is not fully used for the purpose of comparing different protein sites within a protein on an absolute scale. To provide such a cross-site comparison, we present a new, to our knowledge, data analysis algorithm to convert the measured footprinting rate constant to a protection factor (PF) by taking into account the known intrinsic reactivity of amino acid side chain. To examine the extent to which PFs can be used for structural interpretation, this PF analysis is applied to three model systems where radiolytic footprinting data are reported in the literature. By visualizing structures colored with the PF values for individual peptides, a rational view of the structural features of various protein sites regarding their solvent accessibility is revealed, where high-PF regions are buried and low-PF regions are more exposed to the solvent. Furthermore, a detailed analysis correlating solvent accessibility and local structural contacts for gelsolin shows a statistically significant agreement between PF values and various structure measures, demonstrating that the PFs derived from this PF analysis readily explain fundamental HRF rate measurements. We also tested this PF analysis on alternative, chemical-based HRF data, showing improved correlations of structural properties of a model protein barstar compared to examining HRF rate data alone. Together, this PF analysis not only permits a novel, to our knowledge, approach of mapping protein structures by using footprinting data, but also elevates the use of HRF measurements from a qualitative, cross-state comparison to a quantitative, cross-site assessment of protein structures in the context of individual conformational states of interest.
Collapse
|
62
|
Dailing A, Luchini A, Liotta L. Unlocking the secrets to protein-protein interface drug targets using structural mass spectrometry techniques. Expert Rev Proteomics 2015; 12:457-67. [PMID: 26400464 DOI: 10.1586/14789450.2015.1079487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein-protein interactions (PPIs) drive all biologic systems at the subcellular and extracellular level. Changes in the specificity and affinity of these interactions can lead to cellular malfunctions and disease. Consequently, the binding interfaces between interacting protein partners are important drug targets for the next generation of therapies that block such interactions. Unfortunately, protein-protein contact points have proven to be very difficult pharmacological targets because they are hidden within complex 3D interfaces. For the vast majority of characterized binary PPIs, the specific amino acid sequence of their close contact regions remains unknown. There has been an important need for an experimental technology that can rapidly reveal the functionally important contact points of native protein complexes in solution. In this review, experimental techniques employing mass spectrometry to explore protein interaction binding sites are discussed. Hydrogen-deuterium exchange, hydroxyl radical footprinting, crosslinking and the newest technology protein painting are compared and contrasted.
Collapse
Affiliation(s)
| | - Alessandra Luchini
- a Center for Applied Proteomics and Molecular Medicine, Life Sciences Lab Building, George Mason University, 10920 University Boulevard, Manassas, Virginia 20110, USA
| | - Lance Liotta
- a Center for Applied Proteomics and Molecular Medicine, Life Sciences Lab Building, George Mason University, 10920 University Boulevard, Manassas, Virginia 20110, USA
| |
Collapse
|
63
|
Rinas A, Jones LM. Fast photochemical oxidation of proteins coupled to multidimensional protein identification technology (MudPIT): expanding footprinting strategies to complex systems. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:540-6. [PMID: 25409907 DOI: 10.1007/s13361-014-1017-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/04/2014] [Accepted: 10/04/2014] [Indexed: 05/11/2023]
Abstract
Peptides containing the oxidation products of hydroxyl radical-mediated protein footprinting experiments are typically much less abundant than their unoxidized counterparts. This is inherent to the design of the experiment as excessive oxidation may lead to undesired conformational changes or unfolding of the protein, skewing the results. Thus, as the complexity of the systems studied using this method expands, the detection and identification of these oxidized species can be increasingly difficult with the limitations of data-dependent acquisition (DDA) and one-dimensional chromatography. Here we report the application of multidimensional protein identification technology (MudPIT) in combination with hydroxyl radical footprinting as a method to increase the identification of quantifiable peptides in these experiments. Using this method led to a 37% increase in unique peptide identifications as well as a 70% increase in protein group identifications over one-dimensional data-dependent acquisition on the same samples. Furthermore, we demonstrate the combination of these methods as a means to investigate megadalton complexes.
Collapse
Affiliation(s)
- Aimee Rinas
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | | |
Collapse
|
64
|
Zhang Y, Rempel DL, Zhang H, Gross ML. An improved fast photochemical oxidation of proteins (FPOP) platform for protein therapeutics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:526-9. [PMID: 25519854 PMCID: PMC5993200 DOI: 10.1007/s13361-014-1055-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 05/16/2023]
Abstract
Unlike small-molecule drugs, the size and dynamics of protein therapeutics challenge existing methods for assessing their high order structures (HOS). To extend fast photochemical oxidation of proteins (FPOP) to protein therapeutics, we modified its platform by introducing a mixing step prior to laser irradiation to minimize unwanted H(2)O(2)-induced oxidation. This improvement plus standardizing each step yield better reproducibility as determined by a fitting process whereby we used a non-FPOP spectrum as a template to report the unmodified level. We also tested different buffer systems for this modified FPOP platform with cytochrome c. The outcome is a standard oxidation profile that can be compared between different laboratories and regulatory agencies that wish to adopt FPOP for quality control purposes.
Collapse
|
65
|
Wang L, Chance MR. Detection of structural waters and their role in structural dynamics of rhodopsin activation. Methods Mol Biol 2015; 1271:97-111. [PMID: 25697519 DOI: 10.1007/978-1-4939-2330-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Conserved structural waters trapped within GPCRs may form water networks indispensable for GPCR's signaling functions. Radiolysis-based hydroxyl radical footprinting (HRF) strategies coupled to mass spectrometry have been used to explore the structural waters within rhodopsin in multiple signaling states. These approaches, combined with (18)O labeling, can be used to identify the locations of structural waters in the transmembrane region and measure rates of water exchange with bulk solvent. Reorganizations of structural waters upon activation of signaling can be explicitly observed with this approach, and this provides a unique look at the structural modules driving the signaling process.
Collapse
Affiliation(s)
- Liwen Wang
- Case center for Proteomics & Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | | |
Collapse
|
66
|
Lei M, Kao YH, Schöneich C. Using lysine-reactive fluorescent dye for surface characterization of a mAb. J Pharm Sci 2014; 104:995-1004. [PMID: 25538029 DOI: 10.1002/jps.24308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 12/26/2022]
Abstract
The biopharmaceutical industry increasingly demands thorough characterization of protein conformation and conformational dynamics to ensure product quality and consistency. Here, we present a chromatography-based method that is able to characterize protein conformation and conformational dynamics at peptide level resolution in a high-throughput manner. The surface lysine residues of the protein were labeled with a fluorescent dye prior to enzyme digestion. The resulting peptide maps were monitored by fluorescence detection where fluorescence peak area indicates higher solvent accessibility at a specific site. The peptides of reactivity difference and the extent of the difference can be detected by HPLC with fluorescent detector alone, whereas the identity of these peptides can then be determined by mass spectrometry if desired. We first demonstrated this method is suitable for probing protein surface/conformation by studying the effect of deglycosylation on a recombinant mAb, IgG 1. We then applied our method to study the interaction of the mAb with a common excipient, polysorbate-20 (PS-20). The presence of PS-20 increased the fluorescent labeling of several lysine residues on the mAb. This result provides a first insight into PS20-mAb interaction at peptide level resolution.
Collapse
Affiliation(s)
- Ming Lei
- Protein Analytical Chemistry, Genentech, Inc, South San Francisco, California, 94080
| | | | | |
Collapse
|
67
|
Klinger AL, Kiselar J, Ilchenko S, Komatsu H, Chance MR, Axelsen PH. A synchrotron-based hydroxyl radical footprinting analysis of amyloid fibrils and prefibrillar intermediates with residue-specific resolution. Biochemistry 2014; 53:7724-34. [PMID: 25382225 PMCID: PMC4270378 DOI: 10.1021/bi5010409] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Structural models of the fibrils
formed by the 40-residue amyloid-β
(Aβ40) peptide in Alzheimer’s disease typically consist
of linear polypeptide segments, oriented approximately perpendicular
to the long axis of the fibril, and joined together as parallel in-register
β-sheets to form filaments. However, various models differ in
the number of filaments that run the length of a fibril, and in the
topological arrangement of these filaments. In addition to questions
about the structure of Aβ40 monomers in fibrils, there are important
unanswered questions about their structure in prefibrillar intermediates,
which are of interest because they may represent the most neurotoxic
form of Aβ40. To assess different models of fibril structure
and to gain insight into the structure of prefibrillar intermediates,
the relative solvent accessibility of amino acid residue side chains
in fibrillar and prefibrillar Aβ40 preparations was characterized
in solution by hydroxyl radical footprinting and structural mass spectrometry.
A key to the application of this technology was the development of
hydroxyl radical reactivity measures for individual side chains of
Aβ40. Combined with mass-per-length measurements performed by
dark-field electron microscopy, the results of this study are consistent
with the core filament structure represented by two- and three-filament
solid state nuclear magnetic resonance-based models of the Aβ40
fibril (such as 2LMN, 2LMO, 2LMP, and 2LMQ), with minor refinements,
but they are inconsistent with the more recently proposed 2M4J model. The results
also demonstrate that individual Aβ40 fibrils exhibit structural
heterogeneity or polymorphism, where regions of two-filament structure
alternate with regions of three-filament structure. The footprinting
approach utilized in this study will be valuable for characterizing
various fibrillar and nonfibrillar forms of the Aβ peptide.
Collapse
Affiliation(s)
- Alexandra L Klinger
- Department of Pharmacology, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | |
Collapse
|
68
|
Porter MR, Kochi A, Karty JA, Lim MH, Zaleski JM. Chelation-induced diradical formation as an approach to modulation of the amyloid-β aggregation pathway. Chem Sci 2014; 6:1018-1026. [PMID: 29560189 PMCID: PMC5811126 DOI: 10.1039/c4sc01979b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/30/2014] [Indexed: 11/21/2022] Open
Abstract
Current approaches toward modulation of metal-induced Aβ aggregation pathways involve the development of small molecules that bind metal ions, such as Cu(ii) and Zn(ii), and interact with Aβ. For this effort, we present the enediyne-containing ligand (Z)-N,N'-bis[1-pyridin-2-yl-meth(E)-ylidene]oct-4-ene-2,6-diyne-1,8-diamine (PyED), which upon chelation of Cu(ii) and Zn(ii) undergoes Bergman-cyclization to yield diradical formation. The ability of this chelation-triggered diradical to modulate Aβ aggregation is evaluated relative to the non-radical generating control pyridine-2-ylmethyl-(2-{[(pyridine-2-ylmethylene)-amino]-methyl}-benzyl)-amine (PyBD). Variable-pH, ligand UV-vis titrations reveal pKa = 3.81(2) for PyBD, indicating it exists mainly in the neutral form at experimental pH. Lipinski's rule parameters and evaluation of blood-brain barrier (BBB) penetration potential by the PAMPA-BBB assay suggest that PyED may be CNS+ and penetrate the BBB. Both PyED and PyBD bind Zn(ii) and Cu(ii) as illustrated by bathochromic shifts of their UV-vis features. Speciation diagrams indicate that Cu(ii)-PyBD is the major species at pH 6.6 with a nanomolar Kd, suggesting the ligand may be capable of interacting with Cu(ii)-Aβ species. In the presence of Aβ40/42 under hyperthermic conditions (43 °C), the radical-generating PyED demonstrates markedly enhanced activity (2-24 h) toward the modulation of Aβ species as determined by gel electrophoresis. Correspondingly, transmission electron microscopy images of these samples show distinct morphological changes to the fibril structure that are most prominent for Cu(ii)-Aβ cases. The loss of CO2 from the metal binding region of Aβ in MALDI-TOF mass spectra further suggests that metal-ligand-Aβ interaction with subsequent radical formation may play a role in the aggregation pathway modulation.
Collapse
Affiliation(s)
- Meghan R Porter
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , USA .
| | - Akiko Kochi
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , USA.,Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798 , Korea .
| | - Jonathan A Karty
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , USA .
| | - Mi Hee Lim
- Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798 , Korea . .,Life Sciences Institute , University of Michigan , Ann Arbor , Michigan 48109 , USA
| | - Jeffrey M Zaleski
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , USA .
| |
Collapse
|
69
|
Liuni P, Zhu S, Wilson DJ. Oxidative protein labeling with analysis by mass spectrometry for the study of structure, folding, and dynamics. Antioxid Redox Signal 2014; 21:497-510. [PMID: 24512178 DOI: 10.1089/ars.2014.5850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Analytical approaches that can provide insights into the mechanistic processes underlying protein folding and dynamics are few since the target analytes-high-energy structural intermediates-are short lived and often difficult to distinguish from coexisting structures. Folding "intermediates" can be populated at equilibrium using weakly denaturing solvents, but it is not clear that these species are identical to those that are transiently populated during folding under "native" conditions. Oxidative labeling with mass spectrometric analysis is a powerful alternative for structural characterization of proteins and transient protein species based on solvent exposure at specific sites. RECENT ADVANCES Oxidative labeling is increasingly used with exceedingly short (μs) labeling pulses, both to minimize the occurrence of artifactual structural changes due to the incorporation of label and to detect short-lived species. The recent introduction of facile photolytic approaches for producing reactive oxygen species is an important technological advance that will enable more widespread adoption of the technique. CRITICAL ISSUES The most common critique of oxidative labeling data is that even with brief labeling pulses, covalent modification of the protein may cause significant artifactual structural changes. FUTURE DIRECTIONS While the oxidative labeling with the analysis by mass spectrometry is mature enough that most basic methodological issues have been addressed, a complete systematic understanding of side chain reactivity in the context of intact proteins is an avenue for future work. Specifically, there remain issues around the impact of primary sequence and side chain interactions on the reactivity of "solvent-exposed" residues. Due to its analytical power, wide range of applications, and relative ease of implementation, oxidative labeling is an increasingly important technique in the bioanalytical toolbox.
Collapse
Affiliation(s)
- Peter Liuni
- 1 Department of Chemistry, York University , Toronto, Canada
| | | | | |
Collapse
|
70
|
Guttman M, Garcia NK, Cupo A, Matsui T, Julien JP, Sanders RW, Wilson IA, Moore JP, Lee KK. CD4-induced activation in a soluble HIV-1 Env trimer. Structure 2014; 22:974-84. [PMID: 24931470 PMCID: PMC4231881 DOI: 10.1016/j.str.2014.05.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/28/2014] [Accepted: 05/01/2014] [Indexed: 01/05/2023]
Abstract
The HIV envelope glycoprotein (Env) trimer undergoes receptor-induced conformational changes that drive fusion of the viral and cellular membranes. Env conformational changes have been observed using low-resolution electron microscopy, but only large-scale rearrangements have been visible. Here, we use hydrogen-deuterium exchange and oxidative labeling to gain a more precise understanding of the unliganded and CD4-bound forms of soluble Env trimers (SOSIP.664), including their glycan composition. CD4 activation induces the reorganization of bridging sheet elements, V1/V2 and V3, much of the gp120 inner domain, and the gp41 fusion subunit. Two CD4 binding site-targeted inhibitors have substantially different effects: NBD-556 partially mimics CD4-induced destabilization of the V1/V2 and V3 crown, whereas BMS-806 only affects regions around the gp120/gp41 interface. The structural information presented here increases our knowledge of CD4- and small molecule-induced conformational changes in Env and the allosteric pathways that lead to membrane fusion.
Collapse
Affiliation(s)
- Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Natalie K Garcia
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Albert Cupo
- Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Jean-Philippe Julien
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier W Sanders
- Weill Medical College of Cornell University, New York, NY 10021, USA; Department of Medical Microbiology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John P Moore
- Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
71
|
Stinson CA, Xia Y. Reactions of hydroxyalkyl radicals with cysteinyl peptides in a nanoESI plume. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1192-1201. [PMID: 24793576 DOI: 10.1007/s13361-014-0898-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
In biological systems, carbon-centered small molecule radicals are primarily formed via external radiation or internal radical reactions. These radical species can react with a variety of biomolecules, most notably nucleic acids, the consequence of which has possible links to gene mutation and cancer. Sulfur-containing peptides and proteins are reactive toward a variety of radical species and many of them behave as radical scavengers. In this study, the reactions between alkyl alcohol carbon-centered radicals (e.g., •CH2OH for methanol) and cysteinyl peptides within a nanoelectrospray ionization (nanoESI) plume were explored. The reaction system involved ultraviolet (UV) irradiation of a nanoESI plume using a low pressure mercury lamp consisting of 185 and 254 nm emission bands. The alkyl alcohol was added as solvent into the nanoESI solution and served as the precursor of hydroxyalkyl radicals upon UV irradiation. The hydroxyalkyl radicals subsequently reacted with cysteinyl peptides either containing a disulfide linkage or free thiol, which led to the formation of peptide-S-hydroxyalkyl product. This radical reaction coupled with subsequent MS/MS was shown to have analytical potential by cleaving intrachain disulfide linked peptides prior to CID to enhance sequence information. Tandem mass spectrometry via collision-induced dissociation (CID), stable isotope labeling, and accurate mass measurement were employed to verify the identities of the reaction products.
Collapse
Affiliation(s)
- Craig A Stinson
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | | |
Collapse
|
72
|
French KC, Roan NR, Makhatadze GI. Structural characterization of semen coagulum-derived SEM1(86-107) amyloid fibrils that enhance HIV-1 infection. Biochemistry 2014; 53:3267-77. [PMID: 24811874 PMCID: PMC4039337 DOI: 10.1021/bi500427r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
SEM1(86–107)
is a 22-residue peptide corresponding to residues
86–107 in the semenogelin I protein. SEM1(86–107) is
an abundant component of freshly liquefied semen and forms amyloid
fibrils capable of enhancing HIV infection. To probe the factors affecting
fibril formation and gain a better understanding of how differences
in pH between semen and vaginal fluid affect fibril stability, this
study determined the effect of pH on SEM1(86–107) fibril formation
and dissociation. The SEM1(86–107) fibril structure (i.e.,
residues that comprise the fibrillar core) was also probed using hydrogen–deuterium
exchange mass spectrometry (HDXMS) and hydroxyl radical-mediated protein
modification. The average percent exposure to hydroxyl radical-mediated
modification in the SEM1(86–107) fibrils was determined without
requiring tandem mass spectrometry spectral acquisition or complete
separation of modified peptides. It was found that the residue exposures
calculated from HDXMS and hydroxyl radical-mediated modification were
similar. These techniques demonstrated that three regions of SEM1(86–107)
comprise the amyloid fibril core and that positively charged residues
are exposed, suggesting that electrostatic interactions between SEM1(86–107)
and HIV or the cell surface may be responsible for mediating HIV infection
enhancement by the SEM1(86–107) fibrils.
Collapse
Affiliation(s)
- Kinsley C French
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | | | | |
Collapse
|
73
|
Twenty years of gas phase structural biology. Structure 2014; 21:1541-50. [PMID: 24010713 DOI: 10.1016/j.str.2013.08.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 01/01/2023]
Abstract
Over the past two decades, mass spectrometry (MS) of protein complexes from their native state has made inroads into structural biology. To coincide with the 20(th) anniversary of Structure, and given that it is now approximately 20 years since the first mass spectra of noncovalent protein complexes were reported, it is timely to consider progress of MS as a structural biology tool. Early reports focused on soluble complexes, contributing to ligand binding studies, subunit interaction maps, and topological models. Recent discoveries have enabled delivery of membrane complexes, encapsulated in detergent micelles, prompting new opportunities. By maintaining interactions between membrane and cytoplasmic subunits in the gas phase, it is now possible to investigate the effects of lipids, nucleotides, and drugs on intact membrane assemblies. These investigations reveal allosteric and synergistic effects of small molecule binding and expose the consequences of posttranslational modifications. In this review, we consider recent progress in the study of protein complexes, focusing particularly on complexes extracted from membranes, and outline future prospects for gas phase structural biology.
Collapse
|
74
|
Konermann L, Pan Y. Exploring membrane protein structural features by oxidative labeling and mass spectrometry. Expert Rev Proteomics 2014. [DOI: 10.1586/epr.12.42] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
75
|
Konermann L, Vahidi S, Sowole MA. Mass Spectrometry Methods for Studying Structure and Dynamics of Biological Macromolecules. Anal Chem 2013; 86:213-32. [DOI: 10.1021/ac4039306] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Siavash Vahidi
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Modupeola A. Sowole
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| |
Collapse
|
76
|
Zhang H, Cui W, Gross ML. Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies. FEBS Lett 2013; 588:308-17. [PMID: 24291257 DOI: 10.1016/j.febslet.2013.11.027] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/16/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
Monoclonal antibodies (mAbs) are powerful therapeutics, and their characterization has drawn considerable attention and urgency. Unlike small-molecule drugs (150-600 Da) that have rigid structures, mAbs (∼150 kDa) are engineered proteins that undergo complicated folding and can exist in a number of low-energy structures, posing a challenge for traditional methods in structural biology. Mass spectrometry (MS)-based biophysical characterization approaches can provide structural information, bringing high sensitivity, fast turnaround, and small sample consumption. This review outlines various MS-based strategies for protein biophysical characterization and then reviews how these strategies provide structural information of mAbs at the protein level (intact or top-down approaches), peptide, and residue level (bottom-up approaches), affording information on higher order structure, aggregation, and the nature of antibody complexes.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Weidong Cui
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
77
|
O'Brien JP, Mayberry LK, Murphy PA, Browning KS, Brodbelt JS. Evaluating the conformation and binding interface of cap-binding proteins and complexes via ultraviolet photodissociation mass spectrometry. J Proteome Res 2013; 12:5867-77. [PMID: 24200290 DOI: 10.1021/pr400869u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report the structural analysis of cap-binding proteins using a chemical probe/ultraviolet photodissociation (UVPD) mass spectrometry strategy for evaluating solvent accessibility of proteins. Our methodology utilized a chromogenic probe (NN) to probe the exposed amine residues of wheat eukaryotic translation initiation factor 4E (eIF4E), eIF4E in complex with a fragment of eIF4G ("mini-eIF4F"), eIF4E in complex with full length eIF4G, and the plant specific cap-binding protein, eIFiso4E. Structural changes of eIF4E in the absence and presence of excess dithiothreitol and in complex with a fragment of eIF4G or full-length eIF4G are mapped. The results indicate that there are particular lysine residues whose environment changes in the presence of dithiothreitol or eIF4G, suggesting that changes in the structure of eIF4E are occurring. On the basis of the crystal structure of wheat eIF4E and a constructed homology model of the structure for eIFiso4E, the reactivities of lysines in each protein are rationalized. Our results suggest that chemical probe/UVPD mass spectrometry can successfully predict dynamic structural changes in solution that are consistent with known crystal structures. Our findings reveal that the binding of m(7)GTP to eIF4E and eIFiso4E appears to be dependent on the redox state of a pair of cysteines near the m(7)GTP binding site. In addition, tertiary structural changes of eIF4E initiated by the formation of a complex containing a fragment of eIF4G and eIF4E were observed.
Collapse
Affiliation(s)
- John P O'Brien
- Department of Chemistry and Biochemistry and ‡Institute for Cell and Molecular Biology, The University of Texas at Austin , 1 University Station A5300, Austin, Texas 78712, United States
| | | | | | | | | |
Collapse
|
78
|
Li X, Li Z, Xie B, Sharp JS. Improved identification and relative quantification of sites of peptide and protein oxidation for hydroxyl radical footprinting. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1767-76. [PMID: 24014150 PMCID: PMC3814024 DOI: 10.1007/s13361-013-0719-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 05/08/2023]
Abstract
Protein oxidation is typically associated with oxidative stress and aging and affects protein function in normal and pathological processes. Additionally, deliberate oxidative labeling is used to probe protein structure and protein-ligand interactions in hydroxyl radical protein footprinting (HRPF). Oxidation often occurs at multiple sites, leading to mixtures of oxidation isomers that differ only by the site of modification. We utilized sets of synthetic, isomeric "oxidized" peptides to test and compare the ability of electron-transfer dissociation (ETD) and collision-induced dissociation (CID), as well as nano-ultra high performance liquid chromatography (nanoUPLC) separation, to quantitate oxidation isomers with one oxidation at multiple adjacent sites in mixtures of peptides. Tandem mass spectrometry by ETD generates fragment ion ratios that accurately report on relative oxidative modification extent on specific sites, regardless of the charge state of the precursor ion. Conversely, CID was found to generate quantitative MS/MS product ions only at the higher precursor charge state. Oxidized isomers having multiple sites of oxidation in each of two peptide sequences in HRPF product of protein Robo-1 Ig1-2, a protein involved in nervous system axon guidance, were also identified and the oxidation extent at each residue was quantified by ETD without prior liquid chromatography (LC) separation. ETD has proven to be a reliable technique for simultaneous identification and relative quantification of a variety of functionally different oxidation isomers, and is a valuable tool for the study of oxidative stress, as well as for improving spatial resolution for HRPF studies.
Collapse
Affiliation(s)
- Xiaoyan Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | | | | | | |
Collapse
|
79
|
Christian H, Hofele RV, Urlaub H, Ficner R. Insights into the activation of the helicase Prp43 by biochemical studies and structural mass spectrometry. Nucleic Acids Res 2013; 42:1162-79. [PMID: 24165877 PMCID: PMC3902948 DOI: 10.1093/nar/gkt985] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Splicing of precursor messenger RNA is a hallmark of eukaryotic cells, which is carried out by the spliceosome, a multi-megadalton ribonucleoprotein machinery. The splicing reaction removes non-coding regions (introns) and ligates coding regions (exons). The spliceosome is a highly dynamic ribonucleoprotein complex that undergoes dramatic structural changes during its assembly, the catalysis and its disassembly. The transitions between the different steps during the splicing cycle are promoted by eight conserved DExD/H box ATPases. The DEAH-box protein Prp43 is responsible for the disassembly of the intron-lariat spliceosome and its helicase activity is activated by the G-patch protein Ntr1. Here, we investigate the activation of Prp43 by Ntr1 in the presence and absence of RNA substrate by functional assays and structural proteomics. Residues 51–110 of Ntr1 were identified to be the minimal fragment that induces full activation. We found protein–protein cross-links that indicate that Prp43 interacts with the G-patch motif of Ntr1 through its C-terminal domains. Additionally, we report on functionally important RNA binding residues in both proteins and propose a model for the activation of the helicase.
Collapse
Affiliation(s)
- Henning Christian
- Department for Molecular Structural Biology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, D-37077 Göttingen, Germany, Bioanalytical Mass Spectrometry Group, Max-Planck-Institute of Biophysical Chemistry, D-37077 Göttingen, Germany and Bioanalytics, Department of Clinical Chemistry, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | | | | | | |
Collapse
|
80
|
O'Brien JP, Pruet JM, Brodbelt JS. Chromogenic chemical probe for protein structural characterization via ultraviolet photodissociation mass spectrometry. Anal Chem 2013; 85:7391-7. [PMID: 23855605 DOI: 10.1021/ac401305f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A chemical probe/ultraviolet photodissociation (UVPD) mass spectrometry strategy for evaluating structures of proteins and protein complexes is reported, as demonstrated for lysozyme and beta-lactoglobulin with and without bound ligands. The chemical probe, NN, incorporates a UV chromophore that endows peptides with high cross sections at 351 nm, a wavelength not absorbed by unmodified peptides. Thus, NN-modified peptides can readily be differentiated from nonmodified peptides in complex tryptic digests created upon proteolysis of proteins after their exposure to the NN chemical probe. The NN chemical probe also affords two diagnostic reporter ions detected upon UVPD of the NN-modified peptide that provides a facile method for the identification of NN peptides within complex mixtures. Quantitation of the modified and unmodified peptides allows estimation of the surface accessibilities of lysine residues based on their relative reactivities with the NN chemical probe.
Collapse
Affiliation(s)
- John P O'Brien
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, United States
| | | | | |
Collapse
|
81
|
Bogan MJ. X-ray Free Electron Lasers Motivate Bioanalytical Characterization of Protein Nanocrystals: Serial Femtosecond Crystallography. Anal Chem 2013; 85:3464-71. [DOI: 10.1021/ac303716r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Michael J. Bogan
- Stanford
PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
82
|
Schey KL, Grey AC, Nicklay JJ. Mass spectrometry of membrane proteins: a focus on aquaporins. Biochemistry 2013; 52:3807-17. [PMID: 23394619 DOI: 10.1021/bi301604j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Membrane proteins are abundant, critically important biomolecules that conduct essential functions in all cells and are the targets of a significant number of therapeutic drugs. However, the analysis of their expression, modification, protein-protein interactions, and structure by mass spectrometry has lagged behind similar studies of soluble proteins. Here we review the limitations to analysis of integral membrane and membrane-associated proteins and highlight advances in sample preparation and mass spectrometry methods that have led to the successful analysis of this protein class. Advances in the analysis of membrane protein posttranslational modification, protein-protein interaction, protein structure, and tissue distributions by imaging mass spectrometry are discussed. Furthermore, we focus our discussion on the application of mass spectrometry for the analysis of aquaporins as a prototypical integral membrane protein and how advances in analytical methods have revealed new biological insights into the structure and function of this family of proteins.
Collapse
Affiliation(s)
- Kevin L Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States.
| | | | | |
Collapse
|
83
|
Konijnenberg A, Butterer A, Sobott F. Native ion mobility-mass spectrometry and related methods in structural biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:1239-56. [PMID: 23246828 DOI: 10.1016/j.bbapap.2012.11.013] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/19/2012] [Accepted: 11/29/2012] [Indexed: 12/12/2022]
Abstract
Mass spectrometry-based methods have become increasingly important in structural biology - in particular for large and dynamic, even heterogeneous assemblies of biomolecules. Native electrospray ionization coupled to ion mobility-mass spectrometry provides access to stoichiometry, size and architecture of noncovalent assemblies; while non-native approaches such as covalent labeling and H/D exchange can highlight dynamic details of protein structures and capture intermediate states. In this overview article we will describe these methods and highlight some recent applications for proteins and protein complexes, with particular emphasis on native MS analysis. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.
Collapse
|
84
|
Jaffee EG, Lauber MA, Running WE, Reilly JP. In Vitro and In Vivo Chemical Labeling of Ribosomal Proteins: A Quantitative Comparison. Anal Chem 2012; 84:9355-61. [DOI: 10.1021/ac302115m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ethan G. Jaffee
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7000,
United States
| | - Matthew A. Lauber
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7000,
United States
| | - William E. Running
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7000,
United States
| | - James P. Reilly
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7000,
United States
| |
Collapse
|
85
|
Vahidi S, Stocks BB, Liaghati-Mobarhan Y, Konermann L. Mapping pH-induced protein structural changes under equilibrium conditions by pulsed oxidative labeling and mass spectrometry. Anal Chem 2012; 84:9124-30. [PMID: 23017165 DOI: 10.1021/ac302393g] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mass spectrometry (MS)-based protein conformational studies are a rapidly growing field. The characterization of partially disordered conformers is of particular interest because these species are not amenable to classical high-resolution techniques. Such equilibrium intermediates can often be populated by exposure to mildly acidic pH. Hydroxyl radical (·OH) introduces oxidative modifications at solvent-accessible side chains, while buried sites are protected. ·OH can be generated by laser photolysis of H(2)O(2) (fast photochemical oxidation of proteins-FPOP). The resulting labeling pattern can be analyzed by MS. The characterization of partially disordered intermediates usually involves comparative measurements under different solvent conditions. It can be challenging to separate structurally induced labeling changes from pH-mediated "secondary" effects. The issue of secondary effects in FPOP has received little prior attention. We demonstrate that with a proper choice of conditions (e.g., in the absence of pH-dependent ·OH scavengers) such undesired phenomena can be almost completely eliminated. Using apomyoglobin as a model system, we map the structure of an intermediate that is formed at pH 4. This species retains a highly protected helix G that is surrounded by partially protected helices A, B, and H. Our results demonstrate the utility of FPOP for the structural characterization of equilibrium intermediates. The near absence of an intrinsic pH dependence represents an advantage compared to hydrogen/deuterium exchange MS.
Collapse
Affiliation(s)
- Siavash Vahidi
- Department of Chemistry, Western University, London, Ontario, N6A 5B7, Canada
| | | | | | | |
Collapse
|
86
|
Stocks BB, Sarkar A, Wintrode PL, Konermann L. Early hydrophobic collapse of α₁-antitrypsin facilitates formation of a metastable state: insights from oxidative labeling and mass spectrometry. J Mol Biol 2012; 423:789-99. [PMID: 22940366 DOI: 10.1016/j.jmb.2012.08.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/16/2012] [Accepted: 08/22/2012] [Indexed: 02/08/2023]
Abstract
The biologically active conformation of α₁-antitrypsin (α₁AT) and other serine protease inhibitors represents a metastable state, characterized by an exposed reactive center loop (RCL) that acts as bait for the target enzyme. The protein can also adopt an inactive "latent" conformation that has the RCL inserted as a central strand in β-sheet A. This latent form is thermodynamically more stable than the active conformation. Nonetheless, folding of α₁AT consistently yields the active state. The reasons that the metastable form is kinetically preferred remain controversial. The current work demonstrates that a carefully orchestrated folding mechanism prevents RCL insertion into sheet A. Temporal changes in solvent accessibility during folding are monitored using pulsed oxidative labeling and mass spectrometry. The data obtained in this way complement recent hydrogen/deuterium exchange results. Those hydrogen/deuterium exchange measurements revealed that securing of the RCL by hydrogen bonding of the first β-strand in sheet C is one factor that favors formation of the active conformation. The oxidative labeling data presented here reveal that this anchoring is preceded by the formation of hydrophobic contacts in a confined region of the protein. This partial collapse sequesters the RCL insertion site early on and is therefore instrumental in steering α₁AT towards its active conformation. RCL anchoring by hydrogen bonding starts to contribute at a later stage. Together, these two factors ensure that formation of the active conformation is kinetically favored. This work demonstrates how the use of complementary labeling techniques can provide insights into the mechanisms of protracted folding reactions.
Collapse
Affiliation(s)
- Bradley B Stocks
- Departments of Biochemistry and Chemistry, Western University, London, Ontario, Canada N6A 5B7
| | | | | | | |
Collapse
|
87
|
Zhou Y, Vachet RW. Diethylpyrocarbonate labeling for the structural analysis of proteins: label scrambling in solution and how to avoid it. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:899-907. [PMID: 22351293 PMCID: PMC3324597 DOI: 10.1007/s13361-012-0349-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 05/11/2023]
Abstract
Covalent labeling along with mass spectrometry is a method that is increasingly used to study protein structure. Recently, it has been shown that diethylpyrocarbonate (DEPC) is a powerful labeling reagent because it can modify up to 30% of the residues in the average protein, including the N-terminus, His, Lys, Tyr, Ser, Thr, and Cys residues. We recently discovered, however, that Cys residues that form disulfide bonds appear to be modified by DEPC as well. In this work, we demonstrate that disulfide linked Cys residues are not actually reactive with DEPC but, instead, once reduced, free Cys residues can capture a carbethoxy group from other modified amino acids via a solution-phase reaction that can occur during the protein digestion step. This "scrambling" of carbethoxy groups decreases the amount of modification observed at other residues and can potentially provide incorrect protein structural information. Fortunately, label scrambling can be completely avoided by alkylating the free thiols after disulfide reduction.
Collapse
Affiliation(s)
| | - Richard W. Vachet
- Corresponding Author, Department of Chemistry, LGRT 104, 710 N. Pleasant St., University of Massachusetts, Amherst, MA 01003,
| |
Collapse
|
88
|
Pan Y, Ruan X, Valvano MA, Konermann L. Validation of membrane protein topology models by oxidative labeling and mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:889-898. [PMID: 22410873 DOI: 10.1007/s13361-012-0342-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/12/2012] [Accepted: 01/17/2012] [Indexed: 05/31/2023]
Abstract
Computer-assisted topology predictions are widely used to build low-resolution structural models of integral membrane proteins (IMPs). Experimental validation of these models by traditional methods is labor intensive and requires modifications that might alter the IMP native conformation. This work employs oxidative labeling coupled with mass spectrometry (MS) as a validation tool for computer-generated topology models. ·OH exposure introduces oxidative modifications in solvent-accessible regions, whereas buried segments (e.g., transmembrane helices) are non-oxidizable. The Escherichia coli protein WaaL (O-antigen ligase) is predicted to have 12 transmembrane helices and a large extramembrane domain (Pérez et al., Mol. Microbiol. 2008, 70, 1424). Tryptic digestion and LC-MS/MS were used to map the oxidative labeling behavior of WaaL. Met and Cys exhibit high intrinsic reactivities with ·OH, making them sensitive probes for solvent accessibility assays. Overall, the oxidation pattern of these residues is consistent with the originally proposed WaaL topology. One residue (M151), however, undergoes partial oxidation despite being predicted to reside within a transmembrane helix. Using an improved computer algorithm, a slightly modified topology model was generated that places M151 closer to the membrane interface. On the basis of the labeling data, it is concluded that the refined model more accurately reflects the actual topology of WaaL. We propose that the combination of oxidative labeling and MS represents a useful strategy for assessing the accuracy of IMP topology predictions, supplementing data obtained in traditional biochemical assays. In the future, it might be possible to incorporate oxidative labeling data directly as constraints in topology prediction algorithms.
Collapse
Affiliation(s)
- Yan Pan
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | | | | | | |
Collapse
|
89
|
Pacholarz KJ, Garlish RA, Taylor RJ, Barran PE. Mass spectrometry based tools to investigate protein–ligand interactions for drug discovery. Chem Soc Rev 2012; 41:4335-55. [DOI: 10.1039/c2cs35035a] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
90
|
Pan Y, Piyadasa H, O'Neil JD, Konermann L. Conformational dynamics of a membrane transport protein probed by H/D exchange and covalent labeling: the glycerol facilitator. J Mol Biol 2011; 416:400-13. [PMID: 22227391 DOI: 10.1016/j.jmb.2011.12.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/21/2011] [Accepted: 12/21/2011] [Indexed: 01/22/2023]
Abstract
Glycerol facilitator (GF) is a tetrameric membrane protein responsible for the selective permeation of glycerol and water. Each of the four GF subunits forms a transmembrane channel. Every subunit consists of six helices that completely span the lipid bilayer, as well as two half-helices (TM7 and TM3). X-ray crystallography has revealed that the selectivity of GF is due to its unique amphipathic channel interior. To explore the structural dynamics of GF, we employ hydrogen/deuterium exchange (HDX) and oxidative labeling with mass spectrometry (MS). HDX-MS reveals that transmembrane helices are generally more protected than extramembrane segments, consistent with data previously obtained for other membrane proteins. Interestingly, TM7 does not follow this trend. Instead, this half-helix undergoes rapid deuteration, indicative of a highly dynamic local structure. The oxidative labeling behavior of most GF residues is consistent with the static crystal structure. However, the side chains of C134 and M237 undergo labeling although they should be inaccessible according to the X-ray structure. In agreement with our HDX-MS data, this observation attests to the fact that TM7 is only marginally stable. We propose that the highly mobile nature of TM7 aids in the efficient diffusion of guest molecules through the channel ("molecular lubrication"). In the absence of such dynamics, host-guest molecular recognition would favor semipermanent binding of molecules inside the channel, thereby impeding transport. The current work highlights the complementary nature of HDX, covalent labeling, and X-ray crystallography for the characterization of membrane proteins.
Collapse
Affiliation(s)
- Yan Pan
- Department of Chemistry, The University of Western Ontario, London, ON, Canada N6A 5B7
| | | | | | | |
Collapse
|