51
|
Li X, Zhang D, Zhang H, Guan Z, Song Y, Liu R, Zhu Z, Yang C. Microwell Array Method for Rapid Generation of Uniform Agarose Droplets and Beads for Single Molecule Analysis. Anal Chem 2018; 90:2570-2577. [PMID: 29350029 DOI: 10.1021/acs.analchem.7b04040] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Compartmentalization of aqueous samples in uniform emulsion droplets has proven to be a useful tool for many chemical, biological, and biomedical applications. Herein, we introduce an array-based emulsification method for rapid and easy generation of monodisperse agarose-in-oil droplets in a PDMS microwell array. The microwells are filled with agarose solution, and subsequent addition of hot oil results in immediate formation of agarose droplets due to the surface-tension of the liquid solution. Because droplet size is determined solely by the array unit dimensions, uniform droplets with preselectable diameters ranging from 20 to 100 μm can be produced with relative standard deviations less than 3.5%. The array-based droplet generation method was used to perform digital PCR for absolute DNA quantitation. The array-based droplet isolation and sol-gel switching property of agarose enable formation of stable beads by chilling the droplet array at -20 °C, thus, maintaining the monoclonality of each droplet and facilitating the selective retrieval of desired droplets. The monoclonality of droplets was demonstrated by DNA sequencing and FACS analysis, suggesting the robustness and flexibility of the approach for single molecule amplification and analysis. We believe our approach will lead to new possibilities for a great variety of applications, such as single-cell gene expression studies, aptamer selection, and oligonucleotide analysis.
Collapse
Affiliation(s)
- Xingrui Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, People's Republic of China
| | - Dongfeng Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, People's Republic of China
| | - Huimin Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, People's Republic of China
| | - Zhichao Guan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, People's Republic of China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, People's Republic of China.,The MOE Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Biological Science and Engineering, Fuzhou University , Fuzhou 350116, People's Republic of China
| | - Ruochen Liu
- Department of Chemistry and Chemical Biology, Rutgers University , Piscataway, New Jersey United States
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, People's Republic of China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, People's Republic of China
| |
Collapse
|
52
|
Kim SC, Clark IC, Shahi P, Abate AR. Single-Cell RT-PCR in Microfluidic Droplets with Integrated Chemical Lysis. Anal Chem 2018; 90:1273-1279. [PMID: 29256243 PMCID: PMC5991602 DOI: 10.1021/acs.analchem.7b04050] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Droplet microfluidics can identify and sort cells using digital reverse transcription polymerase chain reaction (RT-PCR) signals from individual cells. However, current methods require multiple microfabricated devices for enzymatic cell lysis and PCR reagent addition, making the process complex and prone to failure. Here, we describe a new approach that integrates all components into a single device. The method enables controlled exposure of isolated single cells to a high pH buffer, which lyses cells and inactivates reaction inhibitors but can be instantly neutralized with RT-PCR buffer. Using our chemical lysis approach, we distinguish individual cells' gene expression with data quality equivalent to more complex two-step workflows. Our system accepts cells and produces droplets ready for amplification, making single-cell droplet RT-PCR faster and more reliable.
Collapse
Affiliation(s)
- Samuel C. Kim
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Iain C. Clark
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Payam Shahi
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Adam R. Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
- California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
53
|
Duan K, Ghosh G, Lo JF. Optimizing Multiplexed Detections of Diabetes Antibodies via Quantitative Microfluidic Droplet Array. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201702323. [PMID: 28990274 PMCID: PMC5755373 DOI: 10.1002/smll.201702323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/11/2017] [Indexed: 05/02/2023]
Abstract
Sensitive, single volume detections of multiple diabetes antibodies can provide immunoprofiling and early screening of at-risk patients. To advance the state-of-the-art suspension assays for diabetes antibodies, porous hydrogel droplets are leveraged in microfluidic serpentine arrays to enhance reagent transport. This spatially multiplexed assay is applied to the detection of antibodies against insulin, glutamic acid decarboxylase, and insulinoma-associated protein 2. Optimization of assay protocol results in a shortened assay time of 2 h, with better than 20 pg mL Supporting Information detection limits across all three antibodies. Specificity and cross-reactivity tests show negligible background, nonspecific antibody-antigen, and nonspecific antibody-antibody bindings. Multiplexed detections are able to measure within 15% of target concentrations from low to high ranges. The technique enables quantifications of as little as 8000 molecules in each 500 µm droplet in a single volume, multiplexed assay format, a breakthrough necessary for the adoption of diabetes panels for clinical screening and monitoring in the future.
Collapse
Affiliation(s)
- Kai Duan
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan at Dearborn, Dearborn, MI, 48128, USA
| | - Gargi Ghosh
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan at Dearborn, Dearborn, MI, 48128, USA
| | - Joe Fujiou Lo
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan at Dearborn, Dearborn, MI, 48128, USA
| |
Collapse
|
54
|
Clark IC, Abate AR. Finding a helix in a haystack: nucleic acid cytometry with droplet microfluidics. LAB ON A CHIP 2017; 17:2032-2045. [PMID: 28540956 PMCID: PMC6005652 DOI: 10.1039/c7lc00241f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nucleic acids encode the information of life, programming cellular functions and dictating many biological outcomes. Differentiating between cells based on their nucleic acid programs is, thus, a powerful way to unravel the genetic bases of many phenotypes. This is especially important considering that most cells exist in heterogeneous populations, requiring them to be isolated before they can be studied. Existing flow cytometry techniques, however, are unable to reliably recover specific cells based on nucleic acid content. Nucleic acid cytometry is a new field built on droplet microfluidics that allows robust identification, sorting, and sequencing of cells based on specific nucleic acid biomarkers. This review highlights applications that immediately benefit from the approach, biological questions that can be addressed for the first time with it, and considerations for building successful workflows.
Collapse
Affiliation(s)
- Iain C Clark
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | | |
Collapse
|
55
|
Abstract
Droplet microfluidics generates and manipulates discrete droplets through immiscible multiphase flows inside microchannels. Due to its remarkable advantages, droplet microfluidics bears significant value in an extremely wide range of area. In this review, we provide a comprehensive and in-depth insight into droplet microfluidics, covering fundamental research from microfluidic chip fabrication and droplet generation to the applications of droplets in bio(chemical) analysis and materials generation. The purpose of this review is to convey the fundamentals of droplet microfluidics, a critical analysis on its current status and challenges, and opinions on its future development. We believe this review will promote communications among biology, chemistry, physics, and materials science.
Collapse
Affiliation(s)
- Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Yao Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| |
Collapse
|
56
|
Abstract
A digital assay is one in which the sample is partitioned into many containers such that each partition contains a discrete number of biological entities (0, 1, 2, 3, . . .). A powerful technique in the biologist’s toolkit, digital assays bring a new level of precision in quantifying nucleic acids, measuring proteins and their enzymatic activity, and probing single-cell genotype and phenotype. Where part I of this review focused on the fundamentals of partitioning and digital PCR, part II turns its attention to digital protein and cell assays. Digital enzyme assays measure the kinetics of single proteins with enzymatic activity. Digital enzyme-linked immunoassays (ELISAs) quantify antigenic proteins with 2 to 3 log lower detection limit than conventional ELISA, making them well suited for low-abundance biomarkers. Digital cell assays probe single-cell genotype and phenotype, including gene expression, intracellular and surface proteins, metabolic activity, cytotoxicity, and transcriptomes (scRNA-seq). These methods exploit partitioning to 1) isolate single cells or proteins, 2) detect their activity via enzymatic amplification, and 3) tag them individually by coencapsulating them with molecular barcodes. When scaled, digital assays reveal stochastic differences between proteins or cells within a population, a key to understanding biological heterogeneity. This review is intended to give a broad perspective to scientists interested in adopting digital assays into their workflows.
Collapse
Affiliation(s)
- Amar S. Basu
- Department of Electrical and Computer Engineering, and Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| |
Collapse
|
57
|
Hao N, Zhang JX. Microfluidic Screening of Circulating Tumor Biomarkers toward Liquid Biopsy. SEPARATION AND PURIFICATION REVIEWS 2017. [DOI: 10.1080/15422119.2017.1320763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Nanjing Hao
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - John X.J. Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
58
|
Prakadan SM, Shalek AK, Weitz DA. Scaling by shrinking: empowering single-cell 'omics' with microfluidic devices. Nat Rev Genet 2017; 18:345-361. [PMID: 28392571 DOI: 10.1038/nrg.2017.15] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in cellular profiling have demonstrated substantial heterogeneity in the behaviour of cells once deemed 'identical', challenging fundamental notions of cell 'type' and 'state'. Not surprisingly, these findings have elicited substantial interest in deeply characterizing the diversity, interrelationships and plasticity among cellular phenotypes. To explore these questions, experimental platforms are needed that can extensively and controllably profile many individual cells. Here, microfluidic structures - whether valve-, droplet- or nanowell-based - have an important role because they can facilitate easy capture and processing of single cells and their components, reducing labour and costs relative to conventional plate-based methods while also improving consistency. In this article, we review the current state-of-the-art methodologies with respect to microfluidics for mammalian single-cell 'omics' and discuss challenges and future opportunities.
Collapse
Affiliation(s)
- Sanjay M Prakadan
- Institute for Medical Engineering &Science (IMES) and Department of Chemistry, MIT, Cambridge, Massachusetts 02139, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Alex K Shalek
- Institute for Medical Engineering &Science (IMES) and Department of Chemistry, MIT, Cambridge, Massachusetts 02139, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
59
|
Shahi P, Kim SC, Haliburton JR, Gartner ZJ, Abate AR. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding. Sci Rep 2017; 7:44447. [PMID: 28290550 PMCID: PMC5349531 DOI: 10.1038/srep44447] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/08/2017] [Indexed: 12/25/2022] Open
Abstract
Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.
Collapse
Affiliation(s)
- Payam Shahi
- Department of Bioengineering and Therapeutic Sciences and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Samuel C Kim
- Department of Bioengineering and Therapeutic Sciences and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, San Francisco, CA 94158, USA
| | - John R Haliburton
- Department of Bioengineering and Therapeutic Sciences and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
60
|
Ding Y, Choo J, deMello AJ. From single-molecule detection to next-generation sequencing: microfluidic droplets for high-throughput nucleic acid analysis. MICROFLUIDICS AND NANOFLUIDICS 2017; 21:58. [PMID: 32214953 PMCID: PMC7087872 DOI: 10.1007/s10404-017-1889-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/22/2017] [Indexed: 05/27/2023]
Abstract
Droplet-based microfluidic technologies have proved themselves to be of significant utility in the performance of high-throughput chemical and biological experiments. By encapsulating and isolating reagents within femtoliter-nanoliter droplet, millions of (bio) chemical reactions can be processed in a parallel fashion and on ultra-short timescales. Recent applications of such technologies to genetic analysis have suggested significant utility in low-cost, efficient and rapid workflows for DNA amplification, rare mutation detection, antibody screening and next-generation sequencing. To this end, we describe and highlight some of the most interesting recent developments and applications of droplet-based microfluidics in the broad area of nucleic acid analysis. In addition, we also present a cursory description of some of the most essential functional components, which allow the creation of integrated and complex workflows based on flowing streams of droplets.
Collapse
Affiliation(s)
- Yun Ding
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland
| | - Jaebum Choo
- Department of Bionano Technology, Hanyang University, Ansan, 15588 Republic of Korea
| | - Andrew J. deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
61
|
Zhu Z, Yang CJ. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis. Acc Chem Res 2017; 50:22-31. [PMID: 28029779 DOI: 10.1021/acs.accounts.6b00370] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heterogeneity among individual molecules and cells has posed significant challenges to traditional bulk assays, due to the assumption of average behavior, which would lose important biological information in heterogeneity and result in a misleading interpretation. Single molecule/cell analysis has become an important and emerging field in biological and biomedical research for insights into heterogeneity between large populations at high resolution. Compared with the ensemble bulk method, single molecule/cell analysis explores the information on time trajectories, conformational states, and interactions of individual molecules/cells, all key factors in the study of chemical and biological reaction pathways. Various powerful techniques have been developed for single molecule/cell analysis, including flow cytometry, atomic force microscopy, optical and magnetic tweezers, single-molecule fluorescence spectroscopy, and so forth. However, some of them have the low-throughput issue that has to analyze single molecules/cells one by one. Flow cytometry is a widely used high-throughput technique for single cell analysis but lacks the ability for intercellular interaction study and local environment control. Droplet microfluidics becomes attractive for single molecule/cell manipulation because single molecules/cells can be individually encased in monodisperse microdroplets, allowing high-throughput analysis and manipulation with precise control of the local environment. Moreover, hydrogels, cross-linked polymer networks that swell in the presence of water, have been introduced into droplet microfluidic systems as hydrogel droplet microfluidics. By replacing an aqueous phase with a monomer or polymer solution, hydrogel droplets can be generated on microfluidic chips for encapsulation of single molecules/cells according to the Poisson distribution. The sol-gel transition property endows the hydrogel droplets with new functionalities and diversified applications in single molecule/cell analysis. The hydrogel can act as a 3D cell culture matrix to mimic the extracellular environment for long-term single cell culture, which allows further heterogeneity study in proliferation, drug screening, and metastasis at the single-cell level. The sol-gel transition allows reactions in solution to be performed rapidly and efficiently with product storage in the gel for flexible downstream manipulation and analysis. More importantly, controllable sol-gel regulation provides a new way to maintain phenotype-genotype linkages in the hydrogel matrix for high throughput molecular evolution. In this Account, we will review the hydrogel droplet generation on microfluidics, single molecule/cell encapsulation in hydrogel droplets, as well as the progress made by our group and others in the application of hydrogel droplet microfluidics for single molecule/cell analysis, including single cell culture, single molecule/cell detection, single cell sequencing, and molecular evolution.
Collapse
Affiliation(s)
- Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong James Yang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
62
|
Su JQ, Cui L, Chen QL, An XL, Zhu YG. Application of genomic technologies to measure and monitor antibiotic resistance in animals. Ann N Y Acad Sci 2016; 1388:121-135. [DOI: 10.1111/nyas.13296] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/04/2016] [Accepted: 10/18/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Qing-Lin Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Xin-Li An
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
63
|
Hung LY, Wang CH, Fu CY, Gopinathan P, Lee GB. Microfluidics in the selection of affinity reagents for the detection of cancer: paving a way towards future diagnostics. LAB ON A CHIP 2016; 16:2759-74. [PMID: 27381813 DOI: 10.1039/c6lc00662k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Microfluidic technologies have miniaturized a variety of biomedical applications, and these chip-based systems have several significant advantages over their large-scale counterparts. Recently, this technology has been used for automating labor-intensive and time-consuming screening processes, whereby affinity reagents, including aptamers, peptides, antibodies, polysaccharides, glycoproteins, and a variety of small molecules, are used to probe for molecular biomarkers. When compared to conventional methods, the microfluidic approaches are faster, more compact, require considerably smaller quantities of samples and reagents, and can be automated. Furthermore, they allow for more precise control of reaction conditions (e.g., pH, temperature, and shearing forces) such that more efficient screening can be performed. A variety of affinity reagents for targeting cancer cells or cancer biomarkers are now available and will likely replace conventional antibodies. In this review article, the selection of affinity reagents for cancer cells or cancer biomarkers on microfluidic platforms is reviewed with the aim of highlighting the utility of such approaches in cancer diagnostics.
Collapse
MESH Headings
- Animals
- Antibodies, Immobilized/chemistry
- Antibodies, Immobilized/metabolism
- Antibodies, Neoplasm/chemistry
- Antibodies, Neoplasm/metabolism
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/metabolism
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Coculture Techniques
- Humans
- Immobilized Nucleic Acids/chemistry
- Immobilized Nucleic Acids/metabolism
- Immobilized Proteins/metabolism
- Lab-On-A-Chip Devices/trends
- Leukocytes/cytology
- Leukocytes/metabolism
- Ligands
- Mice
- Neoplasms/blood
- Neoplasms/diagnosis
- Neoplasms/metabolism
- Neoplasms/pathology
- Oligonucleotides/chemistry
- Oligonucleotides/metabolism
- Single-Chain Antibodies/chemistry
- Single-Chain Antibodies/metabolism
Collapse
Affiliation(s)
- Lien-Yu Hung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | | | | | | | | |
Collapse
|
64
|
Microfluidic Devices for Forensic DNA Analysis: A Review. BIOSENSORS-BASEL 2016; 6:bios6030041. [PMID: 27527231 PMCID: PMC5039660 DOI: 10.3390/bios6030041] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/07/2016] [Accepted: 07/25/2016] [Indexed: 12/16/2022]
Abstract
Microfluidic devices may offer various advantages for forensic DNA analysis, such as reduced risk of contamination, shorter analysis time and direct application at the crime scene. Microfluidic chip technology has already proven to be functional and effective within medical applications, such as for point-of-care use. In the forensic field, one may expect microfluidic technology to become particularly relevant for the analysis of biological traces containing human DNA. This would require a number of consecutive steps, including sample work up, DNA amplification and detection, as well as secure storage of the sample. This article provides an extensive overview of microfluidic devices for cell lysis, DNA extraction and purification, DNA amplification and detection and analysis techniques for DNA. Topics to be discussed are polymerase chain reaction (PCR) on-chip, digital PCR (dPCR), isothermal amplification on-chip, chip materials, integrated devices and commercially available techniques. A critical overview of the opportunities and challenges of the use of chips is discussed, and developments made in forensic DNA analysis over the past 10–20 years with microfluidic systems are described. Areas in which further research is needed are indicated in a future outlook.
Collapse
|
65
|
Yang T, Gao D, Jin F, Jiang Y, Liu H. Surface-printed microdot array chips coupled with matrix-assisted laser desorption/ionization mass spectrometry for high-throughput single-cell patterning and phospholipid analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30 Suppl 1:73-9. [PMID: 27539419 DOI: 10.1002/rcm.7628] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
RATIONALE Single-cell analysis is very important in several research fields for the heterogeneity of individual cells, which has been well accepted. However, restricted by the size and low content of a single cell, current studies have encountered challenges in high-throughput, high-space resolution and sensitivity, and multicomponent analysis. A methodology of a surface-printed microdot array chip coupled with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is presented in this study for high-throughput single-cell patterning and phospholipid analysis. METHODS The poly-L-lysine (PLL) used as ink molecule was printed on an oxygen plasma processed indium tin oxide (ITO)-coated glass slide to form a microdot array by micro-contact printing technology. The cell array was then formed on the PLL microarray through electrostatic adsorption force. 9-Aminoacridine (9-AA) matrix was applied on the cell array before it was analyzed by MALDI-TOF MS. MALDI mass spectrometry imaging (MALDI-MSI) was then used for high-throughput, quick measurement, and multicomponent analysis of the cell array. RESULTS The single-cell capture efficiency of the cell array formed on the PLL microarray was about 40%. Twelve phospholipids were detected at the single-cell level, and the structures were further confirmed by MS/MS. The MALDI-MSI of selected ions showed a conformity with the cell array. The relative signal intensity data of selected ions were extracted from every pixel in the image within several minutes. The heterogeneity between individual cells was revealed from the relative signal intensity of phospholipids in 1-3 cells. CONCLUSIONS Compared to the existing related approaches, high-throughput, quick measurement, and multicomponent single-cell analysis have been realized by our method. Through different ink molecules used for micro-contact printing, the established platform could have the potential to capture and analyze specific cells. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ti Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Dan Gao
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Feng Jin
- Neptunus Pharmaceutical Technology Center, Shenzhen, 518057, China
| | - Yuyang Jiang
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Hongxia Liu
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
66
|
Wen N, Zhao Z, Fan B, Chen D, Men D, Wang J, Chen J. Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis. Molecules 2016; 21:E881. [PMID: 27399651 PMCID: PMC6272933 DOI: 10.3390/molecules21070881] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022] Open
Abstract
This article reviews recent developments in droplet microfluidics enabling high-throughput single-cell analysis. Five key aspects in this field are included in this review: (1) prototype demonstration of single-cell encapsulation in microfluidic droplets; (2) technical improvements of single-cell encapsulation in microfluidic droplets; (3) microfluidic droplets enabling single-cell proteomic analysis; (4) microfluidic droplets enabling single-cell genomic analysis; and (5) integrated microfluidic droplet systems enabling single-cell screening. We examine the advantages and limitations of each technique and discuss future research opportunities by focusing on key performances of throughput, multifunctionality, and absolute quantification.
Collapse
Affiliation(s)
- Na Wen
- Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhan Zhao
- Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Beiyuan Fan
- Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Deyong Chen
- Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Dong Men
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Junbo Wang
- Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jian Chen
- Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
67
|
Lin X, Sun X, Luo S, Liu B, Yang C. Development of DNA-based signal amplification and microfluidic technology for protein assay: A review. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
68
|
A review on continuous-flow microfluidic PCR in droplets: Advances, challenges and future. Anal Chim Acta 2016; 914:7-16. [DOI: 10.1016/j.aca.2016.02.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/20/2016] [Accepted: 02/04/2016] [Indexed: 12/23/2022]
|
69
|
Konry T, Sarkar S, Sabhachandani P, Cohen N. Innovative Tools and Technology for Analysis of Single Cells and Cell-Cell Interaction. Annu Rev Biomed Eng 2016; 18:259-84. [PMID: 26928209 DOI: 10.1146/annurev-bioeng-090215-112735] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterogeneity in single-cell responses and intercellular interactions results from complex regulation of cell-intrinsic and environmental factors. Single-cell analysis allows not only detection of individual cellular characteristics but also correlation of genetic content with phenotypic traits in the same cell. Technological advances in micro- and nanofabrication have benefited single-cell analysis by allowing precise control of the localized microenvironment, cell manipulation, and sensitive detection capabilities. Additionally, microscale techniques permit rapid, high-throughput, multiparametric screening that has become essential for -omics research. This review highlights innovative applications of microscale platforms in genetic, proteomic, and metabolic detection in single cells; cell sorting strategies; and heterotypic cell-cell interaction. We discuss key design aspects of single-cell localization and isolation in microfluidic systems, dynamic and endpoint analyses, and approaches that integrate highly multiplexed detection of various intracellular species.
Collapse
Affiliation(s)
- Tania Konry
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115; , , ,
| | - Saheli Sarkar
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115; , , ,
| | - Pooja Sabhachandani
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115; , , ,
| | - Noa Cohen
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115; , , ,
| |
Collapse
|
70
|
Sun H, Olsen T, Zhu J, Tao J, Ponnaiya B, Amundson SA, Brenner DJ, Lin Q. A microfluidic approach to parallelized transcriptional profiling of single cells. MICROFLUIDICS AND NANOFLUIDICS 2015; 19:1429-1440. [PMID: 27194954 PMCID: PMC4868186 DOI: 10.1007/s10404-015-1657-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The ability to correlate single-cell genetic information with cellular phenotypes is of great importance to biology and medicine, as it holds the potential to gain insight into disease pathways that is unavailable from ensemble measurements. We present a microfluidic approach to parallelized, rapid, quantitative analysis of messenger RNA from single cells via RT-qPCR. The approach leverages an array of single-cell RT-qPCR analysis units formed by a set of parallel microchannels concurrently controlled by elastomeric pneumatic valves, thereby enabling parallelized handling and processing of single cells in a drastically simplified operation procedure using a relatively small number of microvalves. All steps for single-cell RT-qPCR, including cell isolation and immobilization, cell lysis, mRNA purification, reverse transcription and qPCR, are integrated on a single chip, eliminating the need for off-chip manual cell and reagent transfer and qPCR amplification as commonly used in existing approaches. Additionally, the approach incorporates optically transparent microfluidic components to allow monitoring of single-cell trapping without the need for molecular labeling that can potentially alter the targeted gene expression and utilizes a polycarbonate film as a barrier against evaporation to minimize the loss of reagents at elevated temperatures during the analysis. We demonstrate the utility of the approach by the transcriptional profiling for the induction of the cyclin-dependent kinase inhibitor 1a and the glyceraldehyde 3-phosphate dehydrogenase in single cells from the MCF-7 breast cancer cell line. Furthermore, the methyl methanesulfonate is employed to allow measurement of the expression of the genes in individual cells responding to a genotoxic stress.
Collapse
Affiliation(s)
- Hao Sun
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
- Department of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Timothy Olsen
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Jing Zhu
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Jianguo Tao
- Department of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Brian Ponnaiya
- Center for Radiological Research, Columbia University, New York, NY, USA
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University, New York, NY, USA
| | - David J. Brenner
- Center for Radiological Research, Columbia University, New York, NY, USA
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
71
|
Abstract
Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.
Collapse
Affiliation(s)
- Rimantas Kodzius
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Saudi Arabia.
| | - Takashi Gojobori
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Sciences and Engineering Division (BESE), Saudi Arabia.
| |
Collapse
|
72
|
|
73
|
Affiliation(s)
- Hu Zhang
- School of Chemical Engineering; University of Adelaide; Adelaide Australia
| | - Xiaolin Cui
- School of Chemical Engineering; University of Adelaide; Adelaide Australia
| | - Jingxiu Bi
- School of Chemical Engineering; University of Adelaide; Adelaide Australia
| | - Sheng Dai
- School of Chemical Engineering; University of Adelaide; Adelaide Australia
| | - Haitao Ye
- School of Engineering and Applied Science; Aston University; Birmingham United Kingdom
| |
Collapse
|
74
|
Printing 2-dimentional droplet array for single-cell reverse transcription quantitative PCR assay with a microfluidic robot. Sci Rep 2015; 5:9551. [PMID: 25828383 PMCID: PMC4381353 DOI: 10.1038/srep09551] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/10/2015] [Indexed: 12/31/2022] Open
Abstract
This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis.
Collapse
|
75
|
Fan HC, Fu GK, Fodor SPA. Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science 2015; 347:1258367. [PMID: 25657253 DOI: 10.1126/science.1258367] [Citation(s) in RCA: 320] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a technically simple approach for gene expression cytometry combining next-generation sequencing with stochastic barcoding of single cells. A combinatorial library of beads bearing cell- and molecular-barcoding capture probes is used to uniquely label transcripts and reconstruct the digital gene expression profile of thousands of individual cells in a single experiment without the need for robotics or automation. We applied the technology to dissect the human hematopoietic system and to characterize heterogeneous response to in vitro stimulation. High sensitivity is demonstrated by detection of low-abundance transcripts and rare cells. Under current implementation, the technique can analyze a few thousand cells simultaneously and can readily scale to 10,000s or 100,000s of cells.
Collapse
Affiliation(s)
- H Christina Fan
- Cellular Research, Inc., 3183 Porter Drive, Palo Alto, CA 94304, USA
| | - Glenn K Fu
- Cellular Research, Inc., 3183 Porter Drive, Palo Alto, CA 94304, USA
| | - Stephen P A Fodor
- Cellular Research, Inc., 3183 Porter Drive, Palo Alto, CA 94304, USA.
| |
Collapse
|
76
|
Microfluidic platform towards point-of-care diagnostics in infectious diseases. J Chromatogr A 2014; 1377:13-26. [PMID: 25544727 DOI: 10.1016/j.chroma.2014.12.041] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 01/09/2023]
Abstract
Rapid and timely diagnosis of infectious diseases is a critical determinant of clinical outcomes and general public health. For the detection of various pathogens, microfluidics-based platforms offer many advantages, including speed, cost, portability, high throughput, and automation. This review provides an overview of the recent advances in microfluidic technologies for point-of-care (POC) diagnostics for infectious diseases. The key aspects of such technologies for the development of a fully integrated POC platform are introduced, including sample preparation, on-chip nucleic acid analysis and immunoassay, and system integration/automation. The current challenges to practical implementation of this technology are discussed together with future perspectives.
Collapse
|
77
|
Rendl M, Brandstetter T, Rühe J. Solid-phase extraction in segmented flow. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12804-12811. [PMID: 25300748 DOI: 10.1021/la502645z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Two-phase flow systems are increasingly popular for miniaturized, high-throughput performance of analytical or chemical reactions. In this contribution, we extend a previously described method that allows to increase the range of applications of heterogeneous reactions in two-phase flow, i.e., reactions that rely on isolation and purification of the compound of interest for downstream analysis. Our concept is based on liquid plugs, which serve as miniaturized compartments for the analytical reactions. Purification of the target compound is achieved by extracting the analyte from the aqueous compartments using magnetic beads as solid carriers. In the present paper, we elucidate the influence of parameters such as the polarity of the liquid/liquid and solid/liquid interfaces, the magnetic forces and the fluidic conditions onto the extraction performance. The conditions for reliable extraction and purification of the target compounds are determined. Furthermore, we investigate how to facilitate breaking of the plugs through reduction of the surface tension of the solid/liquid interface. When a lower surface tension is employed, a smaller number of beads is required for the extraction process, which implies a higher sensitivity of the device. In addition, we generate channels with different surface chemistries, which are able to manipulate the flow of the two immiscible liquids. We describe a very simple way to generate such devices and show that we can achieve a transition from segmented flow of plugs to a side-by side flow of the two immiscible liquids, a key requirement for the purification of the compounds.
Collapse
Affiliation(s)
- Martin Rendl
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg , Georges-Köhler-Allee 103, D-79110 Freiburg, Germany
| | | | | |
Collapse
|
78
|
Thiele J, Ma Y, Foschepoth D, Hansen MMK, Steffen C, Heus HA, Huck WTS. DNA-functionalized hydrogels for confined membrane-free in vitro transcription/translation. LAB ON A CHIP 2014; 14:2651-2656. [PMID: 24663810 DOI: 10.1039/c3lc51427g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We microfluidically fabricate bio-orthogonal DNA-functionalized porous hydrogels from hyaluronic acid that are employed in in vitro transcription/translation (IVTT) of a green fluorescent protein. By co-encapsulating individual hydrogel particles and the IVTT machinery in water-in-oil microdroplets, we study protein expression in a defined reaction volume. Our approach enables precise control over protein expression rates by gene dosage. We show that gene transcription and translation are confined to the membrane-free hydrogel matrix, which contributes to the design of membrane-free protocells.
Collapse
Affiliation(s)
- J Thiele
- Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
79
|
Eastburn DJ, Sciambi A, Abate AR. Identification and genetic analysis of cancer cells with PCR-activated cell sorting. Nucleic Acids Res 2014; 42:e128. [PMID: 25030902 PMCID: PMC4176366 DOI: 10.1093/nar/gku606] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cell sorting is a central tool in life science research for analyzing cellular heterogeneity or enriching rare cells out of large populations. Although methods like FACS and FISH-FC can characterize and isolate cells from heterogeneous populations, they are limited by their reliance on antibodies, or the requirement to chemically fix cells. We introduce a new cell sorting technology that robustly sorts based on sequence-specific analysis of cellular nucleic acids. Our approach, PCR-activated cell sorting (PACS), uses TaqMan PCR to detect nucleic acids within single cells and trigger their sorting. With this method, we identified and sorted prostate cancer cells from a heterogeneous population by performing >132 000 simultaneous single-cell TaqMan RT-PCR reactions targeting vimentin mRNA. Following vimentin-positive droplet sorting and downstream analysis of recovered nucleic acids, we found that cancer-specific genomes and transcripts were significantly enriched. Additionally, we demonstrate that PACS can be used to sort and enrich cells via TaqMan PCR reactions targeting single-copy genomic DNA. PACS provides a general new technical capability that expands the application space of cell sorting by enabling sorting based on cellular information not amenable to existing approaches.
Collapse
Affiliation(s)
- Dennis J Eastburn
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158, USA
| | - Adam Sciambi
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
80
|
Kang DK, Monsur Ali M, Zhang K, Pone EJ, Zhao W. Droplet microfluidics for single-molecule and single-cell analysis in cancer research, diagnosis and therapy. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.03.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
81
|
Nahavandi S, Baratchi S, Soffe R, Tang SY, Nahavandi S, Mitchell A, Khoshmanesh K. Microfluidic platforms for biomarker analysis. LAB ON A CHIP 2014; 14:1496-514. [PMID: 24663505 DOI: 10.1039/c3lc51124c] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Biomarkers have been described as characteristics, most often molecular, that provide information about biological states, whether normal, pathological, or therapeutically modified. They hold great potential to assist diagnosis and prognosis, monitor disease, and assess therapeutic effectiveness. While a few biomarkers are routinely utilised clinically, these only reflect a very small percentage of all biomarkers discovered. Numerous factors contribute to the slow uptake of these new biomarkers, with challenges faced throughout the biomarker development pipeline. Microfluidics offers two important opportunities to the field of biomarkers: firstly, it can address some of these developmental obstacles, and secondly, it can provide the precise and complex platform required to bridge the gap between biomarker research and the biomarker-based analytical device market. Indeed, adoption of microfluidics has provided a new avenue for advancement, promoting clinical utilisation of both biomarkers and their analytical platforms. This review will discuss biomarkers and outline microfluidic platforms developed for biomarker analysis.
Collapse
Affiliation(s)
- Sofia Nahavandi
- Faculty of Medicine, Dentistry, & Health Sciences, The University of Melbourne, VIC 3010, Australia.
| | | | | | | | | | | | | |
Collapse
|
82
|
Zhu Q, Qiu L, Yu B, Xu Y, Gao Y, Pan T, Tian Q, Song Q, Jin W, Jin Q, Mu Y. Digital PCR on an integrated self-priming compartmentalization chip. LAB ON A CHIP 2014; 14:1176-85. [PMID: 24481046 DOI: 10.1039/c3lc51327k] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
An integrated on-chip valve-free and power-free microfluidic digital PCR device is for the first time developed by making use of a novel self-priming compartmentalization and simple dehydration control to realize 'divide and conquer' for single DNA molecule detection. The high gas solubility of PDMS is exploited to provide the built-in power of self-priming so that the sample and oil are sequentially sucked into the device to realize sample self-compartmentalization based on surface tension. The lifespan of its self-priming capability was about two weeks tested using an air-tight packaging bottle sealed with a small amount of petroleum jelly, which is significant for a practical platform. The SPC chip contains 5120 independent 5 nL microchambers, allowing the samples to be compartmentalized completely. Using this platform, three different abundances of lung cancer related genes are detected to demonstrate the feasibility and flexibility of the microchip for amplifying a single nucleic acid molecule. For maximal accuracy, within less than 5% of the measurement deviation, the optimal number of positive chambers is between 400 and 1250 evaluated by the Poisson distribution, which means one panel can detect an average of 480 to 4804 template molecules. This device without world-to-chip connections eliminates the constraint of the complex pipeline control, and is an integrated on-chip platform, which would be a significant improvement to digital PCR automation and more user-friendly.
Collapse
Affiliation(s)
- Qiangyuan Zhu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Khodakov DA, Ellis AV. Recent developments in nucleic acid identification using solid-phase enzymatic assays. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1167-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
84
|
Microfluidics for biological measurements with single-molecule resolution. Curr Opin Biotechnol 2014; 25:69-77. [DOI: 10.1016/j.copbio.2013.08.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/22/2013] [Indexed: 11/22/2022]
|
85
|
Satoh T, Kodama K, Hattori K, Ichikawa S, Sugiura S, Kanamori T. Pressure-Driven Microfluidic Device for Droplet Formation with Minimized Dead Volume. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2014. [DOI: 10.1252/jcej.14we103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Taku Satoh
- Research Center for Stem Cell Engineering, National Institute of
Advanced Industrial Science and Technology (AIST)
| | - Kohei Kodama
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Koji Hattori
- Research Center for Stem Cell Engineering, National Institute of
Advanced Industrial Science and Technology (AIST)
| | - Sosaku Ichikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Shinji Sugiura
- Research Center for Stem Cell Engineering, National Institute of
Advanced Industrial Science and Technology (AIST)
| | - Toshiyuki Kanamori
- Research Center for Stem Cell Engineering, National Institute of
Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
86
|
Guan Z, Zou Y, Zhang M, Lv J, Shen H, Yang P, Zhang H, Zhu Z, James Yang C. A highly parallel microfluidic droplet method enabling single-molecule counting for digital enzyme detection. BIOMICROFLUIDICS 2014; 8:014110. [PMID: 24753730 PMCID: PMC3977795 DOI: 10.1063/1.4866766] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/12/2014] [Indexed: 05/07/2023]
Abstract
Although digital detection of nucleic acids has been achieved by amplification of single templates in uniform microfluidic droplets and widely used for genetic analysis, droplet-based digital detection of proteins has rarely been reported, largely due to the lack of an efficient target amplification method for protein in droplets. Here, we report a key step towards digital detection of proteins using a highly parallel microfluidic droplet approach for single enzyme molecule detection in picoliter droplets via enzyme catalyzed signal amplification. An integrated microfluidic chip was designed for high throughput uniform droplet generation, monolayer droplet collection, incubation, detection, and release. Single β-galatosidase (β-Gal) molecules and the fluorogenic substrate fluorescein di-β-D-galactopyranoside were injected from two separated inlets to form uniform 20 μm droplets in fluorinated oil at a frequency of 6.6 kHz. About 200 000 droplets were captured as a monolayer in a capture well on-chip for subsequent imaging detection. A series of β-Gal solutions at different concentrations were analyzed at the single-molecule level. With no enzyme present, no droplets were found to fluoresce, while brightly fluorescent droplets were observed under single-enzyme molecule conditions. Droplet fluorescence intensity distribution analysis showed that the distribution of enzyme molecules under single-molecule conditions matched well with theoretical prediction, further proving the feasibility of detecting single enzyme molecules in emulsion droplets. Moreover, the population of fluorescent droplets increased as the β-Gal concentration increased. Based on a digital counting method, the measured concentrations of the enzyme were found to match well with input enzyme concentration, establishing the accuracy of the digital detection method for the quantification of β-Gal enzyme molecules. The capability of highly parallel detection of single enzyme molecules in uniform picoliter droplets paves the way to microdroplet based digital detection of proteins.
Collapse
Affiliation(s)
- Zhichao Guan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yuan Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Mingxia Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jiangquan Lv
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Huali Shen
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Huimin Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chaoyong James Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
87
|
Gu S, Lu Y, Ding Y, Li L, Song H, Wang J, Wu Q. A droplet-based microfluidic electrochemical sensor using platinum-black microelectrode and its application in high sensitive glucose sensing. Biosens Bioelectron 2013; 55:106-12. [PMID: 24368227 DOI: 10.1016/j.bios.2013.12.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/20/2013] [Accepted: 12/01/2013] [Indexed: 11/29/2022]
Abstract
We describe a droplet-based microfluidic electrochemical sensor using platinum-black (Pt-black) microelectrode. Pt-black microelectrode was generated by electrodeposition of Pt nanoparticles on bare Pt microelectrode. Scanning electron microscope (SEM) image displays a flower-like microstructure of Pt nanoparticels. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) indicate that the Pt-black efficiently decreased the charge transfer resistance and improved the electrocatalytic activity towards oxidation of hydrogen peroxide (H2O2). Compared with bare Pt microelectrode, the current response on Pt-black microelectrode increased 10.2 folds. The effect of applied potential and electrodeposition time has been investigated in detail. The proposed sensor was validated by performing enzyme activity assay in flowing droplets. For demonstration, glucose oxidase (GOx) is chosen as the model enzyme, which catalyzes the oxidation of β-D-glucose to the product H2O2. The enzyme activity of GOx was evaluated by measuring the electrochemical current responding to various glucose concentrations. And the results indicate that this microfluidic sensor holds great potential in fabricating novel glucose sensors with linear response up to 43.5mM. The analytical applications of the droplet-based microfluidic sensor were tested by using human blood serum samples. Reproducibility, interferences, and long-term stability of the modified electrode were also investigated. The present approach shows the feasibility and great potentials in constructing highly sensitive and low-consumption sensors in the field of droplet microfluidics.
Collapse
Affiliation(s)
- Shuqing Gu
- Department of chemistry, College of Sciences, Shanghai University, Shanghai 200444, China; Technical Center for Animal Plant and Food Inspection and Quarantine, Shanghai Entry-Exit Inspection and Quarantine Bureau , Shanghai 200135, China; School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Youlan Lu
- Department of chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yaping Ding
- Department of chemistry, College of Sciences, Shanghai University, Shanghai 200444, China; School of Materials Science and Engineering, Shanghai University, Shanghai, China.
| | - Li Li
- Department of chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hongsheng Song
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jinhua Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qingsheng Wu
- Department of Chemistry, Tongji University, Shanghai 200092, China
| |
Collapse
|
88
|
Geng T, Novak R, Mathies RA. Single-cell forensic short tandem repeat typing within microfluidic droplets. Anal Chem 2013; 86:703-12. [PMID: 24266330 DOI: 10.1021/ac403137h] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A short tandem repeat (STR) typing method is developed for forensic identification of individual cells. In our strategy, monodisperse 1.5 nL agarose-in-oil droplets are produced with a high frequency using a microfluidic droplet generator. Statistically dilute single cells, along with primer-functionalized microbeads, are randomly compartmentalized in the droplets. Massively parallel single-cell droplet polymerase chain reaction (PCR) is performed to transfer replicas of desired STR targets from the single-cell genomic DNA onto the coencapsulated microbeads. These DNA-conjugated beads are subsequently harvested and reamplified under statistically dilute conditions for conventional capillary electrophoresis (CE) STR fragment size analysis. The 9-plex STR profiles of single cells from both pure and mixed populations of GM09947 and GM09948 human lymphoid cells show that all alleles are correctly called and allelic drop-in/drop-out is not observed. The cell mixture study exhibits a good linear relationship between the observed and input cell ratios in the range of 1:1 to 10:1. Additionally, the STR profile of GM09947 cells could be deduced even in the presence of a high concentration of cell-free contaminating 9948 genomic DNA. Our method will be valuable for the STR analysis of samples containing mixtures of cells/DNA from multiple contributors and for low-concentration samples.
Collapse
Affiliation(s)
- Tao Geng
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | | | | |
Collapse
|
89
|
Sugaya S, Yamada M, Hori A, Seki M. Microfluidic production of single micrometer-sized hydrogel beads utilizing droplet dissolution in a polar solvent. BIOMICROFLUIDICS 2013; 7:54120. [PMID: 24396529 PMCID: PMC3820636 DOI: 10.1063/1.4826936] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/14/2013] [Indexed: 05/11/2023]
Abstract
In this study, a microfluidic process is proposed for preparing monodisperse micrometer-sized hydrogel beads. This process utilizes non-equilibrium aqueous droplets formed in a polar organic solvent. The water-in-oil droplets of the hydrogel precursor rapidly shrunk owing to the dissolution of water molecules into the continuous phase. The shrunken and condensed droplets were then gelled, resulting in the formation of hydrogel microbeads with sizes significantly smaller than the initial droplet size. This study employed methyl acetate as the polar organic solvent, which can dissolve water at 8%. Two types of monodisperse hydrogel beads-Ca-alginate and chitosan-with sizes of 6-10 μm (coefficient of variation < 6%) were successfully produced. In addition, we obtained hydrogel beads with non-spherical morphologies by controlling the degree of droplet shrinkage at the time of gelation and by adjusting the concentration of the gelation agent. Furthermore, the encapsulation and concentration of DNA molecules within the hydrogel beads were demonstrated. The process presented in this study has great potential to produce small and highly concentrated hydrogel beads that are difficult to obtain by using conventional microfluidic processes.
Collapse
Affiliation(s)
- Sari Sugaya
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Ayaka Hori
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Minoru Seki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
90
|
Gu S, Lu Y, Ding Y, Li L, Zhang F, Wu Q. Droplet-based microfluidics for dose–response assay of enzyme inhibitors by electrochemical method. Anal Chim Acta 2013; 796:68-74. [DOI: 10.1016/j.aca.2013.08.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/24/2013] [Accepted: 08/09/2013] [Indexed: 02/08/2023]
|
91
|
Scanlon TC, Dostal SM, Griswold KE. A high-throughput screen for antibiotic drug discovery. Biotechnol Bioeng 2013; 111:232-43. [PMID: 23955804 DOI: 10.1002/bit.25019] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/21/2013] [Accepted: 07/29/2013] [Indexed: 11/10/2022]
Abstract
We describe an ultra-high-throughput screening platform enabling discovery and/or engineering of natural product antibiotics. The methodology involves creation of hydrogel-in-oil emulsions in which recombinant microorganisms are co-emulsified with bacterial pathogens; antibiotic activity is assayed by use of a fluorescent viability dye. We have successfully utilized both bulk emulsification and microfluidic technology for the generation of hydrogel microdroplets that are size-compatible with conventional flow cytometry. Hydrogel droplets are ∼25 pL in volume, and can be synthesized and sorted at rates exceeding 3,000 drops/s. Using this technique, we have achieved screening throughputs exceeding 5 million clones/day. Proof-of-concept experiments demonstrate efficient selection of antibiotic-secreting yeast from a vast excess of negative controls. In addition, we have successfully used this technique to screen a metagenomic library for secreted antibiotics that kill the human pathogen Staphylococcus aureus. Our results establish the practical utility of the screening platform, and we anticipate that the accessible nature of our methods will enable others seeking to identify and engineer the next generation of antibacterial biomolecules.
Collapse
Affiliation(s)
- Thomas C Scanlon
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, 03755
| | | | | |
Collapse
|
92
|
Eastburn DJ, Sciambi A, Abate AR. Ultrahigh-throughput Mammalian single-cell reverse-transcriptase polymerase chain reaction in microfluidic drops. Anal Chem 2013; 85:8016-21. [PMID: 23885761 DOI: 10.1021/ac402057q] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The behaviors of complex biological systems are often dictated by the properties of their heterogeneous and sometimes rare cellular constituents. Correspondingly, the analysis of individual cells from a heterogeneous population can reveal information not obtainable by ensemble measurements. Reverse-transcriptase polymerase chain reaction (RT-PCR) is a widely used method that enables transcriptional profiling and sequencing analysis on bulk populations of cells. Major barriers to successfully implementing this technique for mammalian single-cell studies are the labor, cost, and low-throughput associated with current approaches. In this report, we describe a novel droplet-based microfluidic system for performing ~50000 single-cell RT-PCR reactions in a single experiment while consuming a minimal amount of reagent. Using cell type-specific staining and TaqMan RT-PCR probes, we demonstrate the identification of specific cells from a mixed human cell population. The throughput, robust detection rate and specificity of this method makes it well-suited for characterizing large, heterogeneous populations of cells at the transcriptional level.
Collapse
Affiliation(s)
- Dennis J Eastburn
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, California 94158, United States
| | | | | |
Collapse
|
93
|
Quantitative microfluidic biomolecular analysis for systems biology and medicine. Anal Bioanal Chem 2013; 405:5743-58. [PMID: 23568613 DOI: 10.1007/s00216-013-6930-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/10/2013] [Accepted: 03/19/2013] [Indexed: 12/12/2022]
Abstract
In the postgenome era, biology and medicine are rapidly evolving towards quantitative and systems studies of complex biological systems. Emerging breakthroughs in microfluidic technologies and innovative applications are transforming systems biology by offering new capabilities to address the challenges in many areas, such as single-cell genomics, gene regulation networks, and pathology. In this review, we focus on recent progress in microfluidic technology from the perspective of its applications to promoting quantitative and systems biomolecular analysis in biology and medicine.
Collapse
|
94
|
Chen A, Byvank T, Chang WJ, Bharde A, Vieira G, Miller BL, Chalmers JJ, Bashir R, Sooryakumar R. On-chip magnetic separation and encapsulation of cells in droplets. LAB ON A CHIP 2013; 13:1172-81. [PMID: 23370785 PMCID: PMC4176703 DOI: 10.1039/c2lc41201b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Single cell study is gaining importance because of the cell-to-cell variation that exists within cell population, even after significant initial sorting. Analysis of such variation at the gene expression level could impact single cell functional genomics, cancer, stem-cell research, and drug screening. The on-chip monitoring of individual cells in an isolated environment would prevent cross-contamination, provide high recovery yield, and enable study of biological traits at a single cell level. These advantages of on-chip biological experiments is a significant improvement for a myriad of cell analyses methods, compared to conventional methods, which require bulk samples and provide only averaged information on cell structure and function. We report on a device that integrates a mobile magnetic trap array with microfluidic technology to provide the possibility of separation of immunomagnetically labeled cells and their encapsulation with reagents into picoliter droplets for single cell analysis. The simultaneous reagent delivery and compartmentalization of the cells immediately following sorting are all performed seamlessly within the same chip. These steps offer unique advantages such as the ability to capture cell traits as originated from its native environment, reduced chance of contamination, minimal use of the reagents, and tunable encapsulation characteristics independent of the input flow. Preliminary assay on cell viability demonstrates the potential for the device to be integrated with other up- or downstream on-chip modules to become a powerful single-cell analysis tool.
Collapse
Affiliation(s)
- Aaron Chen
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Zanoli LM, Spoto G. Isothermal amplification methods for the detection of nucleic acids in microfluidic devices. BIOSENSORS 2013; 3:18-43. [PMID: 25587397 PMCID: PMC4263587 DOI: 10.3390/bios3010018] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/07/2012] [Accepted: 12/24/2012] [Indexed: 12/05/2022]
Abstract
Diagnostic tools for biomolecular detection need to fulfill specific requirements in terms of sensitivity, selectivity and high-throughput in order to widen their applicability and to minimize the cost of the assay. The nucleic acid amplification is a key step in DNA detection assays. It contributes to improving the assay sensitivity by enabling the detection of a limited number of target molecules. The use of microfluidic devices to miniaturize amplification protocols reduces the required sample volume and the analysis times and offers new possibilities for the process automation and integration in one single device. The vast majority of miniaturized systems for nucleic acid analysis exploit the polymerase chain reaction (PCR) amplification method, which requires repeated cycles of three or two temperature-dependent steps during the amplification of the nucleic acid target sequence. In contrast, low temperature isothermal amplification methods have no need for thermal cycling thus requiring simplified microfluidic device features. Here, the use of miniaturized analysis systems using isothermal amplification reactions for the nucleic acid amplification will be discussed.
Collapse
Affiliation(s)
- Laura Maria Zanoli
- Istituto Biostrutture e Bioimmagini, CNR, Viale A. Doria 6, Catania, Italy; E-Mail:
| | - Giuseppe Spoto
- Istituto Biostrutture e Bioimmagini, CNR, Viale A. Doria 6, Catania, Italy; E-Mail: ; Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| |
Collapse
|
96
|
Cao Z, Chen F, Bao N, He H, Xu P, Jana S, Jung S, Lian H, Lu C. Droplet sorting based on the number of encapsulated particles using a solenoid valve. LAB ON A CHIP 2013; 13:171-8. [PMID: 23160342 DOI: 10.1039/c2lc40950j] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Droplet microfluidics provides a high-throughput platform for screening subjects and conditions involved in biology. Droplets with encapsulated beads and cells have been increasingly used for studying molecular and cellular biology. Droplet sorting is needed to isolate and analyze the subject of interest during such screening. The vast majority of current sorting techniques use fluorescence intensity emitted by each droplet as the only criterion. However, due to the randomness and imperfections in the encapsulation process, typically a mixed population of droplets with an uneven number of encapsulated particles results and is used for screening. Thus droplet sorting based on the number of encapsulated particles becomes necessary for isolating or enriching droplets with a specific occupancy. In this work, we developed a fluorescence-activated microfluidic droplet sorter that integrated a simple deflection mechanism based on the use of a solenoid valve and a sophisticated signal processing system with a microcontroller as the core. By passing droplets through a narrow interrogation channel, the encapsulated particles were detected individually. The microcontroller conducted the computation to determine the number of encapsulated particles in each droplet and made the sorting decision accordingly that led to actuation of the solenoid valve. We tested both fluorescent beads and stained cells and our results showed high efficiency and accuracy for sorting and enrichment.
Collapse
Affiliation(s)
- Zhenning Cao
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
|
98
|
Plessy C, Desbois L, Fujii T, Carninci P. Population transcriptomics with single-cell resolution: a new field made possible by microfluidics: a technology for high throughput transcript counting and data-driven definition of cell types. Bioessays 2012; 35:131-40. [PMID: 23281054 PMCID: PMC3583089 DOI: 10.1002/bies.201200093] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Tissues contain complex populations of cells. Like countries, which are comprised of mixed populations of people, tissues are not homogeneous. Gene expression studies that analyze entire populations of cells from tissues as a mixture are blind to this diversity. Thus, critical information is lost when studying samples rich in specialized but diverse cells such as tumors, iPS colonies, or brain tissue. High throughput methods are needed to address, model and understand the constitutive and stochastic differences between individual cells. Here, we describe microfluidics technologies that utilize a combination of molecular biology and miniaturized labs on chips to study gene expression at the single cell level. We discuss how the characterization of the transcriptome of each cell in a sample will open a new field in gene expression analysis, population transcriptomics, that will change the academic and biomedical analysis of complex samples by defining them as quantified populations of single cells.
Collapse
Affiliation(s)
- Charles Plessy
- RIKEN Omics Science Center, Suehiro-chô, Tsurumi-ku, Yokohama, Japan.
| | | | | | | |
Collapse
|
99
|
Chen Q, Wu J, Zhang Y, Lin Z, Lin JM. Targeted isolation and analysis of single tumor cells with aptamer-encoded microwell array on microfluidic device. LAB ON A CHIP 2012; 12:5180-5. [PMID: 23108418 DOI: 10.1039/c2lc40858a] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Microfluidic-based single cells analysis has been of great interest in recent years, promising disease diagnosis and personalized medicine. Current technologies are challenging in bioselectively isolating specific single cells from complex matrices. Herein, a novel microfluidic platform integrated with cell-recognizable aptamer-encoded microwells was specifically developed to isolate single tumor cells with satisfied single-cell occupancy and unique bioselectivity. In this work, the designed microwell-structures enable us to encourage strong 3D local topographic interactions of the target cell surface with biomolecules and regulate the single-cell resolution. Under the optimized size of microwells, the single-cell occupancy was significantly enhanced from 0.5% to 88.2% through the introduction of the aptamer. Analysis of the target cells was directly performed in short time periods (<5.0 min) with small volumes (4.5 μL). Importantly, such an aptamer-enabled microfluidic device shows an excellent selectivity for target single cells isolation compared with three control cells. Subsequently, targeted isolation and analysis of single tumor cells were demonstrated by using artificial complex cell samples at simulated conditions, and various cellular carboxylesterases were studied by time-course measurements of cellular fluorescence kinetics at individual-cell level. Thus, our technique will open up a new opportunity in single-cell level-based disease diagnosis and personalize medicine screening.
Collapse
Affiliation(s)
- Qiushui Chen
- Beijing Key Laboratory of Microanalytical Method and Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | | | | | | | | |
Collapse
|
100
|
Trouillon R, Passarelli MK, Wang J, Kurczy ME, Ewing AG. Chemical Analysis of Single Cells. Anal Chem 2012; 85:522-42. [DOI: 10.1021/ac303290s] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Raphaël Trouillon
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
| | - Melissa K. Passarelli
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
| | - Jun Wang
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
| | - Michael E. Kurczy
- Chalmers University, Department of Chemistry
and Biological Engineering, 41296 Gothenburg, Sweden
| | - Andrew G. Ewing
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
- Chalmers University, Department of Chemistry
and Biological Engineering, 41296 Gothenburg, Sweden
| |
Collapse
|