51
|
|
52
|
Comi TJ, Makurath MA, Philip MC, Rubakhin SS, Sweedler JV. MALDI MS Guided Liquid Microjunction Extraction for Capillary Electrophoresis-Electrospray Ionization MS Analysis of Single Pancreatic Islet Cells. Anal Chem 2017; 89:7765-7772. [PMID: 28636327 PMCID: PMC5518278 DOI: 10.1021/acs.analchem.7b01782] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022]
Abstract
The ability to characterize chemical heterogeneity in biological structures is essential to understanding cellular-level function in both healthy and diseased states, but these variations remain difficult to assess using a single analytical technique. While mass spectrometry (MS) provides sufficient sensitivity to measure many analytes from volume-limited samples, each type of mass spectrometric analysis uncovers only a portion of the complete chemical profile of a single cell. Matrix-assisted laser desorption/ionization (MALDI) MS and capillary electrophoresis electrospray ionization (CE-ESI)-MS are complementary analytical platforms frequently utilized for single-cell analysis. Optically guided MALDI MS provides a high-throughput assessment of lipid and peptide content for large populations of cells, but is typically nonquantitative and fails to detect many low-mass metabolites because of MALDI matrix interferences. CE-ESI-MS allows quantitative measurements of cellular metabolites and increased analyte coverage, but has lower throughput because the electrophoretic separation is relatively slow. In this work, the figures of merit for each technique are combined via an off-line method that interfaces the two MS systems with a custom liquid microjunction surface sampling probe. The probe is mounted on an xyz translational stage, providing 90.6 ± 0.6% analyte removal efficiency with a spatial targeting accuracy of 42.8 ± 2.3 μm. The analyte extraction footprint is an elliptical area with a major diameter of 422 ± 21 μm and minor diameter of 335 ± 27 μm. To validate the approach, single rat pancreatic islet cells were rapidly analyzed with optically guided MALDI MS to classify each cell into established cell types by their peptide content. After MALDI MS analysis, a majority of the analyte remains for follow-up measurements to extend the overall chemical coverage. Optically guided MALDI MS was used to identify individual pancreatic islet α and β cells, which were then targeted for liquid microjunction extraction. Extracts from single α and β cells were analyzed with CE-ESI-MS to obtain qualitative information on metabolites, including amino acids. Matching the molecular masses and relative migration times of the extracted analytes and related standards allowed identification of several amino acids. Interestingly, dopamine was consistently detected in both cell types. The results demonstrate the successful interface of optical microscopy-guided MALDI MS and CE-ESI-MS for sequential chemical profiling of individual, mammalian cells.
Collapse
Affiliation(s)
- Troy J. Comi
- Department
of Chemistry and the Beckman Institute, and Department of Molecular and Integrative
Physiology, University of Illinois, Urbana−Champaign, Illinois 61801, United
States
| | - Monika A. Makurath
- Department
of Chemistry and the Beckman Institute, and Department of Molecular and Integrative
Physiology, University of Illinois, Urbana−Champaign, Illinois 61801, United
States
| | - Marina C. Philip
- Department
of Chemistry and the Beckman Institute, and Department of Molecular and Integrative
Physiology, University of Illinois, Urbana−Champaign, Illinois 61801, United
States
| | - Stanislav S. Rubakhin
- Department
of Chemistry and the Beckman Institute, and Department of Molecular and Integrative
Physiology, University of Illinois, Urbana−Champaign, Illinois 61801, United
States
| | - Jonathan V. Sweedler
- Department
of Chemistry and the Beckman Institute, and Department of Molecular and Integrative
Physiology, University of Illinois, Urbana−Champaign, Illinois 61801, United
States
| |
Collapse
|
53
|
Merrill CB, Basit A, Armirotti A, Jia Y, Gall CM, Lynch G, Piomelli D. Patch clamp-assisted single neuron lipidomics. Sci Rep 2017; 7:5318. [PMID: 28706218 PMCID: PMC5509708 DOI: 10.1038/s41598-017-05607-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/31/2017] [Indexed: 11/09/2022] Open
Abstract
Our understanding of the physiological and pathological functions of brain lipids is limited by the inability to analyze these molecules at cellular resolution. Here, we present a method that enables the detection of lipids in identified single neurons from live mammalian brains. Neuronal cell bodies are captured from perfused mouse brain slices by patch clamping, and lipids are analyzed using an optimized nanoflow liquid chromatography/mass spectrometry protocol. In a first application of the method, we identified more than 40 lipid species from dentate gyrus granule cells and CA1 pyramidal neurons of the hippocampus. This survey revealed substantial lipid profile differences between neurons and whole brain tissue, as well as between resting and physiologically stimulated neurons. The results suggest that patch clamp-assisted single neuron lipidomics could be broadly applied to investigate neuronal lipid homeostasis in healthy and diseased brains.
Collapse
Affiliation(s)
- Collin B Merrill
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Abdul Basit
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, 16163, Italy
| | - Andrea Armirotti
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, 16163, Italy
| | - Yousheng Jia
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA.,Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, 92697, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA. .,Department of Pharmacology, University of California, Irvine, Irvine, CA, 92697, USA. .,Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
54
|
Bodzon-Kulakowska A, Antolak A, Drabik A, Marszalek-Grabska M, Kotlińska J, Suder P. Brain lipidomic changes after morphine, cocaine and amphetamine administration — DESI — MS imaging study. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:686-691. [DOI: 10.1016/j.bbalip.2017.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/28/2022]
|
55
|
Yang Y, Huang Y, Wu J, Liu N, Deng J, Luan T. Single-cell analysis by ambient mass spectrometry. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.02.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
56
|
Tseng YT, Harroun SG, Wu CW, Mao JY, Chang HT, Huang CC. Satellite-like Gold Nanocomposites for Targeted Mass Spectrometry Imaging of Tumor Tissues. Nanotheranostics 2017; 1:141-153. [PMID: 29071183 PMCID: PMC5646720 DOI: 10.7150/ntno.18897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/25/2017] [Indexed: 11/30/2022] Open
Abstract
We have developed a simple, rapid, high-throughput cancer diagnosis system using functional nanoparticles (NPs) consisting of poly(catechin) capped-gold NPs (Au@PC NPs) and smaller nucleolin-binding aptamer (AS1411) conjugated gold NPs (AS1411-Au NPs). The AS1411-Au NPs/Au@PC NP is used as a targeting agent in laser desorption/ionization mass spectrometry (LDI-MS)-based tumor tissue imaging. Self-assembled core-shell Au@PC NPs are synthesized by a simple reaction of tetrachloroaurate(III) with catechin. Au@PC NPs with a well-defined and dense poly(catechin) shell (~40-60 nm) on the surface of each Au core (~60-80 nm) are obtained through careful control of the ratio of catechin to gold ions, as well as the pH of the reaction solution. Furthermore, we have shown that AS1411-conjugated Au NPs (13-nm) self-assembled on Au@PC NP can from a satellite-like gold nanocomposite. The high density of AS1411-Au NPs on the surface of Au@PC NP enhances multivalent binding with nucleolin molecules on tumor cell membranes. We have employed LDI-MS to detect AS1411-Au NPs/Au@PC NPs labeled nucleolin-overexpressing MCF-7 breast cancer cells through the monitoring of Au cluster ions ([Aun]+; 1 ≤ n ≤ 3). The ultrahigh signal amplification from Au NPs through the formation of a huge number of [Aun]+ ions results in a sensing platform with a limit of detection of 100 MCF-7 cells mL-1. Further, we have applied the satellite-like AS1411-Au NPs/Au@PC NP nanocomposite as a labeling agent for tumor tissue imaging by LDI-MS. Our nanocomposite-assisted LDI-MS imaging platform can be extended for simultaneous analysis of different tumor markers on cell membranes when using different ligand-modified metal nanoparticles.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Scott G Harroun
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Chien-Wei Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.,Department of Chemistry, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
57
|
Comi TJ, Do TD, Rubakhin SS, Sweedler JV. Categorizing Cells on the Basis of their Chemical Profiles: Progress in Single-Cell Mass Spectrometry. J Am Chem Soc 2017; 139:3920-3929. [PMID: 28135079 PMCID: PMC5364434 DOI: 10.1021/jacs.6b12822] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 02/06/2023]
Abstract
The chemical differences between individual cells within large cellular populations provide unique information on organisms' homeostasis and the development of diseased states. Even genetically identical cell lineages diverge due to local microenvironments and stochastic processes. The minute sample volumes and low abundance of some constituents in cells hinder our understanding of cellular heterogeneity. Although amplification methods facilitate single-cell genomics and transcriptomics, the characterization of metabolites and proteins remains challenging both because of the lack of effective amplification approaches and the wide diversity in cellular constituents. Mass spectrometry has become an enabling technology for the investigation of individual cellular metabolite profiles with its exquisite sensitivity, large dynamic range, and ability to characterize hundreds to thousands of compounds. While advances in instrumentation have improved figures of merit, acquiring measurements at high throughput and sampling from large populations of cells are still not routine. In this Perspective, we highlight the current trends and progress in mass-spectrometry-based analysis of single cells, with a focus on the technologies that will enable the next generation of single-cell measurements.
Collapse
Affiliation(s)
- Troy J. Comi
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Thanh D. Do
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Stanislav S. Rubakhin
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
58
|
Do TD, Comi TJ, Dunham SJB, Rubakhin SS, Sweedler JV. Single Cell Profiling Using Ionic Liquid Matrix-Enhanced Secondary Ion Mass Spectrometry for Neuronal Cell Type Differentiation. Anal Chem 2017; 89:3078-3086. [PMID: 28194949 DOI: 10.1021/acs.analchem.6b04819] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A high-throughput single cell profiling method has been developed for matrix-enhanced-secondary ion mass spectrometry (ME-SIMS) to investigate the lipid profiles of neuronal cells. Populations of cells are dispersed onto the substrate, their locations determined using optical microscopy, and the cell locations used to guide the acquisition of SIMS spectra from the cells. Up to 2,000 cells can be assayed in one experiment at a rate of 6 s per cell. Multiple saturated and unsaturated phosphatidylcholines (PCs) and their fragments are detected and verified with tandem mass spectrometry from individual cells when ionic liquids are employed as a matrix. Optically guided single cell profiling with ME-SIMS is suitable for a range of cell sizes, from Aplysia californica neurons larger than 75 μm to 7-μm rat cerebellar neurons. ME-SIMS analysis followed by t-distributed stochastic neighbor embedding of peaks in the lipid molecular mass range (m/z 700-850) distinguishes several cell types from the rat central nervous system, largely based on the relative proportions of four dominant lipids, PC(32:0), PC(34:1), PC(36:1), and PC(38:5). Furthermore, subpopulations within each cell type are tentatively classified consistent with their endogenous lipid ratios. The results illustrate the efficacy of a new approach to classify single cell populations and subpopulations using SIMS profiling of lipid and metabolite contents. These methods are broadly applicable for high throughput single cell chemical analyses.
Collapse
Affiliation(s)
- Thanh D Do
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Troy J Comi
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Sage J B Dunham
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Stanislav S Rubakhin
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
59
|
Kompauer M, Heiles S, Spengler B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat Methods 2016; 14:90-96. [PMID: 27842060 DOI: 10.1038/nmeth.4071] [Citation(s) in RCA: 411] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023]
Abstract
We report an atmospheric pressure (AP) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) setup with a lateral resolution of 1.4 μm, a mass resolution greater than 100,000, and accuracy below ±2 p.p.m. We achieved this by coupling a focusing objective with a numerical aperture (NA) of 0.9 at 337 nm and a free working distance of 18 mm in coaxial geometry to an orbitrap mass spectrometer and optimizing the matrix application. We demonstrate improvement in image contrast, lateral resolution, and ion yield per unit area compared with a state-of-the-art commercial MSI source. We show that our setup can be used to detect metabolites, lipids, and small peptides, as well as to perform tandem MS experiments with 1.5-μm2 sampling areas. To showcase these capabilities, we identified subcellular lipid, metabolite, and peptide distributions that differentiate, for example, cilia and oral groove in Paramecium caudatum.
Collapse
Affiliation(s)
- Mario Kompauer
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
60
|
Pan N, Rao W, Standke SJ, Yang Z. Using Dicationic Ion-Pairing Compounds To Enhance the Single Cell Mass Spectrometry Analysis Using the Single-Probe: A Microscale Sampling and Ionization Device. Anal Chem 2016; 88:6812-9. [PMID: 27239862 DOI: 10.1021/acs.analchem.6b01284] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A unique mass spectrometry (MS) method has been developed to determine the negatively charged species in live single cells using the positive ionization mode. The method utilizes dicationic ion-pairing compounds through the miniaturized multifunctional device, the single-probe, for reactive MS analysis of live single cells under ambient conditions. In this study, two dicationic reagents, 1,5-pentanediyl-bis(1-butylpyrrolidinium) difluoride (C5(bpyr)2F2) and 1,3-propanediyl-bis(tripropylphosphonium) difluoride (C3(triprp)2F2), were added in the solvent and introduced into single cells to extract cellular contents for real-time MS analysis. The negatively charged (1- charged) cell metabolites, which form stable ion-pairs (1+ charged) with dicationic compounds (2+ charged), were detected in positive ionization mode with a greatly improved sensitivity. We have tentatively assigned 192 and 70 negatively charged common metabolites as adducts with (C5(bpyr)2F2) and (C3(triprp)2F2), respectively, in three separate SCMS experiments in the positive ion mode. The total number of tentatively assigned metabolites is 285 for C5(bpyr)2F2 and 143 for C3(triprp)2F2. In addition, the selectivity of dicationic compounds in the complex formation allows for the discrimination of overlapped ion peaks with low abundances. Tandem (MS/MS) analyses at the single cell level were conducted for selected adduct ions for molecular identification. The utilization of the dicationic compounds in the single-probe MS technique provides an effective approach to the detection of a broad range of metabolites at the single cell level.
Collapse
Affiliation(s)
- Ning Pan
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Wei Rao
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Shawna J Standke
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| |
Collapse
|
61
|
Rao W, Pan N, Yang Z. Applications of the Single-probe: Mass Spectrometry Imaging and Single Cell Analysis under Ambient Conditions. J Vis Exp 2016. [PMID: 27341402 PMCID: PMC4924803 DOI: 10.3791/53911] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mass spectrometry imaging (MSI) and in-situ single cell mass spectrometry (SCMS) analysis under ambient conditions are two emerging fields with great potential for the detailed mass spectrometry (MS) analysis of biomolecules from biological samples. The single-probe, a miniaturized device with integrated sampling and ionization capabilities, is capable of performing both ambient MSI and in-situ SCMS analysis. For ambient MSI, the single-probe uses surface micro-extraction to continually conduct MS analysis of the sample, and this technique allows the creation of MS images with high spatial resolution (8.5 µm) from biological samples such as mouse brain and kidney sections. Ambient MSI has the advantage that little to no sample preparation is needed before the analysis, which reduces the amount of potential artifacts present in data acquisition and allows a more representative analysis of the sample to be acquired. For in-situ SCMS, the single-probe tip can be directly inserted into live eukaryotic cells such as HeLa cells, due to the small sampling tip size (< 10 µm), and this technique is capable of detecting a wide range of metabolites inside individual cells at near real-time. SCMS enables a greater sensitivity and accuracy of chemical information to be acquired at the single cell level, which could improve our understanding of biological processes at a more fundamental level than previously possible. The single-probe device can be potentially coupled with a variety of mass spectrometers for broad ranges of MSI and SCMS studies.
Collapse
Affiliation(s)
- Wei Rao
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Ning Pan
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma;
| |
Collapse
|
62
|
Li X, Zhao S, Hu H, Liu YM. A microchip electrophoresis-mass spectrometric platform with double cell lysis nano-electrodes for automated single cell analysis. J Chromatogr A 2016; 1451:156-163. [PMID: 27207575 DOI: 10.1016/j.chroma.2016.05.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/01/2016] [Accepted: 05/04/2016] [Indexed: 01/11/2023]
Abstract
Capillary electrophoresis-based single cell analysis has become an essential approach in researches at the cellular level. However, automation of single cell analysis has been a challenge due to the difficulty to control the number of cells injected and the irreproducibility associated with cell aggregation. Herein we report the development of a new microfluidic platform deploying the double nano-electrode cell lysis technique for automated analysis of single cells with mass spectrometric detection. The proposed microfluidic chip features integration of a cell-sized high voltage zone for quick single cell lysis, a microfluidic channel for electrophoretic separation, and a nanoelectrospray emitter for ionization in MS detection. Built upon this platform, a microchip electrophoresis-mass spectrometric method (MCE-MS) has been developed for automated single cell analysis. In the method, cell introduction, cell lysis, and MCE-MS separation are computer controlled and integrated as a cycle into consecutive assays. Analysis of large numbers of individual PC-12 neuronal cells (both intact and exposed to 25mM KCl) was carried out to determine intracellular levels of dopamine (DA) and glutamic acid (Glu). It was found that DA content in PC-12 cells was higher than Glu content, and both varied from cell to cell. The ratio of intracellular DA to Glu was 4.20±0.8 (n=150). Interestingly, the ratio drastically decreased to 0.38±0.20 (n=150) after the cells are exposed to 25mM KCl for 8min, suggesting the cells released DA promptly and heavily while they released Glu at a much slower pace in response to KCl-induced depolarization. These results indicate that the proposed MCE-MS analytical platform may have a great potential in researches at the cellular level.
Collapse
Affiliation(s)
- Xiangtang Li
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St., Jackson, MS, 39217, United States
| | - Shulin Zhao
- College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, 51004, China
| | - Hankun Hu
- Wuhan University Zhongnan Hospital, Wuhan 430071, China; Wuhan Yaogu Bio-tech, Wuhan 430075, China
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St., Jackson, MS, 39217, United States; Wuhan Yaogu Bio-tech, Wuhan 430075, China.
| |
Collapse
|
63
|
Wang S, Chen X, Luan H, Gao D, Lin S, Cai Z, Liu J, Liu H, Jiang Y. Matrix-assisted laser desorption/ionization mass spectrometry imaging of cell cultures for the lipidomic analysis of potential lipid markers in human breast cancer invasion. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:533-42. [PMID: 26777684 DOI: 10.1002/rcm.7466] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/03/2015] [Accepted: 11/17/2015] [Indexed: 05/15/2023]
Abstract
RATIONALE Breast cancer is the leading cause of cancer death among women worldwide. Identification of lipid targets that play a role in breast cancer invasion may advance our understanding of the rapid progression of cancer and may lead to the development of new biomarkers for the disease. METHODS Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) was applied for the lipidomic profiling of two poorly invasive and two highly invasive breast cancer cell lines to identify the differentially accumulated lipids related to the invasive phenotype. The four cell lines were individually grown on indium tin oxide (ITO)-coated glass slides, analyzed as cell cultures. The raster width and matrix for detection were optimized to improve detection sensitivity. RESULTS Optimized MSI measurements were performed directly on the cell culture with 9-aminoacridine as matrix, resulting in 215 endogenous compounds detected in positive ion mode and 267 endogenous compounds in negative ion mode in all the four cell lines, representing the largest group of analytes that have been analyzed from cells by a single MSI study. In highly invasive cell lines, 31 lipids including phosphatidylglycerol (PG) and phosphatidic acids were found upregulated and eight lipids including sphingomyelin (SM) downregulated in negative ion mode. The products of de novo fatty acid synthesis incorporated into membrane phospholipids, like oleic-acid-containing PG, may be involved in mitochondrial dysfunction and thus affect the invasion of breast cancer cells. The deficiency of SM may be related to the disruption of apoptosis in highly invasive cancer cells. CONCLUSIONS This work uncovered more analytes in cells by MSI than previous reports, providing a better visualization and novel insights to advance our understanding of the relationship between rapid progression of breast cancer and lipid metabolism. The most altered lipids may aid the discovery of diagnostic markers and therapeutic targets of breast cancer.
Collapse
Affiliation(s)
- Shujuan Wang
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Xiaowu Chen
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Hemi Luan
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Dan Gao
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Shuhai Lin
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Hongxia Liu
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Yuyang Jiang
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- School of Medicine, Tsinghua University, Beijing, 10084, China
| |
Collapse
|
64
|
Jungnickel H, Laux P, Luch A. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS): A New Tool for the Analysis of Toxicological Effects on Single Cell Level. TOXICS 2016; 4:toxics4010005. [PMID: 29051411 PMCID: PMC5606633 DOI: 10.3390/toxics4010005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/02/2016] [Accepted: 02/06/2016] [Indexed: 12/13/2022]
Abstract
Single cell imaging mass spectrometry opens up a complete new perspective for strategies in toxicological risk assessment and drug discovery. In particular, time-of-flight secondary ion mass spectrometry (ToF-SIMS) with its high spatial and depth resolution is becoming part of the imaging mass spectrometry toolbox used for single cell analysis. Recent instrumentation advancements in combination with newly developed cluster ion guns allow 3-dimensional reconstruction of single cells together with a spatially resolved compound location and quantification on nanoscale depth level. The exact location and quantification of a single compound or even of a set of compounds is no longer restricted to the two dimensional space within single cells, but is available for voxels, a cube-sized 3-dimensional space, rather than pixels. The information gathered from one voxel is further analysed using multivariate statistical methodology like maximum autocorrelation factors to co-locate the compounds of interest within intracellular organelles like nucleus, mitochondria or golgi apparatus. Furthermore, the cell membrane may be resolved, including adhering compounds and potential changes of the lipid patterns. The generated information can be used further for a first evaluation of intracellular target specifity of new drug candidates or for the toxicological risk assessment of environmental chemicals and their intracellular metabolites. Additionally, single cell lipidomics and metabolomics enable for the first time an in-depth understanding of the activation or inhibition of cellular biosynthesis and signalling pathways.
Collapse
Affiliation(s)
- Harald Jungnickel
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany.
| | - Peter Laux
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany.
| | - Andreas Luch
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany.
| |
Collapse
|
65
|
Bodzon-Kulakowska A, Suder P. Imaging mass spectrometry: Instrumentation, applications, and combination with other visualization techniques. MASS SPECTROMETRY REVIEWS 2016; 35:147-69. [PMID: 25962625 DOI: 10.1002/mas.21468] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 01/23/2015] [Indexed: 05/18/2023]
Abstract
Imaging Mass Spectrometry (IMS) is strengthening its position as a valuable analytical tool. It has unique ability to identify structures and to unravel molecular changes that occur in the precisely defined part of the sample. These unique features open new possibilities in the field of various aspects of biological research. In this review we briefly discuss the main imaging mass spectrometry techniques, as well as the nature of biological samples and molecules, which might be analyzed by such methodology. Moreover, a novel approach, where different analytical techniques might be combined with the results of IMS study, is emphasized and discussed. With such a fast development of IMS and related methods, we can foresee the promising future of this technique.
Collapse
Affiliation(s)
- Anna Bodzon-Kulakowska
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and Ceramics, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Piotr Suder
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and Ceramics, AGH University of Science and Technology, 30-059 Krakow, Poland
- Academic Centre for Materials and Nanotechnology (ACMiN), AGH University of Science and Technology, 30-059 Krakow, Poland
| |
Collapse
|
66
|
Fu Q, Tang J, Cui M, Xing J, Liu Z, Liu S. Application of porous metal enrichment probe sampling to single cell analysis using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:62-68. [PMID: 26757073 DOI: 10.1002/jms.3729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
There is an increasing need for analyzing metabolism in a single cell, which is important to understand the nature of cellular heterogeneity, disease, growth and specialization, etc. However, single cell analysis is often challenging for the traces of samples. In the present study, porous metal enrichment probe sampling combined with matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) has been applied for in situ analysis of live onion epidemic cell. Porous probe, treated by corroding copper wire with HCl, was directly inserted into a single cell to get cell solution. A self-made linear actuator was enough to control the penetration of probe into the target cell accurately. Then samples on the tip of probe were eluted and detected by a commercial MALDI-TOF-MS directly. The formation of porous microstructure on the probe surface increased the adsorptive capacity of cell solution. The sensitivity of porous probe sampling was 6 times higher than uncorroded probes generally. This method provides a sensitive and convenient way for the sampling and detection of single cell solution. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Qiang Fu
- Key Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Tang
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Cui
- Key Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| | - Junpeng Xing
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| | - Zhiqiang Liu
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| | - Shuying Liu
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| |
Collapse
|
67
|
Deng J, Yang Y, Xu M, Wang X, Lin L, Yao ZP, Luan T. Surface-Coated Probe Nanoelectrospray Ionization Mass Spectrometry for Analysis of Target Compounds in Individual Small Organisms. Anal Chem 2015; 87:9923-30. [DOI: 10.1021/acs.analchem.5b03110] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jiewei Deng
- MOE
Key Laboratory of Aquatic Product Safety, School of Life Sciences,
South China Sea Bio-Resource Exploitation and Utilization Collaborative
Innovation Center, Sun Yat-Sen University, 135 Xingangxi Road, Guangzhou 510275, China
| | - Yunyun Yang
- Guangdong
Provincial Key Laboratory of Emergency Test for Dangerous Chemicals
and Guangdong Provincial Public Laboratory of Analysis and Testing
Technology, China National Analytical Center Guangzhou, 100 Xianlie
Middle Road, Guangzhou 510070, China
| | - Mingzhi Xu
- MOE
Key Laboratory of Aquatic Product Safety, School of Life Sciences,
South China Sea Bio-Resource Exploitation and Utilization Collaborative
Innovation Center, Sun Yat-Sen University, 135 Xingangxi Road, Guangzhou 510275, China
| | - Xiaowei Wang
- Guangdong
Provincial Key Laboratory of Marine Resources and Coastal Engineering,
School of Marine Sciences, Sun Yat-Sen University, 135 Xingangxi Road, Guangzhou 510275, China
| | - Li Lin
- MOE
Key Laboratory of Aquatic Product Safety, School of Life Sciences,
South China Sea Bio-Resource Exploitation and Utilization Collaborative
Innovation Center, Sun Yat-Sen University, 135 Xingangxi Road, Guangzhou 510275, China
| | - Zhong-Ping Yao
- State
Key Laboratory for Chirosciences and Department of Applied Biology
and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong S. A. R., China
| | - Tiangang Luan
- MOE
Key Laboratory of Aquatic Product Safety, School of Life Sciences,
South China Sea Bio-Resource Exploitation and Utilization Collaborative
Innovation Center, Sun Yat-Sen University, 135 Xingangxi Road, Guangzhou 510275, China
| |
Collapse
|
68
|
Abstract
Controlled immune responses to infection and injury involve complex molecular signalling networks with coordinated and often opposing actions. Eicosanoids and related bioactive lipid mediators derived from polyunsaturated fatty acids constitute a major bioactive lipid network that is among the most complex and challenging pathways to map in a physiological context. Eicosanoid signalling, similar to cytokine signalling and inflammasome formation, has primarily been viewed as a pro-inflammatory component of the innate immune response; however, recent advances in lipidomics have helped to elucidate unique eicosanoids and related docosanoids with anti-inflammatory and pro-resolution functions. This has advanced our overall understanding of the inflammatory response and its therapeutic implications. The induction of a pro-inflammatory and anti-inflammatory eicosanoid storm through the activation of inflammatory receptors by infectious agents is reviewed here.
Collapse
Affiliation(s)
- Edward A Dennis
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Paul C Norris
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
69
|
Murayama Y, Satoh S, Hashiguchi A, Yamazaki K, Hashimoto H, Sakamoto M. Visualization of acetaminophen-induced liver injury by time-of-flight secondary ion mass spectrometry. Anal Biochem 2015. [PMID: 26209348 DOI: 10.1016/j.ab.2015.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Time-of-flight secondary ion mass spectrometry (MS) provides secondary ion images that reflect distributions of substances with sub-micrometer spatial resolution. To evaluate the use of time-of-flight secondary ion MS to capture subcellular chemical changes in a tissue specimen, we visualized cellular damage showing a three-zone distribution in mouse liver tissue injured by acetaminophen overdose. First, we selected two types of ion peaks related to the hepatocyte nucleus and cytoplasm using control mouse liver. Acetaminophen-overdosed mouse liver was then classified into three areas using the time-of-flight secondary ion MS image of the two types of peaks, which roughly corresponded to established histopathological features. The ion peaks related to the cytoplasm decreased as the injury became more severe, and their origin was assumed to be mostly glycogen based on comparison with periodic acid-Schiff staining images and reference compound spectra. This indicated that the time-of-flight secondary ion MS image of the acetaminophen-overdosed mouse liver represented the chemical changes mainly corresponding to glycogen depletion on a subcellular scale. In addition, this technique also provided information on lipid species related to the injury. These results suggest that time-of-flight secondary ion MS has potential utility in histopathological applications.
Collapse
Affiliation(s)
- Yohei Murayama
- Frontier Research Center, Canon, Ohta-ku, Tokyo 146-8501, Japan.
| | - Shuya Satoh
- Frontier Research Center, Canon, Ohta-ku, Tokyo 146-8501, Japan
| | - Akinori Hashiguchi
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ken Yamazaki
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | - Michiie Sakamoto
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
70
|
Passarelli MK, Newman CF, Marshall PS, West A, Gilmore IS, Bunch J, Alexander MR, Dollery CT. Single-Cell Analysis: Visualizing Pharmaceutical and Metabolite Uptake in Cells with Label-Free 3D Mass Spectrometry Imaging. Anal Chem 2015; 87:6696-702. [PMID: 26023862 DOI: 10.1021/acs.analchem.5b00842] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Detecting metabolites and parent compound within a cell type is now a priority for pharmaceutical development. In this context, three-dimensional secondary ion mass spectrometry (SIMS) imaging was used to investigate the cellular uptake of the antiarrhythmic agent amiodarone, a phospholipidosis-inducing pharmaceutical compound. The high lateral resolution and 3D imaging capabilities of SIMS combined with the multiplex capabilities of ToF mass spectrometric detection allows for the visualization of pharmaceutical compound and metabolites in single cells. The intact, unlabeled drug compound was successfully detected at therapeutic dosages in macrophages (cell line: NR8383). Chemical information from endogenous biomolecules was used to correlate drug distributions with morphological features. From this spatial analysis, amiodarone was detected throughout the cell, with the majority of the compound found in the membrane and subsurface regions and absent in the nuclear regions. Similar results were obtained when the macrophages were doped with amiodarone metabolite, desethylamiodarone. The fwhm lateral resolution measured across an intracellular interface in high lateral resolution ion images was approximately 550 nm. Overall, this approach provides the basis for studying cellular uptake of pharmaceutical compounds and their metabolites on the single cell level.
Collapse
Affiliation(s)
- Melissa K Passarelli
- †National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory (NPL), Teddington, Middlesex, TW11 0LW, United Kingdom
| | | | | | | | - Ian S Gilmore
- †National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory (NPL), Teddington, Middlesex, TW11 0LW, United Kingdom
- §University of Nottingham, School of Pharmacy University Park, Nottingham, NG7 2RD, United Kingdom
| | - Josephine Bunch
- †National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory (NPL), Teddington, Middlesex, TW11 0LW, United Kingdom
- §University of Nottingham, School of Pharmacy University Park, Nottingham, NG7 2RD, United Kingdom
| | - Morgan R Alexander
- §University of Nottingham, School of Pharmacy University Park, Nottingham, NG7 2RD, United Kingdom
| | | |
Collapse
|
71
|
Nagata Y, Ishizaki I, Waki M, Ide Y, Hossen MA, Ohnishi K, Miyayama T, Setou M. Palmitic acid, verified by lipid profiling using secondary ion mass spectrometry, demonstrates anti-multiple myeloma activity. Leuk Res 2015; 39:638-45. [DOI: 10.1016/j.leukres.2015.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/10/2014] [Accepted: 02/21/2015] [Indexed: 01/22/2023]
|
72
|
Masaki N, Ishizaki I, Hayasaka T, Fisher GL, Sanada N, Yokota H, Setou M. Three-Dimensional Image of Cleavage Bodies in Nuclei Is Configured Using Gas Cluster Ion Beam with Time-of-Flight Secondary Ion Mass Spectrometry. Sci Rep 2015; 5:10000. [PMID: 25961407 PMCID: PMC4426704 DOI: 10.1038/srep10000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/25/2015] [Indexed: 12/28/2022] Open
Abstract
Structural variations of DNA in nuclei are deeply related with development, aging, and diseases through transcriptional regulation. In order to bare cross sections of samples maintaining sub-micron structures, an Ar2500+-gas cluster ion beam (GCIB) sputter was recently engineered. By introducing GCIB sputter to time-of-flight secondary ion mass spectrometry (TOF-SIMS), we analyzed the 3D configuration and chemical composition of subnuclear structures of pyramidal cells in the CA2 region in mouse brain hippocampus. Depth profiles of chemicals were analyzed as 3D distributions by combining topographic analyses. Signals corresponding to anions such as CN− and PO3− were distributed characteristically in the shape of cell organelles. CN− signals overlapped DAPI fluorescence signals corresponding to nuclei. The clusters shown by PO3− and those of adenine ions were colocalized inside nuclei revealed by the 3D reconstruction. Taking into account their size and their number in each nucleus, those clusters could be in the cleavage bodies, which are a kind of intranuclear structure.
Collapse
Affiliation(s)
- Noritaka Masaki
- Dept of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | | | - Takahiro Hayasaka
- Dept of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Gregory L Fisher
- Physical Electronics, 18725 Lake Drive East, Chanhassen, MN 55317, USA
| | - Noriaki Sanada
- ULVAC-PHI, 370 Enzo, Chigasaki, Kanagawa 253-8522, Japan
| | - Hideo Yokota
- Image Processing Research Team, Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mitsutoshi Setou
- Dept of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
73
|
Hua X, Marshall MJ, Xiong Y, Ma X, Zhou Y, Tucker AE, Zhu Z, Liu S, Yu XY. Two-dimensional and three-dimensional dynamic imaging of live biofilms in a microchannel by time-of-flight secondary ion mass spectrometry. BIOMICROFLUIDICS 2015; 9:031101. [PMID: 26015837 PMCID: PMC4425724 DOI: 10.1063/1.4919807] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
A vacuum compatible microfluidic reactor, SALVI (System for Analysis at the Liquid Vacuum Interface), was employed for in situ chemical imaging of live biofilms using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Depth profiling by sputtering materials in sequential layers resulted in live biofilm spatial chemical mapping. Two-dimensional (2D) images were reconstructed to report the first three-dimensional images of hydrated biofilm elucidating spatial and chemical heterogeneity. 2D image principal component analysis was conducted among biofilms at different locations in the microchannel. Our approach directly visualized spatial and chemical heterogeneity within the living biofilm by dynamic liquid ToF-SIMS.
Collapse
Affiliation(s)
| | - Matthew J Marshall
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99354, USA
| | - Yijia Xiong
- College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences , Lebanon, Oregon 97355, USA
| | - Xiang Ma
- Material Sciences, Pacific Northwest National Laboratory , Richland, Washington 99354, USA
| | - Yufan Zhou
- W. R. Wiley Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99354, USA
| | - Abigail E Tucker
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99354, USA
| | - Zihua Zhu
- W. R. Wiley Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99354, USA
| | - Songqin Liu
- School of Chemistry and Chemical Engineering, Southeast University , Nanjing, Jiangsu Province 211189, People's Republic of China
| | - Xiao-Ying Yu
- Atmospheric Sciences and Global Climate Change Division, Pacific Northwest National Laboratory , Richland, Washington 99354, USA
| |
Collapse
|
74
|
Rudd D, Benkendorff K, Voelcker NH. Solvent separating secondary metabolites directly from biosynthetic tissue for surface-assisted laser desorption ionisation mass spectrometry. Mar Drugs 2015; 13:1410-31. [PMID: 25786067 PMCID: PMC4377991 DOI: 10.3390/md13031410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/13/2015] [Accepted: 03/02/2015] [Indexed: 11/16/2022] Open
Abstract
Marine bioactive metabolites are often heterogeneously expressed in tissues both spatially and over time. Therefore, traditional solvent extraction methods benefit from an understanding of the in situ sites of biosynthesis and storage to deal with heterogeneity and maximize yield. Recently, surface-assisted mass spectrometry (MS) methods namely nanostructure-assisted laser desorption ionisation (NALDI) and desorption ionisation on porous silicon (DIOS) surfaces have been developed to enable the direct detection of low molecular weight metabolites. Since direct tissue NALDI-MS or DIOS-MS produce complex spectra due to the wide variety of other metabolites and fragments present in the low mass range, we report here the use of "on surface" solvent separation directly from mollusc tissue onto nanostructured surfaces for MS analysis, as a mechanism for simplifying data annotation and detecting possible artefacts from compound delocalization during the preparative steps. Water, ethanol, chloroform and hexane selectively extracted a range of choline esters, brominated indoles and lipids from Dicathais orbita hypobranchial tissue imprints. These compounds could be quantified on the nanostructured surfaces by comparison to standard curves generated from the pure compounds. Surface-assisted MS could have broad utility for detecting a broad range of secondary metabolites in complex marine tissue samples.
Collapse
Affiliation(s)
- David Rudd
- Biological Sciences, Faculty of Science and Engineering, Flinders University of South Australia, PO Box 2100, Adelaide, SA 5001, Australia.
| | - Kirsten Benkendorff
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.
| | - Nicolas H Voelcker
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia, GPO Box 2471, Adelaide, South Australia 5001, Australia.
| |
Collapse
|
75
|
Gamble LJ, Graham DJ, Bluestein B, Whitehead NP, Hockenbery D, Morrish F, Porter P. ToF-SIMS of tissues: "lessons learned" from mice and women. Biointerphases 2015; 10:019008. [PMID: 25708638 PMCID: PMC4327923 DOI: 10.1116/1.4907860] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 11/17/2022] Open
Abstract
The ability to image cells and tissues with chemical and molecular specificity could greatly expand our understanding of biological processes. The subcellular resolution mass spectral imaging capability of time of flight secondary ion mass spectrometry (ToF-SIMS) has the potential to acquire chemically detailed images. However, the complexities of biological systems combined with the sensitivity of ToF-SIMS require careful planning of experimental methods. Tissue sample preparation methods of formalin fixation followed by paraffin embedding (FFPE) and OCT embedding are compared. Results show that the FFPE can potentially be used as a tissue sample preparation protocol for ToF-SIMS analysis if a cluster ion pre-sputter is used prior to analysis and if nonlipid related tissue features are the features of interest. In contrast, embedding tissue in OCT minimizes contamination and maintains lipid signals. Various data acquisition methodologies and analysis options are discussed and compared using mouse breast and diaphragm muscle tissue. Methodologies for acquiring ToF-SIMS 2D images are highlighted along with applications of multivariate analysis to better identify specific features in a tissue sections when compared to H&E images of serial sections. Identification of tissue features is necessary for researchers to visualize a molecular map that correlates with specific biological features or functions. Finally, lessons learned from sample preparation, data acquisition, and data analysis methods developed using mouse models are applied to a preliminary analysis of human breast tumor tissue sections.
Collapse
Affiliation(s)
- Lara J Gamble
- Department of Bioengineering, Molecular Engineering and Sciences Building, University of Washington, Box 351653, Seattle, Washington 98195-1653
| | - Daniel J Graham
- Department of Bioengineering, Molecular Engineering and Sciences Building, University of Washington, Box 351653, Seattle, Washington 98195-1653
| | - Blake Bluestein
- Department of Bioengineering, Molecular Engineering and Sciences Building, University of Washington, Box 351653, Seattle, Washington 98195-1653
| | - Nicholas P Whitehead
- Department of Physiology and Biophysics, University of Washington, Box 357290, Seattle, Washington 98195-1653
| | - David Hockenbery
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | | | - Peggy Porter
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
76
|
Brown VL, He L. Current status and future prospects of mass spectrometry imaging of small molecules. Methods Mol Biol 2015; 1203:1-7. [PMID: 25361661 DOI: 10.1007/978-1-4939-1357-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the field of small-molecule studies, vast efforts have been put forth in order to comprehensively characterize and quantify metabolites formed from complex mechanistic pathways within biochemical and biological organisms. Many technologies and methodologies have been developed to aid understanding of the inherent complexities within biological metabolomes. Specifically, mass spectroscopy imaging (MSI) has emerged as a foundational technique in gaining insight into the molecular entities within cells, tissues, and whole-body samples. In this chapter we provide a brief overview of major technical components involved in MSI, including topics such as sample preparation, analyte ionization, ion detection, and data analysis. Emerging applications are briefly summarized as well, but details will be presented in the following chapters.
Collapse
Affiliation(s)
- Victoria L Brown
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, CB 8204, Raleigh, NC, 27695, USA
| | | |
Collapse
|
77
|
|
78
|
Ghorai S, Seneviratne CA, Murray KK. Tip-enhanced laser ablation sample transfer for biomolecule mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:63-70. [PMID: 25287125 PMCID: PMC4276512 DOI: 10.1007/s13361-014-1005-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 06/03/2023]
Abstract
Atomic force microscope (AFM) tip-enhanced laser ablation was used to transfer molecules from thin films to a suspended silver wire for off-line mass spectrometry using laser desorption ionization (LDI) and matrix-assisted laser desorption ionization (MALDI). An AFM with a 30 nm radius gold-coated silicon tip was used to image the sample and to hold the tip 15 nm from the surface for material removal using a 355 nm Nd:YAG laser. The ablated material was captured on a silver wire that was held 300 μm vertically and 100 μm horizontally from the tip. For the small molecules anthracene and rhodamine 6G, the wire was cut and affixed to a metal target using double-sided conductive tape and analyzed by LDI using a commercial laser desorption time-of-flight mass spectrometer. Approximately 100 fg of material was ablated from each of the 1 μm ablation spots and transferred with approximately 3% efficiency. For larger polypeptide molecules angiotensin II and bovine insulin, the captured material was dissolved in saturated matrix solution and deposited on a target for MALDI analysis.
Collapse
Affiliation(s)
- Suman Ghorai
- Louisiana State University, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | | | - Kermit K. Murray
- Louisiana State University, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| |
Collapse
|
79
|
Affiliation(s)
- Bernhard Spengler
- Justus Liebig University Giessen, Institute of Inorganic and Analytical
Chemistry, Schubertstrasse
60, Building 16, 35392 Giessen, Germany
| |
Collapse
|
80
|
Cui Y, Irudayaraj J. Inside single cells: quantitative analysis with advanced optics and nanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:387-407. [PMID: 25430077 DOI: 10.1002/wnan.1321] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/17/2014] [Accepted: 10/29/2014] [Indexed: 01/08/2023]
Abstract
Single-cell explorations offer a unique window to inspect molecules and events relevant to mechanisms and heterogeneity constituting the central dogma of biology. A large number of nucleic acids, proteins, metabolites, and small molecules are involved in determining and fine-tuning the state and function of a single cell at a given time point. Advanced optical platforms and nanotools provide tremendous opportunities to probe intracellular components with single-molecule accuracy, as well as promising tools to adjust single-cell activity. To obtain quantitative information (e.g., molecular quantity, kinetics, and stoichiometry) within an intact cell, achieving the observation with comparable spatiotemporal resolution is a challenge. For single-cell studies, both the method of detection and the biocompatibility are critical factors as they determine the feasibility, especially when considering live-cell analysis. Although a considerable proportion of single-cell methodologies depend on specialized expertise and expensive instruments, it is our expectation that the information content and implication will outweigh the costs given the impact on life science enabled by single-cell analysis.
Collapse
Affiliation(s)
- Yi Cui
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
81
|
Lanni EJ, Dunham SJB, Nemes P, Rubakhin SS, Sweedler JV. Biomolecular imaging with a C60-SIMS/MALDI dual ion source hybrid mass spectrometer: instrumentation, matrix enhancement, and single cell analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1897-907. [PMID: 25183225 DOI: 10.1007/s13361-014-0978-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 05/09/2023]
Abstract
We describe a hybrid MALDI/C(60)-SIMS Q-TOF mass spectrometer and corresponding sample preparation protocols to image intact biomolecules and their fragments in mammalian spinal cord, individual invertebrate neurons, and cultured neuronal networks. A lateral spatial resolution of 10 μm was demonstrated, with further improvement feasible to 1 μm, sufficient to resolve cell outgrowth and interconnections in neuronal networks. The high mass resolution (>13,000 FWHM) and tandem mass spectrometry capability of this hybrid instrument enabled the confident identification of cellular metabolites. Sublimation of a suitable matrix, 2,5-dihydroxybenzoic acid, significantly enhanced the ion signal intensity for intact glycerophospholipid ions from mammalian nervous tissue, facilitating the acquisition of high-quality ion images for low-abundance biomolecules. These results illustrate that the combination of C60-SIMS and MALDI mass spectrometry offers particular benefits for studies that require the imaging of intact biomolecules with high spatial and mass resolution, such as investigations of single cells, subcellular organelles, and communities of cells.
Collapse
Affiliation(s)
- Eric J Lanni
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | | | | | | |
Collapse
|
82
|
Zhang J, Franzreb K, Williams P. Imaging with biomolecular ions generated by massive cluster impact in a time-of-flight secondary ion microscope. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2211-2216. [PMID: 25178725 DOI: 10.1002/rcm.7006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE Imaging mass spectrometry can allow the correlation of molecular identification and spatial organization in biological samples. A useful technique would rapidly generate, from untreated samples, images of lipids, peptides and small proteins with intracellular spatial resolution. We describe the use of massive, highly charged glycerol cluster impact to produce images using ionized, intact biomolecules, with few-micrometer lateral resolution and few-minute acquisition times. METHODS An electrospray primary ion source generating massive clusters of electrolyte-doped glycerol was coupled with a microscope-imaging time-of-flight secondary ion mass spectrometer. A continuous stream of primary cluster ions ejected secondary ions from the sample surface. The secondary ion stream was pulsed in the secondary column and either time-of-flight mass spectra or mass-selected ion images were projected onto a position-sensitive ion detector. The image acquisition times were a few minutes. RESULTS Ionized intact molecules of some common lipids, peptides and small proteins have been detected. A lateral image resolution of ~3 µm has been measured for a bradykinin ion image. CONCLUSIONS Massive cluster impact (MCI) combined with microscope-mode ion imaging allows rapid imaging using ionized intact biomolecules, with a lateral resolution acceptable for applications with biological samples.
Collapse
Affiliation(s)
- Jitao Zhang
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287-1604, USA
| | | | | |
Collapse
|
83
|
Passarelli MK, Wang J, Mohammadi AS, Trouillon R, Gilmore I, Ewing AG. Development of an organic lateral resolution test device for imaging mass spectrometry. Anal Chem 2014; 86:9473-80. [PMID: 25137365 PMCID: PMC4188270 DOI: 10.1021/ac501228x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
An organic lateral resolution test
device has been developed to
measure the performance of imaging mass spectrometry (IMS) systems.
The device contains periodic gratings of polyethylene glycol (PEG)
and lipid bars covering a wide range of spatial frequencies. Microfabrication
technologies were employed to produce well-defined chemical interfaces,
which allow lateral resolution to be assessed using the edge-spread
function (ESF). In addition, the design of the device allows for the
direct measurement of the modulation transfer function (MTF) to assess
image quality. Scanning electron microscopy (SEM) and time-of-flight
secondary ion mass spectrometry (TOF-SIMS) were used to characterize
the device. TOF-SIMS imaging was used to measure the chemical displacement
of biomolecules in matrix-assisted laser desorption/ionization (MALDI)
matrix crystals. In a proof-of-concept experiment, the platform was
also used to evaluate MALDI matrix application methods, specifically
aerosol spray and sublimation methods.
Collapse
Affiliation(s)
- Melissa K Passarelli
- Department of Chemistry and Molecular Biology, University of Gothenburg , SE-405 30, Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
84
|
Pirro V, Oliveri P, Ferreira CR, González-Serrano AF, Machaty Z, Cooks RG. Lipid characterization of individual porcine oocytes by dual mode DESI-MS and data fusion. Anal Chim Acta 2014; 848:51-60. [PMID: 25263116 DOI: 10.1016/j.aca.2014.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/31/2014] [Accepted: 08/02/2014] [Indexed: 01/10/2023]
Abstract
The development of sensitive measurements to analyze individual cells is of relevance to elucidate specialized roles or metabolic functions of each cell under physiological and pathological conditions. Lipids play multiple and critical roles in cellular functions and the application of analytical methods in the lipidomics area is of increasing interest. In this work, in vitro maturation of porcine oocytes was studied. Two independent sources of chemical information (represented by mass spectra in the positive and negative ion modes) from single oocytes (immature oocytes, 24-h and 44-h in vitro matured oocytes) were acquired by using desorption electrospray ionization-mass spectrometry (DESI-MS). Low and mid-level data fusion strategies are presented with the aim of better exploring the large amount of chemical information contained in the two mass spectrometric lipid profiles. Data were explored by principal component analysis (PCA) within the two multi-block approaches to include information on free fatty acids, phospholipids, cholesterol-related molecules, di- and triacylglycerols. After data fusion, clearer differences among immature and in vitro matured porcine oocytes were observed, which provide novel information regarding lipid metabolism throughout oocyte maturation. In particular, changes in TAG composition, as well as increase in fatty acid metabolism and membrane complexity were evidenced during the in vitro maturation process. This information can assist the improvement of in vitro embryo production for porcine species.
Collapse
Affiliation(s)
- Valentina Pirro
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, Turin 10125, Italy.
| | - Paolo Oliveri
- Department of Pharmacy, University of Genoa, Via Brigata Salerno 13, Genoa 16147, Italy
| | | | | | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, 915 W. State St., West Lafayette, IN 47907, USA
| | - Robert Graham Cooks
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
85
|
Ide Y, Waki M, Ishizaki I, Nagata Y, Yamazaki F, Hayasaka T, Masaki N, Ikegami K, Kondo T, Shibata K, Ogura H, Sanada N, Setou M. Single cell lipidomics of SKBR-3 breast cancer cells by using time-of-flight secondary-ion mass spectrometry. SURF INTERFACE ANAL 2014. [DOI: 10.1002/sia.5523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yoshimi Ide
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
- Department of Surgery I; Hamamatsu University School of Medicine; Japan
| | - Michihiko Waki
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
| | | | - Yasuyuki Nagata
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
- Oncology Center; Hamamatsu University School of Medicine; Japan
| | - Fumiyoshi Yamazaki
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
| | - Takahiro Hayasaka
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
| | - Noritaka Masaki
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
| | - Koji Ikegami
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
| | - Takeshi Kondo
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
| | - Kiyoshi Shibata
- Equipment Center; Hamamatsu University School of Medicine; Japan
| | - Hiroyuki Ogura
- Department of Surgery I; Hamamatsu University School of Medicine; Japan
| | | | - Mitsutoshi Setou
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
| |
Collapse
|
86
|
Nagata Y, Ishizaki I, Waki M, Ide Y, Hossen MA, Ohnishi K, Sanada N, Setou M. Glutaraldehyde fixation method for single-cell lipid analysis by time-of-flight secondary ion-mass spectrometry. SURF INTERFACE ANAL 2014. [DOI: 10.1002/sia.5522] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yasuyuki Nagata
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
- Oncology Center; Hamamatsu University School of Medicine; Japan
| | | | - Michihiko Waki
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
| | - Yoshimi Ide
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
- Department of Surgery I; Hamamatsu University School of Medicine; Japan
| | - Md Amir Hossen
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
| | | | | | - Mitsutoshi Setou
- Department of Cell Biology and Anatomy; Hamamatsu University School of Medicine; 1-20-1, Handayama, Higashi-ku Hamamatsu Shizuoka Japan
| |
Collapse
|
87
|
Bhardwaj C, Hanley L. Ion sources for mass spectrometric identification and imaging of molecular species. Nat Prod Rep 2014; 31:756-67. [PMID: 24473154 DOI: 10.1039/c3np70094a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2013 The ability to transfer molecular species to the gas phase and ionize them is central to the study of natural products and other molecular species by mass spectrometry (MS). MS-based strategies in natural products have focused on a few established ion sources, such as electron impact and electrospray ionization. However, a variety of other ion sources are either currently in use to evaluate natural products or show significant future promise. This review discusses these various ion sources in the context of other articles in this special issue, but is also applicable to other fields of analysis, including materials science. Ion sources are grouped based on the current understanding of their predominant ion formation mechanisms. This broad overview groups ion sources into the following categories: electron ionization and single photon ionization; chemical ionization-like and plasma-based; electrospray ionization; and, laser desorption-based. Laser desorption-based methods are emphasized with specific examples given for laser desorption postionization sources and their use in the analysis of intact microbial biofilms. Brief consideration is given to the choice of ion source for various sample types and analyses, including MS imaging.
Collapse
Affiliation(s)
- Chhavi Bhardwaj
- Department of Chemistry, University of Illinois at Chicago, mc 111, Chicago, IL 60607-7061.
| | | |
Collapse
|
88
|
Romanova EV, Aerts JT, Croushore CA, Sweedler JV. Small-volume analysis of cell-cell signaling molecules in the brain. Neuropsychopharmacology 2014; 39:50-64. [PMID: 23748227 PMCID: PMC3857641 DOI: 10.1038/npp.2013.145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 12/19/2022]
Abstract
Modern science is characterized by integration and synergy between research fields. Accordingly, as technological advances allow new and more ambitious quests in scientific inquiry, numerous analytical and engineering techniques have become useful tools in biological research. The focus of this review is on cutting edge technologies that aid direct measurement of bioactive compounds in the nervous system to facilitate fundamental research, diagnostics, and drug discovery. We discuss challenges associated with measurement of cell-to-cell signaling molecules in the nervous system, and advocate for a decrease of sample volumes to the nanoliter volume regimen for improved analysis outcomes. We highlight effective approaches for the collection, separation, and detection of such small-volume samples, present strategies for targeted and discovery-oriented research, and describe the required technology advances that will empower future translational science.
Collapse
Affiliation(s)
- Elena V Romanova
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jordan T Aerts
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Callie A Croushore
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan V Sweedler
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
89
|
Li M, Yang L, Bai Y, Liu H. Analytical Methods in Lipidomics and Their Applications. Anal Chem 2013; 86:161-75. [DOI: 10.1021/ac403554h] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Min Li
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Institute of Analytical Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Li Yang
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Institute of Analytical Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Institute of Analytical Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Institute of Analytical Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
90
|
Sandra K, Sandra P. Lipidomics from an analytical perspective. Curr Opin Chem Biol 2013; 17:847-53. [DOI: 10.1016/j.cbpa.2013.06.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/11/2013] [Indexed: 01/28/2023]
|
91
|
Klepárník K, Foret F. Recent advances in the development of single cell analysis--a review. Anal Chim Acta 2013; 800:12-21. [PMID: 24120162 DOI: 10.1016/j.aca.2013.09.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/23/2013] [Accepted: 09/05/2013] [Indexed: 01/12/2023]
Abstract
Development of techniques for the analysis of the content of individual cells represents an important direction in modern bioanalytical chemistry. While the analysis of chromosomes, organelles, or location of selected proteins has been traditionally the domain of microscopic techniques, the advances in miniaturized analytical systems bring new possibilities for separations and detections of molecules inside the individual cells including smaller molecules such as hormones or metabolites. It should be stressed that the field of single cell analysis is very broad, covering advanced optical, electrochemical and mass spectrometry instrumentation, sensor technology and separation techniques. The number of papers published on single cell analysis has reached several hundred in recent years. Thus a complete literature coverage is beyond the limits of a journal article. The following text provides a critical overview of some of the latest developments with the main focus on mass spectrometry, microseparation methods, electrophoresis in capillaries and microfluidic devices and respective detection techniques for performing single cell analyses.
Collapse
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | |
Collapse
|
92
|
Passarelli MK, Ewing AG. Single-cell imaging mass spectrometry. Curr Opin Chem Biol 2013; 17:854-9. [PMID: 23948695 DOI: 10.1016/j.cbpa.2013.07.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
Abstract
Single-cell imaging mass spectrometry (IMS) is a powerful technique used to map the distributions of endogenous biomolecules with subcellular resolution. Currently, secondary ion mass spectrometry is the predominant technique for single-cell IMS, thanks to its submicron lateral resolution and surface sensitivity. However, recent methodological and technological developments aimed at improving the spatial resolution of matrix assisted laser desorption ionization (MALDI) have made this technique a potential platform of single-cell IMS. MALDI opens the field of single-cell IMS to new possibilities, including single cell proteomic imaging and atmospheric pressure analyses; however, sensitivity is a challenge. In this report, we estimate the availability of proteins and lipids in a single cell and discuss strategies employed to improve sensitivity at the single-cell level.
Collapse
|