51
|
Xie H, Li YT, Lei YM, Liu YL, Xiao MM, Gao C, Pang DW, Huang WH, Zhang ZY, Zhang GJ. Real-Time Monitoring of Nitric Oxide at Single-Cell Level with Porphyrin-Functionalized Graphene Field-Effect Transistor Biosensor. Anal Chem 2016; 88:11115-11122. [PMID: 27779853 DOI: 10.1021/acs.analchem.6b03208] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Hui Xie
- School
of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, People’s Republic of China
| | - Yu-Tao Li
- School
of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, People’s Republic of China
| | - Yong-Min Lei
- School
of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, People’s Republic of China
| | - Yan-Ling Liu
- Key Laboratory
of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Meng-Meng Xiao
- Key Laboratory for
the Physics and Chemistry of Nanodevices, Department of
Electronics, Peking University, No. 5 Yiheyuan Road Haidian District, Beijing 100871, People’s Republic of China
| | - Chuan Gao
- School
of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, People’s Republic of China
| | - Dai-Wen Pang
- Key Laboratory
of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Wei-Hua Huang
- Key Laboratory
of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Zhi-Yong Zhang
- Key Laboratory for
the Physics and Chemistry of Nanodevices, Department of
Electronics, Peking University, No. 5 Yiheyuan Road Haidian District, Beijing 100871, People’s Republic of China
| | - Guo-Jun Zhang
- School
of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, People’s Republic of China
| |
Collapse
|
52
|
Ribeiro JA, Fernandes PM, Pereira CM, Silva F. Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review. Talanta 2016; 160:653-679. [DOI: 10.1016/j.talanta.2016.06.066] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
|
53
|
Single cell amperometry reveals curcuminoids modulate the release of neurotransmitters during exocytosis from PC12 cells. J Electroanal Chem (Lausanne) 2016; 781:30-35. [PMID: 28579928 DOI: 10.1016/j.jelechem.2016.10.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We used single cell amperometry to examine whether curcumin and bisdemethoxycurcumin (BDMC), substances that are suggested to affect learning and memory, can modulate monoamine release from PC12 cells. Our results indicate both curcumin and BDMC need long-term treatment (72 h in this study) to influence exocytosis effectively. By analyzing the parameters calculated from single exocytosis events, it can be concluded that curcumin and BDMC affect exocytosis through different mechanisms. Curcumin accelerates the event dynamics with no significant change of the monoamine amount released from single exocytotic events, whereas BDMC attenuates the amount from single exocytotic event with no significant change of the event dynamics. This comparison of the effect of curcumin and BDMC on exocytosis at the single cell level brings insight into their different mechanisms, which might lead to different biological actions. The effect of curcumin and BDMC on the opening and closing of the exocytotic fusion pore were also investigated. These results might be helpful for understanding the improvement of learning and memory and the anti-depression properties of curcuminoids.
Collapse
|
54
|
Kim E, Liu Y, Ben-Yoav H, Winkler TE, Yan K, Shi X, Shen J, Kelly DL, Ghodssi R, Bentley WE, Payne GF. Fusing Sensor Paradigms to Acquire Chemical Information: An Integrative Role for Smart Biopolymeric Hydrogels. Adv Healthc Mater 2016; 5:2595-2616. [PMID: 27616350 PMCID: PMC5485850 DOI: 10.1002/adhm.201600516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/26/2016] [Indexed: 12/14/2022]
Abstract
The Information Age transformed our lives but it has had surprisingly little impact on the way chemical information (e.g., from our biological world) is acquired, analyzed and communicated. Sensor systems are poised to change this situation by providing rapid access to chemical information. This access will be enabled by technological advances from various fields: biology enables the synthesis, design and discovery of molecular recognition elements as well as the generation of cell-based signal processors; physics and chemistry are providing nano-components that facilitate the transmission and transduction of signals rich with chemical information; microfabrication is yielding sensors capable of receiving these signals through various modalities; and signal processing analysis enhances the extraction of chemical information. The authors contend that integral to the development of functional sensor systems will be materials that (i) enable the integrative and hierarchical assembly of various sensing components (for chemical recognition and signal transduction) and (ii) facilitate meaningful communication across modalities. It is suggested that stimuli-responsive self-assembling biopolymers can perform such integrative functions, and redox provides modality-spanning communication capabilities. Recent progress toward the development of electrochemical sensors to manage schizophrenia is used to illustrate the opportunities and challenges for enlisting sensors for chemical information processing.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Yi Liu
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Hadar Ben-Yoav
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Thomas E Winkler
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Kun Yan
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| | - Jana Shen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, 21228, USA
| | - Reza Ghodssi
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - William E Bentley
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Gregory F Payne
- Institute for Biosystems and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
55
|
Gao T, Li L, Wang B, Zhi J, Xiang Y, Li G. Dynamic Electrochemical Control of Cell Capture-and-Release Based on Redox-Controlled Host–Guest Interactions. Anal Chem 2016; 88:9996-10001. [DOI: 10.1021/acs.analchem.6b02156] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tao Gao
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, China
| | - Liudi Li
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, China
| | - Bei Wang
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, China
| | - Jun Zhi
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, China
| | - Yang Xiang
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, China
| | - Genxi Li
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, China
- Center
for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
56
|
Abstract
The development of more intricate devices for the analysis of small molecules and protein activity in single cells would advance our knowledge of cellular heterogeneity and signaling cascades. Therefore, in this study, a nanokit was produced by filling a nanometer-sized capillary with a ring electrode at the tip with components from traditional kits, which could be egressed outside the capillary by electrochemical pumping. At the tip, femtoliter amounts of the kit components were reacted with the analyte to generate hydrogen peroxide for the electrochemical measurement by the ring electrode. Taking advantage of the nanotip and small volume injection, the nanokit was easily inserted into a single cell to determine the intracellular glucose levels and sphingomyelinase (SMase) activity, which had rarely been achieved. High cellular heterogeneities of these two molecules were observed, showing the significance of the nanokit. Compared with the current methods that use a complicated structural design or surface functionalization for the recognition of the analytes, the nanokit has adapted features of the well-established kits and integrated the kit components and detector in one nanometer-sized capillary, which provides a specific device to characterize the reactivity and concentrations of cellular compounds in single cells.
Collapse
|
57
|
Unique Properties of Core Shell Ag@Au Nanoparticles for the Aptasensing of Bacterial Cells. CHEMOSENSORS 2016. [DOI: 10.3390/chemosensors4030016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
58
|
Baird Z, Pirro V, Ayrton S, Hollerbach A, Hanau C, Marfurt K, Foltz M, Cooks RG, Pugia M. Tumor Cell Detection by Mass Spectrometry Using Signal Ion Emission Reactive Release Amplification. Anal Chem 2016; 88:6971-5. [PMID: 27351295 DOI: 10.1021/acs.analchem.6b02043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A method is presented for the detection of circulating tumor cells (CTC) using mass spectrometry (MS), through reporter-ion amplification. Particles functionalized with short-chain peptides are bound to cells through antibody-antigen interactions. Selective release and MS detection of peptides is shown to detect as few as 690 cells isolated from a 10 mL blood sample. Here we present proof-of-concept results that pave the way for further investigations.
Collapse
Affiliation(s)
- Zane Baird
- Siemens Healthcare Diagnostics , 3400 Middlebury Street, Elkhart, Indiana 46516, United States.,Chemistry Department, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Valentina Pirro
- Chemistry Department, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Stephen Ayrton
- Chemistry Department, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Adam Hollerbach
- Chemistry Department, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Cathleen Hanau
- Siemens Healthcare Diagnostics , 3400 Middlebury Street, Elkhart, Indiana 46516, United States
| | - Karen Marfurt
- Siemens Healthcare Diagnostics , 3400 Middlebury Street, Elkhart, Indiana 46516, United States
| | - Mary Foltz
- Siemens Healthcare Diagnostics , 3400 Middlebury Street, Elkhart, Indiana 46516, United States
| | - R Graham Cooks
- Chemistry Department, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Michael Pugia
- Siemens Healthcare Diagnostics , 3400 Middlebury Street, Elkhart, Indiana 46516, United States
| |
Collapse
|
59
|
Onjiko RM, Morris SE, Moody SA, Nemes P. Single-cell mass spectrometry with multi-solvent extraction identifies metabolic differences between left and right blastomeres in the 8-cell frog (Xenopus) embryo. Analyst 2016; 141:3648-56. [PMID: 27004603 PMCID: PMC4899105 DOI: 10.1039/c6an00200e] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Single-cell metabolic mass spectrometry enables the discovery (untargeted) analysis of small molecules in individual cells. Using single-cell capillary electrophoresis high-resolution mass spectrometry (CE-HRMS), we recently uncovered small-molecule differences between embryonic cells located along the animal-vegetal and dorsal-ventral axes of the 16-cell frog (Xenopus laevis) embryo, raising the question whether metabolic cell heterogeneity also exists along the left-right body axis. To address this question, we here advance single-cell CE-HRMS for identifying and quantifying metabolites in higher analytical sensitivity, and then use the methodology to compare metabolite production between left and right cells. Our strategy utilizes multiple solvents with complementary physicochemical properties to extract small molecules from single cells and improve electrophoretic separation, increasing metabolite ion signals for quantification and tandem HRMS. As a result, we were able to identify 55 different small molecules in D1 cells that were isolated from 8-cell embryos. To quantify metabolite production between left and right cells, we analyzed n = 24 different D1 cells in technical duplicate-triplicate measurements. Statistical and multivariate analysis based on 80 of the most repeatedly quantified compounds revealed 10 distinct metabolites that were significantly differentially accumulated in the left or right cells (p < 0.05 and fold change ≥1.5). These metabolites were enriched in the arginine-proline metabolic pathway in the right, but not the left D1 cells. Besides providing analytical benefits for single-cell HRMS, this work provides new metabolic data on the establishment of normal body asymmetry in the early developing embryo.
Collapse
Affiliation(s)
- Rosemary M Onjiko
- Department of Chemistry, The George Washington University, Washington, DC 20052, USA.
| | | | | | | |
Collapse
|
60
|
Wang X, Li Q, Xu J, Wu S, Xiao T, Hao J, Yu P, Mao L. Rational Design of Bioelectrochemically Multifunctional Film with Oxidase, Ferrocene, and Graphene Oxide for Development of in Vivo Electrochemical Biosensors. Anal Chem 2016; 88:5885-91. [PMID: 27146343 DOI: 10.1021/acs.analchem.6b00720] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study demonstrates a new strategy to develop in vivo electrochemical biosensors through rational design and simple formation of bioelectrochemically multifunctional film (BMF). The BMF is rationally designed by first efficiently incorporating oxidase, ferrocene mediator, and graphene oxide into polymaleimidostyrene/polystyrene (PMS/PS) matrix to form a homogeneous mixture and then simply formed by drop-coating the mixture onto solid conducting substrate. By using the as-formed BMF, electrochemical biosensors could be constructed with a technical simplicity and high reproducibility. To illustrate the BMF-based biosensors for in vivo applications, we directly couple the biosensors to in vivo microdialysis to establish an online electrochemical system (OECS) for in vivo monitoring of glucose in rat auditory cortex during salicylate-induced tinnitus model. The OECS with the BMF-based biosensor as the detector shows a linear response toward glucose within a concentration range from 50 to 500 μM with a detection limit of 10 μM (S/N = 3). Additionally, the OECS is stable and does not suffer from the interference from the electroactive species endogenously coexisting in the brain microdialysate. With the BMF-based OECS, the basal level of glucose in the microdialysate continuously sampled from rat auditory cortex is determined to be 120 ± 10 μM (n = 5). After the rats were administrated with salicylate to induce transient tinnitus, the microdialysate glucose concentration in the rat auditory cortex remarkably increased to 433 ± 190 μM (n = 5) at the time point of 1.5 h. This study essentially offers a new, technically simple and reproducible approach to development of in vivo electrochemical biosensors, which is envisaged to be relatively useful for understanding of the molecular basis of brain functions.
Collapse
Affiliation(s)
- Xiuyun Wang
- School of Chemistry, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Qian Li
- School of Chemistry, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Jingjing Xu
- School of Chemistry, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Shuo Wu
- School of Chemistry, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Tongfang Xiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) , Beijing 100190, China
| | - Jie Hao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) , Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) , Beijing 100190, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS) , Beijing 100190, China
| |
Collapse
|
61
|
Verbeck G, Hamilton J. One-Cell Analysis as a Technique for True Single-Cell Analysis of Organelles in Breast Tumor and Adjacent Normal Tissue to Profile Fatty Acid Composition of Triglyceride Species. ACTA ACUST UNITED AC 2016. [DOI: 10.6000/1927-7229.2016.05.02.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
62
|
Li X, Zhao S, Hu H, Liu YM. A microchip electrophoresis-mass spectrometric platform with double cell lysis nano-electrodes for automated single cell analysis. J Chromatogr A 2016; 1451:156-163. [PMID: 27207575 DOI: 10.1016/j.chroma.2016.05.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/01/2016] [Accepted: 05/04/2016] [Indexed: 01/11/2023]
Abstract
Capillary electrophoresis-based single cell analysis has become an essential approach in researches at the cellular level. However, automation of single cell analysis has been a challenge due to the difficulty to control the number of cells injected and the irreproducibility associated with cell aggregation. Herein we report the development of a new microfluidic platform deploying the double nano-electrode cell lysis technique for automated analysis of single cells with mass spectrometric detection. The proposed microfluidic chip features integration of a cell-sized high voltage zone for quick single cell lysis, a microfluidic channel for electrophoretic separation, and a nanoelectrospray emitter for ionization in MS detection. Built upon this platform, a microchip electrophoresis-mass spectrometric method (MCE-MS) has been developed for automated single cell analysis. In the method, cell introduction, cell lysis, and MCE-MS separation are computer controlled and integrated as a cycle into consecutive assays. Analysis of large numbers of individual PC-12 neuronal cells (both intact and exposed to 25mM KCl) was carried out to determine intracellular levels of dopamine (DA) and glutamic acid (Glu). It was found that DA content in PC-12 cells was higher than Glu content, and both varied from cell to cell. The ratio of intracellular DA to Glu was 4.20±0.8 (n=150). Interestingly, the ratio drastically decreased to 0.38±0.20 (n=150) after the cells are exposed to 25mM KCl for 8min, suggesting the cells released DA promptly and heavily while they released Glu at a much slower pace in response to KCl-induced depolarization. These results indicate that the proposed MCE-MS analytical platform may have a great potential in researches at the cellular level.
Collapse
Affiliation(s)
- Xiangtang Li
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St., Jackson, MS, 39217, United States
| | - Shulin Zhao
- College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, 51004, China
| | - Hankun Hu
- Wuhan University Zhongnan Hospital, Wuhan 430071, China; Wuhan Yaogu Bio-tech, Wuhan 430075, China
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St., Jackson, MS, 39217, United States; Wuhan Yaogu Bio-tech, Wuhan 430075, China.
| |
Collapse
|
63
|
Lin Y, Wang K, Xu Y, Li L, Luo J, Wang C. Facile development of Au-ring microelectrode for in vivo analysis using non-toxic polydopamine as multifunctional material. Biosens Bioelectron 2016; 78:274-280. [DOI: 10.1016/j.bios.2015.11.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/13/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
|
64
|
Zhang Y, Clausmeyer J, Babakinejad B, Córdoba AL, Ali T, Shevchuk A, Takahashi Y, Novak P, Edwards C, Lab M, Gopal S, Chiappini C, Anand U, Magnani L, Coombes RC, Gorelik J, Matsue T, Schuhmann W, Klenerman D, Sviderskaya EV, Korchev Y. Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis. ACS NANO 2016; 10:3214-3221. [PMID: 26816294 PMCID: PMC4933202 DOI: 10.1021/acsnano.5b05211] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements.
Collapse
Affiliation(s)
- Yanjun Zhang
- Department of Medicine, London W12 0NN, United Kingdom
| | - Jan Clausmeyer
- Analytical Chemistry—Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | | | | | - Tayyibah Ali
- Department of Medicine, London W12 0NN, United Kingdom
| | | | - Yasufumi Takahashi
- Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Pavel Novak
- School of Engineering and Materials Science, Queen Mary, University of London, London E1 4NS, United Kingdom
| | | | - Max Lab
- Department of Cardiac Medicine, National Heart and Lung Institute, London W12 0NN, United Kingdom
| | - Sahana Gopal
- Department of Medicine, London W12 0NN, United Kingdom
| | - Ciro Chiappini
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Uma Anand
- Department of Medicine, London W12 0NN, United Kingdom
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom
| | - R. Charles Coombes
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom
| | - Julia Gorelik
- Department of Cardiac Medicine, National Heart and Lung Institute, London W12 0NN, United Kingdom
| | - Tomokazu Matsue
- Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
- Corresponding Authors (Wolfgang Schuhmann)
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- (David Klenerman)
| | - Elena V. Sviderskaya
- Cell Biology and Genetics Research Centre, St. George's
University of London, London SW17 0RE, United Kingdom
- (Elena V. Sviderskaya)
| | - Yuri Korchev
- Department of Medicine, London W12 0NN, United Kingdom
- (Yuri Korchev)
| |
Collapse
|
65
|
Cahill JF, Kertesz V, Van Berkel GJ. Laser dissection sampling modes for direct mass spectral analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:611-9. [PMID: 26842582 DOI: 10.1002/rcm.7477] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 05/12/2023]
Abstract
RATIONALE Laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. METHODS The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis of single cells and tissue. RESULTS Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (~4-15 μm) even when agglomerated together. Turbid Allium Cepa cells (~150 μm) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. CONCLUSIONS Laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.
Collapse
Affiliation(s)
- John F Cahill
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA
| | - Vilmos Kertesz
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA
| | - Gary J Van Berkel
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA
| |
Collapse
|
66
|
Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization. SENSORS 2016; 16:232. [PMID: 26891303 PMCID: PMC4801608 DOI: 10.3390/s16020232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/21/2016] [Accepted: 02/02/2016] [Indexed: 01/09/2023]
Abstract
This article reviews recent developments in microfluidic systems enabling high-throughput characterization of single-cell proteins. Four key perspectives of microfluidic platforms are included in this review: (1) microfluidic fluorescent flow cytometry; (2) droplet based microfluidic flow cytometry; (3) large-array micro wells (microengraving); and (4) large-array micro chambers (barcode microchips). We examine the advantages and limitations of each technique and discuss future research opportunities by focusing on three key performance parameters (absolute quantification, sensitivity, and throughput).
Collapse
|
67
|
Quérard J, Le Saux T, Gautier A, Alcor D, Croquette V, Lemarchand A, Gosse C, Jullien L. Kinetics of Reactive Modules Adds Discriminative Dimensions for Selective Cell Imaging. Chemphyschem 2016; 17:1396-413. [PMID: 26833808 DOI: 10.1002/cphc.201500987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 11/07/2022]
Abstract
Living cells are chemical mixtures of exceptional interest and significance, whose investigation requires the development of powerful analytical tools fulfilling the demanding constraints resulting from their singular features. In particular, multiplexed observation of a large number of molecular targets with high spatiotemporal resolution appears highly desirable. One attractive road to address this analytical challenge relies on engaging the targets in reactions and exploiting the rich kinetic signature of the resulting reactive module, which originates from its topology and its rate constants. This review explores the various facets of this promising strategy. We first emphasize the singularity of the content of a living cell as a chemical mixture and suggest that its multiplexed observation is significant and timely. Then, we show that exploiting the kinetics of analytical processes is relevant to selectively detect a given analyte: upon perturbing the system, the kinetic window associated to response read-out has to be matched with that of the targeted reactive module. Eventually, we introduce the state-of-the-art of cell imaging exploiting protocols based on reaction kinetics and draw some promising perspectives.
Collapse
Affiliation(s)
- Jérôme Quérard
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| | - Thomas Le Saux
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| | - Arnaud Gautier
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| | - Damien Alcor
- INSERM U1065, C3M; 151 route Saint Antoine de Ginestière, BP 2 3194 F-06204 Nice Cedex 3 France
| | - Vincent Croquette
- Ecole Normale Supérieure; Département de Physique and Département de Biologie, Laboratoire de Physique Statistique UMR CNRS-ENS 8550; 24 rue Lhomond F-75005 Paris France
| | - Annie Lemarchand
- Sorbonne Universités; UPMC Univ Paris 06, Laboratoire de Physique Théorique de la Matière Condensée; 4 place Jussieu, case courrier 121 75252 Paris cedex 05 France
- CNRS, UMR 7600 LPTMC; 75005 Paris France
| | - Charlie Gosse
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS; route de Nozay 91460 Marcoussis France
| | - Ludovic Jullien
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| |
Collapse
|
68
|
Phelps MS, Sturtevant D, Chapman KD, Verbeck GF. Nanomanipulation-Coupled Matrix-Assisted Laser Desorption/ Ionization-Direct Organelle Mass Spectrometry: A Technique for the Detailed Analysis of Single Organelles. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:187-193. [PMID: 26238327 DOI: 10.1007/s13361-015-1232-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 06/04/2023]
Abstract
We describe a novel technique combining precise organelle microextraction with deposition and matrix-assisted laser desorption/ionization (MALDI) for a rapid, minimally invasive mass spectrometry (MS) analysis of single organelles from living cells. A dual-positioner nanomanipulator workstation was utilized for both extraction of organelle content and precise co-deposition of analyte and matrix solution for MALDI-direct organelle mass spectrometry (DOMS) analysis. Here, the triacylglycerol (TAG) profiles of single lipid droplets from 3T3-L1 adipocytes were acquired and results validated with nanoelectrospray ionization (NSI) MS. The results demonstrate the utility of the MALDI-DOMS technique as it enabled longer mass analysis time, higher ionization efficiency, MS imaging of the co-deposited spot, and subsequent MS/MS capabilities of localized lipid content in comparison to NSI-DOMS. This method provides selective organellar resolution, which complements current biochemical analyses and prompts for subsequent subcellular studies to be performed where limited samples and analyte volume are of concern. Graphical Abstract ᅟ.
Collapse
|
69
|
Trouillon R, Gijs MAM. Dynamic electrochemical quantitation of dopamine release from a cells-on-paper system. RSC Adv 2016. [DOI: 10.1039/c6ra02487d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A simple hybrid microfluidic/electrochemical system is used to observe the secretion of neurotransmitters from a cells-on-paper system.
Collapse
Affiliation(s)
- Raphaël Trouillon
- Laboratory of Microsystems
- Ecole Polytechnique Fédérale de Lausanne
- CH-1015 Lausanne
- Switzerland
| | - Martin A. M. Gijs
- Laboratory of Microsystems
- Ecole Polytechnique Fédérale de Lausanne
- CH-1015 Lausanne
- Switzerland
| |
Collapse
|
70
|
Fu Q, Tang J, Cui M, Xing J, Liu Z, Liu S. Application of porous metal enrichment probe sampling to single cell analysis using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:62-68. [PMID: 26757073 DOI: 10.1002/jms.3729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
There is an increasing need for analyzing metabolism in a single cell, which is important to understand the nature of cellular heterogeneity, disease, growth and specialization, etc. However, single cell analysis is often challenging for the traces of samples. In the present study, porous metal enrichment probe sampling combined with matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) has been applied for in situ analysis of live onion epidemic cell. Porous probe, treated by corroding copper wire with HCl, was directly inserted into a single cell to get cell solution. A self-made linear actuator was enough to control the penetration of probe into the target cell accurately. Then samples on the tip of probe were eluted and detected by a commercial MALDI-TOF-MS directly. The formation of porous microstructure on the probe surface increased the adsorptive capacity of cell solution. The sensitivity of porous probe sampling was 6 times higher than uncorroded probes generally. This method provides a sensitive and convenient way for the sampling and detection of single cell solution. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Qiang Fu
- Key Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Tang
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Cui
- Key Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| | - Junpeng Xing
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| | - Zhiqiang Liu
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| | - Shuying Liu
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China
| |
Collapse
|
71
|
ABE H, KANNO Y, INO K, INOUE KY, SUDA A, KUNIKATA R, MATSUDAIRA M, SHIKU H, MATSUE T. Electrochemical Imaging for Single-cell Analysis of Cell Adhesion Using a Collagen-coated Large-scale Integration (LSI)-based Amperometric Device. ELECTROCHEMISTRY 2016. [DOI: 10.5796/electrochemistry.84.364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hiroya ABE
- Graduate School of Environmental Studies, Tohoku University
| | - Yusuke KANNO
- Graduate School of Environmental Studies, Tohoku University
| | - Kosuke INO
- Graduate School of Environmental Studies, Tohoku University
| | - Kumi Y. INOUE
- Graduate School of Environmental Studies, Tohoku University
| | | | | | | | - Hitoshi SHIKU
- Graduate School of Environmental Studies, Tohoku University
| | - Tomokazu MATSUE
- Graduate School of Environmental Studies, Tohoku University
- WPI-Advanced Institute for Materials Research, Tohoku University
| |
Collapse
|
72
|
Yuan F, Zhang DW, Liu JX, Zhou YL, Zhang XX. Phytochemical profiling in single plant cell by high performance liquid chromatography-mass spectrometry. Analyst 2016; 141:6338-6343. [DOI: 10.1039/c6an01539e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and universal method was successfully established to profile and identify bioactive phytochemicals and common metabolites in the single plant cell by using high performance liquid chromatography coupled with high resolution electrospray ionization mass spectrometry.
Collapse
Affiliation(s)
- Fang Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - De-Wen Zhang
- School of Engineering and Materials Science
- Queen Mary University of London
- London E1 4NS
- UK
- China Academy of Engineering Physics
| | - Jing-Xin Liu
- Petrochina Research Institute
- Petrochina Company Limited
- Beijing
- China
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| |
Collapse
|
73
|
IDA H, INO K, SUZUKI J, TAKAHASHI Y, SHIKU H, MATSUE T. Redox Cycling-based Electrochemical Reporter Gene Assay for Single Cells Using a Scanning Electrochemical Microscope-microwell System. ELECTROCHEMISTRY 2016. [DOI: 10.5796/electrochemistry.84.308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hiroki IDA
- Graduate School of Environmental Studies, Tohoku University
| | - Kosuke INO
- Graduate School of Environmental Studies, Tohoku University
| | - Junya SUZUKI
- Graduate School of Environmental Studies, Tohoku University
| | - Yasufumi TAKAHASHI
- Division of Electrical Engineering and Computer Science, Kanazawa University
- PRESTO, JST
| | - Hitoshi SHIKU
- Graduate School of Environmental Studies, Tohoku University
| | - Tomokazu MATSUE
- Graduate School of Environmental Studies, Tohoku University
- WPI-Advanced Institute for Materials Research, Tohoku University
| |
Collapse
|
74
|
|
75
|
|
76
|
Nanosensors for neurotransmitters. Anal Bioanal Chem 2015; 408:2727-41. [DOI: 10.1007/s00216-015-9160-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/19/2015] [Accepted: 10/28/2015] [Indexed: 01/14/2023]
|
77
|
Wu C, Rehman FU, Li J, Ye J, Zhang Y, Su M, Jiang H, Wang X. Real-Time Evaluation of Live Cancer Cells by an in Situ Surface Plasmon Resonance and Electrochemical Study. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24848-24854. [PMID: 26492438 DOI: 10.1021/acsami.5b08066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This work presents a new strategy of the combination of surface plasmon resonance (SPR) and electrochemical study for real-time evaluation of live cancer cells treated with daunorubicin (DNR) at the interface of the SPR chip and living cancer cells. The observations demonstrate that the SPR signal changes could be closely related to the morphology and mass changes of adsorbed cancer cells and the variation of the refractive index of the medium solution. The results of light microscopy images and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide studies also illustrate the release or desorption of HepG2 cancer cells, which were due to their apoptosis after treatment with DNR. It is evident that the extracellular concentration of DNR residue can be readily determined through electrochemical measurements. The decreases in the magnitudes of SPR signals were linearly related to cell survival rates, and the combination of SPR with electrochemical study could be utilized to evaluate the potential therapeutic efficiency of bioactive agents to cells. Thus, this label-free, real-time SPR-electrochemical detection technique has great promise in bioanalysis or monitoring of relevant treatment processes in clinical applications.
Collapse
Affiliation(s)
- Changyu Wu
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , Nanjing 210096, China
| | - Fawad Ur Rehman
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , Nanjing 210096, China
| | - Jingyuan Li
- Laboratory Animal Center, Nantong University , Nantong 226001, China
| | - Jing Ye
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , Nanjing 210096, China
| | - Yuanyuan Zhang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , Nanjing 210096, China
| | - Meina Su
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , Nanjing 210096, China
| |
Collapse
|
78
|
Zhang L, Vertes A. Energy Charge, Redox State, and Metabolite Turnover in Single Human Hepatocytes Revealed by Capillary Microsampling Mass Spectrometry. Anal Chem 2015; 87:10397-405. [DOI: 10.1021/acs.analchem.5b02502] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Linwen Zhang
- Department
of Chemistry,
W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, District of Columbia 20052, United States
| | - Akos Vertes
- Department
of Chemistry,
W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
79
|
Duay J, Elliott J, Shear JB, Stevenson KJ. Transparent Carbon Ultramicroelectrode Arrays: Figures of Merit for Quantitative Spectroelectrochemistry for Biogenic Analysis of Reactive Oxygen Species. Anal Chem 2015; 87:10109-16. [DOI: 10.1021/acs.analchem.5b02804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jonathon Duay
- Department of Chemistry,
Center for Nano and Molecular Science and Technology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Janine Elliott
- Department of Chemistry,
Center for Nano and Molecular Science and Technology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jason B. Shear
- Department of Chemistry,
Center for Nano and Molecular Science and Technology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Keith J. Stevenson
- Department of Chemistry,
Center for Nano and Molecular Science and Technology, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
80
|
Garty G, Ehsan MU, Buonanno M, Yang Z, Sweedler JV, Brenner DJ. Microbeam-coupled capillary electrophoresis. RADIATION PROTECTION DOSIMETRY 2015; 166:188-191. [PMID: 25870435 PMCID: PMC4572141 DOI: 10.1093/rpd/ncv148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Within the first few microseconds following a charged particle traversal of a cell, numerous oxygen and nitrogen radicals are formed along the track. Presented here is a method, using capillary electrophoresis, for simultaneous measurement, within an individual cell, of specific reactive oxygen species, such as the superoxide radical ([Formula: see text]) as well as the native and oxidised forms of glutathione, an ubiquitous anti-oxidant that assists the cell in coping with these species. Preliminary data are presented as well as plans for integrating this system into the charged particle microbeam at Columbia University.
Collapse
Affiliation(s)
- G Garty
- Radiological Research Accelerator Facility, Columbia University, P.O. Box 21, Irvington, NY 10533, USA
| | - M U Ehsan
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - M Buonanno
- Radiological Research Accelerator Facility, Columbia University, P.O. Box 21, Irvington, NY 10533, USA
| | - Z Yang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - J V Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - D J Brenner
- Radiological Research Accelerator Facility, Columbia University, P.O. Box 21, Irvington, NY 10533, USA
| |
Collapse
|
81
|
Cahill JF, Darlington TK, Fitzgerald C, Schoepp NG, Beld J, Burkart MD, Prather KA. Online Analysis of Single Cyanobacteria and Algae Cells under Nitrogen-Limited Conditions Using Aerosol Time-of-Flight Mass Spectrometry. Anal Chem 2015; 87:8039-46. [DOI: 10.1021/acs.analchem.5b02326] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- John F. Cahill
- Department
of Chemistry and Biochemistry, University of California, La Jolla, California 92093, United States
| | | | | | - Nathan G. Schoepp
- Department
of Chemistry and Biochemistry, University of California, La Jolla, California 92093, United States
| | - Joris Beld
- Department
of Chemistry and Biochemistry, University of California, La Jolla, California 92093, United States
| | - Michael D. Burkart
- Department
of Chemistry and Biochemistry, University of California, La Jolla, California 92093, United States
| | - Kimberly A. Prather
- Department
of Chemistry and Biochemistry, University of California, La Jolla, California 92093, United States
- Scripps
Institution of Oceanography, University of California, La Jolla, California 92093, United States
| |
Collapse
|
82
|
Passarelli MK, Newman CF, Marshall PS, West A, Gilmore IS, Bunch J, Alexander MR, Dollery CT. Single-Cell Analysis: Visualizing Pharmaceutical and Metabolite Uptake in Cells with Label-Free 3D Mass Spectrometry Imaging. Anal Chem 2015; 87:6696-702. [PMID: 26023862 DOI: 10.1021/acs.analchem.5b00842] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Detecting metabolites and parent compound within a cell type is now a priority for pharmaceutical development. In this context, three-dimensional secondary ion mass spectrometry (SIMS) imaging was used to investigate the cellular uptake of the antiarrhythmic agent amiodarone, a phospholipidosis-inducing pharmaceutical compound. The high lateral resolution and 3D imaging capabilities of SIMS combined with the multiplex capabilities of ToF mass spectrometric detection allows for the visualization of pharmaceutical compound and metabolites in single cells. The intact, unlabeled drug compound was successfully detected at therapeutic dosages in macrophages (cell line: NR8383). Chemical information from endogenous biomolecules was used to correlate drug distributions with morphological features. From this spatial analysis, amiodarone was detected throughout the cell, with the majority of the compound found in the membrane and subsurface regions and absent in the nuclear regions. Similar results were obtained when the macrophages were doped with amiodarone metabolite, desethylamiodarone. The fwhm lateral resolution measured across an intracellular interface in high lateral resolution ion images was approximately 550 nm. Overall, this approach provides the basis for studying cellular uptake of pharmaceutical compounds and their metabolites on the single cell level.
Collapse
Affiliation(s)
- Melissa K Passarelli
- †National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory (NPL), Teddington, Middlesex, TW11 0LW, United Kingdom
| | | | | | | | - Ian S Gilmore
- †National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory (NPL), Teddington, Middlesex, TW11 0LW, United Kingdom
- §University of Nottingham, School of Pharmacy University Park, Nottingham, NG7 2RD, United Kingdom
| | - Josephine Bunch
- †National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory (NPL), Teddington, Middlesex, TW11 0LW, United Kingdom
- §University of Nottingham, School of Pharmacy University Park, Nottingham, NG7 2RD, United Kingdom
| | - Morgan R Alexander
- §University of Nottingham, School of Pharmacy University Park, Nottingham, NG7 2RD, United Kingdom
| | | |
Collapse
|
83
|
Dittrich P, Ibáñez AJ. Analysis of metabolites in single cells-what is the best micro-platform? Electrophoresis 2015; 36:2196-2206. [PMID: 25929796 DOI: 10.1002/elps.201500045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/04/2015] [Accepted: 04/04/2015] [Indexed: 11/11/2022]
Abstract
This review covers new innovations and developments in the field of single-cell level analysis of metabolites, involving the role of microfluidic and microarray platforms to manipulate and handle the cells prior their detection. Microfluidic and microarray platforms have shown great promise. The latest developments demonstrate their potential to identify a particular cell or even an ensemble of cells (sharing a common property or phenotype) that co-exist in a much larger cell population. The reason for this is the capability of these platforms to perform several complex analytical processes, such as: cleanup, sorting, derivatization, separation, and detection, with great robustness, speed, and reduced sample/reagent consumption. Here, we present several examples that illustrate the rapid strides that have been made for the routine analysis of metabolites by coupling different microfluidics and microarrays devices to a wide range of analytical detectors (e.g. fluorescent microscopy, electrochemical, and mass spectrometry). Herein, we also present selected examples detailing the use of microfluidics and microarrays in the visualization of the natural occurring cell-to-cell heterogeneity in isogenic populations, in particular during the response to external cues. The possibility to accurate monitor the cell-to-cell heterogeneity based on different levels of key metabolites is of clinical relevance, since cell-to-cell heterogeneity can influence, for example, the outcome of a drug treatment.
Collapse
Affiliation(s)
- Petra Dittrich
- ETH Zurich - Chemie und Angewandte Biowissenschaften, Wolfgang-Pauli-Str. 10, Zurich, 8093, Switzerland
| | - Alfredo J Ibáñez
- ETH Zurich - Department of Chemistry and Applied Biosciences, Vladimir-Prelog-weg 3, Zurich, 8093, Switzerland
| |
Collapse
|
84
|
Ong TH, Kissick DJ, Jansson ET, Comi TJ, Romanova EV, Rubakhin SS, Sweedler JV. Classification of Large Cellular Populations and Discovery of Rare Cells Using Single Cell Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Anal Chem 2015; 87:7036-42. [PMID: 26076060 PMCID: PMC4511976 DOI: 10.1021/acs.analchem.5b01557] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cell-to-cell variability and functional heterogeneity are integral features of multicellular organisms. Chemical classification of cells into cell type is important for understanding cellular specialization as well as organismal function and organization. Assays to elucidate these chemical variations are best performed with single cell samples because tissue homogenates average the biochemical composition of many different cells and oftentimes include extracellular components. Several single cell microanalysis techniques have been developed but tend to be low throughput or require preselection of molecular probes that limit the information obtained. Mass spectrometry (MS) is an untargeted, multiplexed, and sensitive analytical method that is well-suited for studying chemically complex individual cells that have low analyte content. In this work, populations of cells from the rat pituitary, the rat pancreatic islets of Langerhans, and from the Aplysia californica nervous system, are classified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI) MS by their peptide content. Cells were dispersed onto a microscope slide to generate a sample where hundreds to thousands of cells were separately located. Optical imaging was used to determine the cell coordinates on the slide, and these locations were used to automate the MS measurements to targeted cells. Principal component analysis was used to classify cellular subpopulations. The method was modified to focus on the signals described by the lower principal components to explore rare cells having a unique peptide content. This approach efficiently uncovers and classifies cellular subtypes as well as discovers rare cells from large cellular populations.
Collapse
Affiliation(s)
- Ta-Hsuan Ong
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David J Kissick
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Erik T Jansson
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Troy J Comi
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stanislav S Rubakhin
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
85
|
Wu C, Kim HK, van Wezel GP, Choi YH. Metabolomics in the natural products field--a gateway to novel antibiotics. DRUG DISCOVERY TODAY. TECHNOLOGIES 2015; 13:11-17. [PMID: 26190678 DOI: 10.1016/j.ddtec.2015.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/09/2015] [Accepted: 01/19/2015] [Indexed: 06/04/2023]
Abstract
Metabolomics is a high throughput analytical technique used to globally measure low molecular weight metabolites, allowing simultaneous metabolic comparison of different biological samples and thus highlighting differentially produced compounds as potential biomarkers. Although microbes are renowned as prolific sources of antibiotics, the traditional approach for new anti-infectives discovery is time-consuming and labor-intensive. In this review, the use of NMR- or MS-based metabolomics is proposed as an efficient approach to find antimicrobials in microbial single- or co-cultures.
Collapse
Affiliation(s)
- Changsheng Wu
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Hye Kyong Kim
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| |
Collapse
|
86
|
Kuriyama K, Shintaku H, Santiago JG. Isotachophoresis for fractionation and recovery of cytoplasmic RNA and nucleus from single cells. Electrophoresis 2015; 36:1658-62. [PMID: 25820552 DOI: 10.1002/elps.201500040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 12/26/2022]
Abstract
There is a substantial need for simultaneous analyses of RNA and DNA from individual single cells. Such analysis provides unique evidence of cell-to-cell differences and the correlation between gene expression and genomic mutation in highly heterogeneous cell populations. We present a novel microfluidic system that leverages isotachophoresis to fractionate and isolate cytoplasmic RNA and genomic DNA (gDNA) from single cells. The system uniquely enables independent, sequence-specific analyses of these critical markers. Our system uses a microfluidic chip with a simple geometry and four end-channel electrodes, and completes the entire process in <5 min, including lysis, purification, fractionation, and delivery to DNA and RNA output reservoirs, each containing high quality and purity aliquots with no measurable cross-contamination of cytoplasmic RNA versus gDNA. We demonstrate our system with simultaneous, sequence-specific quantitation using off-chip RT-qPCR and qPCR for simultaneous cytoplasmic RNA and gDNA analyses, respectively.
Collapse
Affiliation(s)
- Kentaro Kuriyama
- Department of Mechanical Engineering, Stanford University, Escondido, Stanford, CA, USA
| | - Hirofumi Shintaku
- Department of Mechanical Engineering, Stanford University, Escondido, Stanford, CA, USA.,Department of Micro Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Japan
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford University, Escondido, Stanford, CA, USA
| |
Collapse
|
87
|
Ghita A, Pascut FC, Sottile V, Denning C, Notingher I. Applications of Raman micro-spectroscopy to stem cell technology: label-free molecular discrimination and monitoring cell differentiation. EPJ TECHNIQUES AND INSTRUMENTATION 2015; 2:6. [PMID: 26161299 PMCID: PMC4486413 DOI: 10.1140/epjti/s40485-015-0016-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/05/2015] [Indexed: 05/27/2023]
Abstract
Stem cell therapy is widely acknowledged as a key medical technology of the 21st century which may provide treatments for many currently incurable diseases. These cells have an enormous potential for cell replacement therapies to cure diseases such as Parkinson's disease, diabetes and cardiovascular disorders, as well as in tissue engineering as a reliable cell source for providing grafts to replace and repair diseased tissues. Nevertheless, the progress in this field has been difficult in part because of lack of techniques that can measure non-invasively the molecular properties of cells. Such repeated measurements can be used to evaluate the culture conditions during differentiation, cell quality and phenotype heterogeneity of stem cell progeny. Raman spectroscopy is an optical technique based on inelastic scattering of laser photons by molecular vibrations of cellular molecules and can be used to provide chemical fingerprints of cells or organelles without fixation, lysis or use of labels and other contrast enhancing chemicals. Because differentiated cells are specialized to perform specific functions, these cells produce specific biochemicals that can be detected by Raman micro-spectroscopy. This mini-review paper describes applications of Raman micro-scpectroscopy to measure moleculare properties of stem cells during differentiation in-vitro. The paper focuses on time- and spatially-resolved Raman spectral measurements that allow repeated investigation of live stem cells in-vitro.
Collapse
Affiliation(s)
- Adrian Ghita
- />School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD UK
| | - Flavius C Pascut
- />School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD UK
| | - Virginie Sottile
- />School of Medicine, University of Nottingham, Nottingham, NG7 2RD UK
| | - Chris Denning
- />School of Medicine, University of Nottingham, Nottingham, NG7 2RD UK
| | - Ioan Notingher
- />School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD UK
| |
Collapse
|
88
|
Cole LM, Clench MR. Mass spectrometry imaging for the proteomic study of clinical tissue. Proteomics Clin Appl 2015; 9:335-41. [PMID: 25620724 DOI: 10.1002/prca.201400103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/12/2014] [Accepted: 01/21/2015] [Indexed: 11/08/2022]
Abstract
Over the last decade, MALDI-MS imaging has been used by researchers to explore areas of proteomics, lipidomics and metabolomics in samples of clinical origin for both targeted and global biomarker analysis. Numerous technological advancements in MS and clinical tissue MS imaging have been accomplished; hence, in this article we aim to critically discuss whether MS imaging has now in fact become a true champion of the 'Omics Era'. In order to assess the potential for it to be routinely used in the clinical setting, it is pertinent to discuss some of its limitations, and to examine how these have been addressed by researchers. The key limitations of the technique we will discuss in this viewpoint article are as follows: sample throughput; relevance to patients, the availability of validated/standardised techniques; and integration with conventional pathology and other medical imaging techniques. Good progress has been made over the last 5 years in overcoming these limitations that had previously restricted the use of this technology in the clinical setting.
Collapse
Affiliation(s)
- Laura M Cole
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | | |
Collapse
|
89
|
Ong TH, Tillmaand EG, Makurath M, Rubakhin SS, Sweedler JV. Mass spectrometry-based characterization of endogenous peptides and metabolites in small volume samples. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:732-40. [PMID: 25617659 DOI: 10.1016/j.bbapap.2015.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/22/2014] [Accepted: 01/16/2015] [Indexed: 12/22/2022]
Abstract
Technologies to assay single cells and their extracellular microenvironments are valuable in elucidating biological function, but there are challenges. Sample volumes are low, the physicochemical parameters of the analytes vary widely, and the cellular environment is chemically complex. In addition, the inherent difficulty of isolating individual cells and handling small volume samples complicates many experimental protocols. Here we highlight a number of mass spectrometry (MS)-based measurement approaches for characterizing the chemical content of small volume analytes, with a focus on methods used to detect intracellular and extracellular metabolites and peptides from samples as small as individual cells. MS has become one of the most effective means for analyzing small biological samples due to its high sensitivity, low analyte consumption, compatibility with a wide array of sampling approaches, and ability to detect a large number of analytes with different properties without preselection. Having access to a flexible portfolio of MS-based methods allows quantitative, qualitative, untargeted, targeted, multiplexed, and spatially resolved investigations of single cells and their similarly scaled extracellular environments. Combining MS with on-line and off-line sample conditioning tools, such as microfluidic and capillary electrophoresis systems, significantly increases the analytical coverage of the sample's metabolome and peptidome, and improves individual analyte characterization/identification. Small volume assays help to reveal the causes and manifestations of biological and pathological variability, as well as the functional heterogeneity of individual cells within their microenvironments and within cellular populations. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.
Collapse
Affiliation(s)
- Ta-Hsuan Ong
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Emily G Tillmaand
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Monika Makurath
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Stanislav S Rubakhin
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
90
|
Nanostructure imaging mass spectrometry: the role of fluorocarbons in metabolite analysis and yoctomole level sensitivity. Methods Mol Biol 2015; 1203:141-9. [PMID: 25361674 DOI: 10.1007/978-1-4939-1357-2_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanostructure imaging mass spectrometry (NIMS) has become an effective technology for generating ions in the gas phase, providing high sensitivity and imaging capabilities for small molecules, metabolites, drugs, and drug metabolites. Specifically, laser desorption from the nanostructure surfaces results in efficient energy transfer, low background chemical noise, and the nondestructive release of analyte ions into the gas phase. The modification of nanostructured surfaces with fluorous compounds, either covalent or non-covalent, has played an important role in gaining high efficiency/sensitivity by facilitating analyte desorption from the nonadhesive surfaces, and minimizing the amount of laser energy required. In addition, the hydrophobic fluorinated nanostructure surfaces have aided in concentrating deposited samples into fine micrometer-sized spots, a feature that further facilitates efficient desorption/ionization. These fluorous nanostructured surfaces have opened up NIMS to very broad applications including enzyme activity assays and imaging, providing low background, efficient energy transfer, nondestructive analyte ion generation, super-hydrophobic surfaces, and ultra-high detection sensitivity.
Collapse
|
91
|
Vasdekis AE, Stephanopoulos G. Review of methods to probe single cell metabolism and bioenergetics. Metab Eng 2015; 27:115-135. [PMID: 25448400 PMCID: PMC4399830 DOI: 10.1016/j.ymben.2014.09.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 11/26/2022]
Abstract
Single cell investigations have enabled unexpected discoveries, such as the existence of biological noise and phenotypic switching in infection, metabolism and treatment. Herein, we review methods that enable such single cell investigations specific to metabolism and bioenergetics. Firstly, we discuss how to isolate and immobilize individuals from a cell suspension, including both permanent and reversible approaches. We also highlight specific advances in microbiology for its implications in metabolic engineering. Methods for probing single cell physiology and metabolism are subsequently reviewed. The primary focus therein is on dynamic and high-content profiling strategies based on label-free and fluorescence microspectroscopy and microscopy. Non-dynamic approaches, such as mass spectrometry and nuclear magnetic resonance, are also briefly discussed.
Collapse
Affiliation(s)
- Andreas E Vasdekis
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99354, USA.
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Room 56-469, Cambridge, MA 02139, USA.
| |
Collapse
|
92
|
Affiliation(s)
- Bernhard Spengler
- Justus Liebig University Giessen, Institute of Inorganic and Analytical
Chemistry, Schubertstrasse
60, Building 16, 35392 Giessen, Germany
| |
Collapse
|
93
|
Cui Y, Veryovkin IV, Majeski MW, Cavazos DR, Hanley L. High Lateral Resolution vs Molecular Preservation in near-IR fs-Laser Desorption Postionization Mass Spectrometry. Anal Chem 2014; 87:367-71. [DOI: 10.1021/ac5041154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang Cui
- Department
of Chemistry, University of Illinois at Chicago, MC 111, Chicago, Illinois 60607, United States
| | - Igor V. Veryovkin
- Department
of Chemistry, University of Illinois at Chicago, MC 111, Chicago, Illinois 60607, United States
| | - Michael W. Majeski
- Department
of Chemistry, University of Illinois at Chicago, MC 111, Chicago, Illinois 60607, United States
| | - Daniel R. Cavazos
- Department
of Chemistry, University of Illinois at Chicago, MC 111, Chicago, Illinois 60607, United States
| | - Luke Hanley
- Department
of Chemistry, University of Illinois at Chicago, MC 111, Chicago, Illinois 60607, United States
| |
Collapse
|
94
|
Direct digestion of proteins in living cells into peptides for proteomic analysis. Anal Bioanal Chem 2014; 407:1027-32. [PMID: 25326882 DOI: 10.1007/s00216-014-8173-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/03/2014] [Accepted: 09/08/2014] [Indexed: 12/28/2022]
|
95
|
Miyashita SI, Groombridge AS, Fujii SI, Takatsu A, Chiba K, Inagaki K. Time-resolved ICP-MS measurement: a new method for elemental and multiparametric analysis of single cells. ANAL SCI 2014; 30:219-24. [PMID: 24521907 DOI: 10.2116/analsci.30.219] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Time-resolved inductively coupled plasma mass spectrometry (ICP-MS) has attracted much attention for elemental and multiparametric analysis of single cells, instead of a classical bulk analysis of large amount of cells after a dissolution. In the time-resolved measurement, cells are directly introduced into the plasma via nebulizing or micro drop dispensing, and then ion plumes corresponding to single cells are individually detected with a high time resolution. The sensitivity and cell throughput in the measurement strongly depend on the time resolution. A high cell introduction efficiency into the plasma supports for a reduction of cell consumption. Biomolecules can also be measured through the attachment of elemental tags, and then the amount distribution of elements and biomolecules in single cells can be evaluated, while providing information concerning cell-to-cell variations. By applying ICP time-of-flight mass spectrometry (ICP-TOFMS), multiparametric analysis of elements and biomolecules can be achieved similar to that by a flow cytometer. This article highlights the technical aspects of the time-resolved ICP-MS measurement technique for elemental and multiparametric analysis of single cells.
Collapse
Affiliation(s)
- Shin-ichi Miyashita
- Environmental Standards Section, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology
| | | | | | | | | | | |
Collapse
|
96
|
Mueller L, Traub H, Jakubowski N, Drescher D, Baranov VI, Kneipp J. Trends in single-cell analysis by use of ICP-MS. Anal Bioanal Chem 2014; 406:6963-77. [PMID: 25270864 DOI: 10.1007/s00216-014-8143-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/14/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
The analysis of single cells is a growing research field in many disciplines such as toxicology, medical diagnosis, drug and cancer research or metallomics, and different methods based on microscopic, mass spectrometric, and spectroscopic techniques are under investigation. This review focuses on the most recent trends in which inductively coupled plasma mass spectrometry (ICP-MS) and ICP optical emission spectrometry (ICP-OES) are applied for single-cell analysis using metal atoms being intrinsically present in cells, taken up by cells (e.g., nanoparticles), or which are artificially bound to a cell. For the latter, especially element tagged antibodies are of high interest and are discussed in the review. The application of different sample introduction systems for liquid analysis (pneumatic nebulization, droplet generation) and elemental imaging by laser ablation ICP-MS (LA-ICP-MS) of single cells are highlighted. Because of the high complexity of biological systems and for a better understanding of processes and dynamics of biologically or medically relevant cells, the authors discuss the idea of "multimodal spectroscopies."
Collapse
Affiliation(s)
- Larissa Mueller
- BAM Federal Institute for Materials Research and Testing, 12200, Berlin, Germany,
| | | | | | | | | | | |
Collapse
|
97
|
Grünberger A, Wiechert W, Kohlheyer D. Single-cell microfluidics: opportunity for bioprocess development. Curr Opin Biotechnol 2014; 29:15-23. [DOI: 10.1016/j.copbio.2014.02.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/29/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
|
98
|
Real-time quantification of protein expression and translocation at individual cell resolution using imaging-dish-based live cell array. Anal Bioanal Chem 2014; 406:7085-101. [PMID: 25258284 DOI: 10.1007/s00216-014-8157-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/19/2014] [Accepted: 09/02/2014] [Indexed: 01/19/2023]
Abstract
Cell populations represent intrinsically heterogeneous systems with a high level of spatiotemporal complexity. Monitoring and understanding cell-to-cell diversity is essential for the research and application of intra- and interpopulation variations. Optical analysis of live cells is challenging since both adherent and nonadherent cells change their spatial location. However, most currently available single-cell techniques do not facilitate treatment and monitoring of the same live cells over time throughout multistep experiments. An imaging-dish-based live cell array (ID-LCA) has been developed and produced for cell handling, culturing, and imaging of numerous live cells. The dish is composed of an array of pico scale cavities-pico wells (PWs) embossed on its glass bottom. Cells are seeded, cultured, treated, and spatiotemporally measured on the ID-LCA, while each cell or small group of cells are locally constrained in the PWs. Finally, predefined cells can be retrieved for further evaluation. Various types of ID-LCAs were used in this proof-of-principle work, to demonstrate on-ID-LCA transfection of fluorescently tagged chimeric proteins, as well as the detection and kinetic analysis of their induced translocation. High variability was evident within cell populations with regard to protein expression levels as well as the extent and dynamics of protein redistribution. The association of these parameters with cell morphology and functional parameters was examined. Both the new methodology and the device facilitate research of the translocation process at individual cell resolution within large populations and thus, can potentially be used in high-throughput fashion.
Collapse
|
99
|
Passarelli MK, Wang J, Mohammadi AS, Trouillon R, Gilmore I, Ewing AG. Development of an organic lateral resolution test device for imaging mass spectrometry. Anal Chem 2014; 86:9473-80. [PMID: 25137365 PMCID: PMC4188270 DOI: 10.1021/ac501228x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
An organic lateral resolution test
device has been developed to
measure the performance of imaging mass spectrometry (IMS) systems.
The device contains periodic gratings of polyethylene glycol (PEG)
and lipid bars covering a wide range of spatial frequencies. Microfabrication
technologies were employed to produce well-defined chemical interfaces,
which allow lateral resolution to be assessed using the edge-spread
function (ESF). In addition, the design of the device allows for the
direct measurement of the modulation transfer function (MTF) to assess
image quality. Scanning electron microscopy (SEM) and time-of-flight
secondary ion mass spectrometry (TOF-SIMS) were used to characterize
the device. TOF-SIMS imaging was used to measure the chemical displacement
of biomolecules in matrix-assisted laser desorption/ionization (MALDI)
matrix crystals. In a proof-of-concept experiment, the platform was
also used to evaluate MALDI matrix application methods, specifically
aerosol spray and sublimation methods.
Collapse
Affiliation(s)
- Melissa K Passarelli
- Department of Chemistry and Molecular Biology, University of Gothenburg , SE-405 30, Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
100
|
Trouillon R, Gijs MAM. Delayed voltammetric with respect to amperometric electrochemical detection of concentration changes in microchannels. LAB ON A CHIP 2014; 14:2929-2940. [PMID: 24990070 DOI: 10.1039/c4lc00493k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The time response of an electrode incorporated into a fluidic channel to variations in analyte concentration of the outer-sphere redox probe ferrocenemethanol was investigated both for amperometry (AMP) and cyclic voltammetry (CV). The experimental data show that the temporal resolution of CV is not as good as that of AMP, as CV cannot properly detect fast concentration transients. The delayed response of CV was previously reported, for neurotransmitters, and mostly attributed to the adsorption of the analyte on the electrode surface. By using an outer-sphere redox couple, we show that mass transport also significantly delays the response of CV. The experimental delay time in CV was understood from mass transfer limitations due to the relaxation of the diffusion layer during repeated potential scanning. Furthermore, a robust protocol for the analysis of fast concentration transients was established, using the impulse and modulation transfer functions of the system. This method was found to be more precise than the mere analysis of undifferentiated traces in the time domain. As a proof of concept, the effect of increased viscosity was investigated, showing that AMP was more sensitive than CV to these variations. Overall, this analysis underlines further the enhanced temporal sensitivity of AMP over CV, at the expense of decreased chemical resolution, potentially having implications for in situ electrochemical detection of biologically relevant molecules.
Collapse
Affiliation(s)
- Raphaël Trouillon
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|