51
|
Thermo-sensitive imprinted polymer embedded carbon dots using epitope approach. Biosens Bioelectron 2016; 79:187-92. [DOI: 10.1016/j.bios.2015.12.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 11/22/2022]
|
52
|
Qin YP, Li DY, He XW, Li WY, Zhang YK. Preparation of High-Efficiency Cytochrome c-Imprinted Polymer on the Surface of Magnetic Carbon Nanotubes by Epitope Approach via Metal Chelation and Six-Membered Ring. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10155-10163. [PMID: 27049646 DOI: 10.1021/acsami.6b00794] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel epitope molecularly imprinted polymer on the surface of magnetic carbon nanotubes (MCNTs@EMIP) was successfully fabricated to specifically recognize target protein cytochrome c (Cyt C) with high performance. The peptides sequences corresponding to the surface-exposed C-terminus domains of Cyt C was selected as epitope template molecule, and commercially available zinc acrylate and ethylene glycol dimethacrylate (EGDMA) were employed as functional monomer and cross-linker, respectively, to synthesize MIP via free radical polymerization. The epitope was immobilized via metal chelation and six-membered ring formed between the functional monomer and the hydroxyl and amino groups of the epitope. The resulting MCNTs@EMIP exhibited specific recognition ability toward target Cyt C including more satisfactory imprinting factor (about 11.7) than that of other reported imprinting methods. In addition, the MCNTs@EMIP demonstrated a high adsorption amount (about 780.0 mg g(-1)) and excellent selectivity. Besides, the magnetic property of the support material made the processes easy and highly efficient by assistance of an external magnetic field. High-performance liquid chromatography analysis of Cyt C in bovine blood real sample and protein mixture indicated that the specificity was not affected by other competitive proteins, which forcefully stated that the MCNTs@EMIP had potential to be applied in bioseparation area. In brief, this study provided a new protocol to detect target protein in complex sample via epitope imprinting approach and surface imprinting strategy.
Collapse
Affiliation(s)
- Ya-Ping Qin
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , 94 Weijin Road, Tianjin 300071, China
| | - Dong-Yan Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , 94 Weijin Road, Tianjin 300071, China
| | - Xi-Wen He
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , 94 Weijin Road, Tianjin 300071, China
| | - Wen-You Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , 94 Weijin Road, Tianjin 300071, China
| | - Yu-Kui Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , 94 Weijin Road, Tianjin 300071, China
- National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
53
|
Li S, Yang K, Deng N, Min Y, Liu L, Zhang L, Zhang Y. Thermoresponsive Epitope Surface-Imprinted Nanoparticles for Specific Capture and Release of Target Protein from Human Plasma. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5747-5751. [PMID: 26906290 DOI: 10.1021/acsami.5b11415] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Among various artificial antibodies, epitope imprinted polymer has been paid increasingly attention. To modulate the "adsorption and release" behavior by environment stimuli, N-isopropylacrylamide, was adopted to fabricate the thermoresponsive epitope imprinted sites. The prepared imprinted materials could adsorb 46.6 mg/g of target protein with the imprinting factor of 4.0. The template utilization efficiency could reach as high as 8.21%. More importantly, in the real sample, the materials could controllably capture the target protein from the human plasma at 45 °C and release it at 4 °C, which demonstrated the "on-demand" application potentials of such materials in the biomolecule recognition field.
Collapse
Affiliation(s)
- Senwu Li
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Kaiguang Yang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Nan Deng
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yi Min
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Lukuan Liu
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
- University of Chinese Academy of Sciences , Beijing 100049, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, China
| | - Lihua Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Yukui Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
54
|
Molecularly imprinted plasmonic nanosensor for selective SERS detection of protein biomarkers. Biosens Bioelectron 2016; 80:433-441. [PMID: 26874111 DOI: 10.1016/j.bios.2016.01.092] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 11/21/2022]
Abstract
Molecularly imprinted plasmonic nanosensor has been prepared via the rational design of an ultrathin polymer layer on the surface of gold nanorods imprinted with the target protein. This nanosensor enabled selective fishing-out of the target protein biomarker even from a complex real sample such as human serum. Sensitive SERS detection of the protein biomarkers with a strong Raman enhancement was achieved by formation of protein imprinted gold nanorods aggregates, stacking of protein imprinted gold nanorods onto a glass plate, or self-assembly of protein imprinted gold nanorods into close-packed array. High specificity and sensitivity of this method were demonstrated with a detection limit of at least 10(-8)mol/L for the target protein. This could provide a promising alternative for the currently used immunoassays and fluorescence detection, and offer an ultrasensitive, non-destructive, and label-free technique for clinical diagnosis applications.
Collapse
|
55
|
Li S, Yang K, Zhao B, Li X, Liu L, Chen Y, Zhang L, Zhang Y. Epitope imprinting enhanced IMAC (EI-IMAC) for highly selective purification of His-tagged protein. J Mater Chem B 2016; 4:1960-1967. [DOI: 10.1039/c5tb02505b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Selectivity of epitope imprinted sites is introduced on the IMAC surface through epitope surface imprinting. The obtained epitope imprinting enhanced IMAC (EI-IMAC) could purify His-tagged proteins with high selectivity without any major interference from the host proteins.
Collapse
Affiliation(s)
- Senwu Li
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Kaiguang Yang
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Baofeng Zhao
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Xiao Li
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Lukuan Liu
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Yuanbo Chen
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Lihua Zhang
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Yukui Zhang
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| |
Collapse
|
56
|
Yang X, Dong X, Zhang K, Yang F, Guo Z. A molecularly imprinted polymer as an antibody mimic with affinity for lysine acetylated peptides. J Mater Chem B 2016; 4:920-928. [DOI: 10.1039/c5tb02620b] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Molecularly imprinted polymer with affinity for acetylated lysines prepared by the combination of epitope and surface-confined imprinting strategy.
Collapse
Affiliation(s)
- Xu Yang
- College of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - Xiangchao Dong
- College of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology & Tianjin Key Laboratory of Medical Epigenetics
- Tianjin Medical University
- Tianjin 300070
- China
| | - Fangfang Yang
- College of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - Zhenchang Guo
- Department of Biochemistry and Molecular Biology & Tianjin Key Laboratory of Medical Epigenetics
- Tianjin Medical University
- Tianjin 300070
- China
| |
Collapse
|
57
|
Qu X, Wang F, Sun Y, Tian Y, Chen R, Ma X, Liu C. Selective extraction of bioactive glycoprotein in neutral environment through Concanavalin A mediated template immobilization and dopamine surface imprinting. RSC Adv 2016. [DOI: 10.1039/c6ra11040a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inspired by the sugar–lectin interaction, Concanavalin A mediated glycoprotein pre-immobilization, combined with dopamine polymerization, is employed to fabricate a glycoprotein imprint that can work in physiological environments.
Collapse
Affiliation(s)
- Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- The State Key Laboratory of Bioreactor Engineering
| | - Feifei Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- The State Key Laboratory of Bioreactor Engineering
| | - Yi Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- The State Key Laboratory of Bioreactor Engineering
| | - Yu Tian
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- The State Key Laboratory of Bioreactor Engineering
| | - Rui Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- The State Key Laboratory of Bioreactor Engineering
| | - Xiaoyu Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- The State Key Laboratory of Bioreactor Engineering
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- The State Key Laboratory of Bioreactor Engineering
| |
Collapse
|
58
|
Liu D, Song N, Feng W, Jia Q. Synthesis of graphene oxide functionalized surface-imprinted polymer for the preconcentration of tetracycline antibiotics. RSC Adv 2016. [DOI: 10.1039/c5ra22462d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, we synthesized graphene oxide functionalized a surface-imprinted polymer based on the self-polymerization of dopamine to generate the imprinted cavity.
Collapse
Affiliation(s)
- Dan Liu
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Naizhong Song
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Wei Feng
- The First Hospital of Jilin University
- Jilin University
- Changchun 130021
- China
| | - Qiong Jia
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
59
|
Li W, Sun Y, Yang C, Yan X, Guo H, Fu G. Fabrication of Surface Protein-Imprinted Nanoparticles Using a Metal Chelating Monomer via Aqueous Precipitation Polymerization. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27188-27196. [PMID: 26588023 DOI: 10.1021/acsami.5b07946] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Molecular imprinting is a promising way for constructing artificial protein recognition materials, but it has been challenged by difficulties such as restricted biomacromolecule transfer in the cross-linked polymer networks, and reduced template-monomer interactions that are due to the required aqueous media. Herein, we propose a strategy for imprinting of histidine (His)-exposed proteins by combining previous approaches such as surface imprinting over nanostructures, utilization of metal coordination interactions, and adoption of aqueous precipitation polymerization capable of forming reversible physical crosslinks. With lysozyme as a model template bearing His residues, imprinted polymer nanoshells were grafted over vinyl-modified nanoparticles by aqueous precipitation copolymerization of a Cu(2+) chelating monomer with a temperature-responsive monomer carried out at 37 °C, above the volume phase-transition temperature (VPTT) of the final copolymer. The imprinted nanoshells showed significant temperature sensitivity and the template removal could be facilitated by swelling of the imprinted layers at 4 °C, below the VPTT. The resultant core-shell imprinted nanoparticles exhibited strikingly high rebinding selectivity against a variety of nontemplate proteins. An imprinting factor up to 22.7 was achieved, which is among the best values reported for protein imprinting, and a rather high specific binding capacity of 67.3 mg/g was obtained. Moreover, this approach was successfully extended to preliminary imprinting of hemoglobin, another protein with accessible His. Therefore, it may be a versatile method for fabrication of high-performance surface-imprinted nanoparticles toward His-exposed proteins.
Collapse
Affiliation(s)
- Wei Li
- Department of Chemistry, School of Science, Tianjin University , Tianjin 300072, China
| | - Yan Sun
- Department of Chemistry, School of Science, Tianjin University , Tianjin 300072, China
| | - Chongchong Yang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Xianming Yan
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Hao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Guoqi Fu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| |
Collapse
|
60
|
Affiliation(s)
- Sheng Tang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hong Zhang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hian Kee Lee
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- National University of Singapore Environmental Research Institute, T-Lab Building #02-01, 5A Engineering
Drive 1, Singapore 117411, Singapore
- Tropical
Marine Science Institute, National University of Singapore, S2S, 18
Kent Ridge Road, Singapore 119227, Singapore
| |
Collapse
|
61
|
Wackerlig J, Schirhagl R. Applications of Molecularly Imprinted Polymer Nanoparticles and Their Advances toward Industrial Use: A Review. Anal Chem 2015; 88:250-61. [DOI: 10.1021/acs.analchem.5b03804] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Judith Wackerlig
- Department
of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstrasse 14 (UZA2), A-1090 Vienna, Austria
| | - Romana Schirhagl
- Department
of Biomedical Engineering, University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| |
Collapse
|