51
|
Wu L, Zeng W, Ishigaki Y, Zhang J, Bai H, Harimoto T, Suzuki T, Ye D. A Ratiometric Photoacoustic Probe with a Reversible Response to Hydrogen Sulfide and Hydroxyl Radicals for Dynamic Imaging of Liver Inflammation. Angew Chem Int Ed Engl 2022; 61:e202209248. [DOI: 10.1002/anie.202209248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Luyan Wu
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Wenhui Zeng
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yusuke Ishigaki
- Department of Chemistry Faculty of Science Hokkaido University N10 W8, North-ward Sapporo 060-0810 Japan
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - He Bai
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Takashi Harimoto
- Department of Chemistry Faculty of Science Hokkaido University N10 W8, North-ward Sapporo 060-0810 Japan
| | - Takanori Suzuki
- Department of Chemistry Faculty of Science Hokkaido University N10 W8, North-ward Sapporo 060-0810 Japan
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
52
|
Yin D, Yao C, Chen Y, He Z, Yu P, Sun X, Wang S, Zhang F. HClO-Activated Near-Infrared Fluorogenic Aza-BODIPY-Bisferrocene Triad with High Turn-on Ratio for In Vivo Biosensing. Adv Healthc Mater 2022; 11:e2201139. [PMID: 35815541 DOI: 10.1002/adhm.202201139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 01/27/2023]
Abstract
Optically monitoring hypochlorous acid (HClO) in living body favors diagnosis and study of inflammatory diseases. However, this has been hampered by limited strategies to develop highly fluorogenic tools in the deep-penetration near-infrared spectrum. Herein, a near-infrared aza-BODIPY-bisferrocene triad Fc2 -CBDP that unexpectedly achieves an exceptionally sensitive and selective fluorescence turn-on (>220-fold) response toward HClO through single-ferrocene oxidation and boron-alkynyl hydrolysis cascade is reported. Mechanism insight shows that Fc2 -CBDP features "enhanced charge transfer"-caused quenching due to intramolecular bisferrocene electronic coupling, which is decoupled in the reaction with HClO. The utility of Fc2 -CBDP for intracellular HClO imaging is evaluated and, more importantly, in vivo high-contrast deep-tissue imaging of lymphatic inflammation and colitis is realized. This work provides new insights into both HClO and ferrocene chemistry, and extends the reach of fluorogenic strategies in the near-infrared biosensing.
Collapse
Affiliation(s)
- Dongrui Yin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Chenzhi Yao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Ying Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Zuyang He
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Peng Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Xingwen Sun
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| |
Collapse
|
53
|
Ma W, Zhou Y, Wang Y, Li B, Zheng T, Cheng Z, Mei R. Palladium‐Catalyzed Remote δ‐C–H Selenylation of Arylethylamide and Alkenylethylamide Derivatives. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Yunhao Zhou
- Sichuan Industrial Institute of Antibiotics CHINA
| | | | | | | | | | | |
Collapse
|
54
|
Karbalaei S, Franke A, Jordan A, Rose C, Pokkuluri PR, Beyers RJ, Zahl A, Ivanović‐Burmazović I, Goldsmith CR. A Highly Water‐ and Air‐Stable Iron‐Containing MRI Contrast Agent Sensor for H
2
O
2. Chemistry 2022; 28:e202201179. [DOI: 10.1002/chem.202201179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Sana Karbalaei
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Alicja Franke
- Department of Chemistry Ludwig-Maximilians-Universität München 81377 München Germany
| | - Aubree Jordan
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Cayla Rose
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - P. Raj Pokkuluri
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Ronald J. Beyers
- Auburn University Magnetic Resonance Imaging Research Center Auburn AL 36849 USA
| | - Achim Zahl
- Department of Chemistry and Pharmacy Friedrich-Alexander University Erlangen-Nuremberg 91058 Erlangen Germany
| | | | | |
Collapse
|
55
|
Liu M, Yan K, Wen J, Zhang N, Chen X, Li X, Wang X. PIFA Induced Regioselective C–H Chalcogenylation of Benzo[d]imidazo[5,1‐b]thiazoles under Mild Conditions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Min Liu
- Qufu Normal University College of Chemistry and Chemical Engineering Qufu CHINA
| | - Kelu Yan
- Qufu Normal University School of Chemistry and Chemical Engineering Jingxuan Road 57 273165 Qufu CHINA
| | - Jiangwei Wen
- Qufu Normal University College of Chemistry and Chemical Engineering Qufu CHINA
| | - Ning Zhang
- Qufu Normal University College of Chemistry and Chemical Engineering Qufu CHINA
| | - Xinyu Chen
- Qufu Normal University College of Chemistry and Chemical Engineering Qufu CHINA
| | - Xue Li
- Qufu Normal University College of Chemistry and Chemical Engineering Qufu CHINA
| | - Xiu Wang
- Qufu Normal University College of Chemistry and Chemical Engineering Qufu CHINA
| |
Collapse
|
56
|
Wu L, Zeng W, Ishigaki Y, Zhang J, Bai H, Harimoto T, Suzuki T, Ye D. A Ratiometric Photoacoustic Probe with a Reversible Response to Hydrogen Sulfide and Hydroxyl Radicals for Dynamic Imaging of Liver Inflammation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Luyan Wu
- Nanjing University Chemistry CHINA
| | | | | | | | - He Bai
- Nanjing University chemistry CHINA
| | | | | | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Chemistry 163 Xianlin Road, 210023 Nanjing CHINA
| |
Collapse
|
57
|
Ma Q, Xu S, Zhai Z, Wang K, Liu X, Xiao H, Zhuo S, Liu Y. Recent Progress of Small‐Molecule Ratiometric Fluorescent Probes for Peroxynitrite in Biological Systems. Chemistry 2022; 28:e202200828. [DOI: 10.1002/chem.202200828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Qingqing Ma
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| | - Shanlin Xu
- Department of Oncology, Zibo Central Hospital Zibo 255036 P. R. China
| | - Zhaodong Zhai
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| | - Kai Wang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| | - Xueli Liu
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| | - Shuping Zhuo
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| | - Yuying Liu
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| |
Collapse
|
58
|
Zhou Z, Wang Y, Hu P. Oxidation-Responsive Micelles for Drug Release Monitoring and Bioimaging of Inflammation Based on FRET Effect in vitro and in vivo. Int J Nanomedicine 2022; 17:2447-2457. [PMID: 35669000 PMCID: PMC9166312 DOI: 10.2147/ijn.s356202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose A new approach to monitor drug release and image inflammatory reactions in vitro and in vivo based on FRET mechanism was reported. Methods In this study, mixed micelles containing a synthesized fluorescent donor DAN-PPS-mPEG and its quencher DAB-PPS-mPEG were prepared. Their stabilities, self-assembling and oxidation-responsiveness towards oxidants were tested in vitro and in vivo. Results The conjugated polymers were synthesized and the morphological change and the fluorescent spectra of the prepared micellar system were measured. After incubating the DAN/DAB-PPS-mPEG mixed micelles with stimulated L929 fibroblast cells, the result of confocal laser microscopy showed fluorescence restoration of the micelles. Furthermore, an acute inflammatory injury mouse model was used to test the micelles in vivo. The micelles showed its ability to visualize the inflammatory site in the abdomen of the mice. Conclusion The results confirmed that DAN/DAB-PPS-mPEG mixed micelles can respond to oxidants and release encapsulated cargos with corresponding fluorescence restoration, and visualize the inflammatory cells in vitro and inflammatory reactions in vivo.
Collapse
Affiliation(s)
- Ziqiang Zhou
- College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Yanfang Wang
- First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, People's Republic of China
| | - Ping Hu
- College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
59
|
Yang B, Zhao G, Liu J, Chu T, Zhang D, Yang X. Memorial Viewpoint for Keli Han. J Phys Chem A 2022. [DOI: 10.1021/acs.jpca.2c03155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian, Liaoning 116923, P. R. China
| | - Guangjiu Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P.R. China
| | - Jianyong Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian, Liaoning 116923, P. R. China
| | - Tianshu Chu
- School of Physics Science, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Donghui Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian, Liaoning 116923, P. R. China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian, Liaoning 116923, P. R. China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| |
Collapse
|
60
|
A near-infrared ratiometric fluorescent probe with large stokes shift for rapid detection of ClO− in living cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
61
|
Hu W, Qiang T, Chai L, Liang T, Ren L, Cheng F, Li C, James TD. Simultaneous tracking of autophagy and oxidative stress during stroke with an ICT-TBET integrated ratiometric two-photon platform. Chem Sci 2022; 13:5363-5373. [PMID: 35655567 PMCID: PMC9093177 DOI: 10.1039/d1sc06805a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Over recent years, fluorescent probes exhibiting simultaneous responses to multiple targets have been developed for in situ, real-time monitoring of cellular metabolism using two photon fluorescence sensing techniques due to numerous advantages including ease of operation, rapid reporting, high resolution, long visualization time and being non-invasive. However, due to interference from different fluorescence channels during simultaneous monitoring of multiple targets and the lack of ratiometric capability amongst the available probes, the accuracy in tracing metabolic processes has been restricted. With this research, using a through-bond energy transfer (TBET) mechanism, we designed a viscosity and peroxynitrite (ONOO-) mitochondria-targeting two-photon ratiometric fluorescent probe Mito-ONOO. Our results indicated that with decreasing levels of mitochondrial viscosity and increasing levels of ONOO-, the maximum of the emission wavelength of the probe shifted from 621 nm to 495 nm under 810 nm two-photon excitation. The baselines for the two emission peaks were significantly separated (Δλ = 126 nm), improving the resolution and reliability of bioimaging. Moreover, by ratiometric analysis during oxygen-glucose deprivation/reoxygenation (OGD/R, commonly used to simulate cell ischemia/reperfusion injury), the real-time visualization of the metabolic processes of autophagy and oxidative stress was possible. Our research indicated that during cellular oxygen-glucose deprivation/reoxygenation, cells produce ONOO-, causing cellular oxidative stress and cellular autophagy after 15 min, as such Mito-ONOO exhibits the potential for the monitoring and diagnosis of stroke, as well as providing insight into potential treatments, and drug design.
Collapse
Affiliation(s)
- Wei Hu
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology Xi'an 710021 China
| | - Taotao Qiang
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology Xi'an 710021 China
| | - Li Chai
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-Central University for Nationalities Wuhan 430074 China
| | - Tianyu Liang
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology Xi'an 710021 China
| | - Longfang Ren
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology Xi'an 710021 China
| | - Fei Cheng
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology Xi'an 710021 China
| | - Chunya Li
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-Central University for Nationalities Wuhan 430074 China
| | - Tony D James
- Department of Chemistry, University of Bath Bath BA27AY UK .,School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| |
Collapse
|
62
|
Chan C, Zhang W, Xue Z, Fang Y, Qiu F, Pan J, Tian J. Near-Infrared Photoacoustic Probe for Reversible Imaging of the ClO -/GSH Redox Cycle In Vivo. Anal Chem 2022; 94:5918-5926. [PMID: 35385655 DOI: 10.1021/acs.analchem.2c00165] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Homeostasis of the cellular redox status plays an indispensable role in diverse physiological and pathological processes. Hypochlorite anion (ClO-) and glutathione (GSH) represent an important redox couple to reflect the redox status in living cells. The current cellular redox probes that detect either ClO- or GSH alone are not accurate enough to monitor the real redox status. In this work, a reversible photoacoustic (PA) probe, DiOH-BDP, has been synthesized and applied for PA imaging to monitor the ClO-/GSH couple redox state in an acute liver injury (ALI) model. The near-infrared PA probe DiOH-BDP features significant changes in absorption between 648 and 795 nm during the selective oxidation by ClO- and the reductive recovery of GSH, which exhibits excellent selectivity and sensitivity toward ClO- and GSH with the limits of detection of 77.7 nM and 7.2 μM, respectively. Additionally, using PA770 as a detection signal allows for the in situ monitoring of the ClO-/GSH couple, which realizes mapping of the localized redox status of the ALI by the virtue of a PA imaging system. Therefore, the probe provides a potentially technical tool to understand redox imbalance-related pathological formation processes.
Collapse
Affiliation(s)
- Chenming Chan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Wangning Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yuanyuan Fang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
63
|
Organelle-targeted imaging based on fluorogen-activating RNA aptamers in living cells. Anal Chim Acta 2022; 1209:339816. [DOI: 10.1016/j.aca.2022.339816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
|
64
|
Zong Z, Zhang Q, Qiu SH, Wang Q, Zhao C, Zhao CX, Tian H, Qu DH. Dynamic Timing Control over Multicolor Molecular Emission by Temporal Chemical Locking. Angew Chem Int Ed Engl 2022; 61:e202116414. [PMID: 35072333 DOI: 10.1002/anie.202116414] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 12/15/2022]
Abstract
Dynamic control over molecular emission, especially in a time-dependent manner, holds great promise for the development of smart luminescent materials. Here we report a series of dynamic multicolor fluorescent systems based on the time-encoded locking and unlocking of individual vibrational emissive units. The intramolecular cyclization reaction driven by adding chemical fuel acts as a chemical lock to decrease the conformational freedom of the emissive units, thus varying the fluorescence wavelength, while the resulting chemically locked state can be automatically unlocked by the hydrolysis reaction with water molecules. The dynamic molecular system can be driven by adding chemical fuels for multiple times. The emission wavelength and lifetime of the locking states can be readily controlled by elaborating the molecular structures, indicating this strategy as a robust and versatile way to modulate multi-color molecular emission in a time-encoded manner.
Collapse
Affiliation(s)
- Zezhou Zong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shu-Hai Qiu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qian Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chengxi Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Cai-Xin Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
65
|
Guo T, Chen X, Qu W, Yang B, Tian R, Geng Z, Wang Z. Red and Near-Infrared Fluorescent Probe for Distinguishing Cysteine and Homocysteine through Single-Wavelength Excitation with Distinctly Dual Emissions. Anal Chem 2022; 94:5006-5013. [PMID: 35294170 DOI: 10.1021/acs.analchem.1c04895] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Small-molecule biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), participate in various pathological and physiological processes. It is still a challenge to simultaneously distinguish Cys and Hcy because of their similar structures and reactivities, as well as the interference from the high intramolecular concentration of GSH. Herein, a novel fluorescent probe, CySI, based on cyanine and thioester was developed to differentiate Cys and Hcy through a single-wavelength excitation and two distinctly separated emission channels. The probe exhibited a turn-on fluorescence response to Cys at both 625 nm (the red channel) and 740 nm (the near-infrared channel) but only showed fluorescence turn-on to Hcy at 740 nm (the near-infrared channel) and no fluorescent response to GSH. With the aid of built-in self-calibration of single excitation and dual emissions, simultaneous discriminative determinations of Cys and Hcy were realized through red and near-infrared channels. CySI exhibited excellent selectivity toward Cys and Hcy with a fast response. This probe was further exploited to visualize exogenous Cys and Hcy in cells through dual emission channels under one excitation. Moreover, it could efficiently target mitochondria and was applied to monitor the endogenous Cys fluctuations independently in mitochondria through the red emission channel.
Collapse
Affiliation(s)
- Taiyu Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Xinyue Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Wangbo Qu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Bin Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Ruowei Tian
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Zhirong Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
66
|
Lou Z, Zhao J, Ji D. Theoretical insights into the excited state processes of a novel fluorescent probe for thiophenol with large Stokes shift. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
67
|
Mamgain R, Singh FV. Selenium-Based Fluorescence Probes for the Detection of Bioactive Molecules. ACS ORGANIC & INORGANIC AU 2022; 2:262-288. [PMID: 36855593 PMCID: PMC9954296 DOI: 10.1021/acsorginorgau.1c00047] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chemistry of organoselenium reagents have now become an important tool of synthetic organic and medicinal chemistry. These reagents activate the olefinic double bonds and used to archive the number of organic transformations under mild reaction conditions. A number of organoselenium compounds have been identified as potent oxidants. Recently, various organoselenium species have been employed as chemical sensors for detecting toxic metals. Moreover, a number of selenium-based fluorescent probes have been developed for detecting harmful peroxides and ROS. In this review article, the synthesis of selenium-based fluorescent probes will be covered including their application in the detection of toxic metals and harmful peroxides including ROS.
Collapse
Affiliation(s)
- Ritu Mamgain
- Chemistry
Division, School of Advanced Sciences (SAS),
Vellore Institute of Technology-Chennai, Vandalur-Kelambakkam Road, Chennai 600127, Tamil
Nadu, India
| | - Fateh V. Singh
- Chemistry
Division, School of Advanced Sciences (SAS),
Vellore Institute of Technology-Chennai, Vandalur-Kelambakkam Road, Chennai 600127, Tamil
Nadu, India,
| |
Collapse
|
68
|
Huang Y, Yu L, Lu P, Wei Y, Fu L, Hou J, Wang Y, Wang X, Chen L. Evaluate the bisphenol A-induced redox state in cells, zebrafish and in vivo with a hydrogen peroxide turn-on fluorescent probe. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127425. [PMID: 34634705 DOI: 10.1016/j.jhazmat.2021.127425] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen peroxide (H2O2) is an important active oxygen species that plays a major role in redox balance and in physiological and pathological processes of various diseases of biological systems. As H2O2 is an endogenous active molecule, fluctuations in H2O2 content are not only affected by the state of biological system itself but also easily affected by Bisphenol A (BPA, a typical estrogenic environmental pollutant) in the external environment. Here, the near-infrared fluorescent probe Cy-NOH2 (λem = 750 nm) as a tool was synthesized to detect fluctuations in H2O2 content in cells and organisms induced by BPA. High sensitivity and excellent selectivity were found when the probe Cy-NOH2 was used to monitor endogenous H2O2 in vitro. In addition, the expression of H2O2 induced by different concentrations of BPA was able to be detected by the probe. Zebrafish and mice models were induced with different concentrations of BPA, and the H2O2 content showed significant increasing trends in zebrafish and livers of mice with increasing BPA concentrations. This study reveals that the probe Cy-NOH2 can be used as an effective tool to monitor the redox state in vivo under the influence of BPA, which provides a basis for clarifying the mechanisms of BPA in a variety of physiological and pathological processes.
Collapse
Affiliation(s)
- Yan Huang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lei Yu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang 262700, China
| | - Pengpeng Lu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yinghui Wei
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Lili Fu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Junjun Hou
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003,China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003,China.
| | - Lingxin Chen
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003,China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
69
|
Deshmukh PP, Malankar GS, Sakunthala A, Navalkar A, Maji SK, Murale DP, Saravanan R, Manjare ST. An efficient chemodosimeter for the detection of Hg(II) via diselenide oxidation. Dalton Trans 2022; 51:2269-2277. [PMID: 35073568 DOI: 10.1039/d1dt04038c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mercury ions are toxic and exhibit hazardous effects on the environment and biological systems, and thus demand for the selective and sensitive detection of mercury has become considerably an important issue. Here, we have developed a diselenide containing coumarin-based probe 3 for the selective detection of Hg(II) with a "turn-on" response (a 48 fold increase in fluorescence intensity) at 438 nm. The probe could quantitatively detect Hg(II) with a detection limit of 1.32 μM in PBS solution. Moreover, the probe has operable efficiency over the physiological range with an increase in the quantum yield from 1.2% to 57.3%. The reaction of the probe with Hg(II) yielded a novel monoselenide based coumarin 4via diselenide oxidation, which was confirmed by single crystal XRD. Furthermore, the biological use of the probe for the detection of Hg(II) was confirmed in the MCF-7 cell line. To the best of our knowledge, this is the first reaction-based probe for Hg(II) via diselenide oxidation.
Collapse
Affiliation(s)
| | - Gauri S Malankar
- Department of Chemistry, University of Mumbai, Mumbai, 400098, India.
| | - Arunima Sakunthala
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, 400076, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, 400076, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, 400076, India
| | - Dhiraj P Murale
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Raju Saravanan
- Department of Chemistry, IIT Bombay, Mumbai, 400076, India
| | - Sudesh T Manjare
- Department of Chemistry, University of Mumbai, Mumbai, 400098, India.
| |
Collapse
|
70
|
Zong Z, Zhang Q, Qiu SH, Wang Q, Zhao C, Zhao CX, Tian H, Qu DH. Dynamic timing control over multicolor molecular emission by temporal chemical locking. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zezhou Zong
- East China University of Science and Technology School of Chemistry and Molecular Engineering Key Laboratory for Advanced Materials Meilong Road 130 200237 Shanghai CHINA
| | - Qi Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Key Labs for Advanced Materials Meilong Road 130 200237 Shanghai CHINA
| | - Shu-Hai Qiu
- East China University of Science and Technology School of Chemistry and Molecular Engineering Key Labs for Advanced Materials Meilong Road 130 200237 Shanghai CHINA
| | - Qian Wang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Key Labs for Advanced Materials Meilong Road 130 200237 Shanghai CHINA
| | - Chengxi Zhao
- East China University of Science and Technology School of Chemistry and Molecular Engineering Key Laboratory for Advanced Materials Meilong Road 130 200237 Shanghai CHINA
| | - Cai-Xin Zhao
- East China University of Science and Technology School of Chemistry and Molecular Engineering Key Labs for Advanced Materials Meilong Road 130 200237 Shanghai CHINA
| | - He Tian
- East China University of Science and Technology School of Chemistry and Molecular Engineering Key Labs for Advanced Materials Meilong Road 130 200237 Shanghai CHINA
| | - Da-Hui Qu
- Key Labs for Advanced Materials Institute of Fine Chemicals, East China University of Science and Technology Meilong Road 130 200237 Shanghai CHINA
| |
Collapse
|
71
|
Liang S, Liu X, Zhang S, Li M, Zhang Q, Chen J. Binding mechanism of inhibitors to SARS-CoV-2 main protease deciphered by multiple replica molecular dynamics simulations. Phys Chem Chem Phys 2022; 24:1743-1759. [PMID: 34985081 DOI: 10.1039/d1cp04361g] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The outbreak caused by SARS-CoV-2 has received extensive worldwide attention. As the main protease (Mpro) in SARS-CoV-2 has no human homologues, it is feasible to reduce the possibility of targeting the host protein by accidental drugs. Thus, Mpro has been an attractive target of efficient drug design for anti-SARS-CoV-2 treatment. In this work, multiple replica molecular dynamics (MRMD) simulations, principal component analysis (PCA), free energy landscapes (FELs), and the molecular mechanics-generalized Born surface area (MM-GBSA) method were integrated together to decipher the binding mechanism of four inhibitors masitinib, O6K, FJC and GQU to Mpro. The results indicate that the binding of four inhibitors clearly affects the structural flexibility and internal dynamics of Mpro along with dihedral angle changes of key residues. The analysis of FELs unveils that the stability in the relative orientation and geometric position of inhibitors to Mpro is favorable for inhibitor binding. Residue-based free energy decomposition reveals that the inhibitor-Mpro interaction networks involving hydrogen bonding interactions and hydrophobic interactions provide significant information for the design of potent inhibitors against Mpro. The hot spot residues including H41, M49, F140, N142, G143, C145, H163, H164, M165, E166 and Q189 identified by computational alanine scanning are considered as reliable targets of clinically available inhibitors inhibiting the activities of Mpro.
Collapse
Affiliation(s)
- Shanshan Liang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Meng Li
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250357, China.
| |
Collapse
|
72
|
Du Y, Wang H, Zhang T, Wen W, Li Z, Bi M, Liu J. An ESIPT-based fluorescent probe with fast-response for detection of hydrogen sulfide in mitochondria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120390. [PMID: 34536889 DOI: 10.1016/j.saa.2021.120390] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/23/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Excited-state intramolecular proton transfer (ESIPT) has recently received considerable attention due to its dual fluorescent changes and large Stokes shift. Hydrogen sulfide (H2S) is a gas signal molecule that plays important roles in modulating the functions of different systems. Herein, by modifying 2-(2́-hydroxyphenyl) benzothiazole (HBT) scaffold, a novel near-infrared mitochondria-targeted fluorescent probe HBTP-H2S has been rationally designed based on excited-state intramolecular proton transfer (ESIPT) effect. The nucleophilic addition reaction of the H2S with probe HBTP-H2S caused the break of the conjugated skeleton, resulting the shifting of maximum emission peak from 658 nm to 470 nm. HBTP-H2S showed fast-response response time, good selectivity and a large Stokes shift (188 nm) toward H2S. Most importantly, inspired by the inherent advantages of the probe, HBTP-H2S was successfully employed to monitor mitochondrial H2S in HepG2 cells.
Collapse
Affiliation(s)
- Yuting Du
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China.
| | - Hongliang Wang
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Ting Zhang
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Wei Wen
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Zhiying Li
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Minjie Bi
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Juan Liu
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| |
Collapse
|
73
|
Recent advance in dual-functional luminescent probes for reactive species and common biological ions. Anal Bioanal Chem 2022; 414:5087-5103. [DOI: 10.1007/s00216-021-03792-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Indexed: 01/17/2023]
|
74
|
Liu J, Yin H, Shang Z, Gu P, He G, Meng Q, Zhang R, Zhang Z. Sequential detection of hypochlorous acid and sulfur dioxide derivatives by a red-emitting fluorescent probe and bioimaging applications in vitro and in vivo. RSC Adv 2022; 12:15861-15869. [PMID: 35733666 PMCID: PMC9135002 DOI: 10.1039/d2ra01048h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
A red-emitting fluorescence probe (DP) has been successfully developed for the sequential detection of hypochlorous acid (HOCl) and sulfur dioxide derivatives (SO32−/HSO3−) in vitro and in vivo.
Collapse
Affiliation(s)
- Jianhua Liu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
- College of Pharmacy, Jilin Medical University, Jilin Province, 132001, P. R. China
| | - Haoyuan Yin
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Pengli Gu
- School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, Henan Province, 453003, P. R. China
| | - Guangjie He
- School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, Henan Province, 453003, P. R. China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| |
Collapse
|
75
|
Theoretical exploration in the substituent effect on photophysical properties and excited-state intramolecular proton transfer process of benzo[a]imidazo[5,1,2-cd]indolizines. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
76
|
Di Gregorio E, Boccalon M, Furlan C, Gianolio E, Benyei A, Aime S, Baranyai Z, Ferrauto G. Studies of the hydrophobic interaction between a pyrene - containing dye and a tetra-aza macrocyclic gadolinium complex. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00596d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An in vivo and in vitro investigation of the hydrophobic interaction between HPTS and gadolinium(III)-complex of tetra-aza macrocyclic ligand HP-DO3A‡ (Gd(HP-DO3A)) is reported. UV-spectra at variable pH showed that the...
Collapse
|
77
|
Kainth S, Goel N, Basu S, Maity B. Surfactant-derived water-soluble carbon dots for quantitative determination of fluoride via a turn-off–on strategy. NEW J CHEM 2022. [DOI: 10.1039/d1nj04838d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surfactants play a vital role as precursors for achieving carbon cores, heteroatom π-systems, and stability in carbon dots (CDs).
Collapse
Affiliation(s)
- Shagun Kainth
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala-147004, India
| | - Neha Goel
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala-147004, India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala-147004, India
| | - Banibrata Maity
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala-147004, India
| |
Collapse
|
78
|
Shelar DS, Malankar GS, M. M, Patra M, Butcher RJ, Manjare ST. Selective detection of hypochlorous acid in living cervical cancer cells with an organoselenium-based BOPPY probe. NEW J CHEM 2022. [DOI: 10.1039/d2nj02956a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and crystal structure of the first selenium-containing BOPPY probe. The probe is selective for exogenous and endogenous HOCl detection in HeLa cells with a “turn-on” fluorescence response.
Collapse
Affiliation(s)
- Divyesh S. Shelar
- Department of Chemistry, University of Mumbai, Mumbai, 400098, India
| | - Gauri S. Malankar
- Department of Chemistry, University of Mumbai, Mumbai, 400098, India
| | - Manikandan M.
- Department of Chemical Science, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Malay Patra
- Department of Chemical Science, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | | | - Sudesh T. Manjare
- Department of Chemistry, University of Mumbai, Mumbai, 400098, India
| |
Collapse
|
79
|
Wang Z, Xing B. Small-molecule fluorescent probes: big future for specific bacterial labeling and infection detection. Chem Commun (Camb) 2021; 58:155-170. [PMID: 34882159 DOI: 10.1039/d1cc05531c] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial infections remain a global healthcare problem that is particularly attributed to the spread of antibiotic resistance and the evolving pathogenicity. Accurate and swift approaches for infection diagnosis are urgently needed to facilitate antibiotic stewardship and effective medical treatment. Direct optical imaging for specific bacterial labeling and infection detection offers an attractive prospect of precisely monitoring the infectious disease status and therapeutic response in real time. This feature article focuses on the recent advances of small-molecule probes developed for fluorescent imaging of bacteria and infection, which covers the probe design, responsive mechanisms and representative applications. In addition, the perspective and challenges to advance small-molecule fluorescent probes in the field of rapid drug-resistant bacterial detection and clinical diagnosis of bacterial infections are discussed. We envision that the continuous advancement and clinical translations of such a technique will have a strong impact on future anti-infective medicine.
Collapse
Affiliation(s)
- Zhimin Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 637371, Singapore. .,School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
80
|
Poonia T, Silva WGDP, van Wijngaarden J. Dramatic differences in the conformational equilibria of chalcogen-bridged compounds: the case of diallyl ether versus diallyl sulfide. Phys Chem Chem Phys 2021; 24:240-248. [PMID: 34881756 DOI: 10.1039/d1cp04591a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conformational landscapes of diallyl ether (DAE) and diallyl sulfide (DAS) were investigated for the first time using rotational spectroscopy from 6-20 GHz supported by quantum mechanical calculations. A significant difference in the conformational distribution of these chalcogen-bridged compounds is predicted by theory at the B3LYP-D3(BJ)/aug-cc-pVTZ level as DAS has only one low energy conformer while DAE has up to 12 energy minima within 5 kJ mol-1. This was confirmed by rotational spectroscopy as only transitions corresponding to the global minimum of DAS were observed while the spectrum of DAE was much richer and composed of features from the nine lowest energy conformers. To understand the effects that govern the conformational preferences of DAE and DAS, natural bond orbital and non-covalent interaction analyses were done. These show that unique orbital interactions stabilize several conformers of the ether making its conformational landscape more competitive than that of the sulfide. This is consistent with a bonding model involving decreased hybridization of the bridging atom as one moves down the periodic table which is confirmed by the experimental ground state structures of the lowest energy forms of DAE and DAS, derived using spectra of the 13C and 34S substituted species in natural abundance.
Collapse
Affiliation(s)
- Tamanna Poonia
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Weslley G D P Silva
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | | |
Collapse
|
81
|
Hao J, Yang Y. Theoretical Investigation of the Excited-State Dynamics Mechanism of the Asymmetric Two-Way Proton Transfer Molecule BTHMB. J Phys Chem A 2021; 125:10280-10290. [PMID: 34846887 DOI: 10.1021/acs.jpca.1c05530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An asymmetric two-way proton transfer molecule 3-(benzo[d]-thiazol-2-yl)-2-hydroxy-5-methoxybenzaldehyde (BTHMB) with the function of white-light emission was synthesized in a recent experiment (Bhattacharyya, A.; Mandal, S. K.; Guchhait, N. J. Phys. Chem. A 2019, 123, 10246). The particularity of this molecule is that there are two possible forms, one of which contained a six-membered H-bonded network toward a N atom (BTHMB-NH) present in the molecule as a proton acceptor and the other was toward an O atom (BTHMB-OH). Unfortunately, the experimental work lacked the theoretical explanation about the determination of the BTHMB-NH form and its excited-state intramolecular proton transfer (ESIPT) process under different solvents. Therefore, this study has explored these two points by means of the time-dependent density functional theory (TDDFT) method. The calculated relative energy and potential energy profile (PEP) of the transformation between BTHMB-NH and BTHMB-OH forms illustrated that BTHMB-NH was more stable, and the transfer from BTHMB-NH to BTHMB-OH was almost impossible at both S0 and S1 states under all solvents due to high potential energy barriers (PEBs) (11.67-21.59 kcal/mol). These calculated results provided the theoretical explanation and verification for the conclusion that the BTHMB molecule exists in the BTHMB-NH form in the experiment. Subsequently, the constructed PEPs of the ESIPT process for BTHMB-NH have proved that it was prone to the ESIPT process due to low PEBs (0.11-0.28 kcal/mol) at the S1 state. In particular, as the solvent polarity increased, the intensity of the intramolecular hydrogen bond (IHB) (O3-H4···N5) increased and the ESIPT process was more likely to occur. In addition, the twisted intramolecular charge-transfer (TICT) process was studied to explore the possible fluorescence quenching pathway of BTHMB-NH. Based on the PEPs of BTHMB-NH-T as a function of the N5-C6-C7-C8 dihedral angle at the S0 and S1 states, it is seen that the S0 state TICT process was inhibited due to the large PEBs (16.45-23.93 kcal/mol). Although the S1 state PEBs have been greatly reduced, they were still maintained at about 3.60 kcal/mol (3.60-3.84 kcal/mol), and hence, this process was still relatively difficult to occur. Due to the fact that BTHMB can be regarded as a standard in future designs involving red light and solvent-specific white-light emitters, a certain amount of investigative work on the ESIPT process was done in detail, and it paved the way for future research on the directionality of ESIPT in double ESIPT probes.
Collapse
Affiliation(s)
- Jiaojiao Hao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yang Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
82
|
New insight into the fluorescence mechanism in a fluorescent probe for detecting Zn2+ and CN− through theoretical calculations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
83
|
Exploring the sensing mechanism in a dual-mode fluorescent probe responding to tryptamine and fluoride ions. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
84
|
Qiu L, Li K, Dong W, Seimbille Y, Liu Q, Gao F, Lin J. Tumor Microenvironment Responsive "Head-to-Foot" Self-Assembly Nanoplatform for Positron Emission Tomography Imaging in Living Subjects. ACS NANO 2021; 15:18250-18259. [PMID: 34738462 DOI: 10.1021/acsnano.1c07275] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sensitivity and specificity of molecular probes are two important factors in determining the accuracy of cancer diagnosis or the efficacy of cancer treatment. However, the development of probes with high sensitivity and strong specificity still poses many challenges. Herein, we report an 18F-labeled smart tracer ([18F]1) targeting cancer-associated biotin receptor (BR) and self-assembling into nanoparticles in response to intracellular glutathione. The tracer [18F]1 selectively targeted BR-positive cancer cells A549 and Hela and formed nanoparticles through self-assembly with an average diameter of 138.2 ± 16.3 nm. The character of self-assembly into nanoparticles enhanced the uptake and extended the retention of probe [18F]1 in the target tissue and hence improved the quality of positron emission tomography (PET) images. Thus, [18F]1 is a promising PET tracer for accurately detecting BR-positive cancers. Moreover, the tumor microenvironment responsive "head-to-foot" self-assembly nanoplatform is particularly attractive for development of other smart molecular probes.
Collapse
Affiliation(s)
- Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ke Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Wenyi Dong
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, University Medical Center Rotterdam, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Feng Gao
- Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
85
|
Han S, Zhang H, Wang J, Yang L, Lan M, Wang B, Song X. Rational Development of Dual-Ratiometric Fluorescent Probes for Distinguishing between H 2S and SO 2 in Living Organisms. Anal Chem 2021; 93:15209-15215. [PMID: 34726378 DOI: 10.1021/acs.analchem.1c03963] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For better investigating the complicated relationships between H2S and SO2, simultaneously detecting and visualizing them with good selectivity is crucial. However, most sensing mechanisms for H2S and SO2 probes are based on the addition reactions with the double bonds, which have no selectivity. In this work, by introducing an active triple bond into 4-dicyanovinyl-7-diethylamino-coumarin, we construct two unique sensors for not only distinguishing between H2S and SO2 but also sensing H2S and SO2 in a dual-ratiometric manner. Moreover, the modified sensor was successfully applied in living cells and zebrafish for discriminating H2S and SO2.
Collapse
Affiliation(s)
- Shaohui Han
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hui Zhang
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Jingpei Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China
| | - Minhuan Lan
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Benhua Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
86
|
Wang L, Zheng K, Yu W, Yan J, Zhang N. A novel benzothiazole-based fluorescent probe for detection of SO2 derivatives and cysteine in aqueous solution and serum. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
87
|
Liu X, Yuan H, Wang Y, Tao Y, Wang Y, Hou Y. Theoretical Investigation of Excited-State Intramolecular Double-Proton Transfer Mechanism of Substituent Modified 1, 3-Bis (2-Pyridylimino)-4,7-Dihydroxyisoindole in Dichloromethane Solution. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, density functional theory (DFT) and time-dependent DFT (TDDFT) methods were used to investigate substituent effects and excited-state intramolecular double-proton transfer (ESIDPT) in 1, 3-bis (2-pyridylimino)-4, 7-dihydroxyisoindole (BPI–OH) and its derivatives. The results of a systematic study of the substituent effects of electron-withdrawing groups (F, Cl and Br) on the adjacent sites of the benzene ring were used to regulate the photophysical properties of the molecules and the dynamics of the proton-transfer process. Geometric structure comparisons and infrared (IR) spectroscopic analysis confirmed that strengthening of the intramolecular hydrogen bond in the first excited state (S1) facilitated proton transfer. Functional analysis of the reduced density gradient confirmed these conclusions. Double-proton transfer in BPI–OH is considered to occur in two steps, i.e., BPI–OH (N) [Formula: see text] BPI–OH (T1) [Formula: see text] BPI–OH (T2), in the ground state (S0) and the S1 state. The potential-energy curves (PECs) for two-step proton transfer were scanned for both the S0 and S1 states to clarify the mechanisms and pathways of proton transfer. The stepwise path in which two protons are consecutively transferred has a low energy barrier and is more rational and favorable. This study shows that the presence or absence of coordinating groups, and the type of coordinating group, affect the hydrogen-bond strength. A coordinating group enhances hydrogen-bond formation, i.e., it promotes excited-state intramolecular proton transfer (ESIPT).
Collapse
Affiliation(s)
- Xiumin Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Heyao Yuan
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yuxi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yaping Tao
- College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yingmin Hou
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
88
|
Zhao J, Wang L, Bao H, Chen J. Cluster analysis on conformational changes of the GDP/KRAS complex induced by A59G and D33E. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
89
|
Ma Q, Zhang Y, Jiao Y, Zhang T, Chu Q, Xiao H, Zhou Z, Liu Y. New β-diketone-boron difluoride based near-infrared fluorescent probes for polarity detection. Analyst 2021; 146:5873-5879. [PMID: 34487127 DOI: 10.1039/d1an00912e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new β-diketone-boron difluoride based near-infrared fluorescent probes 1 and 2 which exhibit polarity sensitivity have been designed and synthesized. Probes 1 and 2 are composed of a β-diketone-boron difluoride moiety as an acceptor unit, and a diethylamino group and a phenolic hydroxyl group as donor units. The long conjugate structures form a "donor-acceptor-donor" configuration, induce intramolecular charge transfer (ICT), and confer near-infrared fluorescence emission and excellent polarity sensitivity. The photophysical properties of these two probes were investigated in detail. Experimental data demonstrated that as the environmental polarity decreased, the fluorescence intensity of the probes increased obviously, accompanied by a blue-shift of the maximum emission wavelength. In addition, these two probes were photostable and solely sensitive to polarity without interference from viscosity, pH and common active species. Theoretical calculations indicated that probes 1 and 2 displayed lower energy gaps and faster non-radiative decay in polar solvents. Furthermore, probes 1 and 2 were utilized to quantitatively detect the polarity of a binary mixture through the satisfactory linear relationship between the fluorescence emission intensity ratios and the orientation polarizability of the mixed solvent. Additionally, probe 1 was successfully utilized to visualize the polarity distribution of live cells. Both of these probes are perfect candidates for studying polarity in vitro and even in live systems.
Collapse
Affiliation(s)
- Qingqing Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Yunxiao Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Yawen Jiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Tian Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Qingyan Chu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Ziyan Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Yuying Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| |
Collapse
|
90
|
Cheng D, Qin J, Feng Y, Wei J. Synthesis of Mesoporous CuO Hollow Sphere Nanozyme for Paper-Based Hydrogen Peroxide Sensor. BIOSENSORS 2021; 11:258. [PMID: 34436060 PMCID: PMC8392683 DOI: 10.3390/bios11080258] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 05/03/2023]
Abstract
Point-of-care monitoring of hydrogen peroxide is important due to its wide usage in biomedicine, the household and industry. Herein, a paper sensor is developed for sensitive, visual and selective detection of H2O2 using a mesoporous metal oxide hollow sphere as a nanozyme. The mesoporous CuO hollow sphere is synthesized by direct decomposition of copper-polyphenol colloidal spheres. The obtained mesoporous CuO hollow sphere shows a large specific surface area (58.77 m2/g), pore volume (0.56 cm3/g), accessible mesopores (5.8 nm), a hollow structure and a uniform diameter (~100 nm). Furthermore, they are proven to show excellent peroxidase-like activities with Km and Vmax values of 120 mM and 1.396 × 10-5 M·s-1, respectively. Such mesoporous CuO hollow spheres are then loaded on the low-cost and disposable filter paper test strip. The obtained paper sensor can be effectively used for detection of H2O2 in the range of 2.4-150 μM. This work provides a new kind of paper sensor fabricated from a mesoporous metal oxide hollow sphere nanozyme. These sensors could be potentially used in bioanalysis, food security and environmental protection.
Collapse
Affiliation(s)
| | | | | | - Jing Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Analytical Chemistry and Instrument for Life Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (D.C.); (J.Q.); (Y.F.)
| |
Collapse
|
91
|
Han S, Zhang H, Yue X, Wang J, Yang L, Wang B, Song X. A Ratiometric, Fast-Responsive , and Single-Wavelength Excited Fluorescent Probe for the Discrimination of Cys and Hcy. Anal Chem 2021; 93:10934-10939. [PMID: 34319078 DOI: 10.1021/acs.analchem.1c01750] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ratiometric detection of cysteine (Cys) and homocysteine (Hcy) is very challenging because of their highly similar chemical structures and properties. By introducing the phenylethynyl group into a coumarin dye as the sensing group, the ratiometric fluorescent probe CP was developed to selectively and rapidly discriminate between Cys and Hcy. With a single-wavelength excitation, the presence of Cys or Hcy induced the probe to produce distinct ratiometric fluorescence changes: from red (λmaxem = 608 nm) to blue (λmaxem = 485 nm) toward Cys and from red to mixed red/blue toward Hcy. Moreover, the probe was capable of visualizing and discriminating between intracellular Cys and Hcy in HeLa cells and zebrafish by exhibiting different ratiometric fluorescence signals.
Collapse
Affiliation(s)
- Shaohui Han
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hui Zhang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiuxiu Yue
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jingpei Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China
| | - Benhua Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
92
|
de Salles HD, Coelho FL, Paixão DB, Barboza CA, da Silveira Rampon D, Rodembusch FS, Schneider PH. Evidence of a Photoinduced Electron-Transfer Mechanism in the Fluorescence Self-quenching of 2,5-Substituted Selenophenes Prepared through In Situ Reduction of Elemental Selenium in Superbasic Media. J Org Chem 2021; 86:10140-10153. [PMID: 34283602 DOI: 10.1021/acs.joc.1c00874] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A series of new 2,5-disubstituted selenophene derivatives are described from elemental selenium and 1,3-diynes in superbasic media. The activation of elemental selenium in a KOH/DMSO system allows cyclization with conjugated diynes at room temperature. The cyclization reaction is extended to a broad range of functional groups, for which photophysics were experimentally and theoretically investigated. The selenophene derivatives present absorption maxima in the UV-A region and fluorescence emission in the violet-to-blue region. Fluorescence decay profiles were obtained showing a monoexponential decay with fast fluorescence lifetimes (∼0.118 ns), as predicted by the Strickler-Berg relations. In general, in both investigations, no dependence on the solvent polarity on the absorption and emission maxima location was observed. On the other hand, solvents and substituents are shown to play a role in the fluorescence quantum yield values. In addition, a fluorescence self-quenching behavior could be observed, related to a photoinduced electron-transfer mechanism. Theoretical calculations performed at the MP2/ADC(2)/cc-pVDZ level of theory were performed in order to investigate the photophysical features of this series of selenophene derivatives.
Collapse
Affiliation(s)
- Helena Domingues de Salles
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Felipe Lange Coelho
- Instituto de Química, Universidade Federal de Goiás (UFG), Campus Samambaia, 74690-900 Goaînia, Goiás, Brazil
| | - Douglas Bernardo Paixão
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Daniel da Silveira Rampon
- Laboratório de Polímeros e Catálise (LAPOCA), Departamento de Química, Universidade Federal do Paraná (UFPR), P.O. Box 19061, 81531-990 Curitiba, Paraná, Brazil
| | - Fabiano Severo Rodembusch
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Henrique Schneider
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
93
|
Pang Y, Zhang H, Ai HW. Genetically Encoded Fluorescent Redox Indicators for Unveiling Redox Signaling and Oxidative Toxicity. Chem Res Toxicol 2021; 34:1826-1845. [PMID: 34284580 DOI: 10.1021/acs.chemrestox.1c00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Redox-active molecules play essential roles in cell homeostasis, signaling, and other biological processes. Dysregulation of redox signaling can lead to toxic effects and subsequently cause diseases. Therefore, real-time tracking of specific redox-signaling molecules in live cells would be critical for deciphering their functional roles in pathophysiology. Fluorescent protein (FP)-based genetically encoded redox indicators (GERIs) have emerged as valuable tools for monitoring the redox states of various redox-active molecules from subcellular compartments to live organisms. In the first section of this review, we overview the background, focusing on the sensing mechanisms of various GERIs. Next, we review a list of selected GERIs according to their analytical targets and discuss their key biophysical and biochemical properties. In the third section, we provide several examples which applied GERIs to understanding redox signaling and oxidative toxicology in pathophysiological processes. Lastly, a summary and outlook section is included.
Collapse
Affiliation(s)
- Yu Pang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Hao Zhang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Hui-Wang Ai
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States.,The UVA Cancer Center, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
94
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
95
|
Jia X, Wei C, Li Z, Liu L, Wang M, Zhang P, Li X. Selective Imaging of HClO in the Liver Tissue In Vivo Using a Near-infrared Hepatocyte-specific Fluorescent Probe. Chem Asian J 2021; 16:1967-1972. [PMID: 34036742 DOI: 10.1002/asia.202100476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Indexed: 12/16/2022]
Abstract
Liver injury is typified by an inflammatory response. Hypochlorous acid (HClO), an important endogenous reactive oxygen species, is regarded as a biomarker associated with liver injury. Near-infrared (NIR) fluorescent probes with the advantage of deep tissue penetrating and low auto-fluorescence interference are more suitable for bioimaging in vivo. Thus, in this work, we designed and synthesized a novel NIR hepatocyte-specific fluorescent probe named NHF. The probe NHF showed fast response (<3 s), large spectral variation, and good selectivity to trace HClO in buffer solution. By employing N-acetylgalactosamine (GalNAc) as the targeting ligand, probe NHF can be actively delivered to the liver tissue of zebrafish and mice. It is important that probe NHF is the first NIR hepatocyte-specific fluorescent probe, which successfully visualized the up-regulation of endogenous HClO in the oxygen-glucose deprivation/reperfusion (OGD/R) model HepG2 cells and dynamically monitored APAP-induced endogenous HClO in the liver tissue of zebrafish and mice.
Collapse
Affiliation(s)
- Xu Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| | - Chao Wei
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| | - Zimeng Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| | - Liyan Liu
- Medical Comprehensive Experimental Center, Hebei University, East Road Yuhua 342, Baoding, 071000, P. R. China
| | - Mei Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| | - Pingzhu Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| | - Xiaoliu Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| |
Collapse
|
96
|
Responsive optical probes for deep-tissue imaging: Photoacoustics and second near-infrared fluorescence. Adv Drug Deliv Rev 2021; 173:141-163. [PMID: 33774116 DOI: 10.1016/j.addr.2021.03.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/23/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023]
Abstract
Optical imaging has played a vital role in development of biomedicine and image-guided theragnostic. Nevertheless, the clinical translation of optical molecular imaging for deep-tissue visualization is still limited by poor signal-to-background ratio and low penetration depth owing to light scattering and tissue autofluorescence. Hence, to facilitate precise diagnosis and accurate surgery excision in clinical practices, the responsive optical probes (ROPs) are broadly designed for specific reaction with biological analytes or disease biomarkers via chemical/physical interactions for photoacoustic and second near-infrared fluorescence (NIR-II, 900-1700 nm) fluorescence imaging. Herein, the recent advances in the development of ROPs including molecular design principles, activated mechanisms and treatment responses for photoacoustic and NIR-II fluorescence imaging are reviewed. Furthermore, the present challenges and future perspectives of ROPs for deep-tissue imaging are also discussed.
Collapse
|
97
|
|
98
|
Rui X, Wang C, Si D, Hui X, Li K, Wen H, Li W, Liu J. One-Pot Tandem Access to Phenothiazine Derivatives from Acetanilide and 2-Bromothiophenol via Rhodium-Catalyzed C-H Thiolation and Copper-Catalyzed C-N Amination. J Org Chem 2021; 86:6622-6632. [PMID: 33881319 DOI: 10.1021/acs.joc.1c00403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A one-pot and step economic reaction involving Rh(III)-catalyzed C-H thiolation and relay Cu(II)-catalyzed C-N amination of acetanilide and 2-bromothiophenol is reported here, with several valuable phenothiazine products obtained. This synthesis protocol proceeds from easily starting materials, demonstrating high atom economy, broad substrate scope, and good yield. Furthermore, the directing group can be easily eliminated, and chlorpromazine is provided in a large scale; thus this synthesis protocol could be utilized to construct phenothiazine scaffolds.
Collapse
Affiliation(s)
- Xiyan Rui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chao Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dongjuan Si
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuechao Hui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Keting Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
99
|
Gong L, Shan X, Zhao XH, Tang L, Zhang XB. Activatable NIR-II Fluorescent Probes Applied in Biomedicine: Progress and Perspectives. ChemMedChem 2021; 16:2426-2440. [PMID: 33780139 DOI: 10.1002/cmdc.202100142] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Indexed: 12/18/2022]
Abstract
With the advantage of inherent responsiveness that can change the spectroscopic signals from "off" to "on" state in responding to targets (e. g. biological analytes/microenvironmental factors), activatable fluorescent probes have attracted extensive attention and made significant progress in the field of bioimaging and biosensing. Due to the high depth of tissue penetration, minimal tissue damage and negligible background signal at longer wavelengths, the development of second near-infrared window (NIR-II) fluorescent materials provides a new opportunity to develop activable fluorescent probes. Here, we summarized properties, advantages and disadvantages of mainly NIR-II fluorophores (such as rare earth-doped nanoparticles, quantum dots, single-walled carbon nanotubes, small molecule dyes, conjugated polymers and gold nanoclusters), then overviewed current role and development of activatable NIR-II fluorescent probes (AFPs) for biomedical applications including biosensing, bioimaging and therapeutic. The potential challenges and perspectives of AFPs in deep-tissue imaging and clinical application are also discussed.
Collapse
Affiliation(s)
- Liang Gong
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xiuzhi Shan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xu-Hua Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Li Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
100
|
Zhou Y, Wang X, Zhang W, Tang B, Li P. Recent advances in small molecule fluorescent probes for simultaneous imaging of two bioactive molecules in live cells and in vivo. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2041-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|