51
|
S. de León A, de la Mata M, Sanchez-Alarcon IR, Abargues R, Molina SI. Self-Assembly of CsPbBr 3 Perovskites in Micropatterned Polymeric Surfaces: Toward Luminescent Materials with Self-Cleaning Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20023-20031. [PMID: 35438478 PMCID: PMC9073833 DOI: 10.1021/acsami.2c01567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
In this work, we present a series of porous, honeycomb-patterned polymer films containing CsPbBr3 perovskite nanocrystals as light emitters prepared by the breath figure approach. Microscopy analysis of the topography and composition of the material evidence that the CsPbBr3 nanocrystals are homogeneously distributed within the polymer matrix but preferably confined inside the pores due to the fabrication process. The optical properties of the CsPbBr3 nanocrystals remain unaltered after the film formation, proving that they are stable inside the polystyrene matrix, which protects them from degradation by environmental factors. Moreover, these surfaces present highly hydrophobic behavior due to their high porosity and defined micropatterning, which is in agreement with the Cassie-Baxter model. This is evidenced by performing a proof-of-concept coating on top of 3D-printed LED lenses, conferring the material with self-cleaning properties, while the CsPbBr3 nanocrystals embedded inside the polymeric matrix maintain their luminescent behavior.
Collapse
Affiliation(s)
- Alberto S. de León
- Dpto.
Ciencia de los Materiales, I. M. y Q. I., IMEYMAT, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, s/n Puerto Real, Cádiz 11510, Spain
| | - María de la Mata
- Dpto.
Ciencia de los Materiales, I. M. y Q. I., IMEYMAT, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, s/n Puerto Real, Cádiz 11510, Spain
| | - Ivan R. Sanchez-Alarcon
- Instituto
de Ciencia de los Materiales, Universitat de Valencia, Calle Catedrático José
Beltrán 2, Paterna, Valencia 46980, Spain
| | - Rafael Abargues
- Instituto
de Ciencia de los Materiales, Universitat de Valencia, Calle Catedrático José
Beltrán 2, Paterna, Valencia 46980, Spain
| | - Sergio I. Molina
- Dpto.
Ciencia de los Materiales, I. M. y Q. I., IMEYMAT, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, s/n Puerto Real, Cádiz 11510, Spain
| |
Collapse
|
52
|
Chen J, Huang W, Zheng D, Xie Z, Zhuang X, Zhao D, Chen Y, Su N, Chen H, Pankow RM, Gao Z, Yu J, Guo X, Cheng Y, Strzalka J, Yu X, Marks TJ, Facchetti A. Highly stretchable organic electrochemical transistors with strain-resistant performance. NATURE MATERIALS 2022; 21:564-571. [PMID: 35501364 DOI: 10.1038/s41563-022-01239-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Realizing fully stretchable electronic materials is central to advancing new types of mechanically agile and skin-integrable optoelectronic device technologies. Here we demonstrate a materials design concept combining an organic semiconductor film with a honeycomb porous structure with biaxially prestretched platform that enables high-performance organic electrochemical transistors with a charge transport stability over 30-140% tensional strain, limited only by metal contact fatigue. The prestretched honeycomb semiconductor channel of donor-acceptor polymer poly(2,5-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)-2,5-diketo-pyrrolopyrrole-alt-2,5-bis(3-triethyleneglycoloxy-thiophen-2-yl) exhibits high ion uptake and completely stable electrochemical and mechanical properties over 1,500 redox cycles with 104 stretching cycles under 30% strain. Invariant electrocardiogram recording cycles and synapse responses under varying strains, along with mechanical finite element analysis, underscore that the present stretchable organic electrochemical transistor design strategy is suitable for diverse applications requiring stable signal output under deformation with low power dissipation and mechanical robustness.
Collapse
Affiliation(s)
- Jianhua Chen
- Department of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering and the Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), Shenzhen, P. R. China
| | - Wei Huang
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, USA.
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, P. R. China.
| | - Ding Zheng
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, USA.
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, P. R. China.
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, P. R. China.
- Ningbo Institute, Dalian University of Technology, Ningbo, P. R. China.
| | - Xinming Zhuang
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, USA
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, P. R. China
| | - Dan Zhao
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, USA
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, P. R. China
| | - Yao Chen
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, USA
| | - Ning Su
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, USA
| | - Hongming Chen
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, USA
| | - Robert M Pankow
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, USA
| | - Zhan Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, P. R. China
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, P. R. China
| | - Xugang Guo
- Department of Materials Science and Engineering and the Shenzhen Key Laboratory for Printed Organic Electronics, Southern University of Science and Technology (SUSTech), Shenzhen, P. R. China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, P. R. China
| | - Joseph Strzalka
- X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, P. R. China.
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, USA.
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, USA.
- Flexterra Inc., Skokie, IL, USA.
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden.
| |
Collapse
|
53
|
Yang X, Liu Q, Guan J, Li Z. The microstructure and surface characteristics of fluorine‐based co‐polymer coatings deposited by the static breath method. SURF INTERFACE ANAL 2022. [DOI: 10.1002/sia.7105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoyue Yang
- College of Textile and Clothing Engineering Soochow University Suzhou China
| | - Qun Liu
- College of Textile and Clothing Engineering Soochow University Suzhou China
| | - Jinping Guan
- National Engineering Laboratory for Modern Silk Suzhou China
| | - Zhanxiong Li
- College of Textile and Clothing Engineering Soochow University Suzhou China
- National Engineering Laboratory for Modern Silk Suzhou China
| |
Collapse
|
54
|
Falak S, Shin B, Huh D. Modified Breath Figure Methods for the Pore-Selective Functionalization of Honeycomb-Patterned Porous Polymer Films. NANOMATERIALS 2022; 12:nano12071055. [PMID: 35407174 PMCID: PMC9000584 DOI: 10.3390/nano12071055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
Recent developments in the field of the breath figure (BF) method have led to renewed interest from researchers in the pore-selective functionalization of honeycomb-patterned (HCP) films. The pore-selective functionalization of the HCP film gives unique properties to the film which can be used for specific applications such as protein recognition, catalysis, selective cell culturing, and drug delivery. There are several comprehensive reviews available for the pore-selective functionalization by the self-assembly process. However, considerable progress in preparation technologies and incorporation of new materials inside the pore surface for exact applications have emerged, thus warranting a review. In this review, we have focused on the pore-selective functionalization of the HCP films by the modified BF method, in which the self-assembly process is accompanied by an interfacial reaction. We review the importance of pore-selective functionalization, its applications, present limitations, and future perspectives.
Collapse
|
55
|
Zhou D, Wu B, Yang W, Li X, Zhu L, Xu Z, Wan L. Effect of polar groups of polystyrenes on the
self‐assembly
of breath figure arrays. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Di Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Bai‐Heng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Wen‐Wu Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Xiao Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Liang‐Wei Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zhi‐Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Ling‐Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
56
|
Gao J, Cui P, Ding L, Xu T, Ju Y, Yu B, Zhang W, Zhang Z, Sun W. Research on the implementing conditions of inverse emulsion‐breath figure method. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiajun Gao
- Department of Materials Science and Engineer, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
- Key Laboratory of Specialty Polymers, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
| | - Pengcheng Cui
- Department of Materials Science and Engineer, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
- Key Laboratory of Specialty Polymers, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
- Huayuan Advanced Materials Co., Ltd. Ningbo China
| | - Lingyun Ding
- Department of Materials Science and Engineer, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
- Key Laboratory of Specialty Polymers, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
| | - Taiyi Xu
- Department of Materials Science and Engineer, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
- Key Laboratory of Specialty Polymers, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
| | - Yuanlai Ju
- Department of Materials Science and Engineer, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
- Key Laboratory of Specialty Polymers, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
| | - Bibo Yu
- Huayuan Advanced Materials Co., Ltd. Ningbo China
| | - Wenwu Zhang
- Huayuan Advanced Materials Co., Ltd. Ningbo China
| | - Zhilv Zhang
- Huayuan Advanced Materials Co., Ltd. Ningbo China
| | - Wei Sun
- Department of Materials Science and Engineer, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
- Key Laboratory of Specialty Polymers, School of Materials Science and Chemical Engineering Ningbo University Ningbo China
- Huayuan Advanced Materials Co., Ltd. Ningbo China
| |
Collapse
|
57
|
Fabrication and characterization of pore-selective silver-functionalized honeycomb-patterned porous film and its application for antibacterial activity. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
58
|
Tran VV, Jeong G, Kim KS, Kim J, Jung HR, Park B, Park JJ, Chang M. Facile Strategy for Modulating the Nanoporous Structure of Ultrathin π-Conjugated Polymer Films for High-Performance Gas Sensors. ACS Sens 2022; 7:175-185. [PMID: 34967614 DOI: 10.1021/acssensors.1c01942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Conventional conjugated polymer (CP) films based on organic field-effect transistors (OFETs) tend to limit the performance of gas sensors owing to restricted analyte diffusion and limited interactions with the charge carriers that accumulate in the first few monolayers of the CP film in contact with the dielectric layer. Herein, a facile strategy is presented for modulating the morphology and charge-transport properties of nanoporous CP films using shearing-assisted phase separation of polymer blends for fabricating OFET-based chemical sensors. This approach enables the formation of nanoporous films with pore size and thickness in the ranges of 90-550 and 7-27 nm, respectively, which can be controlled simply by varying the shear rate. The resulting OFET sensors exhibit excellent sensing performance when exposed to NH3 gas, demonstrating a high responsivity (≈70.7%) at 10 ppm and good selectivity toward NH3 over various organic solvent vapors. After a comprehensive analysis of the morphology and electrical properties of the CP films, it is concluded that morphological features, such as film thickness and surface area, affect the sensing performance of nanoporous-film-based OFET sensors more significantly compared to the charge-transport characteristics of the films.
Collapse
Affiliation(s)
- Vinh Van Tran
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, South Korea
| | - Gwanghoon Jeong
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Keun Seong Kim
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Jeongho Kim
- Institute of Research and Development, CNB Inc., Gwangju 61008, South Korea
| | - Hong-Ryun Jung
- Industry-University Cooperation Foundation, Chonnam National University, Gwangju 61186, South Korea
| | - Byoungnam Park
- Department of Materials Science and Engineering, Hongik University, Seoul 121-791, South Korea
| | - Jong-Jin Park
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, South Korea
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Mincheol Chang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, South Korea
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
59
|
Jiang J, Han L, Ge F, Xiao Y, Cheng R, Tong X, Zhao Y. Porous Liquid Crystalline Networks with Hydrogel-Like Actuation and Reconfigurable Function. Angew Chem Int Ed Engl 2021; 61:e202116689. [PMID: 34970834 DOI: 10.1002/anie.202116689] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 11/08/2022]
Abstract
A porous liquid crystalline network (LCN), prepared using a template method, was found to exhibit peculiar actuation functions. The creation of porosity makes the initially hydrophobic LCN behave like a hydrogel, capable of absorbing a large volume of water (up to ten times the sample size of LCN). When the amount of absorbed water is relatively small (about 100% swelling ratio), the porous LCN displays anisotropic swelling in water and, in the same time, the retained uniaxial alignment of mesogens ensures thermally induced shape change associated with LC-isotropic phase transition. Combining the characteristic actuation mechanisms of LCN (order-disorder transition of mesogens) and hydrogel (water absorption), such porous LCN can be explored for versatile stimuli-triggered shape transformations. Moreover, the porosity enables loading/removal/reloading of functional fillers such as ionic liquid, photothermal dye and fluorophore, which imparts a same porous LCN actuator with reconfigurable functions such as ionic conductivity, light-driven locomotion, and emissive color.
Collapse
Affiliation(s)
- Jie Jiang
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, Department of Chemistry, University of Sherbrooke, J1K2R1, Sherbrooke, CANADA
| | - Li Han
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, CANADA
| | - Feijie Ge
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, CANADA
| | - Yaoyu Xiao
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, CANADA
| | - Ruidong Cheng
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, CANADA
| | - Xia Tong
- Université de Sherbrooke: Universite de Sherbrooke, Chemistry, CANADA
| | - Yue Zhao
- University of Sherbrooke, Department of Chemistry, Blvd. Universite, J1K 2R1, Sherbrooke, CANADA
| |
Collapse
|
60
|
Jiang J, Han L, Ge F, Xiao Y, Cheng R, Tong X, Zhao Y. Porous Liquid Crystalline Networks with Hydrogel‐Like Actuation and Reconfigurable Function. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202116689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jie Jiang
- Université de Sherbrooke: Universite de Sherbrooke Chemistry Department of ChemistryUniversity of Sherbrooke J1K2R1 Sherbrooke CANADA
| | - Li Han
- Université de Sherbrooke: Universite de Sherbrooke Chemistry CANADA
| | - Feijie Ge
- Université de Sherbrooke: Universite de Sherbrooke Chemistry CANADA
| | - Yaoyu Xiao
- Université de Sherbrooke: Universite de Sherbrooke Chemistry CANADA
| | - Ruidong Cheng
- Université de Sherbrooke: Universite de Sherbrooke Chemistry CANADA
| | - Xia Tong
- Université de Sherbrooke: Universite de Sherbrooke Chemistry CANADA
| | - Yue Zhao
- University of Sherbrooke Department of Chemistry Blvd. Universite J1K 2R1 Sherbrooke CANADA
| |
Collapse
|
61
|
Li M, Li W, Guan Q, Dai X, Lv J, Xia Z, Ong WJ, Saiz E, Hou X. A Tough Reversible Biomimetic Transparent Adhesive Tape with Pressure-Sensitive and Wet-Cleaning Properties. ACS NANO 2021; 15:19194-19201. [PMID: 34797635 DOI: 10.1021/acsnano.1c03882] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dry adhesives that combine strong adhesion, high transparency, and reusability are needed to support developments in emerging fields such as medical electrodes and the bonding of electronic optical devices. However, achieving all of these features in a single material remains challenging. Herein, we propose a pressure-responsive polyurethane (PU) adhesive inspired by the octopus sucker. This adhesive not only showcases reversible adhesion to both solid materials and biological tissues but also exhibits robust stability and high transparency (>90%). As the adhesive strength of the PU adhesive corresponds to the application force, adhesion could be adjusted by the preloading force and/or pressure. The adhesive exhibits high static adhesion (∼120 kPa) and 180° peeling force (∼500 N/m), which is far stronger than those of most existing artificial dry adhesives. Moreover, the adhesion strength is effectively maintained even after 100 bonding-peeling cycles. Because the adhesive tape relies on the combination of negative pressure and intermolecular forces, it overcomes the underlying problems caused by glue residue like that left by traditional glue tapes after removal. In addition, the PU adhesive also shows wet-cleaning performance; the contaminated tape can recover 90-95% of the lost adhesion strength after being cleaned with water. The results show that an adhesive with a microstructure designed to increase the contribution of negative pressure can combine high reversible adhesion and long fatigue life.
Collapse
Affiliation(s)
- Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Weijun Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Xiaoli Dai
- Environmental Protection Research Institute of Light Industry, Beijing 100089, China
| | - Jing Lv
- China University of Petroleum (Beijing), Beijing 102249, China
| | - Zhenhai Xia
- Department of Materials Science and Engineering and Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor 43900, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
62
|
El-Hiti GA, Ahmed DS, Yousif E, Al-Khazrajy OSA, Abdallh M, Alanazi SA. Modifications of Polymers through the Addition of Ultraviolet Absorbers to Reduce the Aging Effect of Accelerated and Natural Irradiation. Polymers (Basel) 2021; 14:20. [PMID: 35012042 PMCID: PMC8747282 DOI: 10.3390/polym14010020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
The photooxidative degradation process of plastics caused by ultraviolet irradiation leads to bond breaking, crosslinking, the elimination of volatiles, formation of free radicals, and decreases in weight and molecular weight. Photodegradation deteriorates both the mechanical and physical properties of plastics and affects their predicted life use, in particular for applications in harsh environments. Plastics have many benefits, while on the other hand, they have numerous disadvantages, such as photodegradation and photooxidation in harsh environments and the release of toxic substances due to the leaching of some components, which have a negative effect on living organisms. Therefore, attention is paid to the design and use of safe, plastic, ultraviolet stabilizers that do not pose a danger to the environment if released. Plastic ultraviolet photostabilizers act as efficient light screeners (absorbers or pigments), excited-state deactivators (quenchers), hydroperoxide decomposers, and radical scavengers. Ultraviolet absorbers are cheap to produce, can be used in low concentrations, mix well with polymers to produce a homogenous matrix, and do not alter the color of polymers. Recently, polyphosphates, Schiff bases, and organometallic complexes were synthesized and used as potential ultraviolet absorbers for polymeric materials. They reduced the damage caused by accelerated and natural ultraviolet aging, which was confirmed by inspecting the surface morphology of irradiated polymeric films. For example, atomic force microscopy revealed that the roughness factor of polymers' irradiated surfaces was improved significantly in the presence of ultraviolet absorbers. In addition, the investigation of the surface of irradiated polymers using scanning electron microscopy showed a high degree of homogeneity and the appearance of pores that were different in size and shape. The current work surveys for the first time the use of newly synthesized, ultraviolet absorbers as additives to enhance the photostability of polymeric materials and, in particular, polyvinyl chloride and polystyrene, based mainly on our own recent work in the field.
Collapse
Affiliation(s)
- Gamal A. El-Hiti
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
| | - Dina S. Ahmed
- Department of Medical Instrumentation Engineering, Al-Mansour University College, Baghdad 64021, Iraq;
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq; (E.Y.); (M.A.)
| | - Omar S. A. Al-Khazrajy
- Department of Chemistry, College of Education for Pure Science (Ibn Al-Haytham), University of Baghdad, Baghdad 64021, Iraq;
| | - Mustafa Abdallh
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq; (E.Y.); (M.A.)
| | - Saud A. Alanazi
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
| |
Collapse
|
63
|
Methanol assisted-massive production of surfactant-free ordered honeycomb polycaprolactone film. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
64
|
Banach Ł, Williams GT, Fossey JS. Insulin Delivery Using Dynamic Covalent Boronic Acid/Ester‐Controlled Release. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Łukasz Banach
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| | - George T. Williams
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| | - John S. Fossey
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| |
Collapse
|
65
|
|
66
|
Hurtuková K, Juřicová V, Fajstavrová K, Fajstavr D, Slepičková Kasálková N, Rimpelová S, Švorčík V, Slepička P. Cytocompatibility of Polymethyl Methacrylate Honeycomb-like Pattern on Perfluorinated Polymer. Polymers (Basel) 2021; 13:polym13213663. [PMID: 34771220 PMCID: PMC8587905 DOI: 10.3390/polym13213663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we present a simple approach for developing a biocompatible polymer scaffold with a honeycomb-like micropattern. We aimed to combine a plasma treatment of fluorinated ethylene propylene (FEP) substrate with an improved phase separation technique. The plasma exposure served for modification of the polymer surface properties, such as roughness, surface chemistry, and wettability. The treated FEP substrate was applied for the growth of a honeycomb-like pattern from a solution of polymethyl methacrylate (PMMA). The properties of the pattern were strongly dependent on the conditions of plasma exposure of the FEP substrate. The physico-chemical properties of the prepared pattern, such as changes in wettability, aging, morphology, and surface chemistry, were determined. Further, we have examined the cellular response of human osteoblasts (U-2 OS) on the modified substrates. The micropattern prepared with a selected combination of surface activation and amount of PMMA for honeycomb construction showed a positive effect on U-2 OS cell adhesion and proliferation. Samples with higher PMMA content (3 and 4 g) formed more periodic hexagonal structures on the surface compared to its lower amount (1 and 2 g), which led to a significant increase in the pattern cytocompatibility compared to pristine or plasma-treated FEP.
Collapse
Affiliation(s)
- Klaudia Hurtuková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (V.J.); (K.F.); (D.F.); (N.S.K.); (V.Š.)
| | - Veronika Juřicová
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (V.J.); (K.F.); (D.F.); (N.S.K.); (V.Š.)
| | - Klára Fajstavrová
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (V.J.); (K.F.); (D.F.); (N.S.K.); (V.Š.)
| | - Dominik Fajstavr
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (V.J.); (K.F.); (D.F.); (N.S.K.); (V.Š.)
| | - Nikola Slepičková Kasálková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (V.J.); (K.F.); (D.F.); (N.S.K.); (V.Š.)
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic;
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (V.J.); (K.F.); (D.F.); (N.S.K.); (V.Š.)
| | - Petr Slepička
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (V.J.); (K.F.); (D.F.); (N.S.K.); (V.Š.)
- Correspondence: ; Tel.: +420-220-445-162
| |
Collapse
|
67
|
Improving heat and mass transfer rates through continuous drop-wise condensation. Sci Rep 2021; 11:19636. [PMID: 34608187 PMCID: PMC8490593 DOI: 10.1038/s41598-021-98992-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/13/2021] [Indexed: 12/01/2022] Open
Abstract
Drop-wise condensation (DWC) has been the focus of scientific research in vapor condensation technologies since the 20th century. Improvement of condensation rate in DWC is limited by the maximum droplet a condensation surface could sustain and the frequency of droplet shedding. Furthermore, The presence of non-condensable gases (NCG) reduces the condensation rate significantly. Here, we present continuous drop-wise condensation to overcome the need of hydrophobic surfaces while yet maintaining micron-sized droplets. By shifting focus from surface treatment to the force required to sweep off a droplet, we were able to utilize stagnation pressure of jet impingement to tune the shed droplet size. The results show that droplet size being shed can be tuned effectively by tuning the jet parameters. our experimental observations showed that the effect of NCG is greatly alleviated by utilizing this technique. An improvement by multiple folds in mass transfer compactness factor compared to state-of-the-art dehumidification technology was possible.
Collapse
|
68
|
|
69
|
Zhang X, Wang S, Han S, Ouyang X, Ma N, Wei H, Zhang X. The rapid and controllable fabrication of large-scale and highly ordered micro-honeycomb arrays induced by nonsolvent phase separation. SOFT MATTER 2021; 17:8078-8085. [PMID: 35226029 DOI: 10.1039/d1sm00619c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Structures that are highly ordered in nature show unique light propagation abilities. Among them, micro-honeycomb arrays are attractive owing to their advantages relating to the collection of light or enlarging the viewing angle and, also, owing to their potential applications in precision optics. Inspired by the natural phenomenon of droplet condensation on a cold surface, breath figure self-assembly has been a common approach used to fabricate such ordered micro-honeycomb arrays. However, the harsh preparation conditions and specific polymer architecture required have limited the widespread application of this approach. In this work, by using a commercial linear homopolymer and introducing its nonsolvent, we successfully fabricated uniform micro-honeycomb arrays on a large scale in just seconds and at ambient humidity. The morphology of the structures can be easily tuned via controlling the preparation conditions. Furthermore, high fill-factor convex micro-lenses were prepared based on the as-prepared concave micro-honeycomb arrays as templates through a simple replication process. They demonstrate properties such as clear multiple image presentation and light diffraction. They can also assist the strong scattering of light, which enhances the fluorescent intensity by more than 10%. This method is envisaged as a potential candidate to replace breath figure self-assembly for micro-honeycomb arrays in a low-cost and high-efficiency manner under mild conditions.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- College of Material Science and Chemical Engineering, Harbin Engineering University, 145 Nantong Street, Harbin, 150001, China.
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Shuya Wang
- College of Material Science and Chemical Engineering, Harbin Engineering University, 145 Nantong Street, Harbin, 150001, China.
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Shengpeng Han
- College of Material Science and Chemical Engineering, Harbin Engineering University, 145 Nantong Street, Harbin, 150001, China.
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Xiao Ouyang
- College of Material Science and Chemical Engineering, Harbin Engineering University, 145 Nantong Street, Harbin, 150001, China.
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Ning Ma
- College of Material Science and Chemical Engineering, Harbin Engineering University, 145 Nantong Street, Harbin, 150001, China.
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Hao Wei
- College of Material Science and Chemical Engineering, Harbin Engineering University, 145 Nantong Street, Harbin, 150001, China.
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Xinyue Zhang
- College of Material Science and Chemical Engineering, Harbin Engineering University, 145 Nantong Street, Harbin, 150001, China.
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| |
Collapse
|
70
|
Lopez de la Cruz R, Schilder N, Zhang X, Lohse D. Phase Separation of an Evaporating Ternary Solution in a Hele-Shaw Cell. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10450-10460. [PMID: 34424709 PMCID: PMC8427745 DOI: 10.1021/acs.langmuir.1c01274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/10/2021] [Indexed: 06/13/2023]
Abstract
In the present work, we investigate the dynamic phenomena induced by solvent evaporation from ternary solutions confined in a Hele-Shaw cell. The model solutions consist of ethanol, water, and oil, and with the decrease in ethanol concentration by selective evaporation, they may undergo microdroplet formation via the ouzo effect or macroscopic liquid-liquid phase separation. We varied the initial concentration of the three components of the solutions. For all ternary solutions, evaporation of the good solvent ethanol from the gas-liquid interface, aligned with one side of the cell, leads to a Marangoni instability at the early stage of the evaporation process. The presence of the Marangoni instability is in agreement with our recent predictions based on linear stability analysis of binary systems. However, the location and onset of subsequent microdroplet formation and phase separation are the result of the interplay between the Marangoni instability and the initial composition of the ternary mixtures. We classified the ternary solutions into different groups according to the initial concentration of oil. For each group, based on the ternary diagram of the mixture, we offer a rationale for the way phase separation takes place and discuss how the instability influences droplet nucleation. Our work helps us to understand under what conditions and where droplet nucleation can take place when advection is present during phase separation inside a microfluidic device.
Collapse
Affiliation(s)
- Ricardo
Arturo Lopez de la Cruz
- Physics
of Fluids Group, Max-Planck-Center Twente for Complex Fluid Dynamics,
Mesa+ Institute, and J. M. Burgers Centre for Fluid Dynamics, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Noor Schilder
- Physics
of Fluids Group, Max-Planck-Center Twente for Complex Fluid Dynamics,
Mesa+ Institute, and J. M. Burgers Centre for Fluid Dynamics, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Xuehua Zhang
- Physics
of Fluids Group, Max-Planck-Center Twente for Complex Fluid Dynamics,
Mesa+ Institute, and J. M. Burgers Centre for Fluid Dynamics, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Department
of Chemical and Materials Engineering, University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Detlef Lohse
- Physics
of Fluids Group, Max-Planck-Center Twente for Complex Fluid Dynamics,
Mesa+ Institute, and J. M. Burgers Centre for Fluid Dynamics, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Max
Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| |
Collapse
|
71
|
Zhang TT, Yu P, Zhang ZM, Liu ZY, Yang MB, Yang W. Formation of nanosheets-assembled porous polymer microspheres via the combination effect of polymer crystallization and vapor-induced phase separation. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
72
|
de León AS, de la Mata M, Molina SI. Hybrid hierarchically structured materials combining breath figures and thermal decomposition of KAuCl4. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
73
|
Li J, Xin M, Ma Z, Shi Y, Pan L. Nanomaterials and their applications on bio-inspired wearable electronics. NANOTECHNOLOGY 2021; 32:472002. [PMID: 33592596 DOI: 10.1088/1361-6528/abe6c7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Wearable electronics featuring conformal attachment, sensitive perception and intellectual signal processing have made significant progress in recent years. However, when compared with living organisms, artificial sensory devices showed undeniable bulky shape, poor adaptability, and large energy consumption. To make up for the deficiencies, biological examples provide inspirations of novel designs and practical applications. In the field of biomimetics, nanomaterials from nanoparticles to layered two-dimensional materials are actively involved due to their outstanding physicochemical properties and nanoscale configurability. This review focuses on nanomaterials related to wearable electronics through bioinspired approaches on three different levels, interfacial packaging, sensory structure, and signal processing, which comprehensively guided recent progress of wearable devices in leveraging both nanomaterial superiorities and biorealistic functionalities. In addition, opinions on potential development trend are proposed aiming at implementing bioinspired electronics in multifunctional portable sensors, health monitoring, and intelligent prosthetics.
Collapse
Affiliation(s)
- Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Ming Xin
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Zhong Ma
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
74
|
Basnett P, Matharu RK, Taylor CS, Illangakoon U, Dawson JI, Kanczler JM, Behbehani M, Humphrey E, Majid Q, Lukasiewicz B, Nigmatullin R, Heseltine P, Oreffo ROC, Haycock JW, Terracciano C, Harding SE, Edirisinghe M, Roy I. Harnessing Polyhydroxyalkanoates and Pressurized Gyration for Hard and Soft Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32624-32639. [PMID: 34228435 DOI: 10.1021/acsami.0c19689] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organ dysfunction is a major cause of morbidity and mortality. Transplantation is typically the only definitive cure, challenged by the lack of sufficient donor organs. Tissue engineering encompasses the development of biomaterial scaffolds to support cell attachment, proliferation, and differentiation, leading to tissue regeneration. For efficient clinical translation, the forming technology utilized must be suitable for mass production. Herein, uniaxial polyhydroxyalkanoate scaffolds manufactured by pressurized gyration, a hybrid scalable spinning technique, are successfully used in bone, nerve, and cardiovascular applications. Chorioallantoic membrane and in vivo studies provided evidence of vascularization, collagen deposition, and cellular invasion for bone tissue engineering. Highly efficient axonal outgrowth was observed in dorsal root ganglion-based 3D ex vivo models. Human induced pluripotent stem cell derived cardiomyocytes exhibited a mature cardiomyocyte phenotype with optimal calcium handling. This study confirms that engineered polyhydroxyalkanoate-based gyrospun fibers provide an exciting and unique toolbox for the development of scalable scaffolds for both hard and soft tissue regeneration.
Collapse
Affiliation(s)
- Pooja Basnett
- School of Life Sciences, University of Westminster, London W1W 6UW, U.K
| | - Rupy K Matharu
- Department of Mechanical Engineering, University College London, London WC1E 7JE, U.K
| | - Caroline S Taylor
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Upulitha Illangakoon
- Department of Mechanical Engineering, University College London, London WC1E 7JE, U.K
| | - Jonathan I Dawson
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton SO16 6YD, U.K
| | - Janos M Kanczler
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton SO16 6YD, U.K
| | - Mehrie Behbehani
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Eleanor Humphrey
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K
| | - Qasim Majid
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K
| | | | - Rinat Nigmatullin
- School of Life Sciences, University of Westminster, London W1W 6UW, U.K
| | - Phoebe Heseltine
- Department of Mechanical Engineering, University College London, London WC1E 7JE, U.K
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton SO16 6YD, U.K
| | - John W Haycock
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Cesare Terracciano
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London WC1E 7JE, U.K
| | - Ipsita Roy
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, U.K
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K
| |
Collapse
|
75
|
Oku K, Ohno K, Miyamoto D, Ito K, Yabu H, Nakazawa K. Effect of Pore Size of Honeycomb-Patterned Polymer Film on Spontaneous Formation of 2D Micronetworks by Coculture of Human Umbilical Vein Endothelial Cells and Mesenchymal Stem Cells. Macromol Biosci 2021; 21:e2100113. [PMID: 34231307 DOI: 10.1002/mabi.202100113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/12/2021] [Indexed: 11/08/2022]
Abstract
The geometrical control of micronetwork structures ( μ NSs) formed by endothelial cells is an important topic in tissue engineering, cell-based assays, and fundamental biological studies. In this study, μ NSs are formed using human umbilical vein endothelial cells (HUVECs) by the coculture of HUVECs and human mesenchymal stem cells (MSCs) confined in a honeycomb-patterned poly-l-lactic acid film (honeycomb film (HCF)), which is a novel cell culture scaffold. The HCF is produced using the breath figure method, which uses condensed water droplets as pore templates. The confinement of the HUVECs and MSCs in the HCF along with the application of centrifugal force results in μ NS formation when the pore size is more than 20 μ m. Furthermore, μ NS development is geometrically restricted by the hexagonally packed and connected pores in the horizontal direction of the HCF. Network density is also controlled by changing the seeding density of the HUVECs and MSCs. The threshold pore size indicates that μ NSs can be formed spontaneously by using an HCF with a perfectly uniform porous structure. This result provides an important design guideline for the structure of porous cell culture scaffolds by applying a blood vessel model in vitro.
Collapse
Affiliation(s)
- Keisuke Oku
- Process Engineering and Technology Center, Fujifilm Corporation, Research and Development Management Headquarters, 210, Nakanuma, Minamiashigara-shi, Kanagawa, 250-0123, Japan
| | - Kyohei Ohno
- Department of Life and Environment Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Daisuke Miyamoto
- Department of Life and Environment Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Koju Ito
- WPI Advanced Institute for Materials Research (AIMR), Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Hiroshi Yabu
- WPI Advanced Institute for Materials Research (AIMR), Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Kohji Nakazawa
- Department of Life and Environment Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| |
Collapse
|
76
|
Deraine A, Rebelo Calejo MT, Agniel R, Kellomäki M, Pauthe E, Boissière M, Massera J. Polymer-Based Honeycomb Films on Bioactive Glass: Toward a Biphasic Material for Bone Tissue Engineering Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29984-29995. [PMID: 34129320 PMCID: PMC8289249 DOI: 10.1021/acsami.1c03759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/01/2021] [Indexed: 05/03/2023]
Abstract
The development of innovative materials for bone tissue engineering to promote bone regeneration while avoiding fibrous tissue infiltration is of paramount importance. Here, we combined the known osteopromotive properties of bioactive glasses (BaGs) with the biodegradability, biocompatibility, and ease to shape/handle of poly-l-co-d,l-lactic acid (PLDLA) into a single biphasic material. The aim of this work was to unravel the role of the surface chemistry and topography of BaG surfaces on the stability of a PLDLA honeycomb membrane, in dry and wet conditions. The PLDLA honeycomb membrane was deposited using the breath figure method (BFM) on the surface of untreated BaG discs (S53P4 and 13-93B20), silanized with 3-aminopropyltriethoxysilane (APTES) or conditioned (immersed for 24 h in TRIS buffer solution). The PLDLA membranes deposited onto the BaG discs, regardless of their composition or surface treatments, exhibited a honeycomb-like structure with pore diameter ranging from 1 to 5 μm. The presence of positively charged amine groups (APTES grafting) or the precipitation of a CaP layer (conditioned) significantly improved the membrane resistance to shear as well as its stability upon immersion in the TRIS buffer solution. The obtained results demonstrated that the careful control of the substrate surface chemistry enabled the deposition of a stable honeycomb membrane at their surface. This constitutes a first step toward the development of new biphasic materials enabling osteostimulation (BaG) while preventing migration of fibrous tissue inside the bone defect (honeycomb polymer membrane).
Collapse
Affiliation(s)
- A. Deraine
- ERRMECe,
Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules
(EA1391), Université de Cergy-Pontoise, Maison Internationale
de la Recherche (MIR), Rue Descartes, 95001 Neuville sur Oise, Cedex, France
- Laboratory
of Biomaterials and Tissue Engineering, Faculty of Medicine and Health
Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - M. T. Rebelo Calejo
- Laboratory
of Biomaterials and Tissue Engineering, Faculty of Medicine and Health
Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - R. Agniel
- ERRMECe,
Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules
(EA1391), Université de Cergy-Pontoise, Maison Internationale
de la Recherche (MIR), Rue Descartes, 95001 Neuville sur Oise, Cedex, France
| | - M. Kellomäki
- Laboratory
of Biomaterials and Tissue Engineering, Faculty of Medicine and Health
Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - E. Pauthe
- ERRMECe,
Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules
(EA1391), Université de Cergy-Pontoise, Maison Internationale
de la Recherche (MIR), Rue Descartes, 95001 Neuville sur Oise, Cedex, France
| | - M. Boissière
- ERRMECe,
Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules
(EA1391), Université de Cergy-Pontoise, Maison Internationale
de la Recherche (MIR), Rue Descartes, 95001 Neuville sur Oise, Cedex, France
| | - J. Massera
- Laboratory
of Biomaterials and Tissue Engineering, Faculty of Medicine and Health
Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| |
Collapse
|
77
|
Lin X, Xu B, Zhao Z, Yang X, Xing Y, You C, Kong Y, Cui J, Zhu L, Lin S, Mei Y. Flying Squirrel-Inspired Motion Control of a Light-Deformed Pt-PAzoMA Micromotor through Drag Force Manipulation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30106-30117. [PMID: 34143593 DOI: 10.1021/acsami.1c07569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Micromotors require stable and precise motion control for complex tasks such as microsurgery, drug delivery in vivo, or environmental monitoring ex vivo. However, a continuous control signal is needed for micromotors to achieve motion control during their whole journey, which hinders their application in areas where external control stimuli are limited or unavailable. Fortunately, nature suggests an excellent solution that flying squirrel exhibits motion tuning capability by deforming itself when jumping off a tall tree. Inspired by this, we propose a Pt-PAzoMA Janus micromotor that precisely changes its shape (from a spherical shape to an elliptical shape) under a brief light signal (450 nm) and maintains this deformation until next signal reception. The deformed elliptical micromotor performs relatively low-speed motion compared to the spherical one, which is further confirmed by massive simulation results. In addition, by investigating motion behavior experimentally and theoretically, it is proved that the motion modulation is caused by the drag force changing brought from the deformation. This method represents a different route to regulate the motion of micromotors without a continuous signal, which is useful in application scenarios where the environmental control signal is inaccessible/limited or long-time operation with minimum energy input is required to maintain motion manipulation. With further function modification, this kind of shape-changing micromotor has potential in optimizing drug diffusion efficiency by speed altering and long-term monitoring at the diseased area by confining the active range of the micromotor in the targeted area through deformation.
Collapse
Affiliation(s)
- Xinyi Lin
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| | - Borui Xu
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| | - Zhe Zhao
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| | - Xiaoyan Yang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Xing
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Chunyu You
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| | - Ye Kong
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| | - Jizhai Cui
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
78
|
Electrospun Metal Oxide Nanofibers and Their Conductometric Gas Sensor Application. Part 1: Nanofibers and Features of Their Forming. NANOMATERIALS 2021; 11:nano11061544. [PMID: 34208104 PMCID: PMC8230756 DOI: 10.3390/nano11061544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022]
Abstract
Electrospun metal oxide nanofibers, due to their unique structural and electrical properties, are now being considered as materials with great potential for gas sensor applications. This critical review attempts to assess the feasibility of these perspectives. The article in Part 1 discusses the basic principles of electrospinning and the features of the formation of metal oxide nanofibers using this method. Approaches to optimization of nanofibers’ parameters important for gas sensor application are also considered.
Collapse
|
79
|
Zhong L, Tao H, Gong X. Superhydrophobic Poly(l-lactic acid) Membranes with Fish-Scale Hierarchical Microstructures and Their Potential Application in Oil-Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6765-6775. [PMID: 34029095 DOI: 10.1021/acs.langmuir.1c00858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, superhydrophobic poly(l-lactic acid) (PLLA) hierarchical membranes exhibiting excellent oil-removal performance, which is of great importance in curbing the oil-pollution environment, were fabricated by a simple solvent-evaporation-induced precipitation method. PLLA membranes with hierarchical micro/nanostructures (fish scales, fibrous sheets, and petal-like morphology) can be conveniently prepared by adjusting the preparation parameters including PLLA concentration, precipitation temperature, type of solvent and nonsolvent, and the addition of nano-SiO2. The results show that the water contact angle of the fish-scale-structured PLLA membrane was 138.6°, revealing that water repellency was significantly improved compared to that of the solvent-casting PLLA membrane (∼72.8°). Moreover, the PLLA/SiO2 nanocomposite membrane with a dense hierarchical micro/nanostructure had a water contact angle greater than 167.1°, which has great potential in oil-water separation.
Collapse
Affiliation(s)
- Lingqi Zhong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Haizheng Tao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
80
|
Huang J, Hao H, Huang Y, Yu B, Ren K, Jin Q, Ji J. Gradient Porous Structure Templated by Breath Figure Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6016-6021. [PMID: 33951392 DOI: 10.1021/acs.langmuir.1c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surfaces with gradient topography are important in various fields but are difficult to fabricate. Herein, we report a facile and robust way to fabricate a surface with gradient topography of porous structure, in one direction, based on the breath figure (BF) method for the first time. The influencing factors including relative humidity (RH), sample immersion time, and solvent composition, affecting the speed, time, and model of the droplet growth, respectively, were investigated to control gradient BF pores with different ranges of pore sizes. Applying appropriate parameters, gradient BF pores with a diameter difference over 400% were prepared on one sample. The mechanism of gradient duration of solvent evaporation at different regions of a sample for fabricating gradient pores was proposed and experimentally verified with recording optical and thermographic changes of the sample in the BF procedure. This new method provides a novel site for gradient topography fabrication.
Collapse
Affiliation(s)
- Junjie Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hongye Hao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Bo Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Kefeng Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
81
|
Jiang J, Zheng H, Liu H, Zhai W. Tunable cell structure and mechanism in porous thermoplastic polyurethane micro-film fabricated by a diffusion-restricted physical foaming process. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
82
|
Huang L, Wang Z, Chen J, Wang B, Chen Y, Huang W, Chi L, Marks TJ, Facchetti A. Porous Semiconducting Polymers Enable High-Performance Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007041. [PMID: 33655643 DOI: 10.1002/adma.202007041] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Organic polymer electrochemical transistors (OECTs) are of great interest for flexible electronics and bioelectronics applications owing to their high transconductance and low operating voltage. However, efficient OECT operation must delicately balance the seemingly incompatible materials optimizations of redox chemistry, active layer electronic transport, and ion penetration/transport. The latter characteristics are particularly challenging since most high-mobility semiconducting polymers are hydrophobic, which hinders efficient ion penetration, hence limiting OECT performance. Here, the properties and OECT response of a series of dense and porous semiconducting polymer films are compared, the latter fabricated via a facile breath figure approach. This methodology enables fast ion doping, high transconductance (up to 364 S cm-1 ), and a low subthreshold swing for the hydrophobic polymers DPPDTT and P3HT, rivalling or exceeding the metrics of the relatively hydrophilic polymer, Pg2T-T. Furthermore, the porous morphology also enhances the transconductance of hydrophilic polymers, offering a general strategy for fabricating high-performance electrochemical transistors.
Collapse
Affiliation(s)
- Lizhen Huang
- Institute of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Zhi Wang
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Jianhua Chen
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Binghao Wang
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Yao Chen
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wei Huang
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Flexterra Inc., 8025 Lamon Avenue, Skokie, IL, 60077, USA
| |
Collapse
|
83
|
Zhang C, Li M, Sun H, Yue X. Breath figure‐derived porous fluorine‐containing poly(ether sulfone) membranes with low dielectric constant. POLYM INT 2021. [DOI: 10.1002/pi.6217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chongyang Zhang
- Alan G MacDiarmid Institute College of Chemistry, Jilin University Changchun China
| | - Mengzhu Li
- Alan G MacDiarmid Institute College of Chemistry, Jilin University Changchun China
| | - Handong Sun
- Alan G MacDiarmid Institute College of Chemistry, Jilin University Changchun China
| | - Xigui Yue
- Alan G MacDiarmid Institute College of Chemistry, Jilin University Changchun China
| |
Collapse
|
84
|
Luo H, Yang M, Li D, Wang Q, Zou W, Xu J, Zhao N. Transparent Super-Repellent Surfaces with Low Haze and High Jet Impact Resistance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13813-13821. [PMID: 33687189 DOI: 10.1021/acsami.0c23055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transparent superhydrophobic surfaces are of vital significance for rising applications in optoelectronics, outdoor displays, building windows, and so on. However, facile fabrication of surfaces combining stable superhydrophobicity and high transparency with particularly low haze remains a challenge. Here, we demonstrate a nonfluorinated hierarchical surface, simply prepared by sequential spraying of a primer of poly(ethylene-co-acrylic acid) (EAA) and silica nanoparticles (SiO2). The resultant surface shows remarkable liquid repellency (e.g., an apparent contact angle of >160° and a sliding angle of <2° for honey) and high transparency (a transmittance of ∼91% and a haze of ∼6%). Especially, flexible EAA adhesive enables the surface to resist water impinging (up to ∼15.0 m s-1, higher than the terminal velocities of raindrops) and mechanical damaging. This super-repellent surface also presents excellent UV and chemical stability, sustaining a superhydrophobic state upon UVA exposure for 60 days and acidic corrosion or oil contamination for 7 days. With multirobustness and scalability, our coatings show great potential in related fields.
Collapse
Affiliation(s)
- Heng Luo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Meng Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongdong Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qianxiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weizhi Zou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian Xu
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
85
|
Yin H, Zhan F, Li Z, Huang H, Marcasuzaa P, Luo X, Feng Y, Billon L. CO 2-Triggered ON/OFF Wettability Switching on Bioinspired Polylactic Acid Porous Films for Controllable Bioadhesion. Biomacromolecules 2021; 22:1721-1729. [PMID: 33666439 DOI: 10.1021/acs.biomac.1c00134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bioinspired honeycomb-like porous films with switchable properties have drawn much attention recently owing to their potential application in scenarios in which the conversion between two opposite properties is required. Herein, the CO2-gas-triggered ON/OFF switching wettability of biocompatible polylactic acid (PLA) honeycomb porous films is fabricated. Highly ordered porous films with diameters between 2.0 and 2.8 μm are separately prepared from complexes of nonresponsive PLA and a CO2-sensitive melamine derivative [N2,N4,N6-tris(3-(dimethylamino)propyl)-1,3,5-triazine-2,4,6-triamine, MET] via the breath figure method. The hydrophilic CO2-sensitive groups can be precisely arranged in the pore's inner surface and/or top surface of the films by simply changing the PLA/MET ratio. The sensitive groups in the pore's inner surface act as a switch triggered by CO2 gas controlling water to enter the pores or not, thus resulting in ON/OFF switching wettability. The largest response of the water contact angle of honeycomb films reaches 35°, from 100 to 65°, leading to an obvious hydrophobic-hydrophilic conversion. The improved surface wettability enhances the interaction between the cell and honeycomb film surface, thus resulting in a better cell attachment. Such smart properties accompanying the biocompatible polymer and biological gas trigger facilitate possible biomedical and bioengineering applications in the future for these films.
Collapse
Affiliation(s)
- Hongyao Yin
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Fuxing Zhan
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zongcheng Li
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Huiyu Huang
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Pierre Marcasuzaa
- Université de Pau & des Pays de l'Adour, E2S UPPA, CNRS, IPREM-UMR 5254, Pau 64000, France.,Bio-Inspired Materials Group: Functionalities and Self-Assembly, Université de Pau & des Pays de l'Adour, E2S UPPA, Pau 64000, France
| | - Xinjie Luo
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yujun Feng
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Laurent Billon
- Université de Pau & des Pays de l'Adour, E2S UPPA, CNRS, IPREM-UMR 5254, Pau 64000, France.,Bio-Inspired Materials Group: Functionalities and Self-Assembly, Université de Pau & des Pays de l'Adour, E2S UPPA, Pau 64000, France
| |
Collapse
|
86
|
Abdulhamid MA, Park SH, Zhou Z, Ladner DA, Szekely G. Surface engineering of intrinsically microporous poly(ether-ether-ketone) membranes: From flat to honeycomb structures. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
87
|
Photografting of biochelator onto polypropylene film as an antioxidant clean label. Food Chem 2021; 351:129362. [PMID: 33647698 DOI: 10.1016/j.foodchem.2021.129362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 11/19/2022]
Abstract
A ligand film with citric acid (CA) on the surface as a biochelator was prepared via photografting. Polypropylene film was photochemically brushed by immobilizing glycidyl methacrylate onto the film surface (PP-g-GMA) in the presence of benzophenone. The ligand film (PP-g-GMA-g-CA) was developed via a ring-opening reaction between PP-g-GMA and CA. The chemical structure was examined using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Microstructure and grafting morphology were observed using scanning electron microscopy and atomic force microscopy, and brushed-like configuration and porous surface morphology were described. A large amount of carboxylic acid (215 ± 11 nm) was detected on the surface of PP-g-GMA-g-CA and afforded chelation of Fe3+ (215 ± 11 nm). This ligand film exhibited chelating activity in vitamin C and virgin olive oil (p < 0.05), which extended the shelf-life of these foods. Moreover, overall migration analysis demonstrated that it can be considered as a non-migratory antioxidant.
Collapse
|
88
|
Mayarani M, Basavaraj MG, Satapathy DK. Colloidal monolayers with cell-like tessellations via interface assisted evaporative assembly. J Colloid Interface Sci 2021; 583:683-691. [PMID: 33039865 DOI: 10.1016/j.jcis.2020.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 10/23/2022]
Abstract
HYPOTHESIS Evaporating sessile drops containing surface active colloids is a promising route to self-assemble two-dimensional nanostructures. The standard protocol is to first self-assemble surface active nanoscale particles at the water-vapour interface and subsequently transfer it on to a solid surface. Colloidal monolayers with very few morphologies have been fabricated, exploiting this bottom-up self-assembly technique. However, the evaporation kinetics under controlled humidity conditions may dramatically alter the microstructure of self-assembled colloidal monolayers at the liquid-vapor interface and that on the solid surfaces, an aspect that has not been fully addressed in the prior studies. EXPERIMENTS To this end, we present an experimental study of evaporation driven self-assembly of soft poly(N-isopropylacrylamide) (pNIPAM) microgel particles loaded in a sessile drop. The surface-active microgel particles spontaneously populate the water-vapour interface facilitating the suppression of the coffee-ring effect and the formation of monolayer stains. The role of evaporation kinetics under controlled humidity conditions on the colloid's microstructure adsorbed to the solvent-air interface and on the morphology of the colloidal monolayer transferred onto the solid surface are studied in detail. FINDINGS The formation of particle-free and particle-rich regions at the water-vapor interface is observed for sessile drops evaporated under saturated humidity conditions. We show that the evaporation induced shrinkage of the interface area and the enhancement of the areal density of microgel particles adsorbed onto the interface leads to a restructuring of the particle-laden interface. The rearrangement of microgel particles along the water-vapor interface resembling the de-wetting assisted patterns is transferred to the solid substrate upon complete evaporation of the solvent. The microgel particles in the deposit assemble into domains with enhanced crystalline order. The evolution of Voronoi entropy across the monolayer deposit patterns obtained by the standard and slow evaporation routes are presented.
Collapse
Affiliation(s)
- M Mayarani
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai, India
| | - Madivala G Basavaraj
- Polymer Engineering and Colloid Sciences Laboratory, Department of Chemical Engineering, IIT Madras, Chennai, India
| | - Dillip K Satapathy
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai, India.
| |
Collapse
|
89
|
Fabrication of a novel underwater-superoleophobic/hydrophobic composite membrane for robust anti-oil-fouling membrane distillation by the facile breath figures templating method. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118666] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
90
|
Zhang Q, Willis-Fox N, Conboy C, Daly R. Direct-writing microporous polymer architectures - print, capture and release. MATERIALS HORIZONS 2021; 8:179-186. [PMID: 34821296 DOI: 10.1039/d0mh01460e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the nature-inspired breath figure method, rafts of condensed water droplets self-organise and imprint into a permanent microporous polymer structure. This could have exciting applications in drug delivery, tissue engineering and sensors but it is extremely difficult to control or functionalise the final structure. Here, we show direct-writing of droplets onto fluid surfaces by inkjet printing as a breakthrough to dial-in a required pattern, structure and function into the polymer film.
Collapse
Affiliation(s)
- Qingxin Zhang
- Institute for Manufacturing, Department of Engineering, University of Cambridge, UK.
| | | | | | | |
Collapse
|
91
|
Chen B, Wang M, Wang X, Zhao Q, Wang Y, Gao G. Poly(ionic liquid)s with superior swelling and enrichment properties in solvents. Polym Chem 2021. [DOI: 10.1039/d1py00377a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molar swelling ratio and enrichment factor of poly(ionic liquid)s were linearly positively correlated with the Hansen solubility parameter of the solvent and the difference between the Hansen solubility parameters of mixed solvents, respectively.
Collapse
Affiliation(s)
- Bihua Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Man Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Xin Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Qi Zhao
- Shanxi Engineering Research Center of Biorefinery
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| | - Yingxiong Wang
- Shanxi Engineering Research Center of Biorefinery
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| | - Guohua Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| |
Collapse
|
92
|
Dong J, Li J, Wang H, Liu B, Peng B, Chen J, Lin S. Fabrication of Polypseudorotaxane-Based Responsive Film via Breath Figure Method. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21030105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
93
|
Photografting of conducting polymer onto polymeric substrate as non-migratory antioxidant packaging. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2020.104792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
94
|
Cheng R, Colombo RNP, Zhang L, Nguyen DHT, Tilley R, Cordoba de Torresi SI, Dai L, Gooding JJ, Gonçales VR. Porous Graphene Oxide Films Prepared via the Breath-Figure Method: A Simple Strategy for Switching Access of Redox Species to an Electrode Surface. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55181-55188. [PMID: 33236632 DOI: 10.1021/acsami.0c16811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Porous materials can be modified with physical barriers to control the transport of ions and molecules through channels via an external stimulus. Such capability has brought attention toward drug delivery, separation methods, nanofluidics, and point-of-care devices. In this context, gated platforms on which access to an electrode surface of species in solution can be reversibly hindered/unhindered on demand are appearing as promising materials for sensing and microfluidic switches. The preparation of a reversible gated device usually requires mesoporous materials, nanopores, or molecularly imprinted polymers. Here, we show how the breath-figure method assembly of graphene oxide can be used as a simple strategy to produce gated electrochemical materials. This was achieved by forming an organized porous thin film of graphene oxide onto an ITO surface. Localized brushes of thermoresponsive poly(N-isopropylacrylamide) were then grown to specific sites of the porous film by in situ reversible addition-fragmentation chain-transfer polymerization. The gating mechanism relies on the polymeric chains to expand and contract depending on the thermal stimulus, thus modulating the accessibility of redox species inside the pores. The resulting platform was shown to reversibly hinder or facilitate the electron transfer of solution redox species by modulating temperature from the room value to 45 °C or vice versa.
Collapse
Affiliation(s)
- Rumei Cheng
- School Ophthalmology & Optometry, School of Biomedicine Engineering, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Rafael N P Colombo
- Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Long Zhang
- School of Chemistry, Australia Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney NSW2052, Australia
| | - Duyen H T Nguyen
- School of Chemistry, Australia Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney NSW2052, Australia
| | - Richard Tilley
- School of Chemistry, Australia Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney NSW2052, Australia
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney NSW2052, Australia
| | | | - Liming Dai
- School of Chemistry Engineering, The University of New South Wales, Sydney NSW2052, Australia
| | - J Justin Gooding
- School of Chemistry, Australia Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney NSW2052, Australia
| | - Vinicius R Gonçales
- School of Chemistry, Australia Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney NSW2052, Australia
| |
Collapse
|
95
|
Alvarez S, Marcasuzaa P, Billon L. Bio-Inspired Silica Films Combining Block Copolymers Self-Assembly and Soft Chemistry: Paving the Way toward Artificial Exosqueleton of Seawater Diatoms. Macromol Rapid Commun 2020; 42:e2000582. [PMID: 33274818 DOI: 10.1002/marc.202000582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/06/2020] [Indexed: 11/09/2022]
Abstract
This review is in line with the principles of bio-inspiration and biomimicry in order to envisage a softer and more environmentally friendly chemistry. Here, the source of inspiration is a microalga from the oceans with the ability to build an exoskeleton of silica under ambient conditions. Following this model, this review is interested in different ways of creating porous silica films with a hierarchical porosity similar to diatoms. For this purpose, polymeric/hybrid/inorganic films structured in honeycomb using the breath figure method are reported. This versatile and easy to implement method based on the principle of rapid evaporation of a solvent in a humid atmosphere is widely used in the formation of structured films with micron-sized pores. In addition to this, the self-assembly of copolymer at the nanoscale can be addressed to obtain a hierarchically structured film. Following this structuration step, the degradation of a sacrificial block is then described from the most energy-intensive to soft process, allowing an added nanoporosity to the micron porosity of the BF method. Finally, hierarchical porous silica films are described using the sol-gel process, which is known as a soft chemistry process.
Collapse
Affiliation(s)
- Sandra Alvarez
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques & de PhysicoChimie pour l'Environnement & les Matériaux, UMR5254, 2 avenue du Président Angot, Pau, F-64053, France.,Bio-Inspired Materials Group: Functionalities and Self-Assembly, E2S UPPA, IPREM UMR 5254, 2 avenue du Président Angot, Pau, F-64053, France
| | - Pierre Marcasuzaa
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques & de PhysicoChimie pour l'Environnement & les Matériaux, UMR5254, 2 avenue du Président Angot, Pau, F-64053, France.,Bio-Inspired Materials Group: Functionalities and Self-Assembly, E2S UPPA, IPREM UMR 5254, 2 avenue du Président Angot, Pau, F-64053, France
| | - Laurent Billon
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques & de PhysicoChimie pour l'Environnement & les Matériaux, UMR5254, 2 avenue du Président Angot, Pau, F-64053, France.,Bio-Inspired Materials Group: Functionalities and Self-Assembly, E2S UPPA, IPREM UMR 5254, 2 avenue du Président Angot, Pau, F-64053, France
| |
Collapse
|
96
|
Murchio S, Ding Y, Speranza G, Sorarù GD, Maniglio D. Ultrasound-Assisted Hydroxyapatite-Decorated Breath-Figure Polymer-Derived Ceramic Coatings for Ti6Al4V Substrates. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50772-50783. [PMID: 33108160 PMCID: PMC8016169 DOI: 10.1021/acsami.0c08849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The introduction of nanoparticles (NPs) into the breath-figure-templated self-assembly (BFTSA) process is an increasingly common method to selectively decorate a surface porous structure. In the field of prosthetic devices, besides controlling the morphology and roughness of the structure, NPs can enhance the osteointegration mechanism because of their specific ion release. Among the most widely used NPs, there are silica and hydroxyapatite (HAp). In this work, we propose a novel one-stage method to fabricate NP-decorated surface porous structures that are suitable for prosthetic coating applications. This technique combines the classical direct BFTSA process with the cavitation effect induced by an ultrasonic atomizer that generates a mist of water droplets with embedded NPs. Coatings were successfully obtained by combining a UV cross-linkable polymer precursor, alkoxy silicone, with synthesized HAp NPs, on Ti6Al4V alloy discs. The cross-linked polymeric surface porous structures at selected concentrations were then pyrolyzed in an ammonia atmosphere to obtain a silicon oxynitride (SiON) ceramic coating. Herein, we report the chemical and morphological analyses of both the polymeric and ceramic coatings as well as the effect of NPs at the interface.
Collapse
Affiliation(s)
- Simone Murchio
- Department of Industrial
Engineering, University of Trento, Via Sommarive 9, Povo, 38123 Trento, Italy
- BIOtech, Center for Biomedical Technologies, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Yifu Ding
- Department of Mechanical Engineering, University
of Colorado, 427 UCB, Boulder, Colorado 80309-0427, United States
| | - Giorgio Speranza
- Fondazione
Bruno Kessler, Via Sommarive 18, Povo, 38123 Trento, Italy
- Institute of Photonics
and Nanotechnologies—CNR, Via alla Cascata 56/C Povo, 38123 Trento, Italy
| | - Gian Domenico Sorarù
- Department of Industrial
Engineering, University of Trento, Via Sommarive 9, Povo, 38123 Trento, Italy
| | - Devid Maniglio
- Department of Industrial
Engineering, University of Trento, Via Sommarive 9, Povo, 38123 Trento, Italy
- BIOtech, Center for Biomedical Technologies, University of Trento, Via delle Regole 101, 38123 Trento, Italy
- . Phone: (+39) 0461 282751
| |
Collapse
|
97
|
Yuan H, Li G, Dai E, Lu G, Huang X, Hao L, Tan Y. Ordered
Honeycomb‐Pattern
Membrane
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hua Yuan
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Guangzhen Li
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Enhao Dai
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Guolin Lu
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Xiaoyu Huang
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Longyun Hao
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Yeqiang Tan
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| |
Collapse
|
98
|
Huang J, Zhu J, Sun W, Ji J. Versatile and Functional Surface Patterning of in Situ Breath Figure Pore Formation via Solvent Treatment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47048-47058. [PMID: 32959646 DOI: 10.1021/acsami.0c14614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface patterning of in situ pore formation was studied in this research based on the solvent treatment breath figure (stBF) method. By applying the volatile solvent onto the preshaped polymeric objects under humid conditions, hexagonally arranged pore arrays were formed on the surface efficiently. The stBF method was performed on many different polymeric samples with planar and nonplanar surfaces, and facile pore formation was achieved on these surfaces by conducting the solvent treatment in different ways of dipping, casting, and vapor treatment. The water droplets condensed from the humid air were proved to be the origin of the pore arrays just like the case of classic BF process. The influencing factors including solvent types, surfactant addition, and polymer types were evaluated for their impact on the resultant stBF morphologies. In situ three-dimensional (3D) pore formation was achieved for both macroscopic- and microscopic-sized 3D-structured objects. Chemical patterning of the introduced minor component was also achieved in the stBF pore-forming process with high efficiency and site selectivity. Moreover, the capability of pore formation and erasure with high spatial accuracy using multiple solvent treatments was revealed for the stBF method to make rewritable and hierarchical patterns. Both the selective chemical decoration and rewritable patterning serve as intriguing features of the stBF method. The establishment of the stBF method makes the classic BF process more flexible to practice and less dependent on the external conditions, showing potential for applications such as facile surface patterning with multifunctionality on devices with complex geometry.
Collapse
Affiliation(s)
- Junjie Huang
- Department of Materials Science and Engineering, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiafeng Zhu
- Department of Materials Science and Engineering, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Wei Sun
- Department of Materials Science and Engineering, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
99
|
Chen S, Lu Q. Self-Assembled GO Honeycomb Microarray for Selective Cancer Cell Capture and Single Cell Analysis of Proteolytic Expression. Adv Healthc Mater 2020; 9:e2001006. [PMID: 32902186 DOI: 10.1002/adhm.202001006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/05/2020] [Indexed: 12/15/2022]
Abstract
Proteolytic enzymes expressed by circulating tumor cells are proved to facilitate their invasion into multiple organs via cleaving natural ECM networks, leading to consequent metastasis colonization and malignant lethality. Recent evidence suggests the rare metastasis initiating cells with higher proteolytic levels among circulating tumor cells (CTCs) may strongly increase the risk of metastasis. Beyond selective CTC capture, the heterogeneity in proteases expression provides a promising indicator for metastasis happening. To this end, the graphene oxide (GO) honeycomb microarray with single CTC matched sizes is fabricated via the self-assembly breath figure approach, which serves as an integrated protocol for selective CTC capture and single-cell analysis of protease activity. Contributing to synergistic effects of structure and chemistry, CTCs can be efficiently isolated and individually trapped in each honeycomb hole. Meanwhile, the crosstalk among CTCs can be erased by blocking direct cell-to-cell contact, which offers promising potentials in the single-cell analysis of protease expression. Integrating specific capture and in situ analysis of single CTCs on GO micropatterned surface is of significant importance in various biological and clinical applications such as cancer diagnostics and cancer therapeutic evaluation.
Collapse
Affiliation(s)
- Shuangshuang Chen
- School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| | - Qinghua Lu
- School of Chemical Science and Engineering Tongji University Shanghai 200092 China
| |
Collapse
|
100
|
Corrigan N, Ciftci M, Jung K, Boyer C. Gesteuerte Reaktionsorthogonalität in der Polymer‐ und Materialwissenschaft. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
| | - Mustafa Ciftci
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
- Department of Chemistry Faculty of Engineering and Natural Science Bursa Technical University Bursa 16310 Turkey
| | - Kenward Jung
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney 2052 Australia
| |
Collapse
|