51
|
Li H, Zeng L, Wang C, Shi C, Li Y, Peng Y, Chen H, Zhang J, Cheng B, Chen C, Xiang M, Huang Y. Review of the toxicity and potential molecular mechanisms of parental or successive exposure to environmental pollutants in the model organism Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119927. [PMID: 35970344 DOI: 10.1016/j.envpol.2022.119927] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollutants such as heavy metals, nano/microparticles, and organic compounds have been detected in a wide range of environmental media, causing long-term exposure in various organisms and even humans through breathing, contacting, ingestion, and other routes. Long-term exposure to environmental pollutants in organisms or humans promotes exposure of offspring to parental and environmental pollutants, and subsequently results in multiple biological defects in the offspring. This review dialectically summarizes and discusses the existing studies using Caenorhabditis elegans (C. elegans) as a model organism to explore the multi/transgenerational toxicity and potential underlying molecular mechanisms induced by environmental pollutants following parental or successive exposure patterns. Parental and successive exposure to environmental pollutants induces various biological defects in C. elegans across multiple generations, including multi/transgenerational developmental toxicity, neurotoxicity, reproductive toxicity, and metabolic disturbances, which may be transmitted to progeny through reactive oxygen species-induced damage, epigenetic mechanisms, insulin/insulin-like growth factor-1 signaling pathway. This review aims to arouse researchers' interest in the multi/transgenerational toxicity of pollutants and hopes to explore the possible long-term effects of environmental pollutants on organisms and even humans, as well as to provide constructive suggestions for the safety and management of emerging alternatives.
Collapse
Affiliation(s)
- Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Lingjun Zeng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Chongli Shi
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yeyong Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yi Peng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jin Zhang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Biao Cheng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Minghui Xiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yuan Huang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
52
|
Wang T, He ZX, Yang J, Wu L, Qiu XW, Bao LJ, Zeng EY. Riverine transport dynamics of PBDEs and OPFRs within a typical e-waste recycling zone: Implications for sink-source interconversion. WATER RESEARCH 2022; 220:118677. [PMID: 35667171 DOI: 10.1016/j.watres.2022.118677] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Despite ample evidence on spreading of e-waste derived hazardous materials, riverine transport of organic contaminants from e-waste recycling zones to surrounding areas has not been evaluated. To address this issue, passive and grab sampling methods were used to assess sediment-water diffusion and horizontal transport of polybrominated diphenyl ethers (PBDEs) and organophosphorus flame retardant (OPFRs) at upstream and downstream sites of two rivers in a typical e-waste recycling zone. Sediment acted as a source of BDE-17 with fluxes of 0.007-0.04 ng m-2 d-1 at all sampling sites. BDE-47 and BDE-99 reached equilibrium between overlying water and sediment porewater. Sediment interconverted from a sink at the upstream site to a source of OPFRs at the downstream site with a flux varying between -7.3 and 234 ng m-2 d-1. The amounts of OPFRs (11-45 g d-1) via horizontal riverine transport were greater than those of PBDEs (0.68-2 g d-1). The vertical sediment-water diffusion of PBDEs and OPFRs was not significant compared to horizontal riverine transport. The annual riverine outputs of PBDEs and OPFRs from the downstream sites were 250-330 g and 12,000-16,500 g, respectively, indicating the significance of riverine transport of organic contaminants from e-waste recycling zones to surrounding areas.
Collapse
Affiliation(s)
- Teng Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Zi-Xuan He
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jun Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Liang Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xia-Wen Qiu
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Lian-Jun Bao
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Eddy Y Zeng
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
53
|
Zhao L, Lu Y, Zhu H, Cheng Z, Wang Y, Chen H, Yao Y, Zhang J, Li X, Sun Z, Zhang C, Sun H. E-waste dismantling-related occupational and routine exposure to melamine and its derivatives: Estimating exposure via dust ingestion and hand-to-mouth contact. ENVIRONMENT INTERNATIONAL 2022; 165:107299. [PMID: 35597114 DOI: 10.1016/j.envint.2022.107299] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Melamine (MEL) and its derivatives are increasingly applied as nitrogenous flame retardants in consumer products. Nevertheless, limited information is available on their environmental occurrence and subsequent human exposure via multiple exposure pathways. In this study, we analysed MEL and its derivatives in dust (indication of the dust ingestion route) and hand wipe samples (indication of the hand-to-mouth route) collected in various microenvironments. The levels of ∑MELs in both dust (median: 24,100 ng/g) and participant hand samples (803 ng/m2) collected in e-waste dismantling workshops were significantly higher than those in samples collected in homes (15,600 ng/g and 196 ng/m2, respectively), dormitories (13,100 ng/g and 227 ng/m2, respectively) and hotel rooms (11,800 ng/g and 154 ng/m2, respectively). Generally, MEL dominated in dust samples collected in e-waste dismantling workshops, whereas cyanuric acid dominated in hand wipe samples. This may occur partly because the latter is an ingredient in disinfection products, which are more frequently employed in daily lives during the COVID-19 pandemic. Exposure assessment suggests that dust ingestion is an important exposure pathway among dismantling workers and the general population, whereas hand-to-mouth contact could not be overlooked in certain populations, such as children and dismantling workers not wear gloves at work.
Collapse
Affiliation(s)
- Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Lu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingran Zhang
- SCIEX, Analytical Instrument Trading, Beijing 100015, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhaoyang Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chong Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
54
|
Ye L, Su G. Elevated concentration and high Diversity of organophosphate esters (OPEs) were Discovered in Sediment from Industrial, and E-Waste Recycling Areas. WATER RESEARCH 2022; 217:118362. [PMID: 35398804 DOI: 10.1016/j.watres.2022.118362] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Aquatic environments in industrial, and e-waste recycling areas might undergo severe contamination; however, there are few studies comprehensively assessing the pollution status of organophosphate esters (OPEs) in these two areas. Here, we applied both atmospheric pressure chemical ionization (APCI) and electron spray ionization (ESI) sources in our target, suspect, and functional group-dependent screening strategy, which enhanced the confidence for confirmation on precursor ions of OPEs. Then, n=53 sediment samples (30 from the industrial area, and 23 from the e-waste recycling area) were analyzed. Twenty-three out of 30 target OPEs were quantifiable in these analyzed samples. Total OPE concentrations (Σ30OPEs) in samples from e-waste recycling area range from 12.8 to 9250 ng/g dry weight (dw), that are statistically significantly greater (t-test, p < 0.001) than those from industrial area (25.1-5520 ng/g dw). Σ30OPEs in the sediments from industrial, or e-waste recycling area are statistically significantly greater (one-way ANOVA, p < 0.001) as compared to those (32.0-369 ng/g dw) from Taihu Lake in our previous study. In sediment from three areas, suspect and non-target analysis fully or tentatively identified other 20 OPEs. Four of them have not been recorded or registered in any of online chemical databases, and they are tentatively named as ((methoxy(phenoxy)phosphoryl)oxy)phenyl diphenyl phosphate (mPPODP), (tert-butyl)phenyl (ethyne-oxidane) bis(2,4-di-tert-butylphenyl) phosphate (TPBDTP), bis(dichlorophenyl) propane-1,3-diyl bis(hexylated phosphate) (BDCBHP), and bis(2-hexadecoxyethyl) ethyl phosphate (BHEPP). Overall, this study provided new insights regarding both analytical methodology and pollution status of OPEs, and highlights that elevated concentrations and high diversity of OPEs exist in sediments from industrial, and e-waste recycling areas.
Collapse
Affiliation(s)
- Langjie Ye
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
55
|
Cheng Z, Shi Q, Wang Y, Zhao L, Li X, Sun Z, Lu Y, Liu N, Su G, Wang L, Sun H. Electronic-Waste-Driven Pollution of Liquid Crystal Monomers: Environmental Occurrence and Human Exposure in Recycling Industrial Parks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2248-2257. [PMID: 35107275 DOI: 10.1021/acs.est.1c04621] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid crystal monomers (LCMs) in liquid crystal displays (LCDs) may be released into the environment, especially in electronic waste (e-waste) recycling industrial parks with a high pollution risk. However, little has been known about the environmental release and human exposure to LCMs until now. Herein, a total of 45 LCMs were detected in LCDs of commonly used smartphones and computers by high-resolution mass spectrometry with suspect screening analysis. Fluorinated biphenyls and their analogs were the dominant LCMs. Based on available standards of the screening results and previous studies, 55 LCMs were quantified in samples from an e-waste recycling industrial park in Central China. The LCMs were frequently detected in outdoor dust (n = 43), workshop #1 indoor dust (n = 53), and hand (n = 43) and forehead wipes (n = 43), with median concentrations of 6950 ng/g, 67,400 ng/g, 46,100 ng/m2, and 62,100 ng/m2, respectively. The median estimated daily intake values of the LCMs via dust ingestion and dermal absorption were 48.3 and 16.5 ng/kg body weight/day, respectively, indicating a high occupational exposure risk of these compounds. In addition, 16 LCMs were detected in the serum of eight elderly people (≥60 years old) with over 5 years of experience in e-waste dismantling operations, resulting in a total concentration range of 3.9-26.3 ng/mL.
Collapse
Affiliation(s)
- Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qingyang Shi
- Department of Environmental Science, University of California, Riverside, California 92521, United States
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhaoyang Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Lu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Na Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guanyong Su
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
56
|
Yue C, Ma S, Liu R, Yang Y, Li G, Yu Y, An T. Pollution profiles and human health risk assessment of atmospheric organophosphorus esters in an e-waste dismantling park and its surrounding area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151206. [PMID: 34710426 DOI: 10.1016/j.scitotenv.2021.151206] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 05/17/2023]
Abstract
Recycling e-waste has been recognized as an important emission source of organophosphate triesters (tri-OPEs) and organophosphate diesters (di-OPEs), but the presence of di-OPEs in atmosphere has not been studied. Herein, tri-OPEs and di-OPEs in atmosphere of an e-waste dismantling park and surrounding area in South China were monitored for three consecutive years. Thirteen tri-OPEs and seven di-OPEs were identified. In 2017, 2018, and 2019, tri-OPE concentrations in e-waste dismantling park were 1.30 × 108, 4.60 × 106, and 4.01 × 107 pg/m3, while di-OPE concentrations were 1.14 × 103, 1.10 × 103, and 0.35 × 103 pg/m3, respectively, which were much higher than the surrounding area. Tri-OPEs and di-OPEs generated during e-waste dismantling affected surrounding area through diffusion. Triphenyl phosphate (TPhP) and diphenyl phosphate (DPhP) were the predominant congeners of tri-OPEs and di-OPEs, respectively. Additionally, TPhP concentration was extremely higher than other tri-OPEs, so TPhP could be used as an indicator of e-waste dismantling. Spearman correlation analysis showed significant correlations between DPhP and TPhP (R2 = 0.53, p < 0.01), bis-(1-chloro-2-propyl) phosphate (BCIPP) and tris(2-chloropropyl) phosphate (TCIPP) (R2 = 0.49, p < 0.01), as well as dibutyl phosphate (DBP) and tributyl phosphate (TBP) (R2 = 0.53, p < 0.01), indicating that they had the same source. Further, non-carcinogenic risk of them to people via inhalation was acceptable and non-carcinogenic risk of tri-OPEs decreased year by year in surrounding area.
Collapse
Affiliation(s)
- Congcong Yue
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Ranran Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China.
| |
Collapse
|
57
|
Li J, Zhang Y, Bi R, Ye L, Su G. High-Resolution Mass Spectrometry Screening of Emerging Organophosphate Esters (OPEs) in Wild Fish: Occurrence, Species-Specific Difference, and Tissue-Specific Distribution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:302-312. [PMID: 34898183 DOI: 10.1021/acs.est.1c05726] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is a dearth of information regarding the pollution status of emerging organophosphate esters (OPEs) in wild fish. Here, we optimized and validated a quick, easy, cheap, effective, rugged, and safe (QuEChERS) pretreatment method, which was further applied for target, suspect, and nontarget screening of OPEs in n = 48 samples of wild fishes from Taihu Lake (eastern China). This integrated technique allows us to fully identify 20 OPEs, and 9 out of them are emerging OPEs detected in wild fish for the first time. Importantly, some of the emerging OPEs, i.e., tris(2,4-di-tert-butylphenyl) phosphate (TDtBPP), 4-tert-butylphenyl diphenyl phosphate (BPDP), and 2-isopropylphenyl diphenyl phosphate (IPDP), exhibited greater or at least comparable contamination levels as compared to traditional ones. There were no statistically significant interspecies (n = 6) differences regarding OPE concentrations. However, we observed significant differences on OPE concentrations among different tissues of silver carp (Hypophthalmichthys molitrix), for which the intestine has the highest OPE mean concentration (46.5 ng/g wet weight (ww)), followed by the liver (20.1 ng/g ww) ≈ brain (20.0 ng/g ww) > gill (14.8 ng/g ww) > muscle (11.4 ng/g ww). An interesting exception is IPDP, which presents an unexpectedly high concentration in the brain (0.510 ng/g ww). Collectively, this study expands our understanding of OPE contamination in wild fish and clearly shows that emerging TDtBPP, IPDP, and BPDP could play an equally important role as traditional OPEs in contribution of OPE pollution in wild fish samples.
Collapse
Affiliation(s)
- Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yayun Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Ruifeng Bi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Langjie Ye
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
58
|
Xu L, Zhang B, Hu Q, Liu Y, Shang T, Zeng X, Yu Z. Occurrence and spatio-seasonal distribution of organophosphate tri- and di-esters in surface water from Dongting Lake and their potential biological risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117031. [PMID: 33831629 DOI: 10.1016/j.envpol.2021.117031] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
In this study, 24 surface water samples were collected from Dongting Lake, China, in the wet and dry seasons, then the concentrations, composition profiles and spatio-seasonal variations of nine organophosphate triesters (OPEs) and five organophosphate diesters (Di-OPs) were determined. Significantly higher total OPE concentrations (∑OPEs) were observed in the wet season (49.5-148 ng L-1) than in the dry season (5.00-45.7 ng L-1) suggesting higher input via tributaries discharge as well as wet deposition in the studied region. Whereas lower levels of TnBP and (triphenyl phosphate (TPHP) in wet season reflected their possible degradation under solar irradiation. Comparable levels of total Di-OPs (∑Di-OPs) were found in the wet season (3.41-13.9 ng L-1) and dry season (1.01-12.3 ng L-1). Tri(2-chloroethyl) phosphate and tris(2-chloroisopropyl) phosphate were the main OPE components, while diphenyl phosphate, di-n-butyl phosphate and bis(1,3-dichloro-2-propyl) phosphate were the main Di-OP components. High levels of OPEs and Di-OPs were found in Datong Lake suggesting possible local emissions potentially related to fishery activity in the land-locked lake. Samples at river mouths to the lake also have higher levels of target OPEs and Di-OPs, the results disclosed obvious discharges from tributaries in Hunan Province. Negligible non-carcinogenic and carcinogenic risks were determined based on the measured concentrations in source waters. A limited ecological risk aquatic organisms in the Dongting Lake was identified, with most risk from TPHP.
Collapse
Affiliation(s)
- Liang Xu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; Jiangxi Academy of Environmental Sciences, Nanchang, 330039, China
| | - Biao Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiongpu Hu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Hangzhou PuYu Technology Development Co., Ltd, Hangzhou, 311305, China
| | - Yi Liu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Shang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Nanchang City Development and Reform Commission, Nanchang, 330000, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
59
|
Xie Q, Guan Q, Li L, Pan X, Ho CL, Liu X, Hou S, Chen D. Exposure of children and mothers to organophosphate esters: Prediction by house dust and silicone wristbands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117011. [PMID: 33823314 DOI: 10.1016/j.envpol.2021.117011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Ubiquitous human exposure to organophosphorus tri-esters (tri-OPEs) has been reported worldwide. Previous studies investigated the feasibility of using house dust and wristbands to assess human OPE exposure. We hypothesized that these two approaches could differ in relative effectiveness in the characterization of children and adult exposure. In the participants recruited from Guangzhou, South China, urinary levels of major OPE metabolites, including diphenyl phosphate (DPHP) and bis(butoxyethyl) phosphate (BBOEP), were significantly higher in children than their mothers (median 6.6 versus 3.7 ng/mL and 0.11 versus 0.06 ng/mL, respectively). The associations of dust or wristband-associated OPEs with urinary metabolites exhibited chemical-specific patterns, which also differed between children and mothers. Significant and marginally significant associations were determined between dust concentrations of triphenyl phosphate (TPHP), tris(2-butoxyethyl) phosphate (TBOEP), trimethylphenyl phosphate (TMPP), or tris(1-chloro-2-propyl) phosphate (TCIPP) and their metabolites in children urine and between dust tris(1,3-dichloroisopropyl) phosphate (TDCIPP), TPHP or TMPP and urinary metabolites in mothers. By contrast, wristbands exhibited better efficiency of predicting internal exposure to TDCIPP. While both house dust and wristbands exhibited the potential as a convenient approach for assessing long-term OPE exposure, their feasibility requires better investigations via larger-scale studies and standardized sampling protocols.
Collapse
Affiliation(s)
- Qitong Xie
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qingxia Guan
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Minister of Environmental Protection, Guangzhou, Guangdong, 510655, China
| | - Xiongfei Pan
- Department of Epidemiology & Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Cheuk-Lam Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China, PolyU Shenzhen Research Institute, Shenzhen, 518057, China; Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong
| | - Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Sen Hou
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
60
|
Peng X, Chen G, Fan Y, Zhu Z, Guo S, Zhou J, Tan J. Lifetime bioaccumulation, gender difference, tissue distribution, and parental transfer of organophosphorus plastic additives in freshwater fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116948. [PMID: 33773303 DOI: 10.1016/j.envpol.2021.116948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Plastic pollution has been a growing global issue. Various plastic additives may enter the environment with plastic debris, which could also become contaminants. Lifetime bioaccumulation, gender difference, tissue distribution, and parental transfer potential of commonly applied organophosphorus plastic additives (OPPAs) were investigated in wildlife fish of the Pearl River system, China. The OPPAs were widely detected in 7 consumable fish species. Tris (2-chloropropyl) phosphate was the predominant compound, with a median concentration of 18.8 ng/g lipid weight. The total OPPA concentrations (ΣOPPAs) were higher in the livers and swimming bladders, suggesting important roles of lipophilicity on the OPPAs accumulation in the fish. Besides, the livers were more abundant in the non-chlorinated OPPAs relative to the other tissues, indicating potentially stronger metabolism of the chlorinated OPPAs in the livers. Redbelly tilapia contained obviously lower ΣOPPAs than the other species. On the other hand, proportions of the chlorinated OPPAs were obviously lower in barbel chub and Guangdong black bream. For an individual species, higher ΣOPPAs were usually detected in the female than in the male fish. Furthermore, the females contained higher proportions of the non-chlorinated OPPAs. These results suggested potentially more accumulation of the OPPAs, particularly the non-chlorinated OPPAs in the female than in the male fish. Body weight dependence of the OPPAs accumulation showed varied patterns depending on species, tissue, and compound. Species-specific characteristics affected by both ecology and organisms' physiology should be considered in combination in assessing bioaccumulation of the OPPAs. The OPPAs were slightly bioaccumulative with LogBAFs of 1.2-3.3. The OPPAs did not show obvious inclination to be partitioned to biota from sediment. Omnipresence of the OPPAs in both egg/ovary and testis of the fish suggested potential transgenerational transfer of these chemicals, which can be a serious ecological issue and warrants further research.
Collapse
Affiliation(s)
- Xianzhi Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; Guangdong - Hong Kong - Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou, 510640, China.
| | - Guangshi Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujuan Fan
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zewen Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shang Guo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhou
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Tan
- Guangzhou Institute of Quality Monitoring and Testing, Guangzhou, 510050, China
| |
Collapse
|
61
|
Zhu M, Shen M, Liang X, Chen H, Zhu C, Du B, Luo D, Lan S, Feng Z, Zeng L. Identification of Environmental Liquid-Crystal Monomers: A Class of New Persistent Organic Pollutants-Fluorinated Biphenyls and Analogues-Emitted from E-Waste Dismantling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5984-5992. [PMID: 33877816 DOI: 10.1021/acs.est.1c00112] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid-crystal monomers (LCMs), especially fluorinated biphenyls and analogues (FBAs), are considered to be a new generation of persistent, bioaccumulative, and toxic organic pollutants, but their emissions from liquid-crystal display (LCD)-associated e-waste dismantling remain unknown. To fill this knowledge gap, a broad range of 46 LCMs, including 39 FBAs and 7 biphenyls/bicyclohexyls and analogues (BAs), were investigated by a dedicated target analysis in e-waste dust samples. Of 39 target FBAs, 34 were detected in LCD dismantling-associated dust. Among these 34 detectable FBAs, 9 were detected in 100% of the samples and 25 were frequently detected in >50% of the samples. The total concentrations of these 34 FBAs (∑34FBAs) detected in LCD e-waste dust were in the range of 225-976,000 (median: 18,500) ng/g, significantly higher than those in non-LCD e-waste dust (range: 292-18,500, median: 2300 ng/g). In addition to FBAs, six of seven BAs were also frequently detected in LCD e-waste dust with total concentrations (∑6BAs) of 29.8-269,000 (median: 3470) ng/g. Very strong and significant correlations (P < 0.01) were identified in all frequently detected LCMs, indicating their common applications and similar sources. Our findings demonstrate that e-waste dismantling contributes elevated emissions of FBAs and BAs to the ambient environment.
Collapse
Affiliation(s)
- Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Mingjie Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Xinxin Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Hui Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Chunyou Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Dan Luo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Shenyu Lan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Zhiqing Feng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| |
Collapse
|
62
|
Zhang Q, Wang Y, Jiang X, Xu H, Luo Y, Long T, Li J, Xing L. Spatial occurrence and composition profile of organophosphate esters (OPEs) in farmland soils from different regions of China: Implications for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116729. [PMID: 33618115 DOI: 10.1016/j.envpol.2021.116729] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The environmental load of organophosphate ester (OPE) flame retardants has caused a series of problems due to their extensive use. The soil matrix, as an ultimate sink for organic pollution, plays a vital part in the fate of OPEs in the environment. In this study, the spatial occurrence, composition profile and health risk of 13 OPE species in farmland soils from four provinces of China were characterized. Excluding tris(2,3-dibromopropyl) phosphate (TDBPP) and ethylhexyl diphenyl phosphate (EHDPP), the remaining eleven OPEs had a high detection frequency (DF) ranging from 60% to 100%. The range of total OPE (ΣOPE) concentrations were 62.3-394 ng/g dry weight (dw), with a median of 228 ng/g dw. Among these OPEs, tris(2-ethylhexyl) phosphate (TEHP) with a median of 143 ng/g dw) was the predominant species, followed by tricresyl phosphate (TCP; median of 20.1 ng/g dw) and tris(2-chloroethyl) phosphate (TCEP; median of 17.9 ng/g dw). In terms of geographical distribution, significantly lower OPEs levels were found in samples from Heilongjiang (159 ± 47.0 ng/g dw) than in those of Guangxi (264 ± 66.0 ng/g dw), Henan (252 ± 74.5 ng/g dw) and Hubei (242 ± 52.8 ng/g dw) provinces. Principal component analysis and Spearman's correlations were used to reveal potential sources of OPEs in the different provincial regions. Health risk exposure to OPEs in farmland soils was at an acceptable level (<1.20 × 10-5 for non-carcinogenic risk to children as the most sensitive age group; and <6.47 × 10-10 for carcinogenic risk to adults as the most sensitive age group) at the present detected concentrations. However, TCEP and TEHP, the predominant risk contributors, should be paid more attention.
Collapse
Affiliation(s)
- Qin Zhang
- Jiangsu International Environmental Development Center, No.176 Jiangdong North Road, Nanjing, 210036, China
| | - Yixuan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, No.8 Jiangwangmiao Street, Nanjing, 210042, China
| | - Xiaoxu Jiang
- China National Environmental Monitoring Center, Beijing, 100012, China
| | - Huaizhou Xu
- Shen Shan Smart City Research Institute Co. Ltd., Technology Incubator Base 2#, Chuangfu Road, Ebu Town, Shenshan Special Cooperation Zone, Shenzhen, 518200, China
| | - Yiqun Luo
- Jiangsu International Environmental Development Center, No.176 Jiangdong North Road, Nanjing, 210036, China
| | - Tingting Long
- Jiangsu International Environmental Development Center, No.176 Jiangdong North Road, Nanjing, 210036, China
| | - Jun Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Liqun Xing
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Nanjing University & Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng, 224000, China.
| |
Collapse
|
63
|
Luo D, Liu W, Wu W, Tao Y, Hu L, Wang L, Yu M, Zhou A, Covaci A, Xia W, Xu S, Li Y, Mei S. Trimester-specific effects of maternal exposure to organophosphate flame retardants on offspring size at birth: A prospective cohort study in China. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124754. [PMID: 33310325 DOI: 10.1016/j.jhazmat.2020.124754] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/03/2020] [Accepted: 12/01/2020] [Indexed: 05/18/2023]
Abstract
Organophosphate flame retardants (OPFRs) are substantially applied as flame retardants and plasticizers in consumer products. Although the embryonic developmental toxicity of OPFRs has been reported, human data are limited and the critical windows of susceptibility to OPFRs exposure urgently need to be identified. Here, we investigated the trimester-specific associations between prenatal OPFR exposure and birth size for the first time. The concentrations of 15 OPFR metabolites and tris(2-chloroethyl) phosphate were repeatedly determined in urine samples of 213 pregnant women collected in the first, second, and third trimesters in Wuhan, China, and anthropometric data were retrieved from medical records. In multiple informant models, urinary concentrations of bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) and bis(2-butoxyethyl) phosphate (BBOEP) in the third trimester, 4-hydroxyphenyl-diphenyl phosphate (4-HO-DPHP) in the second trimester, and diphenyl phosphate (DPHP) in the first trimester were negatively associated with birth weight, among which a significant difference in exposure-effect relationships across the three trimesters was observed for BDCIPP. BBOEP concentrations in the third trimester were negatively correlated to birth length with significant varying exposure effects. Our results suggest that prenatal exposure to certain OPFRs may impair fetal growth, and the fetus is vulnerable to the developmental toxicity of BDCIPP and BBOEP in the third trimester.
Collapse
Affiliation(s)
- Dan Luo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Wenyu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China; Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Weixiang Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Tao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liqin Hu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limei Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Yu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aifen Zhou
- Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Surong Mei
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
64
|
Qin RX, Tang B, Zhuang X, Lei WX, Wang MH, Zhang LH, Hu KM. Organophosphate flame retardants and diesters in the urine of e-waste dismantling workers: associations with indoor dust and implications for urinary biomonitoring. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:357-366. [PMID: 33511973 DOI: 10.1039/d0em00439a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Indoor dust ingestion is one of the main pathways for human exposure to organophosphate flame retardants (PFRs). The urinary concentrations of diesters (DAPs) are usually used as biomarkers to assess human exposure to PFRs. In this study, the PFR and DAP levels were measured in morning and evening urine samples of 30 workers from an e-waste dismantling site in southern China. The indoor dust samples were also collected from workshops and houses for analyzing associations between PFR and DAP levels in urine and dust. Tris(1-chloro-2-propyl) phosphate (TCIPP) and triphenyl phosphate (TPHP) were the dominant PFRs in dust, while bis(2-chloroethyl) phosphate (BCEP) and diphenyl phosphate (DPHP) were the major DAPs in dust. A significant positive correlation was observed between TPHP and DPHP concentrations in dust (p < 0.001), suggesting their potentially same source and the degradation of TPHP to form DPHP. TCIPP and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) were the predominant PFRs, and BCEP, bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), and DPHP were the main DAPs in both the morning and evening urine samples. The DPHP levels in evening urine samples were significantly correlated with TPHP and DPHP levels (p < 0.01) in dust. A similar correlation was found for the BCEP levels in the evening urine samples and the TCEP and BCEP levels (p < 0.01) in dust. These results indicated that in addition to being biotransformed from their respective parent PFRs, direct ingestion from indoor dust could also be the potential source for urinary DPHP and BCEP. Since relatively low detection frequencies were observed for bis(1-chloro-2-propyl) phosphate (BCIPP) and bis(butoxyethyl) phosphate (BBOEP) in urine, they may not be the major metabolites of TCIPP and tris(2-butoxyethyl) phosphate (TBOEP), respectively, in the human body. However, BDCIPP can be considered a useful biomarker because it is a unique metabolite of TDCIPP and has high detection frequencies in urine samples. The results of this study indicated the limitations of solely using urinary DAPs as biomarkers for the evaluation of human exposure to PFRs, and certain PFRs as well as hydroxylated PFRs (OH-PFRs) should also be considered for urinary biomonitoring in future studies.
Collapse
Affiliation(s)
- Rui-Xin Qin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, P. R. China. and School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, P. R. China.
| | - Xi Zhuang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, P. R. China.
| | - Wei-Xiang Lei
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, P. R. China.
| | - Mei-Huan Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, P. R. China.
| | - Luo-Hong Zhang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Ke-Mei Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, P. R. China.
| |
Collapse
|