51
|
Özyurt C, Uludağ İ, İnce B, Sezgintürk MK. Biosensing strategies for diagnosis of prostate specific antigen. J Pharm Biomed Anal 2021; 209:114535. [PMID: 34954466 DOI: 10.1016/j.jpba.2021.114535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 01/05/2023]
Abstract
Almost from the time of its discovery, the prostate specific antigen (PSA) has been one of the most accurate and most extensively studied indicators of prostate cancer (PC). Because of advancements in biosensing systems and technology, PSA analysis methods have been substantially updated and enhanced as compared to their first instances. With the development of techniques in biosensor technology, the number of PSA biosensors that can be used in the biomedical sector is increasing year by year. Many different recognition elements and transducers have been used in the development of biosensor systems that exhibit high sensitivity, selectivity, and specificity. Here in this review, we provide a current overview of the different approaches to PSA detection.
Collapse
Affiliation(s)
- Canan Özyurt
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - İnci Uludağ
- Bioengineering Department, Engineering Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Bahar İnce
- Bioengineering Department, Engineering Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Engineering Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| |
Collapse
|
52
|
Kozik A, Pavlova M, Petrov I, Bychkov V, Kim L, Dorozhko E, Cheng C, Rodriguez RD, Sheremet E. A review of surface-enhanced Raman spectroscopy in pathological processes. Anal Chim Acta 2021; 1187:338978. [PMID: 34753586 DOI: 10.1016/j.aca.2021.338978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022]
Abstract
With the continuous growth of the human population and new challenges in the quality of life, it is more important than ever to diagnose diseases and pathologies with high accuracy, sensitivity and in different scenarios from medical implants to the operation room. Although conventional methods of diagnosis revolutionized healthcare, alternative analytical methods are making their way out of academic labs into clinics. In this regard, surface-enhanced Raman spectroscopy (SERS) developed immensely with its capability to achieve single-molecule sensitivity and high-specificity in the last two decades, and now it is well on its way to join the arsenal of physicians. This review discusses how SERS is becoming an essential tool for the clinical investigation of pathologies including inflammation, infections, necrosis/apoptosis, hypoxia, and tumors. We critically discuss the strategies reported so far in nanoparticle assembly, functionalization, non-metallic substrates, colloidal solutions and how these techniques improve SERS characteristics during pathology diagnoses like sensitivity, selectivity, and detection limit. Moreover, it is crucial to introduce the most recent developments and future perspectives of SERS as a biomedical analytical method. We finally discuss the challenges that remain as bottlenecks for a routine SERS implementation in the medical room from in vitro to in vivo applications. The review showcases the adaptability and versatility of SERS to resolve pathological processes by covering various experimental and analytical methods and the specific spectral features and analysis results achieved by these methods.
Collapse
Affiliation(s)
- Alexey Kozik
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Marina Pavlova
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Ilia Petrov
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Vyacheslav Bychkov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cancer Research Institute, 5 Kooperativny Street, Tomsk, 634009, Russia
| | - Larissa Kim
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Elena Dorozhko
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia.
| | | |
Collapse
|
53
|
Zhang X, Xu J, Yan C, Yao L, Shang H, Chen W. A Short- and Long-Range Fluorescence Resonance Energy Transfer-Cofunctionalized Fluorescence Quenching Collapsar Probe Regulates Amplified and Accelerated Detection of Salmonella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14294-14301. [PMID: 34797054 DOI: 10.1021/acs.jafc.1c05780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Accurate and rapid quantification of foodborne pathogens is of great significance for food safety and human health. In this work, we have successfully constructed a fluorescence quenching collapsar probe (FQCP) on the basis of a conventional aptamer-encoded molecular beacon (AEMB) and applied it for the detection of Salmonella. In structure, the FQCP is assembled by AEMBs in fours via specific streptavidin and biotin binding. Such a simple format makes the FQCP cofunctionalized with short- and long-range fluorescence resonance energy transfer (FRET) effects, thereby leading to a significantly suppressed inherent background fluorescence that is much lower than that of the conventional AEMB. Moreover, the FQCP exhibits superior biostability because of the blocking of its 3' terminal. The reaction kinetics of the FQCP for Salmonella recognition is obviously improved since the probe designed with four binding sites increases the probability to react with Salmonella. As a result, the FQCP-based sensing platform can rapidly output the target detection signal within 30 min associated with a greatly improved signal-to-noise ratio up to 32.4. The system was also demonstrated with a well antimatrix effect for ultrasensitive detection of Salmonella from tap water, milk, red bull, green tea, orange juice, and Coca-Cola. Our study provides insights into the facile tailoring of functional nucleic acids for amplified and mix-to-answer detection of foodborne pathogens, which could become a powerful analytical tool for straightforward sensing of pathogens in the fields of food safety analysis, clinical diagnostics, and environmental monitoring.
Collapse
Affiliation(s)
- Xinlei Zhang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chao Yan
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, P.R. China
| | - Li Yao
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huijie Shang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Chen
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
54
|
Liu X, Guo J, Li Y, Wang B, Yang S, Chen W, Wu X, Guo J, Ma X. SERS substrate fabrication for biochemical sensing: towards point-of-care diagnostics. J Mater Chem B 2021; 9:8378-8388. [PMID: 34505606 DOI: 10.1039/d1tb01299a] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rapid technology development and economic growth have brought attention to public health issues, such as food safety and environmental pollution, which creates an ever-increasing demand for fast and portable sensing technologies. Portable surface-enhanced Raman spectroscopy (SERS) capable of various analyte detection with low concentration in a convenient manner shows advantages in sensing technology including enhanced diagnostic precision, improved diagnostic efficiency, reduced diagnostic cost, and alleviation of patient pain, which emerges as a promising candidate for point-of-care testing (POCT). SERS detection technology based on different nanostructures made of noble metal-based nanomaterials can increase the sensitivity of Raman scattering by 6-8 orders of magnitude, making Raman based trace detection possible, and greatly promote the application scenarios of portable Raman spectrometers. In this perspective, we provide an overview of fundamental knowledge about the SERS mechanism including chemical and electromagnetic field enhancement mechanisms, the design and fabrication of SERS substrates based on materials, progress of using SERS for POCT in biochemical sensing and its clinical applications. Furthermore, we present the prospective of developing new nanomaterials with different functionalities for advanced SERS substrates, as well as the future advancement of biomedical sensing and clinical potential of SERS technology.
Collapse
Affiliation(s)
- Xiaojia Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. .,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Jiuchuan Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| | - Yang Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Bo Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Shikun Yang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. .,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Wenjun Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. .,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Xinggui Wu
- CloudMinds, Inc., Shenzhen Bay Science and Technology Ecological Park, Nanshan District, Shenzhen 100022, China.
| | - Jinhong Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. .,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| |
Collapse
|
55
|
Berry ME, Kearns H, Graham D, Faulds K. Surface enhanced Raman scattering for the multiplexed detection of pathogenic microorganisms: towards point-of-use applications. Analyst 2021; 146:6084-6101. [PMID: 34492668 PMCID: PMC8504440 DOI: 10.1039/d1an00865j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/22/2021] [Accepted: 08/27/2021] [Indexed: 01/02/2023]
Abstract
Surface enhanced Raman scattering (SERS) is a technique that demonstrates a number of advantages for the rapid, specific and sensitive detection of pathogenic microorganisms. In this review, an overview of label-free and label-based SERS approaches, including microfluidics, nucleic acid detection and immunoassays, for the multiplexed detection of pathogenic bacteria and viruses from the last decade will be discussed, as well as their transition into promising point-of-use detection technologies in industrial and medical settings.
Collapse
Affiliation(s)
- Matthew E Berry
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Hayleigh Kearns
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Duncan Graham
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Karen Faulds
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
56
|
Overview of Rapid Detection Methods for Salmonella in Foods: Progress and Challenges. Foods 2021; 10:foods10102402. [PMID: 34681451 PMCID: PMC8535149 DOI: 10.3390/foods10102402] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
Salmonella contamination in food production and processing is a serious threat to consumer health. More and more rapid detection methods have been proposed to compensate for the inefficiency of traditional bacterial cultures to suppress the high prevalence of Salmonella more efficiently. The contamination of Salmonella in foods can be identified by recognition elements and screened using rapid detection methods with different measurable signals (optical, electrical, etc.). Therefore, the different signal transduction mechanisms and Salmonella recognition elements are the key of the sensitivity, accuracy and specificity for the rapid detection methods. In this review, the bioreceptors for Salmonella were firstly summarized and described, then the current promising Salmonella rapid detection methods in foodstuffs with different signal transduction were objectively summarized and evaluated. Moreover, the challenges faced by these methods in practical monitoring and the development prospect were also emphasized to shed light on a new perspective for the Salmonella rapid detection methods applications.
Collapse
|
57
|
Yuan C, Fang J, de la Chapelle ML, Zhang Y, Zeng X, Huang G, Yang X, Fu W. Surface-enhanced Raman scattering inspired by programmable nucleic acid isothermal amplification technology. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
58
|
Trends in the bacterial recognition patterns used in surface enhanced Raman spectroscopy. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
59
|
Manoj D, Shanmugasundaram S, Anandharamakrishnan C. Nanosensing and nanobiosensing: Concepts, methods, and applications for quality evaluation of liquid foods. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
60
|
Sheikhzadeh E, Beni V, Zourob M. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 2021; 230:122026. [PMID: 33934756 PMCID: PMC7854185 DOI: 10.1016/j.talanta.2020.122026] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a potential risk for public health and the global economy. Fast and accurate detection of the pathogens that cause these infections is important to avoid the transmission of the diseases. Conventional methods for the detection of these microorganisms are time-consuming, costly, and not applicable for on-site monitoring. Biosensors can provide a fast, reliable, and point of care diagnostic. Nanomaterials, due to their outstanding electrical, chemical, and optical features, have become key players in the area of biosensors. This review will cover different nanomaterials that employed in electrochemical, optical, and instrumental biosensors for infectious disease diagnosis and how these contributed to enhancing the sensitivity and rapidity of the various sensing platforms. Examples of nanomaterial synthesis methods as well as a comprehensive description of their properties are explained. Moreover, when available, comparative data, in the presence and absence of the nanomaterials, have been reported to further highlight how the usage of nanomaterials enhances the performances of the sensor.
Collapse
Affiliation(s)
- Elham Sheikhzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Corresponding author
| | - Valerio Beni
- Digital Systems, Department Smart Hardware, Unit Bio–& Organic Electronics, RISE Acreo, Research Institutes of Sweden, Norrkoping, 60221, Sweden
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia,King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia,Corresponding author. Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
61
|
Yang SZ, Liu QA, Liu YL, Weng GJ, Zhu J, Li JJ. Recent progress in the optical detection of pathogenic bacteria based on noble metal nanoparticles. Mikrochim Acta 2021; 188:258. [PMID: 34268648 DOI: 10.1007/s00604-021-04885-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
Pathogenic bacteria have become a huge threat to social health and economy for their frighteningly infectious and lethal capacity. It is quite important to make a diagnosis in advance to prevent infection or allow a rapid treatment after infection. Noble metal nanoparticles, due to their unique physicochemical properties, especially optical properties, have drawn a great attention during the past decades and have been widely applied into all kinds of fields related to human health. By utilizing these noble metal nanoparticles, optical diagnosis platforms towards pathogenic bacteria have emerged continually, providing highly sensitive, selective, and particularly facile detection tools for clinic or point-of-care diagnosis. This review summarizes the recent development in this field. It begins with a brief introduction of pathogenic bacteria and noble metal nanoparticles. And then, optical detection methods are systematically discussed in three distinct aspects. In addition to these proof-of-concept methods, corresponding algorithms and point-of-care detection devices are also described. Finally, the review ends up with subjective views on present limitations and some appropriate advice for future research directions.
Collapse
Affiliation(s)
- Shou-Zhi Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Qi-Ao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yan-Ling Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.,Research Institute of Xi'an Jiaotong University, Floor 5, Block A, Jiangning Mansion, No. 328, Wenming Road, Xiaoshan District, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China. .,Research Institute of Xi'an Jiaotong University, Floor 5, Block A, Jiangning Mansion, No. 328, Wenming Road, Xiaoshan District, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
62
|
Gao P, Wang L, He Y, Wang Y, Yang X, Fu S, Qin X, Chen Q, Man C, Jiang Y. An Enhanced Lateral Flow Assay Based on Aptamer-Magnetic Separation and Multifold AuNPs for Ultrasensitive Detection of Salmonella Typhimurium in Milk. Foods 2021; 10:1605. [PMID: 34359475 PMCID: PMC8306288 DOI: 10.3390/foods10071605] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/30/2022] Open
Abstract
In this paper, a novel and ultrasensitive lateral flow assay (LFA) based on aptamer-magnetic separation, and multifold Au nanoparticles (AuNPs) was developed for visual detecting Salmonella enterica ser. Typhimurium (S. Typhimurium). The method realized magnetic enrichment and signal transduction via magnetic separation and achieved signal amplification through hybridizing AuNPs-capture probes and AuNPs-amplification probes to form multifold AuNPs. Two different thiolated single-strand DNA (ssDNA) on the AuNPs-capture probe played different roles. One was combined with the AuNPs-amplification probe on the conjugate pad to achieve enhanced signals. The other was connected to transduction ssDNA1 released by aptamer-magnetic capture of S. Typhimurium, and captured by the T-line, forming a positive signal. This method had an excellent linear relationship ranging from 8.6 × 102 CFU/mL to 8.6 × 107 CFU/mL with the limit of detection (LOD) as low as 8.6 × 100 CFU/mL in pure culture. In actual samples, the visual LOD was 4.1 × 102 CFU/mL, which did not carry out nucleic acid amplification and pre-enrichment, increasing three orders of magnitudes than unenhanced assays with single-dose AuNPs and no magnetic separation. Furthermore, the system showed high specificity, having no reaction with other nontarget strains. This visual signal amplificated system would be a potential platform for ultrasensitive monitoring S. Typhimurium in milk samples.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China; (P.G.); (L.W.); (Y.H.); (Y.W.); (X.Y.); (S.F.); (X.Q.); (Q.C.); (C.M.)
| |
Collapse
|
63
|
Li Y, Wu L, Wang Z, Tu K, Pan L, Chen Y. A magnetic relaxation DNA biosensor for rapid detection of Listeria monocytogenes using phosphatase-mediated Mn(VII)/Mn(II) conversion. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
64
|
Su L, Hu H, Tian Y, Jia C, Wang L, Zhang H, Wang J, Zhang D. Highly Sensitive Colorimetric/Surface-Enhanced Raman Spectroscopy Immunoassay Relying on a Metallic Core-Shell Au/Au Nanostar with Clenbuterol as a Target Analyte. Anal Chem 2021; 93:8362-8369. [PMID: 34077199 DOI: 10.1021/acs.analchem.1c01487] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lateral flow immunoassay (LFIA) has emerged as an effective technique in the field of food safety and environmental monitoring. However, sensitive and quantitative detection is still challenging for LFIAs in complex environments. In this work, a dual-model colorimetric/SERS lateral flow immunoassay for ultrasensitive determination of clenbuterol was constructed based on a metallic core-shell Au/Au nanostar acting as a multifunction tag. Raman reporter molecules are located between the core (AuNP) and shell (Au nanostar) to form a sandwich structure, which contributes to eliminate the environmental interference and improve the detection stability. In addition, the Au/Au nanostar provides a much higher Raman enhancement due to the presence of sharp tips and larger surface roughness in comparison with gold nanoparticles (AuNPs). Thus, on the basis of the antibody-antigen interaction, the dual-model immunoassay can produce strong colorimetric and surface-enhanced Raman spectroscopy (SERS) signals for highly sensitive detection of the target analyte, clenbuterol. Under optimal conditions, clenbuterol could be detected by the colorimetric model with a visual detection limit of 5 ng/mL. Meanwhile, the SERS signal of the Au/Au nanostar was accumulated on the test line for the SERS model detection with a quantitative detection limit as low as 0.05 ng/mL, which is at least 200-fold lower than that of the traditional AuNPs-based immunoassay. Furthermore, recovery rates of the proposed method in food samples were 86-110%. This dual-model immunoassay provides an effective tool for antibiotic residues analysis and demonstrates a broad potential for future applications in food safety monitoring.
Collapse
Affiliation(s)
- Lihong Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi, 712100 China
| | - Huilan Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi, 712100 China
| | - Yanli Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi, 712100 China
| | - Conghui Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi, 712100 China
| | - Lulu Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi, 712100 China
| | - Han Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi, 712100 China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi, 712100 China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shanxi, 712100 China
| |
Collapse
|
65
|
Jiang L, Hassan MM, Ali S, Li H, Sheng R, Chen Q. Evolving trends in SERS-based techniques for food quality and safety: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
66
|
Antibody- and nucleic acid-based lateral flow immunoassay for Listeria monocytogenes detection. Anal Bioanal Chem 2021; 413:4161-4180. [PMID: 34041576 DOI: 10.1007/s00216-021-03402-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023]
Abstract
Listeria monocytogenes is an invasive opportunistic foodborne pathogen and its routine surveillance is critical for protecting the food supply and public health. The traditional detection methods are time-consuming and require trained personnel. Lateral flow immunoassay (LFIA), on the other hand, is an easy-to-perform, rapid point-of-care test and has been widely used as an inexpensive surveillance tool. In recent times, nucleic acid-based lateral flow immunoassays (NALFIA) are also developed to improve sensitivity and specificity. A significant improvement in lateral flow-based assays has been reported in recent years, especially the ligands (antibodies, nucleic acids, aptamers, bacteriophage), labeling molecules, and overall assay configurations to improve detection sensitivity, specificity, and automated interpretation of results. In most commercial applications, LFIA has been used with enriched food/environmental samples to ensure detection of live cells thus prolonging the assay time to 24-48 h; however, with the recent improvement in LFIA sensitivity, results can be obtained in less than 8 h with shortened and improved enrichment practices. Incorporation of surface-enhanced Raman spectroscopy and/or immunomagnetic separation could significantly improve LFIA sensitivity for near-real-time point-of-care detection of L. monocytogenes for food safety and public health applications.
Collapse
|
67
|
Wang L, Wang X, Cheng L, Ding S, Wang G, Choo J, Chen L. SERS-based test strips: Principles, designs and applications. Biosens Bioelectron 2021; 189:113360. [PMID: 34051383 DOI: 10.1016/j.bios.2021.113360] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Test strips represent a class of point-of-care testing (POCT) tools for analysis of a variety of biomarkers towards diagnostics. Conventional test strips offer benefits of simple operation, visualization, and short detection time, along with the drawbacks of relatively low sensitivity and unavailability of quantitative analysis. Recently, the combination of surface-enhanced Raman scattering (SERS) and test strips have evolved to provide a powerful platform capable of ultrasensitive and multiplex detection of extensive analytes of interest. In this review, we focus on the working principles, design strategies and POCT applications of SERS-based test strips. Initially, both lateral and vertical flow test strips are briefly introduced, followed by presentation of various strategies for reforming SERS-based test strips with better detection performance. Applications of SERS-based test strips in diagnosis of disease biomarkers, nucleic acids and toxins are reviewed, with an emphasis on SERS tag design, sensitivity and analytical applicability. Finally, conclusions are made and perspectives on futuristic research directions are given.
Collapse
Affiliation(s)
- Luyang Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaokun Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lu Cheng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shansen Ding
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
68
|
Balbinot S, Srivastav AM, Vidic J, Abdulhalim I, Manzano M. Plasmonic biosensors for food control. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
69
|
Xiao X, Hu S, Lai X, Peng J, Lai W. Developmental trend of immunoassays for monitoring hazards in food samples: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
70
|
Chen K, Ma B, Li J, Chen E, Xu Y, Yu X, Sun C, Zhang M. A Rapid and Sensitive Europium Nanoparticle-Based Lateral Flow Immunoassay Combined with Recombinase Polymerase Amplification for Simultaneous Detection of Three Food-Borne Pathogens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094574. [PMID: 33925871 PMCID: PMC8123443 DOI: 10.3390/ijerph18094574] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/25/2022]
Abstract
Food-borne pathogens have become an important public threat to human health. There are many kinds of pathogenic bacteria in food consumed daily. A rapid and sensitive testing method for multiple food-borne pathogens is essential. Europium nanoparticles (EuNPs) are used as fluorescent probes in lateral flow immunoassays (LFIAs) to improve sensitivity. Here, recombinase polymerase amplification (RPA) combined with fluorescent LFIA was established for the simultaneous and quantitative detection of Listeria monocytogenes, Vibrio parahaemolyticus, and Escherichia coliO157:H7. In this work, the entire experimental process could be completed in 20 min at 37 °C. The limits of detection (LODs) of EuNP-based LFIA–RPA were 9.0 colony-forming units (CFU)/mL for Listeria monocytogenes, 7.0 CFU/mL for Vibrio parahaemolyticus, and 4.0 CFU/mL for Escherichia coliO157:H7. No cross-reaction could be observed in 22 bacterial strains. The fluorescent LFIA–RPA assay exhibits high sensitivity and good specificity. Moreover, the average recovery of the three food-borne pathogens spiked in food samples was 90.9–114.2%. The experiments indicate the accuracy and reliability of the multiple fluorescent test strips. Our developed EuNP-based LFIA–RPA assay is a promising analytical tool for the rapid and simultaneous detection of multiple low concentrations of food-borne pathogens.
Collapse
Affiliation(s)
- Kai Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (K.C.); (B.M.); (J.L.); (E.C.); (Y.X.); (X.Y.)
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (K.C.); (B.M.); (J.L.); (E.C.); (Y.X.); (X.Y.)
| | - Jiali Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (K.C.); (B.M.); (J.L.); (E.C.); (Y.X.); (X.Y.)
| | - Erjing Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (K.C.); (B.M.); (J.L.); (E.C.); (Y.X.); (X.Y.)
| | - Ying Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (K.C.); (B.M.); (J.L.); (E.C.); (Y.X.); (X.Y.)
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (K.C.); (B.M.); (J.L.); (E.C.); (Y.X.); (X.Y.)
| | - Chuanxin Sun
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, EuSwedish University of Agricultural Science (SLU), P.O. Box 7080, SE-75007 Uppsala, Sweden;
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (K.C.); (B.M.); (J.L.); (E.C.); (Y.X.); (X.Y.)
- Correspondence: ; Tel.: +86-571-8691-4476; Fax: +86-571-8691-4510
| |
Collapse
|
71
|
Lopes-Luz L, Mendonça M, Bernardes Fogaça M, Kipnis A, Bhunia AK, Bührer-Sékula S. Listeria monocytogenes: review of pathogenesis and virulence determinants-targeted immunological assays. Crit Rev Microbiol 2021; 47:647-666. [PMID: 33896354 DOI: 10.1080/1040841x.2021.1911930] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Listeria monocytogenes is one of the most invasive foodborne pathogens and is responsible for numerous outbreaks worldwide. Most of the methods to detect this bacterium in food require selective enrichment using traditional bacterial culture techniques that can be time-consuming and labour-intensive. Moreover, molecular methods are expensive and need specific technical knowledge. In contrast, immunological approaches are faster, simpler, and user-friendly alternatives and have been developed for the detection of L. monocytogenes in food, environmental, and clinical samples. These techniques are dependent on the constitutive expression of L. monocytogenes antigens and the specificity of the antibodies used. Here, updated knowledge on pathogenesis and the key immunogenic virulence determinants of L. monocytogenes that are used for the generation of monoclonal and polyclonal antibodies for the serological assay development are summarised. In addition, immunological approaches based on enzyme-linked immunosorbent assay, immunofluorescence, lateral flow immunochromatographic assays, and immunosensors with relevant improvements are highlighted. Though the sensitivity and specificity of the assays were improved significantly, methods still face many challenges that require further validation before use.
Collapse
Affiliation(s)
- Leonardo Lopes-Luz
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil
| | - Marcelo Mendonça
- Curso de Medicina Veterinária, Universidade Federal do Agreste de Pernambuco, Garanhuns, Brasil
| | | | - André Kipnis
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil
| | - Arun K Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN, USA.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Samira Bührer-Sékula
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil
| |
Collapse
|
72
|
Zheng C, Wang K, Zheng W, Cheng Y, Li T, Cao B, Jin Q, Cui D. Rapid developments in lateral flow immunoassay for nucleic acid detection. Analyst 2021; 146:1514-1528. [PMID: 33595550 DOI: 10.1039/d0an02150d] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, lateral flow assay (LFA) for nucleic acid detection has drawn increasing attention in the point-of-care testing fields. Due to its rapidity, easy implementation, and low equipment requirement, it is well suited for use in rapid diagnosis, food authentication, and environmental monitoring under source-limited conditions. This review will discuss two main research directions of lateral flow nucleic acid tests. The first one is the incorporation of isothermal amplification methods with LFA, which ensures an ultra-high testing sensitivity under non-laboratory conditions. The two most commonly used methodologies will be discussed, namely Loop-mediated Isothermal Amplification (LAMP) and Recombinase Polymerase Amplification (RPA), and some novel methods with special properties will also be introduced. The second research direction is the development of novel labeling materials. It endeavors to increase the sensitivity and quantifiability of LFA testing, where signals can be read and analyzed by portable devices. These methods are compared in terms of limits of detection, detection times, and quantifiabilities. It is anticipated that future research on lateral flow nucleic acid tests will focus on the integration of the whole testing process into a microfluidic system and the combination with molecular diagnostic tools such as clustered regularly interspaced short palindromic repeats to facilitate a rapid and accurate test.
Collapse
Affiliation(s)
- Chujun Zheng
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai 200240, China.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Development overview of Raman-activated cell sorting devoted to bacterial detection at single-cell level. Appl Microbiol Biotechnol 2021; 105:1315-1331. [PMID: 33481066 DOI: 10.1007/s00253-020-11081-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/17/2020] [Accepted: 12/27/2020] [Indexed: 12/14/2022]
Abstract
Understanding the metabolic interactions between bacteria in natural habitat at the single-cell level and the contribution of individual cell to their functions is essential for exploring the dark matter of uncultured bacteria. The combination of Raman-activated cell sorting (RACS) and single-cell Raman spectra (SCRS) with unique fingerprint characteristics makes it possible for research in the field of microbiology to enter the single cell era. This review presents an overview of current knowledge about the research progress of recognition and assessment of single bacterium cell based on RACS and further research perspectives. We first systematically summarize the label-free and non-destructive RACS strategies based on microfluidics, microdroplets, optical tweezers, and specially made substrates. The importance of RACS platforms in linking target cell genotype and phenotype is highlighted and the approaches mentioned in this paper for distinguishing single-cell phenotype include surface-enhanced Raman scattering (SERS), biomarkers, stable isotope probing (SIP), and machine learning. Finally, the prospects and challenges of RACS in exploring the world of unknown microorganisms are discussed. KEY POINTS: • Analysis of single bacteria is essential for further understanding of the microbiological world. • Raman-activated cell sorting (RACS) systems are significant protocol for characterizing phenotypes and genotypes of individual bacteria.
Collapse
|
74
|
Huang W, Guo E, Li J, Deng A. Quantitative and ultrasensitive detection of brombuterol by a surface-enhanced Raman scattering (SERS)-based lateral flow immunochromatographic assay (FLIA) using Ag MBA@Au-Ab as an immunoprobe. Analyst 2021; 146:296-304. [PMID: 33146162 DOI: 10.1039/d0an01949f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Brombuterol is a new emerging β-adrenergic agonist that has been used as an additive in animal feed to enhance the lean meat-to-fat ratio. Due to its potential harm to consumers, it is urgent to develop sensitive, simple and rapid analytical methods to monitor brombuterol residue. In this study, a competitive lateral flow immunochromatographic assay (FLIA) based on surface-enhanced Raman scattering (SERS) was developed for ultrasensitive quantitative determination of brombuterol in swine liver, pork and feed samples. Ag@Au core-shell bimetallic nanoparticles with the highest SERS enhancement were synthesized, characterized and used as the substrate for preparation of the immunoprobe AgMBA@Au-Ab, in which the Raman reporter mercaptobenzoic acid (MBA) was embedded between the core-shell layers and monoclonal antibodies against brombuterol were immobilized on the surfaces of nanoparticles. The presence of brombuterol was identified through a color change on testing lines. In addition, quantitative detection of brombuterol was achieved by measuring the characteristic Raman peak intensity of MBA in the immunoprobes captured by the coating antigen. The IC50 and limit of detection (LOD) of the SERS-based FLIA for brombuterol were 45 pg mL-1 and 0.11 pg mL-1, respectively. The recoveries of brombuterol from spiked samples were in the range of 87.27-100.16% with relative standard deviations of 1.29%-6.99% (n = 3). The proposed SERS-based LFIA was proven to be a feasible method for ultrasensitive and rapid detection of brombuterol and might be a platform for sensitive and rapid detection of a broad range of analytes in clinical, environmental and food analyses.
Collapse
Affiliation(s)
- Wen Huang
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Renai zRoad 199, Suzhou 215123, China.
| | | | | | | |
Collapse
|
75
|
Towards translation of surface-enhanced Raman spectroscopy (SERS) to clinical practice: Progress and trends. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116122] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
76
|
Yu J, Wu H, He L, Tan L, Jia Z, Gan N. The universal dual-mode aptasensor for simultaneous determination of different bacteria based on naked eyes and microfluidic-chip together with magnetic DNA encoded probes. Talanta 2020; 225:122062. [PMID: 33592781 DOI: 10.1016/j.talanta.2020.122062] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
It was critically important to develop some sensitive, convenient and on-site methods for simultaneous assay of different pathogenic bacteria in foods. In this work, a dual-mode aptasensor was established for fulfilling above aims combing colorimetry with microfluidic chip. This as-prepared dual-mode aptasensor not only realized rapid screening by naked eye on-site, but also the simultaneous quantification of multiple bacteria. Namely, the presence of pathogenic bacteria was firstly judged by naked eyes with Salmonella typhimurium (S.T) and Vibrio parahaemolyticus (V.P) as models. And then, S.T and V.P in positive samples were simultaneously quantified by microfluidic chip. In order to obtain the multiple signals, a series of magnetic DNA encoded-probes (MDEs) was fabricated containing rolling cycle amplified long DNA chain (RCA-DNA) rich in G-quadruplex sequences. They can combine with hemin as DNAzyme to catalyze 3,3'-5,5'-Tetramethyl benzidine (TMB)-H2O2 system for color development and be cleaved by EcoRV endonuclease to produce DNA fragments with different lengths. The microfluidic chip was employed to separate and quantify the fragments for quantifying S.T and V.P simultaneously. For this protocol, 100 CFU·mL-1 of V.P or S.T could be observed by the naked eye and as low as 32 S.T and 30 CFU·mL-1 V.P could be detected by the chip within 3 min. The dual-mode aptasensor could quickly screen positive samples, and simultaneously perform quantitative detection of the bacteria in positive samples. Our protocol demonstrated its potential in on-site qualification & simultaneous quantification of foodborne bacteria in foods.
Collapse
Affiliation(s)
- Jiale Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Faculty of Materials Science and Chemical Engineering, Ningbo University, 315211, PR China
| | - Huihui Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Faculty of Materials Science and Chemical Engineering, Ningbo University, 315211, PR China
| | - Liyong He
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Faculty of Materials Science and Chemical Engineering, Ningbo University, 315211, PR China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510000, PR China
| | - Zhijian Jia
- School of Material and Chemical Engineering, Ningbo University of Technology, Ningbo, 315200, PR China.
| | - Ning Gan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Faculty of Materials Science and Chemical Engineering, Ningbo University, 315211, PR China.
| |
Collapse
|
77
|
Zhou X, Hu Z, Yang D, Xie S, Jiang Z, Niessner R, Haisch C, Zhou H, Sun P. Bacteria Detection: From Powerful SERS to Its Advanced Compatible Techniques. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001739. [PMID: 33304748 PMCID: PMC7710000 DOI: 10.1002/advs.202001739] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/24/2020] [Indexed: 05/13/2023]
Abstract
The rapid, highly sensitive, and accurate detection of bacteria is the focus of various fields, especially food safety and public health. Surface-enhanced Raman spectroscopy (SERS), with the advantages of being fast, sensitive, and nondestructive, can be used to directly obtain molecular fingerprint information, as well as for the on-line qualitative analysis of multicomponent samples. It has therefore become an effective technique for bacterial detection. Within this progress report, advances in the detection of bacteria using SERS and other compatible techniques are discussed in order to summarize its development in recent years. First, the enhancement principle and mechanism of SERS technology are briefly overviewed. The second part is devoted to a label-free strategy for the detection of bacterial cells and bacterial metabolites. In this section, important considerations that must be made to improve bacterial SERS signals are discussed. Then, the label-based SERS strategy involves the design strategy of SERS tags, the immunomagnetic separation of SERS tags, and the capture of bacteria from solution and dye-labeled SERS primers. In the third part, several novel SERS compatible technologies and applications in clinical and food safety are introduced. In the final part, the results achieved are summarized and future perspectives are proposed.
Collapse
Affiliation(s)
- Xia Zhou
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
- Department of Oncologythe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong510632China
| | - Ziwei Hu
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Danting Yang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological TechnologyMedical School of Ningbo UniversityNingboZhejiang315211China
| | - Shouxia Xie
- The Second Clinical Medical College (Shenzhen People's Hospital)Jinan UniversityShenzhenGuangdong518020China
| | - Zhengjin Jiang
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Reinhard Niessner
- Institute of Hydrochemistry and Chair for Analytical ChemistryTechnical University of MunichMarchioninistr. 17MunichD‐81377Germany
| | - Christoph Haisch
- Institute of Hydrochemistry and Chair for Analytical ChemistryTechnical University of MunichMarchioninistr. 17MunichD‐81377Germany
| | - Haibo Zhou
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
- Department of Oncologythe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong510632China
- The Second Clinical Medical College (Shenzhen People's Hospital)Jinan UniversityShenzhenGuangdong518020China
| | - Pinghua Sun
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
- Department of Oncologythe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong510632China
| |
Collapse
|
78
|
Duplex Surface Enhanced Raman Scattering-Based Lateral Flow Immunosensor for the Low-Level Detection of Antibiotic Residues in Milk. Molecules 2020; 25:molecules25225249. [PMID: 33187181 PMCID: PMC7698115 DOI: 10.3390/molecules25225249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 11/18/2022] Open
Abstract
A duplex surface enhanced Raman scattering (SERS)-based lateral flow immunosensor was established for the simultaneous detection of two common antibiotic residues including tetracycline and penicillin in milk. The newly synthesized Au@Ag nanoparticles were labeled with different Raman molecules including 5,5-dithiobis-2-nitrobenzoic acid (DTNB) or 4-mercaptobenzoic acid (MBA), followed by the conjugation of anti-tetracycline monoclonal antibody or anti-penicillin receptor, forming two kinds of SERS nanoprobes. The two nanoprobes can recognize tetracycline-BSA and ampicillin-BSA, respectively, which facilitates the simultaneous detection of the two types of antibiotics on a single test line. After optimization, detection limits of tetracycline and penicillin as low as 0.015 ng/mL and 0.010 ng/mL, respectively, were achieved. These values were far below those of most of other documented bio-analytical approaches. Moreover, the spiking test demonstrates an excellent assay accuracy with recoveries of 88.8% to 111.3%, and satisfactory assay precision with relative standard deviation below 16%. Consequently, the results demonstrate that the SERS-based lateral flow immunosensor developed in this study has the advantages of excellent assay sensitivity and remarkable multiplexing capability, thus it will have great application potential in food safety monitoring.
Collapse
|
79
|
Shen Y, Xu L, Li Y. Biosensors for rapid detection of Salmonella in food: A review. Compr Rev Food Sci Food Saf 2020; 20:149-197. [PMID: 33443806 DOI: 10.1111/1541-4337.12662] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/04/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Salmonella is one of the main causes of foodborne infectious diseases, posing a serious threat to public health. It can enter the food supply chain at various stages of production, processing, distribution, and marketing. High prevalence of Salmonella necessitates efficient and effective approaches for its identification, detection, and monitoring at an early stage. Because conventional methods based on plate counting and real-time polymerase chain reaction are time-consuming and laborious, novel rapid detection methods are urgently needed for in-field and on-line applications. Biosensors provide many advantages over conventional laboratory assays in terms of sensitivity, specificity, and accuracy, and show superiority in rapid response and potential portability. They are now recognized as promising alternative tools and one of the most on-site applicable and end user-accessible methods for rapid detection. In recent years, we have witnessed a flourishing of studies in the development of robust and elaborate biosensors for detection of Salmonella in food. This review aims to provide a comprehensive overview on Salmonella biosensors by highlighting different signal-transducing mechanisms (optical, electrochemical, piezoelectric, etc.) and critically analyzing its recent trends, particularly in combination with nanomaterials, microfluidics, portable instruments, and smartphones. Furthermore, current challenges are emphasized and future perspectives are discussed.
Collapse
Affiliation(s)
- Yafang Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Lizhou Xu
- Department of Materials, Imperial College London, London, UK
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
80
|
Khlebtsov B, Khlebtsov N. Surface-Enhanced Raman Scattering-Based Lateral-Flow Immunoassay. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2228. [PMID: 33182579 PMCID: PMC7696391 DOI: 10.3390/nano10112228] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022]
Abstract
Lateral flow immunoassays (LFIAs) have been developed and used in a wide range of applications, in point-of-care disease diagnoses, environmental safety, and food control. However, in its classical version, it has low sensitivity and can only perform semiquantitative detection, based on colorimetric signals. Over the past decade, surface-enhanced Raman scattering (SERS) tags have been developed in order to decrease the detection limit and enable the quantitative analysis of analytes. Of note, these tags needed new readout systems and signal processing algorithms, while the LFIA design remained unchanged. This review highlights SERS strategies of signal enhancement for LFIAs. The types of labels used, the possible gain in sensitivity from their use, methods of reading and processing the signal, and the prospects for use are discussed.
Collapse
Affiliation(s)
- Boris Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov, Russia;
| | - Nikolai Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov, Russia;
- Faculty of Nano- and Biomedical Technologies, Saratov State University, 410012 Saratov, Russia
| |
Collapse
|
81
|
Chen H, Das A, Bi L, Choi N, Moon JI, Wu Y, Park S, Choo J. Recent advances in surface-enhanced Raman scattering-based microdevices for point-of-care diagnosis of viruses and bacteria. NANOSCALE 2020; 12:21560-21570. [PMID: 33094771 DOI: 10.1039/d0nr06340a] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This minireview reports the recent advances in surface-enhanced Raman scattering (SERS)-based assay devices for the diagnosis of infectious diseases. SERS-based detection methods have shown promise in overcoming the low sensitivity and multiplex detection problems inherent to fluorescence detection. Therefore, it is interesting to investigate the current status, challenges, and applications associated with SERS-based microdevices for the point-of-care (POC) diagnosis of infectious diseases. The majority of this review highlights three different types of microdevices, namely microfluidic channels, lateral flow assay strips, and three-dimensional nanostructured substrates. Furthermore, the integration of portable Raman spectrophotometry with microdevices provides an ideal platform for the diagnosis of various infectious diseases in the field. Integrated SERS-based assay systems also enable measurements in minimal sample volumes and at low analyte concentrations of viral or bacterial samples. A significant number of studies using the SERS-based assay system have been performed recently to realize POC diagnostics, especially under resource-limited conditions. This portable SERS sensor is expected to be a next-generation POC assay system that could overcome the limitations of current fluorescence-based assay systems. This minireview summarizes recent advances in the development of SERS-based microdevices for the diagnosis of infectious diseases. Lastly, challenges to overcome and future perspectives are discussed.
Collapse
Affiliation(s)
- Hao Chen
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Sannigrahi S, Arumugasamy SK, Mathiyarasu J, Suthindhiran K. Development of magnetosomes-based biosensor for the detection of Listeria monocytogenes from food sample. IET Nanobiotechnol 2020; 14:839-850. [PMID: 33399117 DOI: 10.1049/iet-nbt.2020.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeriosis through contaminated food is one of the leading causes of premature deaths in pregnant women and new born babies. Here, the authors have developed a magnetosomes-based biosensor for the rapid, sensitive, specific and cost-effective detection of Listeria monocytogenes from food sample. Magnetosomes were extracted from Magnetospirillum sp. RJS1 and then directly bound to anti-Listeriolysin antibody (0.25-1 µg/ml), confirmed in spectroscopy. Listeriolysin (LLO) protein (0.01-7 µg/ml) was optimised in enzyme-linked immunosorbent assay. Magnetosomes was conjugated with LLO antibody (0.25 µg/ml) in optimum concentration to detect LLO protein (0.01 µg/ml). Magnetosomes-LLO antibody complex was 25% cost effective. The magnetosomes-LLO antibody complex was directly stabilised on screen printed electrode using external magnet. The significant increase in resistance (RCT value) on the electrode surface with increase in concentration of LLO protein was confirmed in impedance spectroscopy. The L. monocytogenes contaminated milk and water sample were processed and extracted LLO protein was detected in the biosensor. The specificity of the biosensor was confirmed in cross-reactivity assay with other food pathogens. The detection limit of 101 Cfu/ml in both water and milk sample manifests the sensitive nature of the biosensor. The capture efficiency and field emission scanning electron microscopy confirmed positive interaction of Listeria cells with magnetosomes-antibody complex.
Collapse
Affiliation(s)
- Sumana Sannigrahi
- Marine Biotechnology and Bioproducts Lab, School of Biosciences and Technology, VIT-Vellore, 632014 Tamil Nadu, India
| | - Shiva Kumar Arumugasamy
- Electrodics and Electrocatalysis Division, CSIR - Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India
| | - Jayaraman Mathiyarasu
- Electrodics and Electrocatalysis Division, CSIR - Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India
| | - Krishnamurthy Suthindhiran
- Marine Biotechnology and Bioproducts Lab, School of Biosciences and Technology, VIT-Vellore, 632014 Tamil Nadu, India.
| |
Collapse
|
83
|
Yan S, Liu C, Fang S, Ma J, Qiu J, Xu D, Li L, Yu J, Li D, Liu Q. SERS-based lateral flow assay combined with machine learning for highly sensitive quantitative analysis of Escherichia coli O157:H7. Anal Bioanal Chem 2020; 412:7881-7890. [DOI: 10.1007/s00216-020-02921-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
|
84
|
Application of Recombinase Polymerase Amplification with Lateral Flow for a Naked-Eye Detection of Listeria monocytogenes on Food Processing Surfaces. Foods 2020; 9:foods9091249. [PMID: 32906705 PMCID: PMC7555525 DOI: 10.3390/foods9091249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023] Open
Abstract
The continuous contamination of foods with L. monocytogenes, highlights the need for additional controls in the food industry. The verification of food processing plants is key to avoid cross-contaminations, and to assure the safety of the food products. In this study, a new methodology for the detection of L. monocytogenes on food contact surfaces was developed and evaluated. It combines Recombinase Polymerase Amplification (RPA) with the lateral flow (LF) naked-eye detection. Different approaches for the recovery of the bacteria from the surface, the enrichment step and downstream analysis by RPA-LF were tested and optimized. The results were compared with a standard culture-based technique and qPCR analysis. Sampling procedure with sponges was more efficient for the recovery of the bacteria than a regular swab. A 24 h enrichment in ONE broth was needed for the most sensitive detection of the pathogen. By RPA-LF, it was possible to detect 1.1 pg/µL of pure L. monocytogenes DNA, and the complete methodology reached a LoD50 of 4.2 CFU/cm2 and LoD95 of 18.2 CFU/cm2. These results are comparable with the culture-based methodology and qPCR. The developed approach allows for a next-day detection without complex equipment and a naked-eye visualization of the results.
Collapse
|
85
|
Xiao R, Lu L, Rong Z, Wang C, Peng Y, Wang F, Wang J, Sun M, Dong J, Wang D, Wang L, Sun N, Wang S. Portable and multiplexed lateral flow immunoassay reader based on SERS for highly sensitive point-of-care testing. Biosens Bioelectron 2020; 168:112524. [PMID: 32866724 DOI: 10.1016/j.bios.2020.112524] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
A portable surface-enhanced Raman scattering (SERS)-based lateral flow immunoassay (LFIA) reader with multiplexed detection was developed using an integrated LFIA reaction column. The proposed LFIA reader was designed to simultaneously detect multiple samples or samples with multiple biomarkers. With the integrated LFIA reaction column, we achieved the specific detection of alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), and prostate-specific antigen (PSA) with a detection limit of 0.01 ng/mL, which was three orders of magnitude lower than that of the visual signal. We also investigated the uniformity of channels based on an eight-channel integrated LFIA reaction column. The relative standard deviation values of the SERS intensity of the eight-channel for measuring the AFP, CEA, and PSA antigens at 1323 cm-1 were 13%, 4.8%, and 5%, respectively. We detected 45 clinical serum samples of the three antigens using the proposed portable SERS-based LFIA reader to further confirm its applicability to clinical samples. The SERS signals of the positive sera were higher than those of the negative sera and their thrice standard deviation. This result indicated the practicality of the developed integrated reaction column and the proposed portable and multiplexed Raman reader. This work provides a new high-sensitivity, multiplexed, and automated SERS-based LFIA detector for use in the point-of-care setting.
Collapse
Affiliation(s)
- Rui Xiao
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Luchun Lu
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Zhen Rong
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Chongwen Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China.
| | - Yongjin Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Feng Wang
- Beijing Meiling Biotechnology Corporation, Beijing, 102600, PR China
| | - Jinhai Wang
- Beijing Meiling Biotechnology Corporation, Beijing, 102600, PR China
| | - Meijie Sun
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Jian Dong
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Dongfeng Wang
- Beijing Meiling Biotechnology Corporation, Beijing, 102600, PR China
| | - Luanluan Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Nanxi Sun
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China.
| |
Collapse
|
86
|
Guo Y, Girmatsion M, Li HW, Xie Y, Yao W, Qian H, Abraha B, Mahmud A. Rapid and ultrasensitive detection of food contaminants using surface-enhanced Raman spectroscopy-based methods. Crit Rev Food Sci Nutr 2020; 61:3555-3568. [PMID: 32772549 DOI: 10.1080/10408398.2020.1803197] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
With the globalization of food and its complicated networking system, a wide range of food contaminants is introduced into the food system which may happen accidentally, intentionally, or naturally. This situation has made food safety a critical global concern nowadays and urged the need for effective technologies capable of dealing with the detection of food contaminants as efficiently as possible. Hence, Surface-enhanced Raman spectroscopy (SERS) has been taken as one of the primary choices for this case, due to its extremely high sensitivity, rapidity, and fingerprinting interpretation capabilities which account for its competency to detect a molecule up to a single level. Here in this paper, we present a comprehensive review of various SERS-based novel approaches applied for direct and indirect detection of single and multiple chemical and microbial contaminants in food, food products as well as water. The aim of this paper is to arouse the interest of researchers by addressing recent SERS-based, novel achievements and developments related to the investigation of hazardous chemical and microbial contaminants in edible foods and water. The target chemical and microbial contaminants are antibiotics, pesticides, food adulterants, Toxins, bacteria, and viruses. In this paper, different aspects of SERS-based reports have been addressed including synthesis and use of various forms of SERS nanostructures for the detection of a specific analyte, the coupling of SERS with other analytical tools such as chromatographic methods, combining analyte capture and recognition strategies such as molecularly imprinted polymers and aptasensor as well as using multivariate statistical analyses such as principal component analysis (PCA)to distinguish between results. In addition, we also report some strengths and limitations of SERS as well as future viewpoints concerning its application in food safety.
Collapse
Affiliation(s)
- Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mogos Girmatsion
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Department of Marine Food and Biotechnology, Massawa College of Marine Science and Technolgy, Massawa, Eritrea
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bereket Abraha
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Department of Marine Food and Biotechnology, Massawa College of Marine Science and Technolgy, Massawa, Eritrea
| | - Abdu Mahmud
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Department of Marine Food and Biotechnology, Massawa College of Marine Science and Technolgy, Massawa, Eritrea
| |
Collapse
|
87
|
Shao F, Cao J, Ying Y, Liu Y, Wang D, Guo X, Wu Y, Wen Y, Yang H. Preparation of Hydrophobic Film by Electrospinning for Rapid SERS Detection of Trace Triazophos. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20154120. [PMID: 32722113 PMCID: PMC7436116 DOI: 10.3390/s20154120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
For real application, it is an urgent demand to fabricate stable and flexible surface-enhanced Raman scattering (SERS) substrates with high enhancement factors in a large-scale and facile way. Herein, by using the electrospinning technique, a hydrophobic and flexible poly(styrene-co-butadiene) (SB) fibrous membrane is obtained, which is beneficial for modification of silver nanoparticles (Ag NPs) colloid in a small region and then formation of more "hot spots" by drying; the final SERS substrate is designated as Ag/SB. Hydrophobic Ag/SB can efficiently capture heterocyclic molecules into the vicinity of hot spots of Ag NPs. Such Ag/SB films are used to quantitatively detect trace triazophos residue on fruit peels or in the juice, and the limit of detection (LOD) of 2.5 × 10-8 M is achieved. Ag/SB films possess a capability to resist heat. As a case, 6-mercaptopurine (6MP) that just barely dissolves in 90 °C water is picked for conducting Ag/SB-film-based experiments.
Collapse
|
88
|
YEĞENOĞLU AKÇINAR H, ASLIM* B, TORUL H, GÜVEN B, ZENGİN A, SULUDERE Z, BOYACI İH, TAMER U. Immunomagnetic separation and Listeriamonocytogenes detection with surface-enhanced Raman scattering. Turk J Med Sci 2020; 50:1157-1167. [PMID: 32283902 PMCID: PMC7379434 DOI: 10.3906/sag-2002-234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/11/2020] [Indexed: 11/03/2022] Open
Abstract
Background/aim We aimed to develop a rapid method to enumerate Listeria monocytogenes (L. monocytogenes) utilizing magnetic nanoparticle based preconcentration and surface-enhanced Raman spectroscopy measurements. Materials and methods Biological activities of magnetic Au-nanoparticles have been observed to have the high biocompatibility, and a sample immunosensor model has been designed to use avidin attached Au-nanoparticles for L. monocytogenes detection. Staphylococcus aureus (S. aureus) and Salmonella typhimurium (S. typhimurium) bacteria cultures were chosen for control studies. Antimicrobial activity studies have been done to identify bio-compatibility and bio-characterization of the Au-nanoparticles in our previous study and capturing efficiencies to bacterial surfaces have been also investigated. Results We constructed the calibration graphs in various population density of L. monocytogenes as 2.2 × 101 to 2.2 × 106 cfu/mL and the capture efficiency was found to be 75%. After the optimization procedures, population density of L. monocytogenes and Raman signal intensity showed a good linear correlation (R2 = 0.991) between 102 to 106 cfu/mL L. monocytogenes. The presented sandwich assay provides low detection limits and limit of quantification as 12 cfu/mL and 37 cfu/mL, respectively. We also compared the experimental results with reference plate-counting methods and the practical utility of the proposed assay is demonstrated using milk samples. Conclusion It is focused on the enumeration of L. monocytogenes in milk samples and the comparision of results of milk analysis obtained by the proposed SERS method and by plate counting method stay in food agreement. In the present study, all parameters were optimized to select SERS-based immunoassay method for L. monocytogenes bacteria to ensure LOD, selectivity, precision and repeatablity.
Collapse
Affiliation(s)
| | - Belma ASLIM*
- Department of Biology, Faculty of Science, Gazi University, AnkaraTurkey
| | - Hilal TORUL
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, AnkaraTurkey
| | - Burcu GÜVEN
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, AnkaraTurkey
| | - Adem ZENGİN
- Department of Chemical Engineering, Faculty of Engineering, Yüzüncü Yıl University, VanTurkey
| | - Zekiye SULUDERE
- Department of Biology, Faculty of Science, Gazi University, AnkaraTurkey
| | - İsmail Hakkı BOYACI
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, AnkaraTurkey
| | - Uğur TAMER
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, AnkaraTurkey
| |
Collapse
|
89
|
Pires NMM, Dong T, Yang Z, da Silva LFBA. Recent methods and biosensors for foodborne pathogen detection in fish: progress and future prospects to sustainable aquaculture systems. Crit Rev Food Sci Nutr 2020; 61:1852-1876. [PMID: 32539431 DOI: 10.1080/10408398.2020.1767032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aquaculture industry has advanced toward sustainable recirculating systems, in where parameters of food quality are strictly monitored. Despite that, as in the case of conventional aquaculture practices, the recirculating systems also suffer threats from Aeromonas spp., Vibrio spp., Streptococcus spp., among other foodborne pathogens infecting farmed fish. The aquaculture pathogens are routinely detected by conventional PCR methods or antibody-based tests, with the detection protocols confined to laboratory use. Emerging assay technologies and biosensors recently reported in the literature open new opportunities to the development of sensitive, specific, and portable analytical devices to use in the field. Techniques of DNA/RNA analysis, immunoassays and other nanomolecular technologies have been facing important advances in response time, sensitivity, and enhanced power of discrimination among and within species. Moreover, the recent developments of electrochemical and optical signal transduction have facilitated the incorporation of the innovative assays to practical miniaturized devices. In this work, it is provided a critical review over foodborne pathogen detection by existing and promising methods and biosensors applied to fish samples and extended to other food matrices. While isothermal DNA/RNA amplification methods can be highlighted among the assay methods for their promising analytical performance and suitability for point-of-care testing, the electrochemical transduction provides a way to achieve cost-effective biosensors amenable to use in the aquaculture field. The adoption of new methods and biosensors would constitute a step forward in securing sustainable aquaculture systems.
Collapse
Affiliation(s)
- Nuno M M Pires
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China.,Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, Kongsberg, Norway.,Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, Ås, Norway
| | - Tao Dong
- Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, Kongsberg, Norway
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China
| | - Luís F B A da Silva
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China
| |
Collapse
|
90
|
Zhang P, Song M, Dou L, Xiao Y, Li K, Shen G, Ying B, Geng J, Yang D, Wu Z. Development of a fluorescent DNA nanomachine for ultrasensitive detection of Salmonella enteritidis without labeling and enzymes. Mikrochim Acta 2020; 187:376. [PMID: 32518968 DOI: 10.1007/s00604-020-04334-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023]
Abstract
A capture probe complex containing a specific Salmonella enteritidis (S. enteritidis) aptamer and partly hybridized signal trigger sequence was designed with the ability to directly detect viable S. enteritidis. In the presence of the target S. enteritidis, single-stranded trigger sequences were liberated and in turn reacted with hairpins I, II, and III to initiate the triple strand migration reaction; this in turn produced numerous hairpin I·II·III complexes with scaffolds of copper nanoparticles (CuNPs) and replaced the trigger sequence which initiated the next cycle of triple migration reaction. Cyclically, the reuse of the trigger sequences and the successive, cascading production of scaffolds of CuNPs achieved the synthesis of highly fluorescent CuNPs, thus providing significantly enhanced fluorescent signals to achieve ultrasensitive detection of live S. enteritidis as low as 25 CFU/mL with a linear range of detection from 50 to 104 CFU/mL with an emission wavelength at 590 nm. By integrating the triple cascade strand migration amplification with recyclable trigger sequences, aptamer-based target recognition, and self-protection mediated by CuNPs hairpin scaffolds, this is the first report on a non-labeled, non-enzymatic, modification-free, and DNA extraction-free ultrasensitive fluorescent biosensor for the direct detection of live Salmonella, which is distinguished from dead Salmonella. It also provides a new strategy to detect viable bacteria by applying the CuNPs, thus extending the application of metal nanoparticles. Graphical abstract.
Collapse
Affiliation(s)
- Peng Zhang
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, Guangzhou, 510006, China.,Shenzhen Institute of Geriatrics, Shenzhen, 518020, China.,The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, China.,The Second People's Hospital of Shenzhen, Shenzhen, 518035, China.,Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Mengxiao Song
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Linqin Dou
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yuling Xiao
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiju Li
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Guangzhen Shen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Binwu Ying
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Depo Yang
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhengzhi Wu
- Shenzhen Institute of Geriatrics, Shenzhen, 518020, China.,The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, China.,The Second People's Hospital of Shenzhen, Shenzhen, 518035, China.,The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, China
| |
Collapse
|
91
|
Wang Z, Yao X, Zhang Y, Wang R, Ji Y, Sun J, Zhang D, Wang J. Functional nanozyme mediated multi-readout and label-free lateral flow immunoassay for rapid detection of Escherichia coli O157:H7. Food Chem 2020; 329:127224. [PMID: 32516716 DOI: 10.1016/j.foodchem.2020.127224] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/15/2020] [Accepted: 05/31/2020] [Indexed: 10/24/2022]
Abstract
To overcome the drawbacks of antibody labeling dependence and single-readout system in the conventional lateral flow immunoassays (LFIAs) as well as the non-targeted combination of new capture agents reported recently for pathogen detection, in this work, a multi-readout and label-free LFIA was proposed for rapid detection of Escherichia coli O157:H7 (E. coli O157:H7) based on a nanozyme-bacteria-antibody sandwich pattern. A type of functional nanozyme-mannose modified Prussian blue (man-PB), was introduced as the recognition agent as well as signal indicator. Apart from original signal intensity on the T-line, the peroxidase-like catalytic activity-driven generation of colorimetric signal could be used as another format of quantitation. Importantly, such LFIA could exhibit excellent performance for target pathogens detection separately with a quantitative range of 102-108 cfu·mL-1 and a low detection limit of 102 cfu·mL-1 based on different readout formats, indicating the application potential of the proposed LFIA in real samples.
Collapse
Affiliation(s)
- Zonghan Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Xiaolin Yao
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yongzhi Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Rong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
92
|
Emerging design strategies for constructing multiplex lateral flow test strip sensors. Biosens Bioelectron 2020; 157:112168. [DOI: 10.1016/j.bios.2020.112168] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 11/18/2022]
|
93
|
Qian J, Xing C, Ge Y, Li R, Li A, Yan W. Gold nanostars-enhanced Raman fingerprint strip for rapid detection of trace tetracycline in water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 232:118146. [PMID: 32086043 DOI: 10.1016/j.saa.2020.118146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 05/25/2023]
Abstract
Rapid and accurate detection of antibiotics at trace levels in food represents a great challenge. Tetracycline (TC), as a sort of broad-spectrum antibiotic, has been extensively used in animal infection therapy and animal husbandry as growth promoters. Large amounts of TC residues in animal-derived foods affect food quality and safety, and cause undesirable side effects such as allergic reactions and bacterial antibiotic resistance. Here, a Raman fingerprint strip sensor was reported based on surface-enhanced Raman scattering technology and demonstrated for ultrasensitive detection of TC. In this approach, 4-aminothiophenol (4-ATP) modified gold nanostars (GNSs) were used as a strong Raman reporter, which was coated with anti-TC monoclonal antibody serving as a biorecognition to acquire both visual and Raman signals on the test line. To demonstrate the performance of this strip, TC standard solutions with concentrations ranging from 0.5 to 50 ng/mL was detected, the limit of the detection (LOD) for the Raman signal was 0.04 ng/mL, which was 100 times more sensitive than those of color intensity quantifications. The other analogues, oxytetracycline, and chlortetracycline were detected using this method, making them suitable for the samples with TC analogues screening.
Collapse
Affiliation(s)
- Jing Qian
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Changrui Xing
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yonghui Ge
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Li
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Aitong Li
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjing Yan
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
94
|
Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique. Food Chem 2020; 310:125923. [DOI: 10.1016/j.foodchem.2019.125923] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/15/2019] [Accepted: 11/17/2019] [Indexed: 11/22/2022]
|
95
|
Ma B, Li J, Chen K, Yu X, Sun C, Zhang M. Multiplex Recombinase Polymerase Amplification Assay for the Simultaneous Detection of Three Foodborne Pathogens in Seafood. Foods 2020; 9:E278. [PMID: 32138267 PMCID: PMC7143093 DOI: 10.3390/foods9030278] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Foodborne pathogens can cause foodborne illness. In reality, one food sample may carry more than one pathogen. A rapid, sensitive, and multiple target method for bacteria detection is crucial in food safety. For the simultaneous detection of Staphylococcus aureus, Vibrio parahaemolyticus, and Salmonella Enteritidis, multi-objective recombinase polymerase amplification (RPA) combined with a lateral flow dipstick (LFD) was developed in this study. The whole process, including amplification and reading, can be completed in 15 min at 37 °C. The detection limits were 2.6 × 101 CFU/mL for Staphylococcus aureus, 7.6 × 101 CFU/mL for Vibrio parahaemolyticus, and 1.29 × 101 CFU/mL for Salmonella Enteritidis. Moreover, colored signal intensities on test lines were measured by a test strip reader to achieve quantitative detection for Staphylococcus aureus (R2 = 0.9903), Vibrio parahaemolyticus (R2 = 0.9928), and Salmonella Enteritidis (R2 = 0.9945). In addition, the method demonstrated good recoveries (92.00%-107.95%) in the testing of spiked food samples. Therefore, the multiplex LFD-RPA assay is a feasible method for the rapid, sensitive, and quantitative detection of bacterial pathogens in seafood.
Collapse
Affiliation(s)
- Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.M.); (J.L.); (K.C.); (X.Y.)
| | - Jiali Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.M.); (J.L.); (K.C.); (X.Y.)
| | - Kai Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.M.); (J.L.); (K.C.); (X.Y.)
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.M.); (J.L.); (K.C.); (X.Y.)
| | - Chuanxin Sun
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Science (SLU), SE-75007 Uppsala, Sweden;
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.M.); (J.L.); (K.C.); (X.Y.)
| |
Collapse
|
96
|
Obande GA, Banga Singh KK. Current and Future Perspectives on Isothermal Nucleic Acid Amplification Technologies for Diagnosing Infections. Infect Drug Resist 2020; 13:455-483. [PMID: 32104017 PMCID: PMC7024801 DOI: 10.2147/idr.s217571] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022] Open
Abstract
Nucleic acid amplification technology (NAAT) has assumed a critical position in disease diagnosis in recent times and contributed significantly to healthcare. Application of these methods has resulted in a more sensitive, accurate and rapid diagnosis of infectious diseases than older traditional methods like culture-based identification. NAAT such as the polymerase chain reaction (PCR) is widely applied but seldom available to resource-limited settings. Isothermal amplification (IA) methods provide a rapid, sensitive, specific, simpler and less expensive procedure for detecting nucleic acid from samples. However, not all of these IA techniques find regular applications in infectious diseases diagnosis. Disease diagnosis and treatment could be improved, and the rapidly increasing problem of antimicrobial resistance reduced, with improvement, adaptation, and application of isothermal amplification methods in clinical settings, especially in developing countries. This review centres on some isothermal techniques that have found documented applications in infectious diseases diagnosis, highlighting their principles, development, strengths, setbacks and imminent potentials for use at points of care.
Collapse
Affiliation(s)
- Godwin Attah Obande
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
- Department of Microbiology, Faculty of Science, Federal University Lafia, Lafia, Nasarawa State, Nigeria
| | - Kirnpal Kaur Banga Singh
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
97
|
Huang L, Tian S, Zhao W, Liu K, Ma X, Guo J. Multiplexed detection of biomarkers in lateral-flow immunoassays. Analyst 2020; 145:2828-2840. [DOI: 10.1039/c9an02485a] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiplexed detection of biomarkers, i.e., simultaneous detection of multiple biomarkers in a single assay, can enhance diagnostic precision, improve diagnostic efficiency, reduce diagnostic cost, and alleviate pain of patients.
Collapse
Affiliation(s)
- Lei Huang
- School of Automation Engineering
- University of Electronic Science and Technology of China
- Chengdu 611731
- P. R. China
| | - Shulin Tian
- School of Automation Engineering
- University of Electronic Science and Technology of China
- Chengdu 611731
- P. R. China
| | - Wenhao Zhao
- School of Automation Engineering
- University of Electronic Science and Technology of China
- Chengdu 611731
- P. R. China
| | - Ke Liu
- School of Automation Engineering
- University of Electronic Science and Technology of China
- Chengdu 611731
- P. R. China
| | - Xing Ma
- State Key Lab of Advanced Welding and Joining
- Harbin Institute of Technology (Shenzhen)
- Shenzhen 518055
- China
- Ministry of Education Key Lab of Micro-systems and Micro-structures Manufacturing
| | - Jinhong Guo
- School of Communication and Information Engineering
- University of Electronic Science and Technology of China
- Chengdu 611731
- P. R. China
| |
Collapse
|
98
|
Tominaga T, Ishii M. Detection of microorganisms with lateral flow test strips. METHODS IN MICROBIOLOGY 2020. [DOI: 10.1016/bs.mim.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
99
|
Huang Y, Xu T, Wang W, Wen Y, Li K, Qian L, Zhang X, Liu G. Lateral flow biosensors based on the use of micro- and nanomaterials: a review on recent developments. Mikrochim Acta 2019; 187:70. [PMID: 31853644 DOI: 10.1007/s00604-019-3822-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022]
Abstract
This review (with 187 refs.) summarizes the progress that has been made in the design of lateral flow biosensors (LFBs) based on the use of micro- and nano-materials. Following a short introduction into the field, a first section covers features related to the design of LFBs, with subsections on strip-based, cotton thread-based and vertical flow- and syringe-based LFBs. The next chapter summarizes methods for sample pretreatment, from simple method to membrane-based methods, pretreatment by magnetic methods to device-integrated sample preparation. Advances in flow control are treated next, with subsections on cross-flow strategies, delayed and controlled release and various other strategies. Detection conditionst and mathematical modelling are briefly introduced in the following chapter. A further chapter covers methods for reliability improvement, for example by adding other validation lines or adopting different detection methods. Signal readouts are summarized next, with subsections on color-based, luminescent, smartphone-based and SERS-based methods. A concluding section summarizes the current status and addresses challenges in future perspectives. Graphical abstractRecent development and breakthrough points of lateral flow biosensors.
Collapse
Affiliation(s)
- Yan Huang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China.,Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China.,Department of Chemistry and biochemistry, North Dakota State University, Fargo, ND, 58105, USA
| | - Tailin Xu
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Wenqian Wang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Yongqiang Wen
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Kun Li
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China
| | - Lisheng Qian
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China.
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China. .,Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China. .,School of Biomedical Engineering, Shenzhen University Healthy Science Center, Shenzhen, Guangdong, 518060, People's Republic of China.
| | - Guodong Liu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China. .,Department of Chemistry and biochemistry, North Dakota State University, Fargo, ND, 58105, USA.
| |
Collapse
|
100
|
Cheng N, Yang Z, Wang W, Wang X, Xu W, Luo Y. A Variety of Bio-nanogold in the Fabrication of Lateral Flow Biosensors for the Detection of Pathogenic Bacteria. Curr Top Med Chem 2019; 19:2476-2493. [DOI: 10.2174/1568026619666191023125020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/15/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
Abstract
Pathogenic bacteria constitute one of the most serious threats to human health. This has led
to the development of technologies for the rapid detection of bacteria. Bio-nanogold-based lateral flow
biosensors (LFBs) are a promising assay due to their low limit of detection, high sensitivity, good selectivity,
robustness, low cost, and quick assay performance ability. The aim of this review is to provide
a critical overview of the current variety of bio-nanogold LFBs and their targets, with a special focus on
whole-cell and DNA detection of pathogenic bacteria. The challenges of bio-nanogold-based LFBs in
improving their performance and accessibility are also comprehensively discussed.
Collapse
Affiliation(s)
- Nan Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhansen Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Weiran Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xinxian Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|