51
|
Clausen BE, Amon L, Backer RA, Berod L, Bopp T, Brand A, Burgdorf S, Chen L, Da M, Distler U, Dress RJ, Dudziak D, Dutertre CA, Eich C, Gabele A, Geiger M, Ginhoux F, Giusiano L, Godoy GJ, Hamouda AEI, Hatscher L, Heger L, Heidkamp GF, Hernandez LC, Jacobi L, Kaszubowski T, Kong WT, Lehmann CHK, López-López T, Mahnke K, Nitsche D, Renkawitz J, Reza RA, Sáez PJ, Schlautmann L, Schmitt MT, Seichter A, Sielaff M, Sparwasser T, Stoitzner P, Tchitashvili G, Tenzer S, Tochoedo NR, Vurnek D, Zink F, Hieronymus T. Guidelines for mouse and human DC functional assays. Eur J Immunol 2023; 53:e2249925. [PMID: 36563126 DOI: 10.1002/eji.202249925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Recent studies have provided evidence for an increasing number of phenotypically distinct conventional DC (cDC) subsets that on one hand exhibit a certain functional plasticity, but on the other hand are characterized by their tissue- and context-dependent functional specialization. Here, we describe a selection of assays for the functional characterization of mouse and human cDC. The first two protocols illustrate analysis of cDC endocytosis and metabolism, followed by guidelines for transcriptomic and proteomic characterization of cDC populations. Then, a larger group of assays describes the characterization of cDC migration in vitro, ex vivo, and in vivo. The final guidelines measure cDC inflammasome and antigen (cross)-presentation activity. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
Collapse
Affiliation(s)
- Björn E Clausen
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Ronald A Backer
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Luciana Berod
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Tobias Bopp
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Anna Brand
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sven Burgdorf
- Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Luxia Chen
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Meihong Da
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ute Distler
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Regine J Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Germany
| | - Charles-Antoine Dutertre
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Christina Eich
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Anna Gabele
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Melanie Geiger
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Lucila Giusiano
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Gloria J Godoy
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Ahmed E I Hamouda
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Gordon F Heidkamp
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Lola C Hernandez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Jacobi
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Tomasz Kaszubowski
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Wan Ting Kong
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Germany
| | - Tamara López-López
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dominik Nitsche
- Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Jörg Renkawitz
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, LMU Munich, Munich, Germany
| | - Rifat A Reza
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, LMU Munich, Munich, Germany
| | - Pablo J Sáez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Schlautmann
- Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Madeleine T Schmitt
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, LMU Munich, Munich, Germany
| | - Anna Seichter
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Malte Sielaff
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Tim Sparwasser
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Patrizia Stoitzner
- Department of Dermatology, Venerology & Allergology, Medical University Innsbruck, Innsbruck, Austria
| | - Giorgi Tchitashvili
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Stefan Tenzer
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz), Mainz, Germany
| | - Nounagnon R Tochoedo
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Damir Vurnek
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Fabian Zink
- Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Thomas Hieronymus
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
- Institute of Cell and Tumor Biology, RWTH Aachen University, Medical Faculty, Germany
| |
Collapse
|
52
|
Davis S, Scott C, Oetjen J, Charles PD, Kessler BM, Ansorge O, Fischer R. Deep topographic proteomics of a human brain tumour. Nat Commun 2023; 14:7710. [PMID: 38001067 PMCID: PMC10673928 DOI: 10.1038/s41467-023-43520-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The spatial organisation of cellular protein expression profiles within tissue determines cellular function and is key to understanding disease pathology. To define molecular phenotypes in the spatial context of tissue, there is a need for unbiased, quantitative technology capable of mapping proteomes within tissue structures. Here, we present a workflow for spatially-resolved, quantitative proteomics of tissue that generates maps of protein abundance across tissue slices derived from a human atypical teratoid-rhabdoid tumour at three spatial resolutions, the highest being 40 µm, to reveal distinct abundance patterns of thousands of proteins. We employ spatially-aware algorithms that do not require prior knowledge of the fine tissue structure to detect proteins and pathways with spatial abundance patterns and correlate proteins in the context of tissue heterogeneity and cellular features such as extracellular matrix or proximity to blood vessels. We identify PYGL, ASPH and CD45 as spatial markers for tumour boundary and reveal immune response-driven, spatially-organised protein networks of the extracellular tumour matrix. Overall, we demonstrate spatially-aware deep proteo-phenotyping of tissue heterogeneity, to re-define understanding tissue biology and pathology at the molecular level.
Collapse
Affiliation(s)
- Simon Davis
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Connor Scott
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Janina Oetjen
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Philip D Charles
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Olaf Ansorge
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
| |
Collapse
|
53
|
Seekles SJ, van den Brule T, Punt M, Dijksterhuis J, Arentshorst M, Ijadpanahsaravi M, Roseboom W, Meuken G, Ongenae V, Zwerus J, Ohm RA, Kramer G, Wösten HAB, de Winde JH, Ram AFJ. Compatible solutes determine the heat resistance of conidia. Fungal Biol Biotechnol 2023; 10:21. [PMID: 37957766 PMCID: PMC10644514 DOI: 10.1186/s40694-023-00168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Asexually developed fungal spores (conidia) are key for the massive proliferation and dispersal of filamentous fungi. Germination of conidia and subsequent formation of a mycelium network give rise to many societal problems related to human and animal fungal diseases, post-harvest food spoilage, loss of harvest caused by plant-pathogenic fungi and moulding of buildings. Conidia are highly stress resistant compared to the vegetative mycelium and therefore even more difficult to tackle. RESULTS In this study, complementary approaches are used to show that accumulation of mannitol and trehalose as the main compatible solutes during spore maturation is a key factor for heat resistance of conidia. Compatible solute concentrations increase during conidia maturation, correlating with increased heat resistance of mature conidia. This maturation only occurs when conidia are attached to the conidiophore. Moreover, conidia of a mutant Aspergillus niger strain, constructed by deleting genes involved in mannitol and trehalose synthesis and consequently containing low concentrations of these compatible solutes, exhibit a sixteen orders of magnitude more sensitive heat shock phenotype compared to wild-type conidia. Cultivation at elevated temperature results in adaptation of conidia with increased heat resistance. Transcriptomic and proteomic analyses revealed two putative heat shock proteins to be upregulated under these conditions. However, conidia of knock-out strains lacking these putative heat shock proteins did not show a reduced heat resistance. CONCLUSIONS Heat stress resistance of fungal conidia is mainly determined by the compatible solute composition established during conidia maturation. To prevent heat resistant fungal spore contaminants, food processing protocols should consider environmental conditions stimulating compatible solute accumulation and potentially use compatible solute biosynthesis as a novel food preservation target.
Collapse
Affiliation(s)
- Sjoerd J Seekles
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Tom van den Brule
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Maarten Punt
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Jan Dijksterhuis
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Mark Arentshorst
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Maryam Ijadpanahsaravi
- Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Winfried Roseboom
- Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1090 GE, Amsterdam, the Netherlands
| | - Gwendolin Meuken
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Véronique Ongenae
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Jordy Zwerus
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Robin A Ohm
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Gertjan Kramer
- Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1090 GE, Amsterdam, the Netherlands
| | - Han A B Wösten
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Johannes H de Winde
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Arthur F J Ram
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands.
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands.
| |
Collapse
|
54
|
Zhang S, Ghalandari B, Wang A, Li S, Chen Y, Wang Q, Jiang L, Ding X. Superparamagnetic Composite Nanobeads Anchored with Molecular Glues for Ultrasensitive Label-free Proteomics. Angew Chem Int Ed Engl 2023; 62:e202309806. [PMID: 37653561 DOI: 10.1002/anie.202309806] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/02/2023]
Abstract
Mass spectrometry has emerged as a mainstream technique for label-free proteomics. However, proteomic coverage for trace samples is constrained by adsorption loss during repeated elution at sample pretreatment. Here, we demonstrated superparamagnetic composite nanoparticles functionalized with molecular glues (MGs) to enrich proteins in trace human biofluid. We showed high protein binding (>95 %) and recovery (≈90 %) rates by anchor-nanoparticles. We further proposed a Streamlined Workflow based on Anchor-nanoparticles for Proteomics (SWAP) method that enabled unbiased protein capture, protein digestion and pure peptides elution in one single tube. We demonstrated SWAP to quantify over 2500 protein groups with 100 HEK 293T cells. We adopted SWAP to profile proteomics with trace aqueous humor samples from cataract (n=15) and wet age-related macular degeneration (n=8) patients, and quantified ≈1400 proteins from 5 μL aqueous humor. SWAP simplifies sample preparation steps, minimizes adsorption loss and improves protein coverage for label-free proteomics with previous trace samples.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Behafarid Ghalandari
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Aiting Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Sijie Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Youming Chen
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Qingwen Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
55
|
Dowling P, Swandulla D, Ohlendieck K. Mass Spectrometry-Based Proteomic Technology and Its Application to Study Skeletal Muscle Cell Biology. Cells 2023; 12:2560. [PMID: 37947638 PMCID: PMC10649384 DOI: 10.3390/cells12212560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Voluntary striated muscles are characterized by a highly complex and dynamic proteome that efficiently adapts to changed physiological demands or alters considerably during pathophysiological dysfunction. The skeletal muscle proteome has been extensively studied in relation to myogenesis, fiber type specification, muscle transitions, the effects of physical exercise, disuse atrophy, neuromuscular disorders, muscle co-morbidities and sarcopenia of old age. Since muscle tissue accounts for approximately 40% of body mass in humans, alterations in the skeletal muscle proteome have considerable influence on whole-body physiology. This review outlines the main bioanalytical avenues taken in the proteomic characterization of skeletal muscle tissues, including top-down proteomics focusing on the characterization of intact proteoforms and their post-translational modifications, bottom-up proteomics, which is a peptide-centric method concerned with the large-scale detection of proteins in complex mixtures, and subproteomics that examines the protein composition of distinct subcellular fractions. Mass spectrometric studies over the last two decades have decisively improved our general cell biological understanding of protein diversity and the heterogeneous composition of individual myofibers in skeletal muscles. This detailed proteomic knowledge can now be integrated with findings from other omics-type methodologies to establish a systems biological view of skeletal muscle function.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
56
|
Perkons I, Varunjikar MS, Rasinger JD. Unveiling the potential of proteomics in addressing food and feed safety challenges. EFSA J 2023; 21:e211013. [PMID: 38047126 PMCID: PMC10687763 DOI: 10.2903/j.efsa.2023.e211013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
The food and feed sector in Europe is rapidly evolving to address contemporary challenges, striving for fairer, safer, greener and more sustainable food systems. This includes the exploration of new protein sources for human consumption and animal feed such as protein derived from insects, algae or novel plant-derived proteins, and the re-evaluation of existing sources like processed animal protein (PAP). To generate reliable data on the diverse array of emerging protein sources for future food and feed safety assessments, a growing demand for the development and implementation of advanced analytical techniques exists. New approach methodologies (NAMs) including, mass spectrometry (MS)-based proteomics methods have been emerging as valuable techniques which potentially can be implemented in regulatory laboratory settings to complement conventional approaches in this realm. These MS-driven strategies have already proven their utility in diverse applications, including the detection of prohibited substances in feed, identification of allergens, differentiation of fish species in complex mixtures for fraud detection and the verification of novel foods and alternative protein sources. This EU-FORA programme was focused on three core objectives namely: (i) the training of the fellow in utilising MS-based proteomics for food and feed safety analyses, (ii) the involvement of the fellow in the development of standardised operating procedures (SOP) for targeted and non-targeted proteomic MS-based workflows for species and tissues specific PAP identification in a national reference laboratory (NRL) and (iii) the transfer and implementation of MS-based approaches and standardised protocols for PAP analysis at the fellow's home institution. Altogether, this programme facilitates the broadening and diversification of use of MS-based proteomic methodologies for reinforcing their significance within the domains of food and feed safety research and regulatory science applications.
Collapse
Affiliation(s)
- Ingus Perkons
- Institute of Food SafetyAnimal Health and Environment ‘BIOR’, RigaLatvia
| | | | | |
Collapse
|
57
|
Yan T, Boatner LM, Cui L, Tontonoz P, Backus KM. Defining the Cell Surface Cysteinome using Two-step Enrichment Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562832. [PMID: 37904933 PMCID: PMC10614875 DOI: 10.1101/2023.10.17.562832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The plasma membrane proteome is a rich resource of functional and therapeutically relevant protein targets. Distinguished by high hydrophobicity, heavy glycosylation, disulfide-rich sequences, and low overall abundance, the cell surface proteome remains undersampled in established proteomic pipelines, including our own cysteine chemoproteomics platforms. Here we paired cell surface glycoprotein capture with cysteine chemoproteomics to establish a two-stage enrichment method that enables chemoproteomic profiling of cell Surface Cysteinome. Our "Cys-Surf" platform captures >2,800 total membrane protein cysteines in 1,046 proteins, including 1,907 residues not previously captured by bulk proteomic analysis. By pairing Cys-Surf with an isotopic chemoproteomic readout, we uncovered 821 total ligandable cysteines, including known and novel sites. Cys-Surf also robustly delineates redox-sensitive cysteines, including cysteines prone to activation-dependent changes to cysteine oxidation state and residues sensitive to addition of exogenous reductants. Exemplifying the capacity of Cys-Surf to delineate functionally important cysteines, we identified a redox sensitive cysteine in the low-density lipoprotein receptor (LDLR) that impacts both the protein localization and uptake of LDL particles. Taken together, the Cys-Surf platform, distinguished by its two-stage enrichment paradigm, represents a tailored approach to delineate the functional and therapeutic potential of the plasma membrane cysteinome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Lisa M. Boatner
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Liujuan Cui
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles; Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles; Los Angeles, CA 90095, USA
| | - Keriann M. Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095 (USA)
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095 (USA)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095 (USA)
| |
Collapse
|
58
|
Bennike TB. Advances in proteomics: characterization of the innate immune system after birth and during inflammation. Front Immunol 2023; 14:1254948. [PMID: 37868984 PMCID: PMC10587584 DOI: 10.3389/fimmu.2023.1254948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
Proteomics is the characterization of the protein composition, the proteome, of a biological sample. It involves the large-scale identification and quantification of proteins, peptides, and post-translational modifications. This review focuses on recent developments in mass spectrometry-based proteomics and provides an overview of available methods for sample preparation to study the innate immune system. Recent advancements in the proteomics workflows, including sample preparation, have significantly improved the sensitivity and proteome coverage of biological samples including the technically difficult blood plasma. Proteomics is often applied in immunology and has been used to characterize the levels of innate immune system components after perturbations such as birth or during chronic inflammatory diseases like rheumatoid arthritis (RA) and inflammatory bowel disease (IBD). In cancers, the tumor microenvironment may generate chronic inflammation and release cytokines to the circulation. In these situations, the innate immune system undergoes profound and long-lasting changes, the large-scale characterization of which may increase our biological understanding and help identify components with translational potential for guiding diagnosis and treatment decisions. With the ongoing technical development, proteomics will likely continue to provide increasing insights into complex biological processes and their implications for health and disease. Integrating proteomics with other omics data and utilizing multi-omics approaches have been demonstrated to give additional valuable insights into biological systems.
Collapse
Affiliation(s)
- Tue Bjerg Bennike
- Medical Microbiology and Immunology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
59
|
Anastasi F, Botto A, Immordino B, Giovannetti E, McDonnell LA. Proteomics analysis of circulating small extracellular vesicles: Focus on the contribution of EVs to tumor metabolism. Cytokine Growth Factor Rev 2023; 73:3-19. [PMID: 37652834 DOI: 10.1016/j.cytogfr.2023.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
The term small extracellular vesicle (sEV) is a comprehensive term that includes any type of cell-derived, membrane-delimited particle that has a diameter < 200 nm, and which includes exosomes and smaller microvesicles. sEVs transfer bioactive molecules between cells and are crucial for cellular homeostasis and particularly during tumor development, where sEVs provide important contributions to the formation of the premetastic niche and to their altered metabolism. sEVs are thus legitimate targets for intervention and have also gained increasing interest as an easily accessible source of biomarkers because they can be rapidly isolated from serum/plasma and their molecular cargo provides information on their cell-of origin. To target sEVs that are specific for a given cell/disease it is essential to identify EV surface proteins that are characteristic of that cell/disease. Mass-spectrometry based proteomics is widely used for the identification and quantification of sEV proteins. The methods used for isolating the sEVs, preparing the sEV sample for proteomics analysis, and mass spectrometry analysis, can have a strong influence on the results and requires careful consideration. This review provides an overview of the approaches used for sEV proteomics and discusses the inherent compromises regarding EV purity versus depth of coverage. Additionally, it discusses the practical applications of the methods to unravel the involvement of sEVs in regulating the metabolism of pancreatic ductal adenocarcinoma (PDAC). The metabolic reprogramming in PDAC includes enhanced glycolysis, elevated glutamine metabolism, alterations in lipid metabolism, mitochondrial dysfunction and hypoxia, all of which are crucial in promoting tumor cell growth. A thorough understanding of these metabolic adaptations is imperative for the development of targeted therapies to exploit PDAC's vulnerabilities.
Collapse
Affiliation(s)
- Federica Anastasi
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, PI, Italy; National Enterprise for NanoScience and NanoTechnology, Scuola Normale Superiore, Pisa, Italy; BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Asia Botto
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, PI, Italy; Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Benoit Immordino
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, PI, Italy; Scuola Superiore Sant'Anna, Pisa, Italy
| | - Elisa Giovannetti
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, PI, Italy; Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands
| | - Liam A McDonnell
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, PI, Italy.
| |
Collapse
|
60
|
Mira MM, Hill RD, Hilo A, Langer M, Robertson S, Igamberdiev AU, Wilkins O, Rolletschek H, Stasolla C. Plant stem cells under low oxygen: metabolic rewiring by phytoglobin underlies stem cell functionality. PLANT PHYSIOLOGY 2023; 193:1416-1432. [PMID: 37311198 DOI: 10.1093/plphys/kiad344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023]
Abstract
Root growth in maize (Zea mays L.) is regulated by the activity of the quiescent center (QC) stem cells located within the root apical meristem. Here, we show that despite being highly hypoxic under normal oxygen tension, QC stem cells are vulnerable to hypoxic stress, which causes their degradation with subsequent inhibition of root growth. Under low oxygen, QC stem cells became depleted of starch and soluble sugars and exhibited reliance on glycolytic fermentation with the impairment of the TCA cycle through the depressed activity of several enzymes, including pyruvate dehydrogenase (PDH). This finding suggests that carbohydrate delivery from the shoot might be insufficient to meet the metabolic demand of QC stem cells during stress. Some metabolic changes characteristic of the hypoxic response in mature root cells were not observed in the QC. Hypoxia-responsive genes, such as PYRUVATE DECARBOXYLASE (PDC) and ALCOHOL DEHYDROGENASE (ADH), were not activated in response to hypoxia, despite an increase in ADH activity. Increases in phosphoenolpyruvate (PEP) with little change in steady-state levels of succinate were also atypical responses to low-oxygen tensions. Overexpression of PHYTOGLOBIN 1 (ZmPgb1.1) preserved the functionality of the QC stem cells during stress. The QC stem cell preservation was underpinned by extensive metabolic rewiring centered around activation of the TCA cycle and retention of carbohydrate storage products, denoting a more efficient energy production and diminished demand for carbohydrates under conditions where nutrient transport may be limiting. Overall, this study provides an overview of metabolic responses occurring in plant stem cells during oxygen deficiency.
Collapse
Affiliation(s)
- Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
- Department of Botany and Microbiology, Tanta University, Tanta 31527, Egypt
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Alexander Hilo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Matthias Langer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Sean Robertson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1C5S7, Canada
| | - Olivia Wilkins
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| |
Collapse
|
61
|
Bhattacharya S, Rathore AS. A novel filter-assisted protein precipitation (FAPP) based sample pre-treatment method for LC-MS peptide mapping for biosimilar characterization. J Pharm Biomed Anal 2023; 234:115527. [PMID: 37364451 DOI: 10.1016/j.jpba.2023.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Establishing analytical and functional comparability serves as the foundation of biosimilar development. A critical part of this exercise is sequence similarity search and categorization of post-translational modifications (PTMs), often by peptide mapping using liquid chromatography-mass spectrometry (LC-MS). When performing bottom-up proteomic sample preparation, efficient digestion of the protein and extraction of peptides for subsequent mass spectrometric analysis can be a challenge. Conventional sample preparation strategies face the risk of allowing interference of chemicals which are essential for extraction but are likely to interfere with digestion, resulting in complex chromatographic profiles due to semi-cleavages, insufficient peptide cleavages, and other unwanted reactions. Further, peptide cleanup through commonly used immobilized C-18 pipette tips can cause significant peptide loss as well as variability in individual peptide yields, thereby causing artifacts of various product-related modifications. In this study, we proposed a simple enzymatic digestion technique by incorporating different molecular weight filters and protein precipitation, with the objective to minimize interference of denaturing, reducing, and alkylating agents throughout overnight digestion. As a result, the need for peptide cleanup is significantly reduced and results in higher peptide yield. The proposed FAPP approach outperformed the conventional method across multiple metrics including, 30% more peptides, 8.19% more fully digested peptides, 14% higher sequence coverage rate, and 11.82% more site-specific alterations. Quantitative and qualitative repeatability of the proposed approach have been demonstrated. It can be concluded that the filter-assisted protein precipitation (FAPP) protocol proposed in this study offers an effective substitute for the traditional approach.
Collapse
Affiliation(s)
| | - Anurag S Rathore
- Chemical Engineering Department, Indian Institute of Technology Delhi, India.
| |
Collapse
|
62
|
Ishiguro N, Takahashi E, Arakawa H, Saito A, Kitagawa F, Kondo M, Morinaga G, Takatani M, Takahashi R, Kudo T, Mae SI, Kadoguchi M, Higuchi D, Nakazono Y, Tamai I, Osafune K, Jimbo Y. Improvement of Protein Expression Profile in Three-Dimensional Renal Proximal Tubular Epithelial Cell Spheroids Selected Based on OAT1 Gene Expression: A Potential In Vitro Tool for Evaluating Human Renal Proximal Tubular Toxicity and Drug Disposition. Drug Metab Dispos 2023; 51:1177-1187. [PMID: 37385755 DOI: 10.1124/dmd.122.001171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023] Open
Abstract
The proximal tubule plays an important role in the kidney and is a major site of drug interaction and toxicity. Analysis of kidney toxicity via in vitro assays is challenging, because only a few assays that reflect functions of drug transporters in renal proximal tubular epithelial cells (RPTECs) are available. In this study, we aimed to develop a simple and reproducible method for culturing RPTECs by monitoring organic anion transporter 1 (OAT1) as a selection marker. Culturing RPTECs in spherical cellular aggregates increased OAT1 protein expression, which was low in the conventional two-dimensional (2D) culture, to a level similar to that in human renal cortices. By proteome analysis, it was revealed that the expression of representative two proximal tubule markers was maintained and 3D spheroid culture improved the protein expression of approximately 7% of the 139 transporter proteins detected, and the expression of 2.3% of the 4,800 proteins detected increased by approximately fivefold that in human renal cortices. Furthermore, the expression levels of approximately 4,800 proteins in three-dimensional (3D) RPTEC spheroids (for 12 days) were maintained for over 20 days. Cisplatin and adefovir exhibited transporter-dependent ATP decreases in 3D RPTEC spheroids. These results indicate that the 3D RPTEC spheroids developed by monitoring OAT1 gene expression are a simple and reproducible in vitro experimental system with improved gene and protein expressions compared with 2D RPTECs and were more similar to that in human kidney cortices. Therefore, it can potentially be used for evaluating human renal proximal tubular toxicity and drug disposition. SIGNIFICANCE STATEMENT: This study developed a simple and reproducible spheroidal culture method with acceptable throughput using commercially available RPTECs by monitoring OAT1 gene expression. RPTECs cultured using this new method showed improved mRNA/protein expression profiles to those in 2D RPTECs and were more similar to those of human kidney cortices. This study provides a potential in vitro proximal tubule system for pharmacokinetic and toxicological evaluations during drug development.
Collapse
Affiliation(s)
- Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Etsushi Takahashi
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Hiroshi Arakawa
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Asami Saito
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Fumihiko Kitagawa
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Masayuki Kondo
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Gaku Morinaga
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Masahito Takatani
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Ryo Takahashi
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Takashi Kudo
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Shin-Ichi Mae
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Moeno Kadoguchi
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Daichi Higuchi
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Yuya Nakazono
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Ikumi Tamai
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Kenji Osafune
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| | - Yoichi Jimbo
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Company, Ltd., Kobe, Japan (N.I., A.S., G.M., M.T., R.T., T.K.); R&D Department, Industrial Division, Nikkiso Company, Ltd., Kanazawa, Japan (E.T., F.K., Ma.K., Y.J.); Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (H.A., Mo.K., D.H., Y.N., I.T.); and Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan (S.M., K.O.)
| |
Collapse
|
63
|
Birhanu AG. Mass spectrometry-based proteomics as an emerging tool in clinical laboratories. Clin Proteomics 2023; 20:32. [PMID: 37633929 PMCID: PMC10464495 DOI: 10.1186/s12014-023-09424-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023] Open
Abstract
Mass spectrometry (MS)-based proteomics have been increasingly implemented in various disciplines of laboratory medicine to identify and quantify biomolecules in a variety of biological specimens. MS-based proteomics is continuously expanding and widely applied in biomarker discovery for early detection, prognosis and markers for treatment response prediction and monitoring. Furthermore, making these advanced tests more accessible and affordable will have the greatest healthcare benefit.This review article highlights the new paradigms MS-based clinical proteomics has created in microbiology laboratories, cancer research and diagnosis of metabolic disorders. The technique is preferred over conventional methods in disease detection and therapy monitoring for its combined advantages in multiplexing capacity, remarkable analytical specificity and sensitivity and low turnaround time.Despite the achievements in the development and adoption of a number of MS-based clinical proteomics practices, more are expected to undergo transition from bench to bedside in the near future. The review provides insights from early trials and recent progresses (mainly covering literature from the NCBI database) in the application of proteomics in clinical laboratories.
Collapse
|
64
|
Dowling P, Gargan S, Zweyer M, Swandulla D, Ohlendieck K. Extracellular Matrix Proteomics: The mdx-4cv Mouse Diaphragm as a Surrogate for Studying Myofibrosis in Dystrophinopathy. Biomolecules 2023; 13:1108. [PMID: 37509144 PMCID: PMC10377647 DOI: 10.3390/biom13071108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The progressive degeneration of the skeletal musculature in Duchenne muscular dystrophy is accompanied by reactive myofibrosis, fat substitution, and chronic inflammation. Fibrotic changes and reduced tissue elasticity correlate with the loss in motor function in this X-chromosomal disorder. Thus, although dystrophinopathies are due to primary abnormalities in the DMD gene causing the almost-complete absence of the cytoskeletal Dp427-M isoform of dystrophin in voluntary muscles, the excessive accumulation of extracellular matrix proteins presents a key histopathological hallmark of muscular dystrophy. Animal model research has been instrumental in the characterization of dystrophic muscles and has contributed to a better understanding of the complex pathogenesis of dystrophinopathies, the discovery of new disease biomarkers, and the testing of novel therapeutic strategies. In this article, we review how mass-spectrometry-based proteomics can be used to study changes in key components of the endomysium, perimysium, and epimysium, such as collagens, proteoglycans, matricellular proteins, and adhesion receptors. The mdx-4cv mouse diaphragm displays severe myofibrosis, making it an ideal model system for large-scale surveys of systematic alterations in the matrisome of dystrophic fibers. Novel biomarkers of myofibrosis can now be tested for their appropriateness in the preclinical and clinical setting as diagnostic, pharmacodynamic, prognostic, and/or therapeutic monitoring indicators.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, German Center for Neurodegenerative Diseases, University of Bonn, D53127 Bonn, Germany
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
65
|
Dowling P, Swandulla D, Ohlendieck K. Biochemical and proteomic insights into sarcoplasmic reticulum Ca 2+-ATPase complexes in skeletal muscles. Expert Rev Proteomics 2023; 20:125-142. [PMID: 37668143 DOI: 10.1080/14789450.2023.2255743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Skeletal muscles contain large numbers of high-molecular-mass protein complexes in elaborate membrane systems. Integral membrane proteins are involved in diverse cellular functions including the regulation of ion handling, membrane homeostasis, energy metabolism and force transmission. AREAS COVERED The proteomic profiling of membrane proteins and large protein assemblies in skeletal muscles are outlined in this article. This includes a critical overview of the main biochemical separation techniques and the mass spectrometric approaches taken to study membrane proteins. As an illustrative example of an analytically challenging large protein complex, the proteomic detection and characterization of the Ca2+-ATPase of the sarcoplasmic reticulum is discussed. The biological role of this large protein complex during normal muscle functioning, in the context of fiber type diversity and in relation to mechanisms of physiological adaptations and pathophysiological abnormalities is evaluated from a proteomics perspective. EXPERT OPINION Mass spectrometry-based muscle proteomics has decisively advanced the field of basic and applied myology. Although it is technically challenging to study membrane proteins, innovations in protein separation methodology in combination with sensitive mass spectrometry and improved systems bioinformatics has allowed the detailed proteomic detection and characterization of skeletal muscle membrane protein complexes, such as Ca2+-pump proteins of the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth Kildare, Ireland
| |
Collapse
|
66
|
Zhang KR, Jankowski CSR, Marshall R, Nair R, Más Gómez N, Alnemri A, Liu Y, Erler E, Ferrante J, Song Y, Bell BA, Baumann BH, Sterling J, Anderson B, Foshe S, Roof J, Fazelinia H, Spruce LA, Chuang JZ, Sung CH, Dhingra A, Boesze-Battaglia K, Chavali VRM, Rabinowitz JD, Mitchell CH, Dunaief JL. Oxidative stress induces lysosomal membrane permeabilization and ceramide accumulation in retinal pigment epithelial cells. Dis Model Mech 2023; 16:dmm050066. [PMID: 37401371 PMCID: PMC10399446 DOI: 10.1242/dmm.050066] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
Oxidative stress has been implicated in the pathogenesis of age-related macular degeneration, the leading cause of blindness in older adults, with retinal pigment epithelium (RPE) cells playing a key role. To better understand the cytotoxic mechanisms underlying oxidative stress, we used cell culture and mouse models of iron overload, as iron can catalyze reactive oxygen species formation in the RPE. Iron-loading of cultured induced pluripotent stem cell-derived RPE cells increased lysosomal abundance, impaired proteolysis and reduced the activity of a subset of lysosomal enzymes, including lysosomal acid lipase (LIPA) and acid sphingomyelinase (SMPD1). In a liver-specific Hepc (Hamp) knockout murine model of systemic iron overload, RPE cells accumulated lipid peroxidation adducts and lysosomes, developed progressive hypertrophy and underwent cell death. Proteomic and lipidomic analyses revealed accumulation of lysosomal proteins, ceramide biosynthetic enzymes and ceramides. The proteolytic enzyme cathepsin D (CTSD) had impaired maturation. A large proportion of lysosomes were galectin-3 (Lgals3) positive, suggesting cytotoxic lysosomal membrane permeabilization. Collectively, these results demonstrate that iron overload induces lysosomal accumulation and impairs lysosomal function, likely due to iron-induced lipid peroxides that can inhibit lysosomal enzymes.
Collapse
Affiliation(s)
- Kevin R. Zhang
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connor S. R. Jankowski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rayna Marshall
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rohini Nair
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Néstor Más Gómez
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahab Alnemri
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingrui Liu
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth Erler
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia Ferrante
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brent A. Bell
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bailey H. Baumann
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacob Sterling
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brandon Anderson
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sierra Foshe
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Roof
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Hossein Fazelinia
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Lynn A. Spruce
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anuradha Dhingra
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Venkata R. M. Chavali
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua D. Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Claire H. Mitchell
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua L. Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
67
|
Kudo T, Hashiba S, Fukami T, Morinaga G, Nishiyama K, Ichida H, Hirosawa K, Matsui A, Ishiguro N, Nakajima M. Development and Validation of a Proteomic Correlation Profiling Technique to Detect and Identify Enzymes Involved in Metabolism of Drugs of Concern. Drug Metab Dispos 2023; 51:824-832. [PMID: 37156625 DOI: 10.1124/dmd.122.001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
To predict the variation of pharmacological or toxicological effect caused by pharmacokinetic variance, it is important to be able to detect previously unknown and unsuspected enzymes involved in drug metabolism. We investigated the use of proteomic correlation profiling (PCP) as a technique to identify the enzymes involved in metabolism of drugs of concern. By evaluating the metabolic activities of each enzyme (including isoforms of cytochrome P450, uridine 5' diphospho-glucuronosyltransferase, and hydrolases, plus aldehyde oxidase and carbonyl reductase) on their typical substrates using a panel of human liver samples, we were able to show the validity of PCP for this purpose. R or Rs and P values were calculated for the association between the protein abundance profile of each protein and the metabolic rate profile of each typical substrate. For the 18 enzymatic activities examined, 13 of the enzymes reported to be responsible for the reactions had correlation coefficients higher than 0.7 and were ranked first to third. For the remaining five activities, the responsible enzymes had correlation coefficients lower than 0.7 and lower rankings. The reasons for this were diverse, including confounding resulting from low protein abundance ratios, artificially high correlations of other enzymes due to limited sample numbers, the presence of inactive enzyme forms, and genetic polymorphisms. Overall, PCP was able to identify the majority of responsible drug-metabolizing enzymes across several enzyme classes (oxidoreductase, transferase, hydrolase); use of this methodology could allow more timely and accurate identification of unknown drug-metabolizing enzymes. SIGNIFICANCE STATEMENT: Proteomic correlation profiling using samples from individual human donors was proven to be a useful methodology for the identification of enzymes responsible for drug-metabolism. This methodology could accelerate the identification of unknown drug-metabolizing enzymes in the future.
Collapse
Affiliation(s)
- Takashi Kudo
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (S.H., T.F., H.I., K.H., M.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan; and Nippon Boehringer Ingelheim, Co., Ltd., Kobe, Hyogo, Japan (T.K., G.M., K.N., A.M., N.I.)
| | - Shiori Hashiba
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (S.H., T.F., H.I., K.H., M.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan; and Nippon Boehringer Ingelheim, Co., Ltd., Kobe, Hyogo, Japan (T.K., G.M., K.N., A.M., N.I.)
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (S.H., T.F., H.I., K.H., M.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan; and Nippon Boehringer Ingelheim, Co., Ltd., Kobe, Hyogo, Japan (T.K., G.M., K.N., A.M., N.I.)
| | - Gaku Morinaga
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (S.H., T.F., H.I., K.H., M.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan; and Nippon Boehringer Ingelheim, Co., Ltd., Kobe, Hyogo, Japan (T.K., G.M., K.N., A.M., N.I.)
| | - Kotaro Nishiyama
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (S.H., T.F., H.I., K.H., M.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan; and Nippon Boehringer Ingelheim, Co., Ltd., Kobe, Hyogo, Japan (T.K., G.M., K.N., A.M., N.I.)
| | - Hiroyuki Ichida
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (S.H., T.F., H.I., K.H., M.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan; and Nippon Boehringer Ingelheim, Co., Ltd., Kobe, Hyogo, Japan (T.K., G.M., K.N., A.M., N.I.)
| | - Keiya Hirosawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (S.H., T.F., H.I., K.H., M.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan; and Nippon Boehringer Ingelheim, Co., Ltd., Kobe, Hyogo, Japan (T.K., G.M., K.N., A.M., N.I.)
| | - Akiko Matsui
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (S.H., T.F., H.I., K.H., M.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan; and Nippon Boehringer Ingelheim, Co., Ltd., Kobe, Hyogo, Japan (T.K., G.M., K.N., A.M., N.I.)
| | - Naoki Ishiguro
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (S.H., T.F., H.I., K.H., M.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan; and Nippon Boehringer Ingelheim, Co., Ltd., Kobe, Hyogo, Japan (T.K., G.M., K.N., A.M., N.I.)
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (S.H., T.F., H.I., K.H., M.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan; and Nippon Boehringer Ingelheim, Co., Ltd., Kobe, Hyogo, Japan (T.K., G.M., K.N., A.M., N.I.)
| |
Collapse
|
68
|
Stutzmann C, Peng J, Wu Z, Savoie C, Sirois I, Thibault P, Wheeler AR, Caron E. Unlocking the potential of microfluidics in mass spectrometry-based immunopeptidomics for tumor antigen discovery. CELL REPORTS METHODS 2023; 3:100511. [PMID: 37426761 PMCID: PMC10326451 DOI: 10.1016/j.crmeth.2023.100511] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The identification of tumor-specific antigens (TSAs) is critical for developing effective cancer immunotherapies. Mass spectrometry (MS)-based immunopeptidomics has emerged as a powerful tool for identifying TSAs as physical molecules. However, current immunopeptidomics platforms face challenges in measuring low-abundance TSAs in a precise, sensitive, and reproducible manner from small needle-tissue biopsies (<1 mg). Inspired by recent advances in single-cell proteomics, microfluidics technology offers a promising solution to these limitations by providing improved isolation of human leukocyte antigen (HLA)-associated peptides with higher sensitivity. In this context, we highlight the challenges in sample preparation and the rationale for developing microfluidics technology in immunopeptidomics. Additionally, we provide an overview of promising microfluidic methods, including microchip pillar arrays, valved-based systems, droplet microfluidics, and digital microfluidics, and discuss the latest research on their application in MS-based immunopeptidomics and single-cell proteomics.
Collapse
Affiliation(s)
| | - Jiaxi Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Zhaoguan Wu
- CHU Sainte Justine Research Center, Montreal, QC, Canada
| | | | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
- Department of Chemistry, University of Montreal, Montreal, QC, Canada
| | - Aaron R. Wheeler
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Etienne Caron
- CHU Sainte Justine Research Center, Montreal, QC, Canada
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
69
|
Panizza E, Regalado BD, Wang F, Nakano I, Vacanti NM, Cerione RA, Antonyak MA. Proteomic analysis reveals microvesicles containing NAMPT as mediators of radioresistance in glioma. Life Sci Alliance 2023; 6:e202201680. [PMID: 37037593 PMCID: PMC10087103 DOI: 10.26508/lsa.202201680] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
Tumor-initiating cells contained within the aggressive brain tumor glioma (glioma stem cells, GSCs) promote radioresistance and disease recurrence. However, mechanisms of resistance are not well understood. Herein, we show that the proteome-level regulation occurring upon radiation treatment of several patient-derived GSC lines predicts their resistance status, whereas glioma transcriptional subtypes do not. We identify a mechanism of radioresistance mediated by the transfer of the metabolic enzyme NAMPT to radiosensitive cells through microvesicles (NAMPT-high MVs) shed by resistant GSCs. NAMPT-high MVs rescue the proliferation of radiosensitive GSCs and fibroblasts upon irradiation, and upon treatment with a radiomimetic drug or low serum, and increase intracellular NAD(H) levels. Finally, we show that the presence of NAMPT within the MVs and its enzymatic activity in recipient cells are necessary to mediate these effects. Collectively, we demonstrate that the proteome of GSCs provides unique information as it predicts the ability of glioma to resist radiation treatment. Furthermore, we establish NAMPT transfer via MVs as a mechanism for rescuing the proliferation of radiosensitive cells upon irradiation.
Collapse
Affiliation(s)
- Elena Panizza
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | | | - Fangyu Wang
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Ichiro Nakano
- Department of Neurosurgery, Medical Institute Hokuto Hospital, Hokkaido, Japan
| | | | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
70
|
Sobajima T, Kowalczyk KM, Skylakakis S, Hayward D, Fulcher LJ, Neary C, Batley C, Kurlekar S, Roberts E, Gruneberg U, Barr FA. PP6 regulation of Aurora A-TPX2 limits NDC80 phosphorylation and mitotic spindle size. J Cell Biol 2023; 222:e202205117. [PMID: 36897279 PMCID: PMC10041653 DOI: 10.1083/jcb.202205117] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/22/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
Amplification of the mitotic kinase Aurora A or loss of its regulator protein phosphatase 6 (PP6) have emerged as drivers of genome instability. Cells lacking PPP6C, the catalytic subunit of PP6, have amplified Aurora A activity, and as we show here, enlarged mitotic spindles which fail to hold chromosomes tightly together in anaphase, causing defective nuclear structure. Using functional genomics to shed light on the processes underpinning these changes, we discover synthetic lethality between PPP6C and the kinetochore protein NDC80. We find that NDC80 is phosphorylated on multiple N-terminal sites during spindle formation by Aurora A-TPX2, exclusively at checkpoint-silenced, microtubule-attached kinetochores. NDC80 phosphorylation persists until spindle disassembly in telophase, is increased in PPP6C knockout cells, and is Aurora B-independent. An Aurora-phosphorylation-deficient NDC80-9A mutant reduces spindle size and suppresses defective nuclear structure in PPP6C knockout cells. In regulating NDC80 phosphorylation by Aurora A-TPX2, PP6 plays an important role in mitotic spindle formation and size control and thus the fidelity of cell division.
Collapse
Affiliation(s)
| | | | | | - Daniel Hayward
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
| | - Luke J. Fulcher
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Colette Neary
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Caleb Batley
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Samvid Kurlekar
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Emile Roberts
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ulrike Gruneberg
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Francis A. Barr
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
71
|
Shalon D, Culver RN, Grembi JA, Folz J, Treit PV, Shi H, Rosenberger FA, Dethlefsen L, Meng X, Yaffe E, Aranda-Díaz A, Geyer PE, Mueller-Reif JB, Spencer S, Patterson AD, Triadafilopoulos G, Holmes SP, Mann M, Fiehn O, Relman DA, Huang KC. Profiling the human intestinal environment under physiological conditions. Nature 2023; 617:581-591. [PMID: 37165188 PMCID: PMC10191855 DOI: 10.1038/s41586-023-05989-7] [Citation(s) in RCA: 193] [Impact Index Per Article: 96.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/21/2023] [Indexed: 05/12/2023]
Abstract
The spatiotemporal structure of the human microbiome1,2, proteome3 and metabolome4,5 reflects and determines regional intestinal physiology and may have implications for disease6. Yet, little is known about the distribution of microorganisms, their environment and their biochemical activity in the gut because of reliance on stool samples and limited access to only some regions of the gut using endoscopy in fasting or sedated individuals7. To address these deficiencies, we developed an ingestible device that collects samples from multiple regions of the human intestinal tract during normal digestion. Collection of 240 intestinal samples from 15 healthy individuals using the device and subsequent multi-omics analyses identified significant differences between bacteria, phages, host proteins and metabolites in the intestines versus stool. Certain microbial taxa were differentially enriched and prophage induction was more prevalent in the intestines than in stool. The host proteome and bile acid profiles varied along the intestines and were highly distinct from those of stool. Correlations between gradients in bile acid concentrations and microbial abundance predicted species that altered the bile acid pool through deconjugation. Furthermore, microbially conjugated bile acid concentrations exhibited amino acid-dependent trends that were not apparent in stool. Overall, non-invasive, longitudinal profiling of microorganisms, proteins and bile acids along the intestinal tract under physiological conditions can help elucidate the roles of the gut microbiome and metabolome in human physiology and disease.
Collapse
Affiliation(s)
| | - Rebecca Neal Culver
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jessica A Grembi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacob Folz
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, USA
| | - Peter V Treit
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Handuo Shi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Florian A Rosenberger
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Les Dethlefsen
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Eitan Yaffe
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Philipp E Geyer
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Johannes B Mueller-Reif
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Sean Spencer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - George Triadafilopoulos
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
- Silicon Valley Neurogastroenterology and Motility Center, Mountain View, CA, USA
| | - Susan P Holmes
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, USA.
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA.
| | - David A Relman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
72
|
Cox EM, El-Behi M, Ries S, Vogt JF, Kohlhaas V, Michna T, Manfroi B, Al-Maarri M, Wanke F, Tirosh B, Pondarre C, Lezeau H, Yogev N, Mittenzwei R, Descatoire M, Weller S, Weill JC, Reynaud CA, Boudinot P, Jouneau L, Tenzer S, Distler U, Rensing-Ehl A, König C, Staniek J, Rizzi M, Magérus A, Rieux-Laucat F, Wunderlich FT, Hövelmeyer N, Fillatreau S. AKT activity orchestrates marginal zone B cell development in mice and humans. Cell Rep 2023; 42:112378. [PMID: 37060566 DOI: 10.1016/j.celrep.2023.112378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 12/14/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023] Open
Abstract
The signals controlling marginal zone (MZ) and follicular (FO) B cell development remain incompletely understood. Here, we show that AKT orchestrates MZ B cell formation in mice and humans. Genetic models that increase AKT signaling in B cells or abolish its impact on FoxO transcription factors highlight the AKT-FoxO axis as an on-off switch for MZ B cell formation in mice. In humans, splenic immunoglobulin (Ig) D+CD27+ B cells, proposed as an MZ B cell equivalent, display higher AKT signaling than naive IgD+CD27- and memory IgD-CD27+ B cells and develop in an AKT-dependent manner from their precursors in vitro, underlining the conservation of this developmental pathway. Consistently, CD148 is identified as a receptor indicative of the level of AKT signaling in B cells, expressed at a higher level in MZ B cells than FO B cells in mice as well as humans.
Collapse
Affiliation(s)
- Eva-Maria Cox
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany
| | - Mohamed El-Behi
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Stefanie Ries
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, 10117 Berlin, Germany
| | - Johannes F Vogt
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany
| | - Vivien Kohlhaas
- Max Planck Institute for Metabolism Research Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931 Cologne, Germany
| | - Thomas Michna
- Institute for Immunology, University Medical Centre of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Benoît Manfroi
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Mona Al-Maarri
- Max Planck Institute for Metabolism Research Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931 Cologne, Germany
| | - Florian Wanke
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany
| | - Boaz Tirosh
- The Hebrew University of Jerusalem, Institute for Drug Research, Jerusalem, Israel
| | - Corinne Pondarre
- Service de Pédiatrie Générale, Centre de Référence de la Drépanocytose, Centre Intercommunal de Créteil, Créteil, France; Inserm U955, Université Paris XII, Créteil, France
| | - Harry Lezeau
- Service de Pédiatrie Générale, Centre de Référence de la Drépanocytose, Centre Intercommunal de Créteil, Créteil, France; Inserm U955, Université Paris XII, Créteil, France
| | - Nir Yogev
- Faculty of Medicine, Department of Dermatology, University of Cologne, 50931 Cologne, Germany
| | - Romy Mittenzwei
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany
| | - Marc Descatoire
- Laboratory of Immune Inherited Disorders, Department of Immunology and Allergology Lausanne Hospital CHUV, Lausanne, Switzerland
| | - Sandra Weller
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Jean-Claude Weill
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Claude-Agnès Reynaud
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Stefan Tenzer
- Institute for Immunology, University Medical Centre of the Johannes-Gutenberg University Mainz, Mainz, Germany; Research Centre for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany; Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz), Mainz, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Centre of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph König
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; University of Freiburg, Faculty of Biology, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Julian Staniek
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Aude Magérus
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Frederic Rieux-Laucat
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931 Cologne, Germany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany; Research Centre for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany.
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France; Université de Paris Cité, Paris Descartes, Faculté de Médecine, Paris, France; AP-HP, Hôpital Necker Enfants Malades, Paris, France.
| |
Collapse
|
73
|
Ito K, Naoi M, Nishiyama K, Kudo T, Tsuda Y, MacLean C, Ishiguro N. Impact of P-glycoprotein on intracellular drug concentration in peripheral blood mononuclear cells and K562 cells. Drug Metab Pharmacokinet 2023; 49:100487. [PMID: 36724603 DOI: 10.1016/j.dmpk.2022.100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
P-glycoprotein (P-gp) expression in lymphocytes is variable and 2-fold higher in rheumatoid arthritis (RA) patients with treatment resistance than in healthy subjects. To date the information on P-gp-mediated drug interaction in lymphocyte is limited. We analyzed the importance on P-gp in lymphocytes using peripheral blood mononuclear cells (PBMCs) together with K562, K562/Adr, and K562/Vin cells, which have various P-gp levels, as cell models, and dexamethasone, nintedanib and apafant as weak to good P-gp substrates. P-gp levels in K562, K562/Adr, and K562/Vin cells were 0.3-, 20-, and 106-fold of healthy PBMCs, respectively. While cell accumulation of apafant and nintedanib decreased in all cells with increasing P-gp levels, dexamethasone accumulation in K562/Adr was comparable to that in healthy PBMCs and K562 cells. Cell accumulations of substrates in cells with low P-gp expression were not significantly changed by the P-gp inhibitors at therapeutic concentrations. However, accumulation increased to 1.4-fold at highest in K562/Adr cells with higher P-gp expression than in PBMCs of the RA patients. These results suggest P-gp controls the cellular concentration of P-gp substrates in PBMCs or K562 cells but cellular concentration of a weak P-gp substrate would not be apparently affected even in cells with a sufficient P-gp expression.
Collapse
Affiliation(s)
- Kohei Ito
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Marina Naoi
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Kotaro Nishiyama
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Takashi Kudo
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Yasuhiro Tsuda
- Clinical Pharmacology Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Caroline MacLean
- Department of R&D Project Management and Development Strategies, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach, Germany
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan.
| |
Collapse
|
74
|
Gebreyesus ST, Muneer G, Huang CC, Siyal AA, Anand M, Chen YJ, Tu HL. Recent advances in microfluidics for single-cell functional proteomics. LAB ON A CHIP 2023; 23:1726-1751. [PMID: 36811978 DOI: 10.1039/d2lc01096h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single-cell proteomics (SCP) reveals phenotypic heterogeneity by profiling individual cells, their biological states and functional outcomes upon signaling activation that can hardly be probed via other omics characterizations. This has become appealing to researchers as it enables an overall more holistic view of biological details underlying cellular processes, disease onset and progression, as well as facilitates unique biomarker identification from individual cells. Microfluidic-based strategies have become methods of choice for single-cell analysis because they allow facile assay integrations, such as cell sorting, manipulation, and content analysis. Notably, they have been serving as an enabling technology to improve the sensitivity, robustness, and reproducibility of recently developed SCP methods. Critical roles of microfluidics technologies are expected to further expand rapidly in advancing the next phase of SCP analysis to reveal more biological and clinical insights. In this review, we will capture the excitement of the recent achievements of microfluidics methods for both targeted and global SCP, including efforts to enhance the proteomic coverage, minimize sample loss, and increase multiplexity and throughput. Furthermore, we will discuss the advantages, challenges, applications, and future prospects of SCP.
Collapse
Affiliation(s)
- Sofani Tafesse Gebreyesus
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Gul Muneer
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | | | - Asad Ali Siyal
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| | - Mihir Anand
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
75
|
Templeton EM, Pilbrow AP, Kleffmann T, Pickering JW, Rademaker MT, Scott NJA, Ellmers LJ, Charles CJ, Endre ZH, Richards AM, Cameron VA, Lassé M. Comparison of SPEED, S-Trap, and In-Solution-Based Sample Preparation Methods for Mass Spectrometry in Kidney Tissue and Plasma. Int J Mol Sci 2023; 24:ijms24076290. [PMID: 37047281 PMCID: PMC10094439 DOI: 10.3390/ijms24076290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/30/2023] Open
Abstract
Mass spectrometry is a powerful technique for investigating renal pathologies and identifying biomarkers, and efficient protein extraction from kidney tissue is essential for bottom-up proteomic analyses. Detergent-based strategies aid cell lysis and protein solubilization but are poorly compatible with downstream protein digestion and liquid chromatography-coupled mass spectrometry, requiring additional purification and buffer-exchange steps. This study compares two well-established detergent-based methods for protein extraction (in-solution sodium deoxycholate (SDC); suspension trapping (S-Trap)) with the recently developed sample preparation by easy extraction and digestion (SPEED) method, which uses strong acid for denaturation. We compared the quantitative performance of each method using label-free mass spectrometry in both sheep kidney cortical tissue and plasma. In kidney tissue, SPEED quantified the most unique proteins (SPEED 1250; S-Trap 1202; SDC 1197). In plasma, S-Trap produced the most unique protein quantifications (S-Trap 150; SDC 148; SPEED 137). Protein quantifications were reproducible across biological replicates in both tissue (R2 = 0.85–0.90) and plasma (SPEED R2 = 0.84; SDC R2 = 0.76, S-Trap R2 = 0.65). Our data suggest SPEED as the optimal method for proteomic preparation in kidney tissue and S-Trap or SPEED as the optimal method for plasma, depending on whether a higher number of protein quantifications or greater reproducibility is desired.
Collapse
|
76
|
Peng J, Chan C, Zhang S, Sklavounos AA, Olson ME, Scott EY, Hu Y, Rajesh V, Li BB, Chamberlain MD, Zhang S, Peng H, Wheeler AR. All-in-One digital microfluidics pipeline for proteomic sample preparation and analysis. Chem Sci 2023; 14:2887-2900. [PMID: 36937585 PMCID: PMC10016607 DOI: 10.1039/d3sc00560g] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Highly sensitive and reproducible analysis of samples containing low amounts of protein is restricted by sample loss and the introduction of contaminants during processing. Here, we report an All-in-One digital microfluidic (DMF) pipeline for proteomic sample reduction, alkylation, digestion, isotopic labeling and analysis. The system features end-to-end automation, with integrated thermal control for digestion, optimized droplet additives for sample manipulation and analysis, and an automated interface to liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Dimethyl labeling was integrated into the pipeline to allow for relative quantification of the trace samples at the nanogram level, and the new pipeline was applied to evaluating cancer cell lines and cancer tissue samples. Several known proteins (including HSP90AB1, HSPB1, LDHA, ENO1, PGK1, KRT18, and AKR1C2) and pathways were observed between model breast cancer cell lines related to hormone response, cell metabolism, and cell morphology. Furthermore, differentially quantified proteins (such as PGS2, UGDH, ASPN, LUM, COEA1, and PRELP) were found in comparisons of healthy and cancer breast tissues, suggesting potential utility of the All-in-One pipeline for the emerging application of proteomic cancer sub-typing. In sum, the All-in-One pipeline represents a powerful new tool for automated proteome processing and analysis, with the potential to be useful for evaluating mass-limited samples for a wide range of applications.
Collapse
Affiliation(s)
- Jiaxi Peng
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto 160 College Street Toronto ON M5S 3E1 Canada
- Institute of Biomedical Engineering, University of Toronto 164 College Street Toronto ON M5S 3G9 Canada
| | - Calvin Chan
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
| | - Shuailong Zhang
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
- School of Mechatronical Engineering, Beijing Institute of Technology Beijing 100081 China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology Beijing 100081 China
| | - Alexandros A Sklavounos
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto 160 College Street Toronto ON M5S 3E1 Canada
| | - Maxwell E Olson
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
| | - Erica Y Scott
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto 160 College Street Toronto ON M5S 3E1 Canada
- Institute of Biomedical Engineering, University of Toronto 164 College Street Toronto ON M5S 3G9 Canada
| | - Yechen Hu
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto 160 College Street Toronto ON M5S 3E1 Canada
- Institute of Biomedical Engineering, University of Toronto 164 College Street Toronto ON M5S 3G9 Canada
| | - Vigneshwar Rajesh
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
| | - Bingyu B Li
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto 160 College Street Toronto ON M5S 3E1 Canada
- Institute of Biomedical Engineering, University of Toronto 164 College Street Toronto ON M5S 3G9 Canada
| | - M Dean Chamberlain
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto 160 College Street Toronto ON M5S 3E1 Canada
- Institute of Biomedical Engineering, University of Toronto 164 College Street Toronto ON M5S 3G9 Canada
- Saskatchewan Cancer Agency, University of Saskatchewan 107 Wiggins Road Saskatoon SK S7N 5E5 Canada
| | - Shen Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital 600 University Avenue Toronto ON M5G 1X5 Canada
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA Changsha Hunan 410000 China
| | - Hui Peng
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
- School of Environment, University of Toronto 33 Willcocks Street Toronto ON M5S 3E8 Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto 160 College Street Toronto ON M5S 3E1 Canada
- Institute of Biomedical Engineering, University of Toronto 164 College Street Toronto ON M5S 3G9 Canada
| |
Collapse
|
77
|
Veličković M, Fillmore TL, Attah K, Posso C, Pino JC, Zhao R, Williams SM, Veličković D, Jacobs JM, Burnum-Johnson KE, Zhu Y, Piehowski PD. Coupling microdroplet-based sample preparation, multiplexed isobaric labeling, and nanoflow peptide fractionation for deep proteome profiling of tissue microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.531822. [PMID: 36993277 PMCID: PMC10055005 DOI: 10.1101/2023.03.13.531822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
There is increasing interest in developing in-depth proteomic approaches for mapping tissue heterogeneity at a cell-type-specific level to better understand and predict the function of complex biological systems, such as human organs. Existing spatially resolved proteomics technologies cannot provide deep proteome coverages due to limited sensitivity and poor sample recovery. Herein, we seamlessly combined laser capture microdissection with a low-volume sample processing technology that includes a microfluidic device named microPOTS (Microdroplet Processing in One pot for Trace Samples), the multiplexed isobaric labelling, and a nanoflow peptide fractionation approach. The integrated workflow allowed to maximize proteome coverage of laser-isolated tissue samples containing nanogram proteins. We demonstrated the deep spatial proteomics can quantify more than 5,000 unique proteins from a small-sized human pancreatic tissue pixel (∼60,000 µm2) and reveal unique islet microenvironments.
Collapse
|
78
|
Ryan KA, Bruening ML. Online protein digestion in membranes between capillary electrophoresis and mass spectrometry. Analyst 2023; 148:1611-1619. [PMID: 36912593 DOI: 10.1039/d3an00106g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
This research employs pepsin-containing membranes to digest proteins online after a capillary electrophoresis (CE) separation and prior to tandem mass spectrometry. Proteolysis after the separation allows the peptides from a given protein to enter the mass spectrometer in a single plug. Thus, migration time can serve as an additional criterion for confirming the identification of a peptide. The membrane resides in a sheath-flow electrospray ionization (ESI) source to enable digestion immediately before spray into the mass spectrometer, thus limiting separation of the digested peptides. Using the same membrane, digestion occurred reproducibly during 20 consecutive CE analyses performed over a 10 h period. Additionally, after separating a mixture of six unreduced proteins with CE, online digestion facilitated protein identification with at least 2 identifiable peptides for all the proteins. Sequence coverages were >75% for myoglobin and carbonic anhydrase II but much lower for proteins containing disulfide bonds. Development of methods for efficient separation of reduced proteins or identification of cross-linked peptides should enhance sequence coverages for proteins with disulfide bonds. Migration times for the peptides identified from a specific protein differed by <∼30 s, which allows for rejection of some spurious peptide identifications.
Collapse
Affiliation(s)
- Kendall A Ryan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Merlin L Bruening
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA. .,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
79
|
Bottom-Up Proteomics: Advancements in Sample Preparation. Int J Mol Sci 2023; 24:ijms24065350. [PMID: 36982423 PMCID: PMC10049050 DOI: 10.3390/ijms24065350] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Liquid chromatography–tandem mass spectrometry (LC–MS/MS)-based proteomics is a powerful technique for profiling proteomes of cells, tissues, and body fluids. Typical bottom-up proteomic workflows consist of the following three major steps: sample preparation, LC–MS/MS analysis, and data analysis. LC–MS/MS and data analysis techniques have been intensively developed, whereas sample preparation, a laborious process, remains a difficult task and the main challenge in different applications. Sample preparation is a crucial stage that affects the overall efficiency of a proteomic study; however, it is prone to errors and has low reproducibility and throughput. In-solution digestion and filter-aided sample preparation are the typical and widely used methods. In the past decade, novel methods to improve and facilitate the entire sample preparation process or integrate sample preparation and fractionation have been reported to reduce time, increase throughput, and improve reproducibility. In this review, we have outlined the current methods used for sample preparation in proteomics, including on-membrane digestion, bead-based digestion, immobilized enzymatic digestion, and suspension trapping. Additionally, we have summarized and discussed current devices and methods for integrating different steps of sample preparation and peptide fractionation.
Collapse
|
80
|
Mousseau CB, Pierre CA, Hu DD, Champion MM. Miniprep assisted proteomics (MAP) for rapid proteomics sample preparation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:916-924. [PMID: 36373982 PMCID: PMC9933840 DOI: 10.1039/d2ay01549h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/28/2022] [Indexed: 06/14/2023]
Abstract
Complete enzymatic digestion of proteins for bottom-up proteomics is substantially improved by use of detergents for denaturation and solubilization. Detergents however, are incompatible with many proteases and highly detrimental to LC-MS/MS. Recently; filter-based methods have seen wide use due to their capacity to remove detergents and harmful reagents prior to digestion and mass spectrometric analysis. We hypothesized that non-specific protein binding to negatively charged silica-based filters would be enhanced by addition of lyotropic salts, similar to DNA purification. We sought to exploit these interactions and investigate if low-cost DNA purification spin-filters, 'Minipreps,' efficiently and reproducibly bind proteins for digestion and LC-MS/MS analysis. We propose a new method, Miniprep Assisted Proteomics (MAP), for sample preparation. We demonstrate binding capacity, performance, recovery and identification rates for proteins and whole-cell lysates using MAP. MAP recovered equivalent or greater protein yields from 0.5-50 μg analyses benchmarked against commercial trapping preparations. Nano UHPLC-MS/MS proteome profiling of lysates of Escherichia coli had 99.3% overlap vs. existing approaches and reproducibility of replicate minipreps was 98.8% at the 1% FDR protein level. Label Free Quantitative proteomics was performed and 91.2% of quantified proteins had a %CV <20% (2044/2241). Miniprep Assisted Proteomics can be performed in minutes, shows low variability, high recovery and proteome depth. This suggests a significant role for adventitious binding in developing new proteomics sample preparation techniques. MAP represents an efficient, ultra-low-cost alternative for sample preparation in a commercially obtainable device that costs ∼$0.50 (USD) per miniprep.
Collapse
Affiliation(s)
- C Bruce Mousseau
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA.
| | - Camille A Pierre
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA.
| | - Daniel D Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA.
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA.
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
81
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
82
|
Carrillo-Rodriguez P, Selheim F, Hernandez-Valladares M. Mass Spectrometry-Based Proteomics Workflows in Cancer Research: The Relevance of Choosing the Right Steps. Cancers (Basel) 2023; 15:555. [PMID: 36672506 PMCID: PMC9856946 DOI: 10.3390/cancers15020555] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The qualitative and quantitative evaluation of proteome changes that condition cancer development can be achieved with liquid chromatography-mass spectrometry (LC-MS). LC-MS-based proteomics strategies are carried out according to predesigned workflows that comprise several steps such as sample selection, sample processing including labeling, MS acquisition methods, statistical treatment, and bioinformatics to understand the biological meaning of the findings and set predictive classifiers. As the choice of best options might not be straightforward, we herein review and assess past and current proteomics approaches for the discovery of new cancer biomarkers. Moreover, we review major bioinformatics tools for interpreting and visualizing proteomics results and suggest the most popular machine learning techniques for the selection of predictive biomarkers. Finally, we consider the approximation of proteomics strategies for clinical diagnosis and prognosis by discussing current barriers and proposals to circumvent them.
Collapse
Affiliation(s)
- Paula Carrillo-Rodriguez
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Maria Hernandez-Valladares
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
83
|
Chen K, Huang X, Distler U, Tenzer S, Günay-Esiyok Ö, Gupta N. Apically-located P4-ATPase1-Lem1 complex internalizes phosphatidylserine and regulates motility-dependent invasion and egress in Toxoplasma gondii. Comput Struct Biotechnol J 2023; 21:1893-1906. [PMID: 36936814 PMCID: PMC10015115 DOI: 10.1016/j.csbj.2023.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The membrane asymmetry regulated by P4-ATPases is crucial for the functioning of eukaryotic cells. The underlying spatial translocation or flipping of specific lipids is usually assured by respective P4-ATPases coupled to conforming non-catalytic subunits. Our previous work has identified five P4-ATPases (TgP4-ATPase1-5) and three non-catalytic partner proteins (TgLem1-3) in the intracellular protozoan pathogen, Toxoplasma gondii. However, their flipping activity, physiological relevance and functional coupling remain unknown. Herein, we demonstrate that TgP4-ATPase1 and TgLem1 work together to translocate phosphatidylserine (PtdSer) during the lytic cycle of T. gondii. Both proteins localize in the plasma membrane at the invasive (apical) end of its acutely-infectious tachyzoite stage. The genetic knockout of P4-ATPase1 and conditional depletion of Lem1 in tachyzoites severely disrupt the asexual reproduction and translocation of PtdSer across the plasma membrane. Moreover, the phenotypic analysis of individual mutants revealed a requirement of lipid flipping for the motility, egress and invasion of tachyzoites. Not least, the proximity-dependent biotinylation and reciprocal immunoprecipitation assays demonstrated the physical interaction of P4-ATPase1 and Lem1. Our findings disclose the mechanism and significance of PtdSer flipping during the lytic cycle and identify the P4-ATPase1-Lem1 heterocomplex as a potential drug target in T. gondii.
Collapse
Key Words
- BSA, bovine serum albumin
- CDC50, Cell Division Control 50
- COS, crossover sequence
- Cdc50
- DAPI, 4′,6-diamidino-2-phenylindole
- DHFR-TS, dihydrofolate reductase – thymidylate synthase
- HFF, human foreskin fibroblast
- HXGPRT, hypoxanthine-xanthine-guanine phosphoribosyltransferase
- IAA, indole-3-acetic acid
- LEM, Ligand Effector Module
- Lem1
- NBD, nitrobenzoxadiazole
- NBD-lipid
- P4-ATPase1
- PBS, phosphate-buffered saline
- Phosphatidylserine
- Phospholipid flipping
- PtdCho, phosphatidylcholine
- PtdEtn, phosphatidylethanolamine
- PtdSer, phosphatidylserine
- PtdThr, phosphatidylthreonine
- UTR, untranslated region
- cGMP, cyclic Guanosine Monophosphate
- mAID, (mini) auxin-inducible degron
Collapse
Affiliation(s)
- Kai Chen
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Xiyu Huang
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Ute Distler
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Özlem Günay-Esiyok
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Nishith Gupta
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
- Intracellular Parasite Education and Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS-P), Hyderabad, India
- Corresponding author at: Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany.
| |
Collapse
|
84
|
Kan M, Chiba T, Konno R, Kouchi Y, Mishima T, Kawashima Y, Kishimoto T, Ohtsuka M, Ohara O, Kato N. Bile proteome analysis by high-precision mass spectrometry to examine novel biomarkers of primary sclerosing cholangitis. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2022. [PMID: 36528781 DOI: 10.1002/jhbp.1299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) is a chronic inflammatory disease of unknown etiology that affects the intra- and extrahepatic bile ducts. The present study examined the utility of a bile proteome analysis using a high-sensitivity mass spectrometer to comprehensively screen for novel PSC biomarkers. METHODS Bile endoscopically collected from patients with PSC, common bile duct stones, and biliary tract cancer were subjected to high-precision liquid chromatography/mass spectrometry. Some of the proteins specifically up-regulated in the bile of the PSC group were re-examined by an enzyme-linked immunosorbent assay. RESULTS A total of 8094 proteins were successfully identified and 332 were specifically up-regulated in the PSC group. The bioinformatics analysis showed that proteins involved in the proliferation and activation of diverse inflammatory cells were up-regulated in the PSC group. A receiver operating characteristic curve analysis showed good area under the curve values for interleukin-8 and annexin A1 (ANXA1) (0.836 and 0.914, respectively). Immunostaining for ANXA1 revealed its strong expression in inflammatory cells infiltrating the peripheral biliary tract in PSC livers. CONCLUSION A bile proteome analysis is a useful tool for elucidating the pathogenesis of PSC and developing new diagnostic approaches. Therefore, ANXA1 has potential as a bile biomarker for PSC.
Collapse
Affiliation(s)
- Motoyasu Kan
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryo Konno
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Yusuke Kouchi
- Department of Molecular Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Mishima
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Takashi Kishimoto
- Department of Molecular Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
85
|
Danko K, Lukasheva E, Zhukov VA, Zgoda V, Frolov A. Detergent-Assisted Protein Digestion-On the Way to Avoid the Key Bottleneck of Shotgun Bottom-Up Proteomics. Int J Mol Sci 2022; 23:13903. [PMID: 36430380 PMCID: PMC9695859 DOI: 10.3390/ijms232213903] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Gel-free bottom-up shotgun proteomics is the principal methodological platform for the state-of-the-art proteome research. This methodology assumes quantitative isolation of the total protein fraction from a complex biological sample, its limited proteolysis with site-specific proteases, analysis of the resulted peptides with nanoscaled reversed-phase high-performance liquid chromatography-(tandem) mass spectrometry (nanoRP-HPLC-MS and MS/MS), protein identification by sequence database search and peptide-based quantitative analysis. The most critical steps of this workflow are protein reconstitution and digestion; therefore, detergents and chaotropic agents are strongly mandatory to ensure complete solubilization of complex protein isolates and to achieve accessibility of all protease cleavage sites. However, detergents are incompatible with both RP separation and electrospray ionization (ESI). Therefore, to make LC-MS analysis possible, several strategies were implemented in the shotgun proteomics workflow. These techniques rely either on enzymatic digestion in centrifugal filters with subsequent evacuation of the detergent, or employment of MS-compatible surfactants, which can be degraded upon the digestion. In this review we comprehensively address all currently available strategies for the detergent-assisted proteolysis in respect of their relative efficiency when applied to different biological matrices. We critically discuss the current progress and the further perspectives of these technologies in the context of its advances and gaps.
Collapse
Affiliation(s)
- Katerina Danko
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin, 196608 St. Petersburg, Russia
| | - Viktor Zgoda
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Andrej Frolov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| |
Collapse
|
86
|
Rashid MU, Glover KKM, Lao Y, Spicer V, Coombs KM. Temporal proteomic analyses of human lung cells distinguish high pathogenicity influenza viruses and coronaviruses from low pathogenicity viruses. Front Microbiol 2022; 13:994512. [PMID: 36299731 PMCID: PMC9589293 DOI: 10.3389/fmicb.2022.994512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
Newly re-emerging viruses are of significant global concern. In late 2019, a new coronavirus, SARS-CoV-2, emerged in China and soon spread worldwide, causing the COVID-19 pandemic, which to date has caused >6 M deaths. There has been a wealth of studies on this new virus since its emergence. The coronaviruses consist of many animal and human pathogens, with some of the human coronavirus, such as strain OC43, normally causing only mild cold-like symptoms. Viruses usurp host cellular processes to successfully replicate. We used tandem mass tag mass spectrometry-based proteomic analyses of human lung MRC-5 cells infected with OC43 for various periods of time to delineate virus-induced host cell alterations. Numerous proteins involved in lipid metabolism, molecular transport, small molecule biochemistry, cell death and survival, humoral immune response, and inflammatory response were dysregulated. Comparison of our findings to previous studies that examined a range of differentially pathogenic influenza A viruses (IAV), and to SARS-CoV-2 data, revealed that proteins involved in the cell cycle, cytokine signaling, DNA replication, and anti-inflammatory responses were generally similarly affected by virtually all tested IAV and CoV. However, proteins involved in necrosis, protein metabolism, ECM regulation, and signal transduction were generally different. In addition, the more pathogenic CoV and IAV activated Rb-dependent repression of E2F-mediated transcription, whereas less pathogenic influenza and coronaviruses either inhibited or had no effect on this pathway.
Collapse
Affiliation(s)
- Mahamud-ur Rashid
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Center for Proteomics and Systems Biology, Winnipeg, MB, Canada
| | - Kathleen K. M. Glover
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Center for Proteomics and Systems Biology, Winnipeg, MB, Canada
| | - Ying Lao
- Manitoba Center for Proteomics and Systems Biology, Winnipeg, MB, Canada
| | - Victor Spicer
- Manitoba Center for Proteomics and Systems Biology, Winnipeg, MB, Canada
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Center for Proteomics and Systems Biology, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, John Buhler Research Center, Winnipeg, MB, Canada
- *Correspondence: Kevin M. Coombs,
| |
Collapse
|
87
|
van der Pan K, Kassem S, Khatri I, de Ru AH, Janssen GMC, Tjokrodirijo RTN, al Makindji F, Stavrakaki E, de Jager AL, Naber BAE, de Laat IF, Louis A, van den Bossche WBL, Vogelezang LB, Balvers RK, Lamfers MLM, van Veelen PA, Orfao A, van Dongen JJM, Teodosio C, Díez P. Quantitative proteomics of small numbers of closely-related cells: Selection of the optimal method for a clinical setting. Front Med (Lausanne) 2022; 9:997305. [PMID: 36237552 PMCID: PMC9553008 DOI: 10.3389/fmed.2022.997305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Mass spectrometry (MS)-based proteomics profiling has undoubtedly increased the knowledge about cellular processes and functions. However, its applicability for paucicellular sample analyses is currently limited. Although new approaches have been developed for single-cell studies, most of them have not (yet) been standardized and/or require highly specific (often home-built) devices, thereby limiting their broad implementation, particularly in non-specialized settings. To select an optimal MS-oriented proteomics approach applicable in translational research and clinical settings, we assessed 10 different sample preparation procedures in paucicellular samples of closely-related cell types. Particularly, five cell lysis protocols using different chemistries and mechanical forces were combined with two sample clean-up techniques (C18 filter- and SP3-based), followed by tandem mass tag (TMT)-based protein quantification. The evaluation was structured in three phases: first, cell lines from hematopoietic (THP-1) and non-hematopoietic (HT-29) origins were used to test the approaches showing the combination of a urea-based lysis buffer with the SP3 bead-based clean-up system as the best performer. Parameters such as reproducibility, accessibility, spatial distribution, ease of use, processing time and cost were considered. In the second phase, the performance of the method was tested on maturation-related cell populations: three different monocyte subsets from peripheral blood and, for the first time, macrophages/microglia (MAC) from glioblastoma samples, together with T cells from both tissues. The analysis of 50,000 cells down to only 2,500 cells revealed different protein expression profiles associated with the distinct cell populations. Accordingly, a closer relationship was observed between non-classical monocytes and MAC, with the latter showing the co-expression of M1 and M2 macrophage markers, although pro-tumoral and anti-inflammatory proteins were more represented. In the third phase, the results were validated by high-end spectral flow cytometry on paired monocyte/MAC samples to further determine the sensitivity of the MS approach selected. Finally, the feasibility of the method was proven in 194 additional samples corresponding to 38 different cell types, including cells from different tissue origins, cellular lineages, maturation stages and stimuli. In summary, we selected a reproducible, easy-to-implement sample preparation method for MS-based proteomic characterization of paucicellular samples, also applicable in the setting of functionally closely-related cell populations.
Collapse
Affiliation(s)
- Kyra van der Pan
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Sara Kassem
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Indu Khatri
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Leiden Computational Biology Center, LUMC, Leiden, Netherlands
| | - Arnoud H. de Ru
- Center for Proteomics and Metabolomics, LUMC, Leiden, Netherlands
| | | | | | - Fadi al Makindji
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - Anniek L. de Jager
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Brigitta A. E. Naber
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Inge F. de Laat
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Alesha Louis
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | | | | | | | | | - Alberto Orfao
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca-CSIC), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Jacques J. M. van Dongen
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca-CSIC), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- *Correspondence: Jacques J. M. van Dongen
| | - Cristina Teodosio
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca-CSIC), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Paula Díez
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca-CSIC), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
88
|
Vo KC, Ruga L, Psathaki OE, Franzkoch R, Distler U, Tenzer S, Hensel M, Hegemann P, Gupta N. Plasticity and therapeutic potential of cAMP and cGMP-specific phosphodiesterases in Toxoplasma gondii. Comput Struct Biotechnol J 2022; 20:5775-5789. [PMID: 36382189 PMCID: PMC9619220 DOI: 10.1016/j.csbj.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/03/2022] Open
Abstract
Toxoplasma gondii is a common zoonotic protozoan pathogen adapted to intracellular parasitism in many host cells of diverse organisms. Our previous work has identified 18 cyclic nucleotide phosphodiesterase (PDE) proteins encoded by the parasite genome, of which 11 are expressed during the lytic cycle of its acutely-infectious tachyzoite stage in human cells. Here, we show that ten of these enzymes are promiscuous dual-specific phosphodiesterases, hydrolyzing cAMP and cGMP. TgPDE1 and TgPDE9, with a Km of 18 μM and 31 μM, respectively, are primed to hydrolyze cGMP, whereas TgPDE2 is highly specific to cAMP (Km, 14 μM). Immuno-electron microscopy revealed various subcellular distributions of TgPDE1, 2, and 9, including in the inner membrane complex, apical pole, plasma membrane, cytosol, dense granule, and rhoptry, indicating spatial control of signaling within tachyzoites. Notably, despite shared apical location and dual-catalysis, TgPDE8 and TgPDE9 are fully dispensable for the lytic cycle and show no functional redundancy. In contrast, TgPDE1 and TgPDE2 are individually required for optimal growth, and their collective loss is lethal to the parasite. In vitro phenotyping of these mutants revealed the roles of TgPDE1 and TgPDE2 in proliferation, gliding motility, invasion and egress of tachyzoites. Moreover, our enzyme inhibition assays in conjunction with chemogenetic phenotyping underpin TgPDE1 as a target of commonly-used PDE inhibitors, BIPPO and zaprinast. Finally, we identified a retinue of TgPDE1 and TgPDE2-interacting kinases and phosphatases, possibly regulating the enzymatic activity. In conclusion, our datasets on the catalytic function, physiological relevance, subcellular localization and drug inhibition of key phosphodiesterases highlight the previously-unanticipated plasticity and therapeutic potential of cyclic nucleotide signaling in T. gondii.
Collapse
Key Words
- 3′IT, 3′-insertional tagging
- Apicomplexa
- COS, crossover sequence
- CRISPR, clustered regularly interspaced short palindromic repeats
- DHFR-TS, dihydrofolate reductase – thymidylate synthase
- HFF, human foreskin fibroblast
- HXGPRT, hypoxanthine-xanthine-guanine phosphoribosyl transferase
- IMC, inner membrane complex
- Lytic cycle
- MoI, multiplicity of infection
- PDE, phosphodiesterase
- PKA, protein kinase A
- PKG, protein kinase G
- PM, plasma membrane
- Phosphodiesterase
- S. C., selection cassette
- TEM, transmission electron microscopy
- Tachyzoite
- cAMP & cGMP signaling
- sgRNA, single guide RNA
- smHA, spaghetti monster-HA
Collapse
Affiliation(s)
- Kim Chi Vo
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Liberta Ruga
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Olympia Ekaterini Psathaki
- University of Osnabrück, Center of Cellular Nanoanalytics (CellNanOs), Integrated Bioimaging Faciltiy (iBiOs), Germany
| | - Rico Franzkoch
- University of Osnabrück, Center of Cellular Nanoanalytics (CellNanOs), Integrated Bioimaging Faciltiy (iBiOs), Germany
| | - Ute Distler
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Michael Hensel
- University of Osnabrück, Center of Cellular Nanoanalytics (CellNanOs), Integrated Bioimaging Faciltiy (iBiOs), Germany
| | - Peter Hegemann
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Nishith Gupta
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS-P), Hyderabad, India
| |
Collapse
|
89
|
Pauwels J, Fijałkowska D, Eyckerman S, Gevaert K. Mass spectrometry and the cellular surfaceome. MASS SPECTROMETRY REVIEWS 2022; 41:804-841. [PMID: 33655572 DOI: 10.1002/mas.21690] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The collection of exposed plasma membrane proteins, collectively termed the surfaceome, is involved in multiple vital cellular processes, such as the communication of cells with their surroundings and the regulation of transport across the lipid bilayer. The surfaceome also plays key roles in the immune system by recognizing and presenting antigens, with its possible malfunctioning linked to disease. Surface proteins have long been explored as potential cell markers, disease biomarkers, and therapeutic drug targets. Despite its importance, a detailed study of the surfaceome continues to pose major challenges for mass spectrometry-driven proteomics due to the inherent biophysical characteristics of surface proteins. Their inefficient extraction from hydrophobic membranes to an aqueous medium and their lower abundance compared to intracellular proteins hamper the analysis of surface proteins, which are therefore usually underrepresented in proteomic datasets. To tackle such problems, several innovative analytical methodologies have been developed. This review aims at providing an extensive overview of the different methods for surfaceome analysis, with respective considerations for downstream mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Jarne Pauwels
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
90
|
Varnavides G, Madern M, Anrather D, Hartl N, Reiter W, Hartl M. In Search of a Universal Method: A Comparative Survey of Bottom-Up Proteomics Sample Preparation Methods. J Proteome Res 2022; 21:2397-2411. [PMID: 36006919 PMCID: PMC9552232 DOI: 10.1021/acs.jproteome.2c00265] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Robust, efficient, and reproducible protein extraction
and sample
processing is a key step for bottom-up proteomics analyses. While
many sample preparation protocols for mass spectrometry have been
described, selecting an appropriate method remains challenging since
some protein classes may require specialized solubilization, precipitation,
and digestion procedures. Here, we present a comprehensive comparison
of the 16 most widely used sample preparation methods, covering in-solution
digests, device-based methods, and commercially available kits. We
find a remarkably good performance of the majority of the protocols
with high reproducibility, little method dependency, and low levels
of artifact formation. However, we revealed method-dependent differences
in the recovery of specific protein features, which we summarized
in a descriptive guide matrix. Our work thereby provides a solid basis
for the selection of MS sample preparation strategies for a given
proteomics project.
Collapse
Affiliation(s)
- Gina Varnavides
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Moritz Madern
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria.,Center for Molecular Biology, Department of Biochemistry and Cell Biology, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Dorothea Anrather
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Natascha Hartl
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria.,Center for Molecular Biology, Department of Biochemistry and Cell Biology, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Wolfgang Reiter
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria.,Center for Molecular Biology, Department of Biochemistry and Cell Biology, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Markus Hartl
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria.,Center for Molecular Biology, Department of Biochemistry and Cell Biology, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| |
Collapse
|
91
|
Raghunathan R, Turajane K, Wong LC. Biomarkers in Neurodegenerative Diseases: Proteomics Spotlight on ALS and Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms23169299. [PMID: 36012563 PMCID: PMC9409485 DOI: 10.3390/ijms23169299] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022] Open
Abstract
Neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD) are both characterized by pathogenic protein aggregates that correlate with the progressive degeneration of neurons and the loss of behavioral functions. Both diseases lack biomarkers for diagnosis and treatment efficacy. Proteomics is an unbiased quantitative tool capable of the high throughput quantitation of thousands of proteins from minimal sample volumes. We review recent proteomic studies in human tissues, plasma, cerebrospinal fluid (CSF), and exosomes in ALS and PD that identify proteins with potential utility as biomarkers. Further, we review disease-related post-translational modifications in key proteins TDP43 in ALS and α-synuclein in PD studies, which may serve as biomarkers. We compare relative and absolute quantitative proteomic approaches in key biomarker studies in ALS and PD and discuss recent technological advancements which may identify suitable biomarkers for the early-diagnosis treatment efficacy of these diseases.
Collapse
|
92
|
van der Kooij MA, Rojas-Charry L, Givehchi M, Wolf C, Bueno D, Arndt S, Tenzer S, Mattioni L, Treccani G, Hasch A, Schmeisser MJ, Vianello C, Giacomello M, Methner A. Chronic social stress disrupts the intracellular redistribution of brain hexokinase 3 induced by shifts in peripheral glucose levels. J Mol Med (Berl) 2022; 100:1441-1453. [PMID: 35943566 PMCID: PMC9470722 DOI: 10.1007/s00109-022-02235-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/06/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Abstract
Chronic stress has the potential to impair health and may increase the vulnerability for psychiatric disorders. Emerging evidence suggests that specific neurometabolic dysfunctions play a role herein. In mice, chronic social defeat (CSD) stress reduces cerebral glucose uptake despite hyperglycemia. We hypothesized that this metabolic decoupling would be reflected by changes in contact sites between mitochondria and the endoplasmic reticulum, important intracellular nutrient sensors, and signaling hubs. We thus analyzed the proteome of their biochemical counterparts, mitochondria-associated membranes (MAMs) from whole brain tissue obtained from CSD and control mice. This revealed a lack of the glucose-metabolizing enzyme hexokinase 3 (HK3) in MAMs from CSD mice. In controls, HK3 protein abundance in MAMs and also in striatal synaptosomes correlated positively with peripheral blood glucose levels, but this connection was lost in CSD. We conclude that the ability of HK3 to traffic to sites of need, such as MAMs or synapses, is abolished upon CSD and surmise that this contributes to a cellular dysfunction instigated by chronic stress.
Key messages Chronic social defeat (CSD) alters brain glucose metabolism CSD depletes hexokinase 3 (HK3) from mitochondria-associated membranes (MAMs) CSD results in loss of positive correlation between blood glucose and HK3 in MAMs and synaptosomes
Collapse
Affiliation(s)
| | - Liliana Rojas-Charry
- Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, 55131, Germany.,Institute of Anatomy, Johannes Gutenberg University Mainz, Mainz, 55131, Germany
| | - Maryam Givehchi
- Leibniz Institute for Resilience Research (LIR), Mainz, 55122, Germany
| | - Christina Wolf
- Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, 55131, Germany
| | - Diones Bueno
- Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, 55131, Germany
| | - Sabine Arndt
- Institute for Immunology, Johannes Gutenberg University Mainz, Mainz, 55131, Germany
| | - Stefan Tenzer
- Institute for Immunology, Johannes Gutenberg University Mainz, Mainz, 55131, Germany
| | - Lorenzo Mattioni
- Institute of Anatomy, Johannes Gutenberg University Mainz, Mainz, 55131, Germany
| | - Giulia Treccani
- Institute of Anatomy, Johannes Gutenberg University Mainz, Mainz, 55131, Germany.,Department of Psychiatry and Psychotherapy, Translational Psychiatry, University Medical Center, Johannes Gutenberg University Mainz, Mainz, 55131, Germany
| | - Annika Hasch
- Leibniz Institute for Resilience Research (LIR), Mainz, 55122, Germany
| | - Michael J Schmeisser
- Institute of Anatomy, Johannes Gutenberg University Mainz, Mainz, 55131, Germany
| | - Caterina Vianello
- Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, 55131, Germany.,Department of Biology, University of Padua, Padua, 35121, Italy
| | | | - Axel Methner
- Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, 55131, Germany.
| |
Collapse
|
93
|
Ishikawa M, Konno R, Nakajima D, Gotoh M, Fukasawa K, Sato H, Nakamura R, Ohara O, Kawashima Y. Optimization of Ultrafast Proteomics Using an LC-Quadrupole-Orbitrap Mass Spectrometer with Data-Independent Acquisition. J Proteome Res 2022; 21:2085-2093. [PMID: 35914019 PMCID: PMC9442788 DOI: 10.1021/acs.jproteome.2c00121] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Proteomics has become an increasingly important tool
in medical
and medicinal applications. It is necessary to improve the analytical
throughput for these applications, particularly in large-scale drug
screening to enable measurement of a large number of samples. In this
study, we aimed to establish an ultrafast proteomic method based on
5-min gradient LC and quadrupole-Orbitrap mass spectrometer (Q-Orbitrap
MS). We precisely optimized data-independent acquisition (DIA) parameters
for 5-min gradient LC and reached a depth of >5000 and 4200 proteins
from 1000 and 31.25 ng of HEK293T cell digest in a single-shot run,
respectively. The throughput of our method enabled the measurement
of approximately 80 samples/day, including sample loading, column
equilibration, and wash running time. We demonstrated that our method
is applicable for the screening of chemical responsivity via a cell
stimulation assay. These data show that our method enables the capture
of biological alterations in proteomic profiles with high sensitivity,
suggesting the possibility of large-scale screening of chemical responsivity.
Collapse
Affiliation(s)
- Masaki Ishikawa
- Laboratory of Clinical Omics Research, Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Ryo Konno
- Laboratory of Clinical Omics Research, Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Daisuke Nakajima
- Laboratory of Clinical Omics Research, Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Mari Gotoh
- Institute for Human Life Innovatiaon, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Keiko Fukasawa
- Institute for Human Life Innovatiaon, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Hironori Sato
- Laboratory of Clinical Omics Research, Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Ren Nakamura
- Laboratory of Clinical Omics Research, Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Osamu Ohara
- Laboratory of Clinical Omics Research, Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Yusuke Kawashima
- Laboratory of Clinical Omics Research, Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
94
|
Becker T, Wiest A, Telek A, Bejko D, Hoffmann-Röder A, Kielkowski P. Transforming Chemical Proteomics Enrichment into a High-Throughput Method Using an SP2E Workflow. JACS AU 2022; 2:1712-1723. [PMID: 35911458 PMCID: PMC9326820 DOI: 10.1021/jacsau.2c00284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Protein post-translational modifications (PTMs) play a critical role in the regulation of protein catalytic activity, localization, and protein-protein interactions. Attachment of PTMs onto proteins significantly diversifies their structure and function, resulting in proteoforms. However, the sole identification of post-translationally modified proteins, which are often cell type and disease-specific, is still a highly challenging task. Substoichiometric amounts and modifications of low abundant proteins necessitate the purification or enrichment of the modified proteins. Although the introduction of mass spectrometry-based chemical proteomic strategies has enabled the screening of protein PTMs with increased throughput, sample preparation remains highly time-consuming and tedious. Here, we report an optimized workflow for the enrichment of PTM proteins in a 96-well plate format, which could be extended to robotic automation. This platform allows us to significantly lower the input of total protein, which opens up the opportunity to screen specialized and difficult-to-culture cell lines in a high-throughput manner. The presented SP2E protocol is robust and time- and cost-effective, as well as suitable for large-scale screening of proteoforms. The application of the SP2E protocol will thus enable the characterization of proteoforms in various processes such as neurodevelopment, neurodegeneration, and cancer. This may contribute to an overall acceleration of the recently launched Human Proteoform Project.
Collapse
Affiliation(s)
- Tobias Becker
- Institute
for Chemical Epigenetics Munich, LMU Munich, 81375 Munich, Germany
| | - Andreas Wiest
- Institute
for Chemical Epigenetics Munich, LMU Munich, 81375 Munich, Germany
| | - András Telek
- Institute
for Chemical Epigenetics Munich, LMU Munich, 81375 Munich, Germany
| | - Daniel Bejko
- Institute
for Chemical Epigenetics Munich, LMU Munich, 81375 Munich, Germany
| | | | - Pavel Kielkowski
- Institute
for Chemical Epigenetics Munich, LMU Munich, 81375 Munich, Germany
| |
Collapse
|
95
|
Johnston HE, Yadav K, Kirkpatrick JM, Biggs GS, Oxley D, Kramer HB, Samant RS. Solvent Precipitation SP3 (SP4) Enhances Recovery for Proteomics Sample Preparation without Magnetic Beads. Anal Chem 2022; 94:10320-10328. [PMID: 35848328 PMCID: PMC9330274 DOI: 10.1021/acs.analchem.1c04200] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Complete, reproducible extraction of protein material
is essential
for comprehensive and unbiased proteome analyses. A current gold standard
is single-pot, solid-phase-enhanced sample preparation (SP3), in which
organic solvent and magnetic beads are used to denature and capture
protein aggregates, with subsequent washes removing contaminants.
However, SP3 is dependent on effective protein immobilization onto
beads, risks losses during wash steps, and exhibits losses and greater
costs at higher protein inputs. Here, we propose solvent precipitation
SP3 (SP4) as an alternative to SP3 protein cleanup, capturing acetonitrile-induced
protein aggregates by brief centrifugation rather than magnetism—with
optional low-cost inert glass beads to simplify handling. SP4 recovered
equivalent or greater protein yields for 1–5000 μg preparations
and improved reproducibility (median protein R2 0.99 (SP4) vs 0.97 (SP3)). Deep proteome
profiling revealed that SP4 yielded a greater recovery of low-solubility
and transmembrane proteins than SP3, benefits to aggregating protein
using 80 vs 50% organic solvent, and equivalent recovery by SP4 and S-Trap.
SP4 was verified in three other labs across eight sample types and
five lysis buffers—all confirming equivalent or improved proteome
characterization vs SP3. With near-identical recovery,
this work further illustrates protein precipitation as the primary
mechanism of SP3 protein cleanup and identifies that magnetic capture
risks losses, especially at higher protein concentrations and among
more hydrophobic proteins. SP4 offers a minimalistic approach to protein
cleanup that provides cost-effective input scalability, the option
to omit beads entirely, and suggests important considerations for
SP3 applications—all while retaining the speed and compatibility
of SP3.
Collapse
Affiliation(s)
- Harvey E Johnston
- Signalling Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Kranthikumar Yadav
- Mass Spectrometry Facility, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | | | - George S Biggs
- Proteomics STP, The Francis Crick Institute, London NW1 1AT, United Kingdom.,GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, Hertfordshire, United Kingdom
| | - David Oxley
- Mass Spectrometry Facility, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Holger B Kramer
- Medical Research Council London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - Rahul S Samant
- Signalling Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| |
Collapse
|
96
|
Musabyimana JP, Distler U, Sassmannshausen J, Berks C, Manti J, Bennink S, Blaschke L, Burda PC, Flammersfeld A, Tenzer S, Ngwa CJ, Pradel G. Plasmodium falciparum S-Adenosylmethionine Synthetase Is Essential for Parasite Survival through a Complex Interaction Network with Cytoplasmic and Nuclear Proteins. Microorganisms 2022; 10:1419. [PMID: 35889137 PMCID: PMC9320499 DOI: 10.3390/microorganisms10071419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
S-adenosylmethionine synthetase (SAMS) is a key enzyme for the synthesis of the lone methyl donor S-adenosyl methionine (SAM), which is involved in transmethylation reactions and hence required for cellular processes such as DNA, RNA, and histone methylation, but also polyamine biosynthesis and proteostasis. In the human malaria parasite Plasmodium falciparum, PfSAMS is encoded by a single gene and has been suggested to be crucial for malaria pathogenesis and transmission; however, to date, PfSAMS has not been fully characterized. To gain deeper insight into the function of PfSAMS, we generated a conditional gene knockdown (KD) using the glmS ribozyme system. We show that PfSAMS localizes to the cytoplasm and the nucleus of blood-stage parasites. PfSAMS-KD results in reduced histone methylation and leads to impaired intraerythrocytic growth and gametocyte development. To further determine the interaction network of PfSAMS, we performed a proximity-dependent biotin identification analysis. We identified a complex network of 1114 proteins involved in biological processes such as cell cycle control and DNA replication, or transcription, but also in phosphatidylcholine and polyamine biosynthesis and proteasome regulation. Our findings highlight the diverse roles of PfSAMS during intraerythrocytic growth and sexual stage development and emphasize that PfSAMS is a potential drug target.
Collapse
Affiliation(s)
- Jean Pierre Musabyimana
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (J.P.M.); (J.S.); (C.B.); (J.M.); (S.B.); (L.B.); (A.F.); (C.J.N.)
| | - Ute Distler
- Proteomics Core Facility, Institute of Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (U.D.); (S.T.)
| | - Juliane Sassmannshausen
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (J.P.M.); (J.S.); (C.B.); (J.M.); (S.B.); (L.B.); (A.F.); (C.J.N.)
| | - Christina Berks
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (J.P.M.); (J.S.); (C.B.); (J.M.); (S.B.); (L.B.); (A.F.); (C.J.N.)
| | - Janice Manti
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (J.P.M.); (J.S.); (C.B.); (J.M.); (S.B.); (L.B.); (A.F.); (C.J.N.)
| | - Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (J.P.M.); (J.S.); (C.B.); (J.M.); (S.B.); (L.B.); (A.F.); (C.J.N.)
| | - Lea Blaschke
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (J.P.M.); (J.S.); (C.B.); (J.M.); (S.B.); (L.B.); (A.F.); (C.J.N.)
| | - Paul-Christian Burda
- Centre for Structural Systems Biology (CSSB) c/o DESY, Bernhard Nocht Institute, University of Hamburg, Notkestraße 85, Building 15, 22607 Hamburg, Germany;
| | - Ansgar Flammersfeld
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (J.P.M.); (J.S.); (C.B.); (J.M.); (S.B.); (L.B.); (A.F.); (C.J.N.)
| | - Stefan Tenzer
- Proteomics Core Facility, Institute of Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (U.D.); (S.T.)
| | - Che Julius Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (J.P.M.); (J.S.); (C.B.); (J.M.); (S.B.); (L.B.); (A.F.); (C.J.N.)
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (J.P.M.); (J.S.); (C.B.); (J.M.); (S.B.); (L.B.); (A.F.); (C.J.N.)
| |
Collapse
|
97
|
Deficiency in FTSJ1 Affects Neuronal Plasticity in the Hippocampal Formation of Mice. BIOLOGY 2022; 11:biology11071011. [PMID: 36101392 PMCID: PMC9312013 DOI: 10.3390/biology11071011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Neuronal plasticity refers to the brain’s ability to adapt in response to activity-dependent changes. This process, among others, allows the brain to acquire memory or to compensate for a neurocognitive deficit. We analyzed adult FTSJ1-deficient mice in order to gain insight into the role of FTSJ1 in neuronal plasticity. These mice displayed alterations in the hippocampus (a brain structure that is involved in memory and learning, among other functions) e.g., in the form of changes in dendritic spines. Changes in dendritic spines are considered to represent a morphological hallmark of altered neuronal plasticity, and thus FTSJ1 deficiency might have a direct effect upon the capacity of the brain to adapt to plastic changes. Long-term potentiation (LTP) is an electrophysiological correlate of neuronal plasticity, and is related to learning and to processes attributed to memory. Here we show that LTP in FTSJ1-deficient mice is reduced, hinting at disturbed neuronal plasticity. These findings suggest that FTSJ1 deficiency has an impact on neuronal plasticity not only morphologically but also on the physiological level. Abstract The role of the tRNA methyltransferase FTSJ1 in the brain is largely unknown. We analyzed whether FTSJ1-deficient mice (KO) displayed altered neuronal plasticity. We explored open field behavior (10 KO mice (aged 22–25 weeks)) and 11 age-matched control littermates (WT) and examined mean layer thickness (7 KO; 6 WT) and dendritic spines (5 KO; 5 WT) in the hippocampal area CA1 and the dentate gyrus. Furthermore, long-term potentiation (LTP) within area CA1 was investigated (5 KO; 5 WT), and mass spectrometry (MS) using CA1 tissue (2 each) was performed. Compared to controls, KO mice showed a significant reduction in the mean thickness of apical CA1 layers. Dendritic spine densities were also altered in KO mice. Stable LTP could be induced in the CA1 area of KO mice and remained stable at for at least 1 h, although at a lower level as compared to WTs, while MS data indicated differential abundance of several proteins, which play a role in neuronal plasticity. FTSJ1 has an impact on neuronal plasticity in the murine hippocampal area CA1 at the morphological and physiological levels, which, in conjunction with comparable changes in other cortical areas, might accumulate in disturbed learning and memory functions.
Collapse
|
98
|
Steinbach MK, Leipert J, Blurton C, Leippe M, Tholey A. Digital Microfluidics Supported Microproteomics for Quantitative Proteome Analysis of Single Caenorhabditis elegans Nematodes. J Proteome Res 2022; 21:1986-1996. [PMID: 35771142 DOI: 10.1021/acs.jproteome.2c00274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Miniaturization of sample preparation, including omissible manual sample handling steps, is key for reproducible nanoproteomics, as material is often restricted to only hundreds of cells or single model organisms. Here, we demonstrate a highly sensitive digital microfluidics (DMF)-based sample preparation workflow making use of single-pot solid-phase enhanced sample preparation (SP3) in combination with high-field asymmetric-waveform ion mobility spectrometry (FAIMS), and fast and sensitive ion trap detection on an Orbitrap tribrid MS system. Compared to a manual in-tube SP3-supported sample preparation, the numbers of identified peptides and proteins were markedly increased, while lower standard deviations between replicates were observed. We repeatedly identified up to 5000 proteins from single nematodes. Moreover, label-free quantification of protein changes in single Caenorhabditis elegans treated with a heat stimulus yielded 45 differentially abundant proteins when compared to the untreated control, highlighting the potential of this technology for low-input proteomics studies. LC-MS data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD033143.
Collapse
Affiliation(s)
- Max K Steinbach
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Jan Leipert
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Christine Blurton
- Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Matthias Leippe
- Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| |
Collapse
|
99
|
Dai X, Cai L, He F. Single-cell sequencing: expansion, integration and translation. Brief Funct Genomics 2022; 21:280-295. [PMID: 35753690 DOI: 10.1093/bfgp/elac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
With the rapid advancement in sequencing technologies, the concept of omics has revolutionized our understanding of cellular behaviors. Conventional omics investigation approaches measure the averaged behaviors of multiple cells, which may easily hide signals represented by a small-cell cohort, urging for the development of techniques with enhanced resolution. Single-cell RNA sequencing, investigating cell transcriptomics at the resolution of a single cell, has been rapidly expanded to investigate other omics such as genomics, proteomics and metabolomics since its invention. The requirement for comprehensive understanding of complex cellular behavior has led to the integration of multi-omics and single-cell sequencing data with other layers of information such as spatial data and the CRISPR screening technique towards gained knowledge or innovative functionalities. The development of single-cell sequencing in both dimensions has rendered it a unique field that offers us a versatile toolbox to delineate complex diseases, including cancers.
Collapse
|
100
|
Arias-Hidalgo C, Juanes-Velasco P, Landeira-Viñuela A, García-Vaquero ML, Montalvillo E, Góngora R, Hernández ÁP, Fuentes M. Single-Cell Proteomics: The Critical Role of Nanotechnology. Int J Mol Sci 2022; 23:6707. [PMID: 35743151 PMCID: PMC9224324 DOI: 10.3390/ijms23126707] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
In single-cell analysis, biological variability can be attributed to individual cells, their specific state, and the ability to respond to external stimuli, which are determined by protein abundance and their relative alterations. Mass spectrometry (MS)-based proteomics (e.g., SCoPE-MS and SCoPE2) can be used as a non-targeted method to detect molecules across hundreds of individual cells. To achieve high-throughput investigation, novel approaches in Single-Cell Proteomics (SCP) are needed to identify and quantify proteins as accurately as possible. Controlling sample preparation prior to LC-MS analysis is critical, as it influences sensitivity, robustness, and reproducibility. Several nanotechnological approaches have been developed for the removal of cellular debris, salts, and detergents, and to facilitate systematic sample processing at the nano- and microfluidic scale. In addition, nanotechnology has enabled high-throughput proteomics analysis, which have required the improvement of software tools, such as DART-ID or DO-MS, which are also fundamental for addressing key biological questions. Single-cell proteomics has many applications in nanomedicine and biomedical research, including advanced cancer immunotherapies or biomarker characterization, among others; and novel methods allow the quantification of more than a thousand proteins while analyzing hundreds of single cells.
Collapse
Affiliation(s)
- Carlota Arias-Hidalgo
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (C.A.-H.); (P.J.-V.); (A.L.-V.); (M.L.G.-V.); (E.M.); (R.G.)
| | - Pablo Juanes-Velasco
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (C.A.-H.); (P.J.-V.); (A.L.-V.); (M.L.G.-V.); (E.M.); (R.G.)
| | - Alicia Landeira-Viñuela
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (C.A.-H.); (P.J.-V.); (A.L.-V.); (M.L.G.-V.); (E.M.); (R.G.)
| | - Marina L. García-Vaquero
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (C.A.-H.); (P.J.-V.); (A.L.-V.); (M.L.G.-V.); (E.M.); (R.G.)
| | - Enrique Montalvillo
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (C.A.-H.); (P.J.-V.); (A.L.-V.); (M.L.G.-V.); (E.M.); (R.G.)
| | - Rafael Góngora
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (C.A.-H.); (P.J.-V.); (A.L.-V.); (M.L.G.-V.); (E.M.); (R.G.)
| | - Ángela-Patricia Hernández
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (C.A.-H.); (P.J.-V.); (A.L.-V.); (M.L.G.-V.); (E.M.); (R.G.)
- Department of Pharmaceutical Sciences: Organic Chemistry, Faculty of Pharmacy, University of Salamanca, CIETUS, IBSAL, 37007 Salamanca, Spain
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (C.A.-H.); (P.J.-V.); (A.L.-V.); (M.L.G.-V.); (E.M.); (R.G.)
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| |
Collapse
|