51
|
Abstract
The product of a terpene synthase from Streptomyces lincolnensis has been identified as the new natural product isoishwarane. The enzyme mechanism was studied by isotopic labelling experiments and site-directed mutagenesis.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institut für Organische Chemie und Biochemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- 53121 Bonn
- Germany
| | - Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- 53121 Bonn
- Germany
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- 53121 Bonn
- Germany
| |
Collapse
|
52
|
Xu H, Dickschat JS. Germacrene A-A Central Intermediate in Sesquiterpene Biosynthesis. Chemistry 2020; 26:17318-17341. [PMID: 32442350 PMCID: PMC7821278 DOI: 10.1002/chem.202002163] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/20/2020] [Indexed: 01/17/2023]
Abstract
This review summarises known sesquiterpenes whose biosyntheses proceed through the intermediate germacrene A. First, the occurrence and biosynthesis of germacrene A in Nature and its peculiar chemistry will be highlighted, followed by a discussion of 6-6 and 5-7 bicyclic compounds and their more complex derivatives. For each compound the absolute configuration, if it is known, and the reasoning for its assignment is presented.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
53
|
Li G, Guo Y, Dickschat JS. Diterpen‐Biosynthese in
Catenulispora acidiphila
: Über den Mechanismus der Catenul‐14‐en‐6‐ol‐Synthase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202014180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Geng Li
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park 201203 Shanghai China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| | - Yue‐Wei Guo
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park 201203 Shanghai China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
54
|
Li G, Guo YW, Dickschat JS. Diterpene Biosynthesis in Catenulispora acidiphila: On the Mechanism of Catenul-14-en-6-ol Synthase. Angew Chem Int Ed Engl 2020; 60:1488-1492. [PMID: 33169911 PMCID: PMC7839432 DOI: 10.1002/anie.202014180] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Indexed: 11/15/2022]
Abstract
A new diterpene synthase from the actinomycete Catenulispora acidiphila was identified and the structures of its products were elucidated, including the absolute configurations by an enantioselective deuteration approach. The mechanism of the cationic terpene cyclisation cascade was deeply studied through the use of isotopically labelled substrates and of substrate analogues with partially blocked reactivity, resulting in derailment products that gave further insights into the intermediates along the cascade. Their chemistry was studied, leading to the biomimetic synthesis of a diterpenoid analogue of a brominated sesquiterpene known from the red seaweed Laurencia microcladia.
Collapse
Affiliation(s)
- Geng Li
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany.,State Key Laboratory of Drug Research Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, 201203, Shanghai, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, 201203, Shanghai, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| |
Collapse
|
55
|
Hou A, Dickschat JS. On the mass spectrometric fragmentations of the bacterial sesterterpenes sestermobaraenes A-C. Beilstein J Org Chem 2020; 16:2807-2819. [PMID: 33281984 PMCID: PMC7684692 DOI: 10.3762/bjoc.16.231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022] Open
Abstract
A 13C-labelling was introduced into each individual carbon of the recently discovered sestermobaraenes by the enzymatic conversion of the correspondingly 13C-labelled isoprenyl diphosphate precursors with the sestermobaraene synthase from Streptomyces mobaraensis. The main compounds sestermobaraenes A, B, and C were analysed by gas chromatography-mass spectrometry (GC-MS), allowing for a deep mechanistic investigation of the electron impact mass spectrometry (EIMS) fragmentation reactions of these sesterterpene hydrocarbons.
Collapse
Affiliation(s)
- Anwei Hou
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53127 Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53127 Bonn, Germany
| |
Collapse
|
56
|
Hou A, Dickschat JS. The Biosynthetic Gene Cluster for Sestermobaraenes-Discovery of a Geranylfarnesyl Diphosphate Synthase and a Multiproduct Sesterterpene Synthase from Streptomyces mobaraensis. Angew Chem Int Ed Engl 2020; 59:19961-19965. [PMID: 32749032 PMCID: PMC7693059 DOI: 10.1002/anie.202010084] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 01/23/2023]
Abstract
A biosynthetic gene cluster from Streptomyces mobaraensis encoding the first cases of a bacterial geranylfarnesyl diphosphate synthase and a type I sesterterpene synthase was identified. The structures of seven sesterterpenes produced by these enzymes were elucidated, including their absolute configurations. The enzyme mechanism of the sesterterpene synthase was investigated by extensive isotope labeling experiments.
Collapse
Affiliation(s)
- Anwei Hou
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| |
Collapse
|
57
|
Quan Z, Dickschat JS. Biosynthetic Gene Cluster for Asperterpenols A and B and the Cyclization Mechanism of Asperterpenol A Synthase. Org Lett 2020; 22:7552-7555. [DOI: 10.1021/acs.orglett.0c02748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhiyang Quan
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| |
Collapse
|
58
|
Hou A, Dickschat JS. Biosynthesegencluster für Sestermobaraene – Entdeckung einer Geranylfarnesyldiphosphatsynthase und einer Multiprodukt‐Sesterterpensynthase aus
Streptomyces mobaraensis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anwei Hou
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Deutschland
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Deutschland
| |
Collapse
|
59
|
Quan Z, Dickschat JS. On the mechanism of ophiobolin F synthase and the absolute configuration of its product by isotopic labelling experiments. Org Biomol Chem 2020; 18:6072-6076. [PMID: 32725018 DOI: 10.1039/d0ob01470b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An ophiobolin F synthase homolog was discovered from Aspergillus calidoustus CBS121601. The cyclisation mechanism of this terpene synthase was investigated by extensive isotopic labelling experiments and the absolute configuration of its product ophiobolin F was elucidated by enantioselective deuteration.
Collapse
Affiliation(s)
- Zhiyang Quan
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | | |
Collapse
|
60
|
Lauterbach L, Goldfuss B, Dickschat JS. Two Diterpene Synthases from Chryseobacterium: Chryseodiene Synthase and Wanjudiene Synthase. Angew Chem Int Ed Engl 2020; 59:11943-11947. [PMID: 32342621 PMCID: PMC7383580 DOI: 10.1002/anie.202004691] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Indexed: 01/11/2023]
Abstract
Two bacterial diterpene synthases (DTSs) from Chryseobacterium were characterised. The first enzyme yielded the new compound chryseodiene that closely resembles the known fusicoccane diterpenes from fungi, but its experimentally and computationally studied cyclisation mechanism is fundamentally different to the mechanism of fusicoccadiene synthase. The second enzyme produced wanjudiene, a diterpene hydrocarbon with a new skeleton, besides traces of the enantiomer of bonnadiene that was recently discovered from Allokutzneria albata.
Collapse
Affiliation(s)
- Lukas Lauterbach
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Bernd Goldfuss
- Institute for Organic ChemistryUniversity of CologneGreinstraße 450939CologneGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
61
|
Harms V, Schröder B, Oberhauser C, Tran CD, Winkler S, Dräger G, Kirschning A. Methyl-Shifted Farnesyldiphosphate Derivatives Are Substrates for Sesquiterpene Cyclases. Org Lett 2020; 22:4360-4365. [PMID: 32432889 DOI: 10.1021/acs.orglett.0c01345] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
New sesquiterpene backbones are accessible after biotransformation of presilphiperfolan-8β-ol synthase (BcBOT2), a fungal sesquiterpene synthase, with non-natural farnesyldiphosphates in which methyl groups are shifted by one position toward the diphosphate terminus. One of the macrocycles formed, a new germacrene A derivative, undergoes a Cope rearrangement to iso-β-elemene. Three of the new terpenoids show olfactoric properties that range from an intense peppery note to a citrus, ozone-like, and fruity scent.
Collapse
Affiliation(s)
- Vanessa Harms
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Benjamin Schröder
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Clara Oberhauser
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Cong Duc Tran
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Sven Winkler
- Symrise AG, Mühlenfeldstraße 1, 37603 Holzminden, Germany
| | - Gerald Dräger
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| |
Collapse
|
62
|
Lauterbach L, Goldfuss B, Dickschat JS. Zwei Diterpensynthasen aus
Chryseobacterium
: Chryseodien‐Synthase und Wanjudien‐Synthase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lukas Lauterbach
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Bernd Goldfuss
- Institut für Organische Chemie, Universität zu Köln Greinstraße 4 50939 Köln Deutschland
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
63
|
Zhang C, Chen X, Orban A, Shukal S, Birk F, Too HP, Rühl M. Agrocybe aegerita Serves As a Gateway for Identifying Sesquiterpene Biosynthetic Enzymes in Higher Fungi. ACS Chem Biol 2020; 15:1268-1277. [PMID: 32233445 DOI: 10.1021/acschembio.0c00155] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Terpenoids constitute a structurally diverse group of natural products with wide applications in the pharmaceutical, nutritional, flavor and fragrance industries. Fungi are known to produce a large variety of terpenoids, yet fungal terpene synthases remain largely unexploited. Here, we report the sesquiterpene network and gene clusters of the black poplar mushroom Agrocybe aegerita. Among 11 putative sesquiterpene synthases (STSs) identified in its genome, nine are functional, including two novel synthases producing viridiflorol and viridiflorene. On this basis, an additional 1133 STS homologues from higher fungi have been curated and used for a sequence similarity network to probe isofunctional STS groups. With the focus on two STS groups, one producing viridiflorene/viridiflorol and one Δ6-protoilludene, the isofunctionality was probed and verified. Three new Δ6-protoilludene synthases and two new viridflorene/viridiflorol synthases from five different fungi were correctly predicted. The study herein serves as a fundamental predictive framework for the discovery of fungal STSs and biosynthesis of novel terpenoids. Furthermore, it becomes clear that fungal STS function differs between the phyla Ascomycota and Basidiomycota with the latter phylum being more dominant in the overall number and variability. This study aims to encourage the scientific community to further work on fungal STS and the products, biological functions, and potential applications of this vast source of natural products.
Collapse
Affiliation(s)
- Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Axel Orban
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | - Sudha Shukal
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Florian Birk
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | - Heng-Phon Too
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, Giessen, Germany
| |
Collapse
|
64
|
Reddy GK, Leferink NGH, Umemura M, Ahmed ST, Breitling R, Scrutton NS, Takano E. Exploring novel bacterial terpene synthases. PLoS One 2020; 15:e0232220. [PMID: 32353014 PMCID: PMC7192455 DOI: 10.1371/journal.pone.0232220] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/09/2020] [Indexed: 01/15/2023] Open
Abstract
Terpenes are the largest class of natural products with extensive structural diversity and are widely used as pharmaceuticals, herbicides, flavourings, fragrances, and biofuels. While they have mostly been isolated from plants and fungi, the availability and analysis of bacterial genome sequence data indicates that bacteria also possess many putative terpene synthase genes. In this study, we further explore this potential for terpene synthase activity in bacteria. Twenty two potential class I terpene synthase genes (TSs) were selected to represent the full sequence diversity of bacterial synthase candidates and recombinantly expressed in E. coli. Terpene synthase activity was detected for 15 of these enzymes, and included mono-, sesqui- and diterpene synthase activities. A number of confirmed sesquiterpene synthases also exhibited promiscuous monoterpene synthase activity, suggesting that bacteria are potentially a richer source of monoterpene synthase activity then previously assumed. Several terpenoid products not previously detected in bacteria were identified, including aromandendrene, acora-3,7(14)-diene and longiborneol. Overall, we have identified promiscuous terpene synthases in bacteria and demonstrated that terpene synthases with substrate promiscuity are widely distributed in nature, forming a rich resource for engineering terpene biosynthetic pathways for biotechnology.
Collapse
Affiliation(s)
- Gajendar Komati Reddy
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
| | - Nicole G. H. Leferink
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
- Future Biomanfacturing Research Hub (FBRH), Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
| | - Maiko Umemura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tsukuba, Ibaraki, Japan
| | - Syed T. Ahmed
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
| | - Rainer Breitling
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
| | - Nigel S. Scrutton
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
- Future Biomanfacturing Research Hub (FBRH), Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
| | - Eriko Takano
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
- Future Biomanfacturing Research Hub (FBRH), Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, England, United Kingdom
- * E-mail:
| |
Collapse
|
65
|
Lin FL, Lauterbach L, Zou J, Wang YH, Lv JM, Chen GD, Hu D, Gao H, Yao XS, Dickschat JS. Mechanistic Characterization of the Fusicoccane-type Diterpene Synthase for Myrothec-15(17)-en-7-ol. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00377] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fu-Long Lin
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Lukas Lauterbach
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, Bonn 53121, Germany
| | - Jian Zou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, P. R. China
| | - Yong-Heng Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, Bonn 53121, Germany
| |
Collapse
|
66
|
Rinkel J, Dickschat JS. Mechanistic Studies on Trichoacorenol Synthase from Amycolatopsis benzoatilytica. Chembiochem 2020; 21:807-810. [PMID: 31553510 PMCID: PMC7155024 DOI: 10.1002/cbic.201900584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 01/17/2023]
Abstract
Isotopic labeling experiments performed with a newly identified bacterial trichoacorenol synthase established a 1,5-hydride shift occurring in the cyclization mechanism. During EI-MS analysis, major fragments of the sesquiterpenoid were shown to arise via cryptic hydrogen movements. Therefore, the interpretation of earlier results regarding the cyclization mechanism obtained by feeding experiments in Trichoderma is revised.
Collapse
Affiliation(s)
- Jan Rinkel
- Kekulé Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| | - Jeroen S. Dickschat
- Kekulé Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| |
Collapse
|
67
|
Rinkel J, Steiner ST, Bian G, Chen R, Liu T, Dickschat JS. A Family of Related Fungal and Bacterial Di- and Sesterterpenes: Studies on Fusaterpenol and Variediene. Chembiochem 2020; 21:486-491. [PMID: 31476106 PMCID: PMC7065159 DOI: 10.1002/cbic.201900462] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Indexed: 01/28/2023]
Abstract
The absolute configuration of fusaterpenol (GJ1012E) has been revised by an enantioselective deuteration strategy. A bifunctional enzyme with a terpene synthase and a prenyltransferase domain from Aspergillus brasiliensis was characterised as variediene synthase, and the absolute configuration of its product was elucidated. The uniform absolute configurations of these and structurally related di- and sesterterpenes together with a common stereochemical course for the geminal methyl groups of GGPP unravel a similar conformational fold of the substrate in the active sites of the terpene synthases. For variediene, a thermal reaction observed during GC/MS analysis was studied in detail for which a surprising mechanism was uncovered.
Collapse
Affiliation(s)
- Jan Rinkel
- Kekulé Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| | - Simon T. Steiner
- Kekulé Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| | - Guangkai Bian
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education andWuhan University School of Pharmaceutical Sciences185 Dunghu RoadWuhan430071P. R. China
| | - Rong Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education andWuhan University School of Pharmaceutical Sciences185 Dunghu RoadWuhan430071P. R. China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education andWuhan University School of Pharmaceutical Sciences185 Dunghu RoadWuhan430071P. R. China
| | - Jeroen S. Dickschat
- Kekulé Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Strasse 153121BonnGermany
| |
Collapse
|
68
|
Harms V, Kirschning A, Dickschat JS. Nature-driven approaches to non-natural terpene analogues. Nat Prod Rep 2020; 37:1080-1097. [DOI: 10.1039/c9np00055k] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The reactions catalysed by terpene synthases belong to the most complex and fascinating cascade-type transformations in Nature.
Collapse
Affiliation(s)
- Vanessa Harms
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ)
- Leibniz Universität Hannover
- 30167 Hannover
- Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ)
- Leibniz Universität Hannover
- 30167 Hannover
- Germany
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry
- University of Bonn
- 53121 Bonn
- Germany
| |
Collapse
|
69
|
Armenta-Salinas C, Guzmán-Mejía R, García-Gutiérrez HA, Román-Marín LU, Hernández-Hernández JD, Cerda-García-Rojas CM, Joseph-Nathan P. Novel Sesquiterpene Skeletons by Multiple Wagner-Meerwein Rearrangements of a Longipinane-1,9-diol Derivative. JOURNAL OF NATURAL PRODUCTS 2019; 82:3410-3420. [PMID: 31773961 DOI: 10.1021/acs.jnatprod.9b00784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The tricyclic sesquiterpene (1R,3R,4S,5S,7S,8S,9S,10R,11R)-7,8-diangeloyloxylongipinan-1,9-diol, or rasteviol (7), underwent multiple Wagner-Meerwein molecular rearrangements and several hydride shifts when treated with Et2O-BF3 to generate the six new compounds (1R,3R,4S,5R,7S,8S,9S,10R,11S)-7,8-diangeloyloxy-1,9-epoxyjiquilpane (8), (1R,3R,4S,5R,7R,8S,9S,11S)-8-angeloyloxy-1,7-epoxyzamor-10(14)-ene (11), (2S,3R,4R,5R,6R,7R,8S,9S,10S)-7,8-diangeloyloxy-6,9-epoxyjanitziane (14), (4R,5R,7S,8S,9S,10S,11S)-7,8-diangeloyloxy-9-hydroxyjiquilp-3(15)-ene (16), (2S,3S,5R,7S,8R,10S,11R)-7,8-diangeloyloxyiratzian-9-one (18), and (2S,3S,5R,10S,11R)-8-angeloyloxyiratzi-7-en-9-one (22), of which 8, 11, 14, and 18 possess new hydrocarbon skeletons. Their structures were determined by 1D and 2D NMR in combination with single-crystal X-ray diffraction analyses of derivatives 10, 15, 20, and 21, which allowed confirmation of their absolute configurations by means of the Flack and Hooft parameters. In addition, some reaction mechanism information was gained from deuterium labeling experiments.
Collapse
Affiliation(s)
- Concepción Armenta-Salinas
- Instituto de Investigaciones Químico Biológicas , Universidad Michoacana de San Nicolás de Hidalgo , Ciudad Universitaria, Morelia , Michoacán , 58030 Mexico
| | - Ramón Guzmán-Mejía
- Instituto de Investigaciones Químico Biológicas , Universidad Michoacana de San Nicolás de Hidalgo , Ciudad Universitaria, Morelia , Michoacán , 58030 Mexico
| | - Hugo A García-Gutiérrez
- Instituto de Investigaciones Químico Biológicas , Universidad Michoacana de San Nicolás de Hidalgo , Ciudad Universitaria, Morelia , Michoacán , 58030 Mexico
| | - Luisa U Román-Marín
- Instituto de Investigaciones Químico Biológicas , Universidad Michoacana de San Nicolás de Hidalgo , Ciudad Universitaria, Morelia , Michoacán , 58030 Mexico
| | - Juan D Hernández-Hernández
- Instituto de Investigaciones Químico Biológicas , Universidad Michoacana de San Nicolás de Hidalgo , Ciudad Universitaria, Morelia , Michoacán , 58030 Mexico
| | - Carlos M Cerda-García-Rojas
- Departamento de Química , Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Apartado 14-740 , Mexico City , 07000 Mexico
| | - Pedro Joseph-Nathan
- Departamento de Química , Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Apartado 14-740 , Mexico City , 07000 Mexico
| |
Collapse
|
70
|
Burkhardt I, Ye Z, Janevska S, Tudzynski B, Dickschat JS. Biochemical and Mechanistic Characterization of the Fungal Reverse N-1-Dimethylallyltryptophan Synthase DMATS1 Ff. ACS Chem Biol 2019; 14:2922-2931. [PMID: 31756078 DOI: 10.1021/acschembio.9b00828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dimethylallyltryptophan synthases catalyze the regiospecific transfer of (oligo)prenylpyrophosphates to aromatic substrates like tryptophan derivatives. These reactions are key steps in many biosynthetic pathways of fungal and bacterial secondary metabolites. In vitro investigations on recombinant DMATS1Ff from Fusarium fujikuroi identified the enzyme as the first selective reverse tryptophan-N-1 prenyltransferase of fungal origin. The enzyme was also able to catalyze the reverse N-geranylation of tryptophan. DMATS1Ff was shown to be phylogenetically related to fungal tyrosine O-prenyltransferases and fungal 7-DMATS. Like these enzymes, DMATS1Ff was able to convert tyrosine into its regularly O-prenylated derivative. Investigation of the binding sites of DMATS1Ff by homology modeling and comparison to the crystal structure of 4-DMATS FgaPT2 showed an almost identical site for DMAPP binding but different residues for tryptophan coordination. Several putative active site residues were verified by site directed mutagenesis of DMATS1Ff. Homology models of the phylogenetically related enzymes showed similar tryptophan binding residues, pointing to a unified substrate binding orientation of tryptophan and DMAPP, which is distinct from that in FgaPT2. Isotopic labeling experiments showed the reaction catalyzed by DMATS1Ff to be nonstereospecific. Based on these data, a detailed mechanism for DMATS1Ff catalysis is proposed.
Collapse
Affiliation(s)
- Immo Burkhardt
- Kekulé Institut für Organische Chemie und Biochemie, Rheinische Friedrich Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Zhongfeng Ye
- Kekulé Institut für Organische Chemie und Biochemie, Rheinische Friedrich Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Slavica Janevska
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Bettina Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Jeroen S. Dickschat
- Kekulé Institut für Organische Chemie und Biochemie, Rheinische Friedrich Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| |
Collapse
|
71
|
Rinkel J, Dickschat JS. Characterization of Micromonocyclol Synthase from the Marine Actinomycete Micromonospora marina. Org Lett 2019; 21:9442-9445. [DOI: 10.1021/acs.orglett.9b03654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Rinkel
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| |
Collapse
|
72
|
Murai K, Lauterbach L, Teramoto K, Quan Z, Barra L, Yamamoto T, Nonaka K, Shiomi K, Nishiyama M, Kuzuyama T, Dickschat JS. An Unusual Skeletal Rearrangement in the Biosynthesis of the Sesquiterpene Trichobrasilenol from Trichoderma. Angew Chem Int Ed Engl 2019; 58:15046-15050. [PMID: 31418991 PMCID: PMC7687074 DOI: 10.1002/anie.201907964] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/13/2019] [Indexed: 11/08/2022]
Abstract
The skeletons of some classes of terpenoids are unusual in that they contain a larger number of Me groups (or their biosynthetic equivalents such as olefinic methylene groups, hydroxymethyl groups, aldehydes, or carboxylic acids and their derivatives) than provided by their oligoprenyl diphosphate precursor. This is sometimes the result of an oxidative ring-opening reaction at a terpene-cyclase-derived molecule containing the regular number of Me group equivalents, as observed for picrotoxan sesquiterpenes. In this study a sesquiterpene cyclase from Trichoderma spp. is described that can convert farnesyl diphosphate (FPP) directly via a remarkable skeletal rearrangement into trichobrasilenol, a new brasilane sesquiterpene with one additional Me group equivalent compared to FPP. A mechanistic hypothesis for the formation of the brasilane skeleton is supported by extensive isotopic labelling studies.
Collapse
Affiliation(s)
- Keiichi Murai
- Graduate School of Agricultural and Life SciencesThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
| | - Lukas Lauterbach
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Kazuya Teramoto
- Biotechnology Research CenterThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
| | - Zhiyang Quan
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Lena Barra
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Tsuyoshi Yamamoto
- Kitasato Institute for Life SciencesKitasato University5-9-1 Shirokane, Minato-kuTokyo108-8641Japan
| | - Kenichi Nonaka
- Kitasato Institute for Life SciencesKitasato University5-9-1 Shirokane, Minato-kuTokyo108-8641Japan
| | - Kazuro Shiomi
- Kitasato Institute for Life SciencesKitasato University5-9-1 Shirokane, Minato-kuTokyo108-8641Japan
| | - Makoto Nishiyama
- Biotechnology Research CenterThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life SciencesThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of Tokyo1-1-1 Yayoi, Bunkyu-kuTokyo113-8657Japan
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
73
|
Murai K, Lauterbach L, Teramoto K, Quan Z, Barra L, Yamamoto T, Nonaka K, Shiomi K, Nishiyama M, Kuzuyama T, Dickschat JS. Eine ungewöhnliche Gerüstumlagerung in der Biosynthese des Sesquiterpens Trichobrasilenol aus Trichoderma. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Keiichi Murai
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
| | - Lukas Lauterbach
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Kazuya Teramoto
- Biotechnology Research Center The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
| | - Zhiyang Quan
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Lena Barra
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Tsuyoshi Yamamoto
- Kitasato Institute for Life Sciences Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Kenichi Nonaka
- Kitasato Institute for Life Sciences Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Kazuro Shiomi
- Kitasato Institute for Life Sciences Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Makoto Nishiyama
- Biotechnology Research Center The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo 1-1-1 Yayoi, Bunkyu-ku Tokyo 113-8657 Japan
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
74
|
Rinkel J, Steiner ST, Dickschat JS. Diterpenbiosynthese in Actinomyceten: Studien an Cattleyensynthase und Phomopsensynthase. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jan Rinkel
- Kekulé-Institut für Organische Chemie und BiochemieUniversität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Simon T. Steiner
- Kekulé-Institut für Organische Chemie und BiochemieUniversität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und BiochemieUniversität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
75
|
Rinkel J, Steiner ST, Dickschat JS. Diterpene Biosynthesis in Actinomycetes: Studies on Cattleyene Synthase and Phomopsene Synthase. Angew Chem Int Ed Engl 2019; 58:9230-9233. [PMID: 31034729 DOI: 10.1002/anie.201902950] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/18/2019] [Indexed: 12/20/2022]
Abstract
Three diterpene synthases from actinomycetes have been studied. The first enzyme from Streptomyces cattleya produced the novel compound cattleyene. The other two enzymes from Nocardia testacea and Nocardia rhamnosiphila were identified as phomopsene synthases. The cyclisation mechanism of cattleyene synthase and the EIMS fragmentation mechanism of its product were extensively studied by incubation experiments with isotopically labelled precursors. Oxidative transformations expanded the chemical space of these unique diterpenes.
Collapse
Affiliation(s)
- Jan Rinkel
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Simon T Steiner
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| |
Collapse
|
76
|
Rinkel J, Köllner TG, Chen F, Dickschat JS. Characterisation of three terpene synthases for β-barbatene, β-araneosene and nephthenol from social amoebae. Chem Commun (Camb) 2019; 55:13255-13258. [DOI: 10.1039/c9cc07681f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Three terpene synthases from social amoebae with new functions were discovered and their mechanisms were explored.
Collapse
Affiliation(s)
- Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- Gerhard-Domagk-Straße 1
- 53121 Bonn
- Germany
| | - Tobias G. Köllner
- Max Planck Institute for Chemical Ecology
- Hans-Knöll-Straße 8
- 07745 Jena
- Germany
| | - Feng Chen
- Department of Plant Sciences
- University of Tennessee
- 2431 Joe Johnson Drive
- Knoxville
- USA
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- Gerhard-Domagk-Straße 1
- 53121 Bonn
- Germany
| |
Collapse
|