51
|
Du Z, Zhao Z, Liu H, Liu X, Zhang X, Huang Y, Leng H, Cai Q, Yang X. Macroporous scaffolds developed from CaSiO 3 nanofibers regulating bone regeneration via controlled calcination. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:111005. [PMID: 32487409 DOI: 10.1016/j.msec.2020.111005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/18/2020] [Accepted: 04/20/2020] [Indexed: 01/31/2023]
Abstract
Calcium silicate (CS) is envisioned as a good substrate for bone tissue engineering applications because it can provide bioactive ions like Ca2+ and Si4+ to promote bone regeneration. Calcination temperature is a critical factor in determining the crystallinity of CS ceramic, which subsequently influences its degradation and ion release behaviors. To investigate the effect of calcination temperature on the capacity of CS in inducing bone regeneration, CS nanofibers were fabricated via electrospinning of precursor sol-gel and subsequent sintering at 800 °C, 1000 °C or 1200 °C. As the calcination temperature was increased, the obtained CS nanofibers displayed higher crystallinity and slower degradation rate. The CS nanofibers calcined at 800 °C (800 m) would like to cause high pH (>9) in cell culture medium due to its rapid ion release rate, displaying adverse effect on cell viability. Among all the preparations, it was found the CS nanofibers calcined at 1000 °C (1000 m) demonstrated the strongest promotion effect on the osteogenic differentiation of bone marrow mesenchymal stromal cells. To facilitate in vivo implantation, the CS nanofibers were shaped into three-dimensional macroporous scaffolds and coated with gelatin to improve their mechanical stability. By implanting the scaffolds into rat calvarial defects, it was confirmed the scaffold made of CS nanofibers calcined at 1000 °C was able to enhance new bone formation more efficiently than the scaffolds made of CS nanofibers calcined at 800 °C or 1200 °C. To summarize, calcination temperature could be an effective and useful tool applied to produce CS bioceramic substrates with improved potential in enhancing osteogenesis by regulating their degradation and bioactive ion release behaviors.
Collapse
Affiliation(s)
- Zhiyun Du
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhenda Zhao
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, PR China
| | - Huanhuan Liu
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, PR China
| | - Xue Liu
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, PR China
| | - Xu Zhang
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, PR China
| | - Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Huijie Leng
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, PR China.
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
52
|
Song Y, Wu H, Gao Y, Li J, Lin K, Liu B, Lei X, Cheng P, Zhang S, Wang Y, Sun J, Bi L, Pei G. Zinc Silicate/Nano-Hydroxyapatite/Collagen Scaffolds Promote Angiogenesis and Bone Regeneration via the p38 MAPK Pathway in Activated Monocytes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16058-16075. [PMID: 32182418 DOI: 10.1021/acsami.0c00470] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recent studies show that biomaterials are capable of regulating immune responses to induce a favorable osteogenic microenvironment and promote osteogenesis and angiogenesis. In this study, we investigated the effects of zinc silicate/nanohydroxyapatite/collagen (ZS/HA/Col) scaffolds on bone regeneration and angiogenesis and explored the related mechanism. We demonstrate that 10ZS/HA/Col scaffolds significantly enhanced bone regeneration and angiogenesis in vivo compared with HA/Col scaffolds. ZS/HA/Col scaffolds increased tartrate-resistant acid phosphatase (TRAP)-positive cells, nestin-positive bone marrow stromal cells (BMSCs) and CD31-positive neovessels, and expression of osteogenesis (Bmp-2 and Osterix) and angiogenesis-related (Vegf-α and Cd31) genes increased in nascent bone. ZS/HA/Col scaffolds with 10 wt % ZS activated the p38 signaling pathway in monocytes. The monocytes subsequently differentiated into TRAP+ cells and expressed higher levels of the cytokines SDF-1, TGF-β1, VEGF-α, and PDGF-BB, which recruited BMSCs and endothelial cells (ECs) to the defect areas. Blocking the p38 pathway in monocytes reduced TRAP+ differentiation and cytokine secretion and resulted in a decrease in BMSC and EC homing and angiogenesis. Overall, these findings demonstrate that 10ZS/HA/Col scaffolds modulate monocytes and, thereby, create a favorable osteogenic microenvironment that promotes BMSC migration and differentiation and vessel formation by activating the p38 signaling pathway.
Collapse
Affiliation(s)
- Yue Song
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| | - Hao Wu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| | - Yi Gao
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| | - Junqin Li
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| | - Kaifeng Lin
- Department of Orthopedics and Traumatology, 900th Hospital of PLA, Fuzhou 350025, P. R. China
| | - Bin Liu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| | - Xing Lei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
- Department of Orthopedic Surgery, Linyi People's Hospital, Linyi 276002, P. R. China
| | - Pengzhen Cheng
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| | - Shuaishuai Zhang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| | - Yixiao Wang
- Department of Ultrasound Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, P. R. China
| | - Jinbo Sun
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, P. R. China
| | - Long Bi
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| | - Guoxian Pei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| |
Collapse
|
53
|
Jolly R, Khan AA, Ahmed SS, Alam S, Kazmi S, Owais M, Farooqi MA, Shakir M. Bioactive Phoenix dactylifera seeds incorporated chitosan/hydroxyapatite nanoconjugate for prospective bone tissue engineering applications: A bio-synergistic approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110554. [DOI: 10.1016/j.msec.2019.110554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/16/2019] [Accepted: 12/12/2019] [Indexed: 01/10/2023]
|
54
|
Substantial effect of silk fibroin reinforcement on properties of hydroxyapatite/silk fibroin nanocomposite for bone tissue engineering application. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127739] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
55
|
Valente KP, Brolo A, Suleman A. From Dermal Patch to Implants-Applications of Biocomposites in Living Tissues. Molecules 2020; 25:E507. [PMID: 31991641 PMCID: PMC7037691 DOI: 10.3390/molecules25030507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 01/21/2023] Open
Abstract
Composites are composed of two or more materials, displaying enhanced performance and superior mechanical properties when compared to their individual components. The use of biocompatible materials has created a new category of biocomposites. Biocomposites can be applied to living tissues due to low toxicity, biodegradability and high biocompatibility. This review summarizes recent applications of biocomposite materials in the field of biomedical engineering, focusing on four areas-bone regeneration, orthopedic/dental implants, wound healing and tissue engineering.
Collapse
Affiliation(s)
| | - Alexandre Brolo
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Afzal Suleman
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
| |
Collapse
|
56
|
Dorozhkin SV. Functionalized calcium orthophosphates (CaPO 4) and their biomedical applications. J Mater Chem B 2019; 7:7471-7489. [PMID: 31738354 DOI: 10.1039/c9tb01976f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Due to the chemical similarity to natural calcified tissues (bones and teeth) of mammals, calcium orthophosphates (abbreviated as CaPO4) appear to be good biomaterials for creation of artificial bone grafts. However, CaPO4 alone have some restrictions, which limit their biomedical applications. Various ways have been developed to improve the properties of CaPO4 and their functionalization is one of them. Namely, since surfaces always form the interfaces between implanted grafts and surrounding tissues, the state of CaPO4 surfaces plays a crucial role in the survival of bone grafts. Although the biomedically relevant CaPO4 possess the required biocompatible properties, some of their properties could be better. For example, functionalization of CaPO4 to enhance cell attachment and cell material interactions has been developed. In addition, to prepare stable formulations from nanodimensional CaPO4 particles and prevent them from agglomerating, the surfaces of CaPO4 particles are often functionalized by sorption of special chemicals. Furthermore, there are functionalizations in which CaPO4 are exposed to various types of physical treatments. This review summarizes the available knowledge on CaPO4 functionalizations and their biomedical applications.
Collapse
|
57
|
Barros JAR, Melo LDRD, Silva RARD, Ferraz MP, Azeredo JCVDR, Pinheiro VMDC, Colaço BJA, Fernandes MHR, Gomes PDS, Monteiro FJ. Encapsulated bacteriophages in alginate-nanohydroxyapatite hydrogel as a novel delivery system to prevent orthopedic implant-associated infections. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102145. [PMID: 31857183 DOI: 10.1016/j.nano.2019.102145] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
An innovative delivery system based on bacteriophages-loaded alginate-nanohydroxyapatite hydrogel was developed as a multifunctional approach for local tissue regeneration and infection prevention and control. Bacteriophages were efficiently encapsulated, without jeopardizing phage viability and functionality, nor affecting hydrogel morphology and chemical composition. Bacteriophage delivery occurred by swelling-disintegration-degradation process of the alginate structure and was influenced by environmental pH. Good tissue response was observed following the implantation of bacteriophages-loaded hydrogels, sustaining their biosafety profile. Bacteriophages-loaded hydrogels did not affect osteoblastic cells' proliferation and morphology. A strong osteogenic and mineralization response was promoted through the implantation of hydrogels system with nanohydroxyapatite. Lastly, bacteriophages-loaded hydrogel showed excellent antimicrobial activity inhibiting the attachment and colonization of multidrug-resistant E. faecalis surrounding and within femoral tissues. This new local delivery approach could be a promising approach to prevent and control bacterial contamination during implantation and bone integration.
Collapse
Affiliation(s)
- Joana Alberta Ribeiro Barros
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP - Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.
| | - Luís Daniel Rodrigues de Melo
- Laboratório de Investigação em Biofilmes Rosário Oliveira, Center of Biological Engineering, University of Minho, Braga, Portugal
| | - Rita Araújo Reis da Silva
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Maria Pia Ferraz
- FP-ENAS/CEBIMED - University Fernando Pessoa Energy, Environment and Health Research Unit/Biomedical Research Center, Porto, Portugal
| | | | | | - Bruno Jorge Antunes Colaço
- Department of Animal Sciences, ECAV, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Maria Helena Raposo Fernandes
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Pedro de Sousa Gomes
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Fernando Jorge Monteiro
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP - Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
58
|
García-García P, Reyes R, Segredo-Morales E, Pérez-Herrero E, Delgado A, Évora C. PLGA-BMP-2 and PLA-17β-Estradiol Microspheres Reinforcing a Composite Hydrogel for Bone Regeneration in Osteoporosis. Pharmaceutics 2019; 11:E648. [PMID: 31817033 PMCID: PMC6956377 DOI: 10.3390/pharmaceutics11120648] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
The controlled release of active substances-bone morphogenetic protein 2 (BMP-2) and 17β-estradiol-is one of the main aspects to be taken into account to successfully regenerate a tissue defect. In this study, BMP-2- and 17β-estradiol-loaded microspheres were combined in a sandwich-like system formed by a hydrogel core composed of chitosan (CHT) collagen, 2-hidroxipropil γ-ciclodextrin (HP-γ-CD), nanoparticles of hydroxyapatite (nano-HAP), and an electrospun mesh shell prepared with two external electrospinning films for the regeneration of a critical bone defect in osteoporotic rats. Microspheres were made with poly-lactide-co-glycolide (PLGA) to encapsulate BMP-2, whereas the different formulations of 17β-estradiol were prepared with poly-lactic acid (PLA) and PLGA. The in vitro and in vivo BMP-2 delivered from the system fitted a biphasic profile. Although the in vivo burst effect was higher than in vitro the second phases (lasted up to 6 weeks) were parallel, the release rate ranged between 55 and 70 ng/day. The in vitro release kinetics of the 17β-estradiol dissolved in the polymeric matrix of the microspheres depended on the partition coefficient. The 17β-estradiol was slowly released from the core system using an aqueous release medium (Deff = 5.58·10-16 ± 9.81·10-17m2s-1) and very fast in MeOH-water (50:50). The hydrogel core system was injectable, and approximately 83% of the loaded dose is uniformly discharged through a 20G needle. The system placed in the defect was easily adapted to the defect shape and after 12 weeks approximately 50% of the defect was refilled by new tissue. None differences were observed between the osteoporotic and non-osteoporotic groups. Despite the role of 17β-estradiol on the bone remodeling process, the obtained results in this study suggest that the observed regeneration was only due to the controlled rate released of BMP-2 from the PLGA microspheres.
Collapse
Affiliation(s)
- Patricia García-García
- Department of Chemical Engineering and Pharmaceutical Technology, University of La Laguna, 38206 La Laguna, Spain (E.S.-M.); (E.P.-H.)
| | - Ricardo Reyes
- Institute of Biomedical Technologies (ITB), University of La Laguna, 38206 La Laguna, Spain;
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, University of La Laguna, 38206 La Laguna, Spain
| | - Elisabet Segredo-Morales
- Department of Chemical Engineering and Pharmaceutical Technology, University of La Laguna, 38206 La Laguna, Spain (E.S.-M.); (E.P.-H.)
| | - Edgar Pérez-Herrero
- Department of Chemical Engineering and Pharmaceutical Technology, University of La Laguna, 38206 La Laguna, Spain (E.S.-M.); (E.P.-H.)
- Institute of Biomedical Technologies (ITB), University of La Laguna, 38206 La Laguna, Spain;
| | - Araceli Delgado
- Department of Chemical Engineering and Pharmaceutical Technology, University of La Laguna, 38206 La Laguna, Spain (E.S.-M.); (E.P.-H.)
- Institute of Biomedical Technologies (ITB), University of La Laguna, 38206 La Laguna, Spain;
| | - Carmen Évora
- Department of Chemical Engineering and Pharmaceutical Technology, University of La Laguna, 38206 La Laguna, Spain (E.S.-M.); (E.P.-H.)
- Institute of Biomedical Technologies (ITB), University of La Laguna, 38206 La Laguna, Spain;
| |
Collapse
|
59
|
Qayoom I, Teotia AK, Kumar A. Nanohydroxyapatite Based Ceramic Carrier Promotes Bone Formation in a Femoral Neck Canal Defect in Osteoporotic Rats. Biomacromolecules 2019; 21:328-337. [DOI: 10.1021/acs.biomac.9b01327] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
60
|
Wang J, Wang M, Chen F, Wei Y, Chen X, Zhou Y, Yang X, Zhu X, Tu C, Zhang X. Nano-Hydroxyapatite Coating Promotes Porous Calcium Phosphate Ceramic-Induced Osteogenesis Via BMP/Smad Signaling Pathway. Int J Nanomedicine 2019; 14:7987-8000. [PMID: 31632013 PMCID: PMC6781424 DOI: 10.2147/ijn.s216182] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/17/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The hierarchical porous structure and surface topography of calcium phosphate (CaP) bioceramics have a crucial impact on their osteoinductivity. PURPOSE To fabricate a biomimetic bone graft with an interconnected porous structure analogous to that of trabecular bone and a bioactive nanostructured surface with excellent osteoinductive potential. MATERIALS AND METHODS A biphasic CaP (BCP) substrate with highly porous structure was fabricated by an improved sponge replication method. Surface modification was performed by uniformly depositing a hydroxyapatite (HA) nanoparticle layer to create nHA-coated BCP scaffolds. The effects of these scaffolds on osteogenic differentiation of murine bone marrow-derived stem cells (BMSCs) were investigated in vitro, and their osteoinductivity was further assessed in vivo. RESULTS The BCP and nHA-coated BCP scaffolds had similar trabecular bone-like architectures but different surface structures, with mean grain sizes of ~55 nm and ~1 μm, respectively. Compared with the BCP substrate, the nHA-coated BCP scaffolds favored cell adhesion and promoted osteogenic differentiation of BMSCs, as evidenced by upregulated expression of osteogenic genes, enhanced alkaline phosphatase activity, and increased osteocalcin production. This could be attributed to activation of the BMP/Smad signaling pathway, as significantly higher expression levels of BMPRI, Smad1, Smad4, and Smad5 were observed in the nHA-coated BCP group. The nHA-coated BCP scaffold not only maintained scaffold integrity but also induced ectopic bone formation when implanted into rabbit dorsal muscle in vivo for 90 days, whereas the BCP substrate underwent marked biodegradation that led to severe inflammation with no sign of osteogenesis. CONCLUSION The present study demonstrates the potential of this biomimetic bone graft with a trabecular framework and nanotopography for use in orthopedic applications.
Collapse
Affiliation(s)
- Jing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu610064, People’s Republic of China
| | - Menglu Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu610064, People’s Republic of China
| | - Fuying Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu610064, People’s Republic of China
| | - Yihang Wei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu610064, People’s Republic of China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu610064, People’s Republic of China
| | - Yong Zhou
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu610041, People’s Republic of China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu610064, People’s Republic of China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu610064, People’s Republic of China
| | - Chongqi Tu
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu610041, People’s Republic of China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu610064, People’s Republic of China
| |
Collapse
|
61
|
Duman E, Şahin Kehribar E, Ahan RE, Yuca E, Şeker UÖŞ. Biomineralization of Calcium Phosphate Crystals Controlled by Protein–Protein Interactions. ACS Biomater Sci Eng 2019; 5:4750-4763. [DOI: 10.1021/acsbiomaterials.9b00649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Elif Duman
- Bilkent University UNAM − National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ebru Şahin Kehribar
- Bilkent University UNAM − National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Recep Erdem Ahan
- Bilkent University UNAM − National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Esra Yuca
- Bilkent University UNAM − National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul 34210, Turkey
| | - Urartu Özgür Şafak Şeker
- Bilkent University UNAM − National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
62
|
Xiang H, Wang Y, Chang H, Yang S, Tu M, Zhang X, Yu B. Cerium-containing α-calcium sulfate hemihydrate bone substitute promotes osteogenesis. J Biomater Appl 2019; 34:250-260. [PMID: 31088183 DOI: 10.1177/0885328219849712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Haibo Xiang
- 1 Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Wang
- 1 Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Chang
- 1 Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shenyu Yang
- 2 Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mei Tu
- 2 Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianrong Zhang
- 3 Department of Orthopaedics, Chifeng Hospital, Inner Mongolia, China
| | - Bin Yu
- 1 Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
63
|
Ammonium-Induced Synthesis of Highly Fluorescent Hydroxyapatite Nanoparticles with Excellent Aqueous Colloidal Stability for Secure Information Storage. COATINGS 2019. [DOI: 10.3390/coatings9050289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper, uniform hydroxyapatite (HA) nanoparticles, with excellent aqueous colloidal stability and high fluorescence, have been successfully synthesized via a citrate-assisted hydrothermal method. The effect of the molar ratio of ammonium phosphate in phosphate (RAMP) and hydrothermal time on the resultant products was characterized in terms of crystalline structure, morphology, colloidal stability, and fluorescence behavior. When the RAMP is 50% and the hydrothermal time is 4 h, the product consists of a pure hexagonal HA phase and a uniform rod-like morphology, with 120- to 150-nm length and approximately 20-nm diameter. The corresponding dispersion is colloidally stable, and transparent for at least one week, and has an intense bright blue emission (centered at 440 nm, 11.6-ns lifetime, and 73.80% quantum efficiency) when excited by 340-nm UV light. Although prolonging the hydrothermal time and increasing the RAMP had no appreciable effect on the aqueous colloidal stability of HA nanoparticles, the fluorescence intensity was enhanced. The cause of HA fluorescence are more biased towards carbon dots (which are mainly polymer clusters and/or molecular fluorophores constituents) trapped in the hydroxyapatite crystal structure. Owing to these properties, a highly fluorescent HA colloidal dispersion could find applications in secure information storage.
Collapse
|
64
|
Teotia AK, Raina DB, Isaksson H, Tägil M, Lidgren L, Seppälä J, Kumar A. Composite bilayered scaffolds with bio-functionalized ceramics for cranial bone defects: An in vivo evaluation. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/2399-7532/aafc5b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
65
|
Victor SP, Selvam S, Sharma CP. Recent Advances in Biomaterials Science and Engineering Research in India: A Minireview. ACS Biomater Sci Eng 2019; 5:3-18. [PMID: 33405853 DOI: 10.1021/acsbiomaterials.8b00233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biomedical research in health innovation and product development encompasses convergent technologies that primarily integrate biomaterials science and engineering at its core. Particularly, research in this area is instrumental for the implementation of biomedical devices (BMDs) that offer innovative solutions to help maintain and improve quality of life of patients worldwide. Despite achieving extraordinary success, implantable BMDs are still confronted with complex engineering and biological challenges that need to addressed for augmenting device performance and prolonging lifetime in vivo. Biofabrication of tissue constructs, designing novel biomaterials and employing rational biomaterial design approaches, surface engineering of implants, point of care diagnostics and micro/nano-based biosensors, smart drug delivery systems, and noninvasive imaging methodologies are among strategies exploited for improving clinical performance of implantable BMDs. In India, advances in biomedical technologies have dramatically advanced health care over the last few decades and the country is well-positioned to identify opportunities and translate emerging solutions. In this article, we attempt to capture the recent advances in biomedical research and development progressing across the country and highlight the significant research work accomplished in the areas of biomaterials science and engineering.
Collapse
Affiliation(s)
- Sunita P Victor
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Satelmond Palace Campus, Poojappura, Trivandrum 695012, India
| | - Shivaram Selvam
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Satelmond Palace Campus, Poojappura, Trivandrum 695012, India
| | - Chandra P Sharma
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Satelmond Palace Campus, Poojappura, Trivandrum 695012, India
| |
Collapse
|
66
|
Targonska S, Szyszka K, Rewak-Soroczynska J, Wiglusz RJ. A new approach to spectroscopic and structural studies of the nano-sized silicate-substituted hydroxyapatite doped with Eu 3+ ions. Dalton Trans 2019; 48:8303-8316. [PMID: 31107470 DOI: 10.1039/c9dt01025d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nanocrystalline silicate-substituted hydroxyapatites Ca10-xEux(PO4)4(SiO4)2(OH)2 (where x = 0.5, 1.0, 2.0, 5.0 mol%) doped with Eu3+ ions were synthesized using a microwave assisted hydrothermal method and heat-treated in the temperature range from 700 to 1000 °C. The concentration of optically active Eu3+ ions was established in the range of 0.5-5 mol% to investigate the preference of occupancy sites. The structural and morphological properties of the obtained biomaterials were determined by using XRD (X-Ray Powder Diffraction), TEM (Transmission Electron Microscopy) and SEM (Scanning Electron Microscopy) techniques as well as infrared (IR) spectroscopy. The average particle sizes were calculated to be in the range from 20 nm to 80 nm by the Rietveld method. The charge compensation mechanism in europium(iii)-doped silicate-substituted hydroxyapatite was proposed in the Kröger-Vink-notation. The luminescence properties (the emission, excitation spectra and emission kinetics) of the Eu3+ ion-doped apatite were recorded depending on the dopant concentration. The existence of Eu2+ ions was confirmed by the emission spectra.
Collapse
Affiliation(s)
- S Targonska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland.
| | | | | | | |
Collapse
|
67
|
Qayoom I, Raina DB, Širka A, Tarasevičius Š, Tägil M, Kumar A, Lidgren L. Anabolic and antiresorptive actions of locally delivered bisphosphonates for bone repair: A review. Bone Joint Res 2018; 7:548-560. [PMID: 30464835 PMCID: PMC6215244 DOI: 10.1302/2046-3758.710.bjr-2018-0015.r2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
During the last decades, several research groups have used bisphosphonates for local application to counteract secondary bone resorption after bone grafting, to improve implant fixation or to control bone resorption caused by bone morphogenetic proteins (BMPs). We focused on zoledronate (a bisphosphonate) due to its greater antiresorptive potential over other bisphosphonates. Recently, it has become obvious that the carrier is of importance to modulate the concentration and elution profile of the zoledronic acid locally. Incorporating one fifth of the recommended systemic dose of zoledronate with different apatite matrices and types of bone defects has been shown to enhance bone regeneration significantly in vivo. We expect the local delivery of zoledronate to overcome the limitations and side effects associated with systemic usage; however, we need to know more about the bioavailability and the biological effects. The local use of BMP-2 and zoledronate as a combination has a proven additional effect on bone regeneration. This review focuses primarily on the local use of zoledronate alone, or in combination with bone anabolic factors, in various preclinical models mimicking different orthopaedic conditions. Cite this article: I. Qayoom, D. B. Raina, A. Širka, Š. Tarasevičius, M. Tägil, A. Kumar, L. Lidgren. Anabolic and antiresorptive actions of locally delivered bisphosphonates for bone repair: A review. Bone Joint Res 2018;7:548–560. DOI: 10.1302/2046-3758.710.BJR-2018-0015.R2.
Collapse
Affiliation(s)
- I Qayoom
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - D B Raina
- Department of Orthopedics, The Medical Faculty, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - A Širka
- Department of Orthopedics and Traumatology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Š Tarasevičius
- Department of Orthopedics and Traumatology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - M Tägil
- Department of Orthopedics, The Medical Faculty, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - A Kumar
- Department of Biological Sciences and Bioengineering; Centre for Environmental Sciences and Engineering; Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - L Lidgren
- Department of Orthopedics, The Medical Faculty, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
68
|
Chen C, Li Y, Yu X, Jiang Q, Xu X, Yang Q, Qian Z. Bone-targeting melphalan prodrug with tumor-microenvironment sensitivity: Synthesis, in vitro and in vivo evaluation. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
69
|
Komang-Agung IS, Hydravianto L, Sindrawati O, William PS. Effect of Polymethylmethacrylate-Hydroxyapatite Composites on Callus Formation and Compressive Strength in Goat Vertebral Body. Malays Orthop J 2018; 12:6-13. [PMID: 30555640 PMCID: PMC6287135 DOI: 10.5704/moj.1811.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Introduction: Percutaneous vertebroplasty (PV) is one of the available treatments for vertebral compression fracture (VCF). Polymethylmethacrylate (PMMA) is the most common bone substitute used in the procedure, but it has several disadvantages. Bioceramic material, such as hydroxyapatite (HA), has better biological activity compared to PMMA. The aim of this study was to find an optimal biomaterial compound which offers the best mechanical and biological properties to be used in PV. Materials and Methods: This was an experimental study with goat (Capra aegagrus hircus) as an animal model. The animals’ vertebral columns were injected with PMMA-HA compound. Animal samples were divided into four groups, and each group received a different proportion of PMMA:HA compound. The mechanical and biological effects of the compound on the bone were then analysed. The mechanical effect was assessed by measuring the vertebral body’s compressive strength. Meanwhile, the biological effect was assessed by analysing the callus formation in the vertebral body. Results: The optimal callus formation and compressive strength was observed in the group receiving PMMA:HA with a 1:2 ratio. Conclusion: A mixture of PMMA and HA increases the quality of callus formation and the material’s compressive strength. The optimum ratio of PMMA:HA in the compound is 1:2.
Collapse
Affiliation(s)
- I S Komang-Agung
- Department of Orthopaedics, Airlangga University, Surabaya, Indonesia
| | - L Hydravianto
- Department of Orthopaedics, Airlangga University, Surabaya, Indonesia
| | - O Sindrawati
- Department of Pathology, Widya Mandala Katholic University, Surabaya, Indonesia
| | - P S William
- *Emergency Room Department, Jombang General Hospital, Jombang, Indonesia
| |
Collapse
|
70
|
Bai L, Liu Y, Du Z, Weng Z, Yao W, Zhang X, Huang X, Yao X, Crawford R, Hang R, Huang D, Tang B, Xiao Y. Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration. Acta Biomater 2018; 76:344-358. [PMID: 29908975 DOI: 10.1016/j.actbio.2018.06.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 12/27/2022]
Abstract
Coating materials applied for intraosseous implants must be optimized to stimulate osseointegration. Osseointegration is a temporal and spatial physiological process that not only requires interactions between osteogenesis and angiogenesis but also necessitates a favorable immune microenvironment. It is now well-documented that hierarchical nano-micro surface structures promote the long-term stability of implants, the interactions between nano-micro structure and the immune response are largely unknown. Here, we report the effects of microporous titanium (Ti) surfaces coated with nano-hydroxyapatite (HA) produced by micro-arc oxidation and steam-hydrothermal treatment (SHT) on multiple cell behavior and osseointegration. By altering the processing time of SHT it was possible to shift HA structures from nano-particles to nano-rods on the microporous Ti surfaces. Ti surfaces coated with HA nano-particles were found to modulate the inflammatory response resulting in an osteoimmune microenvironment more favorable for osteo-/angio-genesis, most likely via the activation of certain key signaling pathways (TGF-β, OPG/RANKL, and VEGF). By contrast, Ti surfaces coated with nano-rod shaped HA particles had a negative impact on osteo-/angio-genesis and osteoimmunomodulation. In vivo results further demonstrated that Ti implant surfaces decorated with HA nano-particles can stimulate new bone formation and osseointegration with enhanced interaction between osteocytes and implant surfaces. This study demonstrated that Ti implants with micro-surfaces coated with nano-particle shaped HA have a positive impact on osseointegration. STATEMENT OF SIGNIFICANCE Osteo-/angio-genesis are of importance during osteointegration of the implants. Recent advances unravel that immune response of macrophages and its manipulated osteoimmunomodulation also exerts a pivotal role to determine the fate of the implant. Surface nano-micro modification has evidenced to be efficient to influence osteogenesis, however, little is known links nano-microstructured surface to immune response, as well the osteoimmunomodulation. This study demonstrates that the nano-particles decorated micro-surface, compared with the nano-rods decorated micro-surface enables osteogenesis and angiogenesis concurrently that has not been investigated previously. This study also unravels that the immune response of macrophages can be manipulated by the nano-micro surface, especially the nano-dimension matters, leading to a differential effect on osteointegration. The additional knowledge obtained from this study may provide foundation and reference for future design of the coating materials for implantable materials.
Collapse
|
71
|
Teotia AK, Qayoom I, Kumar A. Endogenous Platelet-Rich Plasma Supplements/Augments Growth Factors Delivered via Porous Collagen-Nanohydroxyapatite Bone Substitute for Enhanced Bone Formation. ACS Biomater Sci Eng 2018; 5:56-69. [DOI: 10.1021/acsbiomaterials.8b00227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Arun K. Teotia
- Department of Biological Sciences and Bioengineering; Center for Environmental Science and Engineering; Center for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Irfan Qayoom
- Department of Biological Sciences and Bioengineering; Center for Environmental Science and Engineering; Center for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering; Center for Environmental Science and Engineering; Center for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
72
|
Zhang K, Zhang J, Chen K, Hu X, Wang Y, Yang X, Zhang X, Fan Y. In vitro and in vivo assessment of nanostructured porous biphasic calcium phosphate ceramics for promoting osteogenesis in an osteoporotic environment. RSC Adv 2018; 8:14646-14653. [PMID: 35540770 PMCID: PMC9079917 DOI: 10.1039/c8ra00768c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/02/2018] [Indexed: 11/21/2022] Open
Abstract
Treatment of bone defects in osteoporotic patients with bone substitutes is difficult, due to insufficient osseointegration. The development of appropriate biomaterials to solve the problem requires the assessment of the material performance in an osteoporotic environment, which is rarely investigated. Herein, nanostructured biphasic calcium phosphate (nBCP) ceramics were prepared via the incorporation of hydroxyapatite nanoparticles (HANPs) into porous biphasic CaP (BCP) substrates, leading to an increase of over 500% in the specific surface area. Primary osteoblasts harvested from osteoporotic rats were cultured on the nBCP ceramics, and it was found that the osteoblast functions, including proliferation, alkaline phosphatase activity, osteocalcin secretion and expression of osteogenic genes, were significantly enhanced compared with osteoblasts grown on non-nanostructured BCP ceramics. To further assess the osteoinduction ability, the ceramics were implanted in the femur of osteoporotic rats. Compared to the rats implanted with non-nanostructured BCP ceramics, a higher amount of mechanically matured bone was newly formed in the rats with nBCP ceramics after 6 weeks of implantation. Such enhanced osteoinduction ability of the nBCP ceramics may be due to the incorporated HANPs, as well as the nanostructured topography induced by the HANPs. These results indicate good in vitro and in vivo osteoinductivity of the nBCP ceramics in an osteoporotic environment and offer potential benefits for treating bone defects in osteoporotic patients.
Collapse
Affiliation(s)
- Kun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Kelei Chen
- Zenmindes Biotech Co. Ltd B2, CAS, No 9 4th Section of South Renmin Road Chengdu China +86-28-85410246 +86-28-85417654
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| |
Collapse
|
73
|
Bigi A, Boanini E. Calcium Phosphates as Delivery Systems for Bisphosphonates. J Funct Biomater 2018; 9:E6. [PMID: 29342839 PMCID: PMC5872092 DOI: 10.3390/jfb9010006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 12/16/2022] Open
Abstract
Bisphosphonates (BPs) are the most utilized drugs for the treatment of osteoporosis, and are usefully employed also for other pathologies characterized by abnormally high bone resorption, including bone metastases. Due to the great affinity of these drugs for calcium ions, calcium phosphates are ideal delivery systems for local administration of BPs to bone, which is aimed to avoid/limit the undesirable side effects of their prolonged systemic use. Direct synthesis in aqueous medium and chemisorptions from solution are the two main routes proposed to synthesize BP functionalized calcium phosphates. The present review overviews the information acquired through the studies on the interaction between bisphosphonate molecules and calcium phosphates. Moreover, particular attention is addressed to some important recent achievements on the applications of BP functionalized calcium phosphates as biomaterials for bone substitution/repair.
Collapse
Affiliation(s)
- Adriana Bigi
- Department of Chemistry "G. Ciamician", University of Bologna, 40126 Bologna, Italy.
| | - Elisa Boanini
- Department of Chemistry "G. Ciamician", University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
74
|
Islas RE, García JJ. Hydrophosphonylation of Alkynes with Trialkyl Phosphites Catalyzed by Nickel. ChemCatChem 2017. [DOI: 10.1002/cctc.201700974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rosa E. Islas
- Facultad de Química; Universidad Nacional Autónoma de México; México D. F. 04510 México
| | - Juventino J. García
- Facultad de Química; Universidad Nacional Autónoma de México; México D. F. 04510 México
| |
Collapse
|
75
|
Kubasiewicz-Ross P, Hadzik J, Seeliger J, Kozak K, Jurczyszyn K, Gerber H, Dominiak M, Kunert-Keil C. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats. Ann Anat 2017; 213:83-90. [DOI: 10.1016/j.aanat.2017.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/09/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
|